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Abstract

Background. Previous models suggest biological and behavioral continua among healthy
individuals (HC), at-risk condition, and full-blown schizophrenia (SCZ). Part of these con-
tinua may be captured by schizotypy, which shares subclinical traits and biological phenotypes
with SCZ, including thalamic structural abnormalities. In this regard, previous findings have
suggested that multivariate volumetric patterns of individual thalamic nuclei discriminate HC
from SCZ. These results were obtained using machine learning, which allows case–control
classification at the single-subject level. However, machine learning accuracy is usually unsat-
isfactory possibly due to phenotype heterogeneity. Indeed, a source of misclassification may be
related to thalamic structural characteristics of those HC with high schizotypy, which may
resemble structural abnormalities of SCZ. We hypothesized that thalamic structural hetero-
geneity is related to schizotypy, such that high schizotypal burden would implicate misclassi-
fication of those HC whose thalamic patterns resemble SCZ abnormalities.
Methods. Following a previous report, we used Random Forests to predict diagnosis in a case–
control sample (SCZ = 131, HC = 255) based on thalamic nuclei gray matter volumes estimates.
Then, we investigated whether the likelihood to be classified as SCZ (π-SCZ) was associated with
schizotypy in 174 HC, evaluated with the Schizotypal Personality Questionnaire.
Results. Prediction accuracy was 72.5%. Misclassified HC had higher positive schizotypy
scores, which were correlated with π-SCZ. Results were specific to thalamic rather than
whole-brain structural features.
Conclusions. These findings strengthen the relevance of thalamic structural abnormalities to
SCZ and suggest that multivariate thalamic patterns are correlates of the continuum between
schizotypy in HC and the full-blown disease.

Introduction

Previous models posit a biological and behavioral continuum between conditions at greater risk
for schizophrenia (SCZ) and the full-blown disorder (Barrantes-Vidal et al., 2015; Guloksuz
and van Os, 2017). In this context, schizotypy refers to a set of temporally stable traits, continu-
ally distributed in the general population, that resemble, in attenuated forms, some of the symp-
toms of SCZ (Meehl, 1989; Tien, 1991; Johns and van Os, 2001; van Os et al., 2009; Ettinger
et al., 2014). Previous studies revealed that schizotypal traits are more frequent in first-degree
relatives of patients with SCZ when compared with the general population (Vollema and
Postma, 2002; Vollema et al., 2002), suggesting a link between schizotypy and familial risk
for this brain disorder (Ericson et al., 2011; Walter et al., 2016). Other evidence suggests that
schizotypy and SCZ share behavioral and biological correlates (Abi-Dargham et al., 2004;
Fanous et al., 2007; Taurisano et al., 2014). In fact, both patients with SCZ and healthy indi-
viduals with high schizotypy scores have deficits in sustained attention (Gooding et al.,
2006) and working memory (Kerns and Becker, 2008), as well as brain structural abnormalities
when compared with healthy controls (HC) (Kuhn et al., 2012). On this basis, schizotypy is
widely recognized as a valuable construct for the investigation of biological correlates relevant
to SCZ without the confounds and limitations related to disease state, such as pharmacological
treatment, chronicity, and clinical symptoms (Barrantes-Vidal et al., 2015).

Pathophysiological models point out the thalamus as a pivotal node in the pathophysiology
of SCZ (Andreasen et al., 1994; Peters et al., 2016; Sherman, 2016). Consistently, several find-
ings suggest that thalamic structural abnormality is a biological phenotype associated with both
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SCZ and schizotypy (Ettinger et al., 2014; Pergola et al., 2015). In
particular, previous results indicate decreased thalamic volume in
both conditions compared to HC (Byne et al., 2001; Kuhn et al.,
2012; van Erp et al., 2016). However, the thalamus encompasses
numerous nuclei anatomically segregated and belonging to inde-
pendent brain circuits (Jones, 2007). Accordingly, post-mortem
studies show a decreased volume in specific nuclei in SCZ
compared to HC (Byne et al., 2002, 2009). In particular, findings
appear consistent for the pulvinar, whereas evidence is mixed for
the other thalamic nuclei (Pergola et al., 2015; Dorph-Petersen
and Lewis, 2017). Consistently with the post-mortem results, in
vivo brain imaging findings suggest that specific thalamic nuclei
contribute to thalamic volume shrinkage in SCZ (Cobia et al.,
2017; Pergola et al., 2017). In fact, previous in vivo results in
this brain disorder suggest a volume decrease in the pulvinar, as
well as in anterior and mediodorsal nuclei (Pergola et al., 2015,
2017). Overall, post-mortem and in vivo brain imaging results
highlight the relevance of nuclei-specific thalamic structural
abnormalities in SCZ. Factors possibly confounding the findings
include the complex architecture of thalamic nuclei and the het-
erogeneity of this biological phenotype. For example, HC included
in between-groups comparisons might be characterized by bio-
logical and sub-clinical features progressively closer to those of
SCZ. This heterogeneity may have hindered the characterization
of phenotypic expression of thalamic structural abnormalities
between HC and SCZ. Indeed, schizotypy in the healthy popula-
tion may be relevant in this context.

An approach to investigate complex biological phenotypes is
machine learning. This method allows classification and inference
at the individual level (Zarogianni et al., 2013; Kambeitz et al.,
2015). Additionally, it is a valuable tool to predict the likelihood
of the allocation of each and every individual in a diagnostic
group based on given characteristics. Thus, it may contribute to
the understanding of individual heterogeneity based on imaging
features (Rozycki et al., 2017). Machine learning has been already
used to investigate the relationship between SCZ and imaging
phenotypes (Nieuwenhuis et al., 2012; Salvador et al., 2017),
including those considering thalamic nuclei (Anticevic et al.,
2014). In this regard, our previous study (Pergola et al., 2017)
found that the multivariate volumetric patterns of thalamic nuclei
discriminated HC from both SCZ and non-affected siblings, sug-
gesting that the structural configuration of thalamic nuclei is a
valid intermediate phenotype for SCZ.

Indeed, the results of this study and several others based on neu-
roimaging data indicated that about 25% of the subjects were mis-
classified by machine learning algorithms (Nieuwenhuis et al.,
2012; Rozycki et al., 2017; Salvador et al., 2017; Schwarz et al.,
2019). It is possible that the thalamic structure of those HC match-
ing some of the criteria to identify schizotypy may have contributed
to the misclassification. In other words, it is possible that the higher
the level of schizotypy in HC, the closer the multivariate thalamic
volumetric pattern of HC to that of SCZ, the greater the likelihood
of misclassification of HC as SCZ.

The aim of this study was to investigate whether schizotypy is
related to the variability in multivariate volumetric patterns of thal-
amic nuclei, such that it contributes to the misclassification of HC
as SCZ. With this aim, first we parceled out the thalamus in differ-
ent nuclei subdivisions (Pergola et al., 2017). Then, we trained a
machine learning algorithm that discriminated HC from SCZ
based on multivariate volumetric patterns of thalamic nuclei.
Thus, we tested whether schizotypy contributes to misclassification
of HC as SCZ. Furthermore, we explored whether the

discrimination between these groups of individuals was specific
for thalamic features. With this purpose, we used a neuroanatom-
ical brain atlas encompassing the whole brain and verified whether
schizotypy contributes to the misclassification of this algorithm.
We hypothesized that HC with relatively high schizotypy scores
may present thalamic patterns prone to misclassification as SCZ.

Methods

Participants

Demographics are reported in Table 1. We recruited 386
Caucasian individuals: 131 SCZ (DSM-IV-TR) selected among
consecutive outpatients at the University Hospital of Bari, and
255 HC. The sample partially overlaps with that used in a previ-
ous work (Pergola et al., 2017) [84/131 SCZ – ≈64%; 88/255 HC –
≈35%, online Supplementary Material (SM) section 1.1].
Exclusion criteria for all individuals were history of drug or alco-
hol abuse in the past year, non-psychiatric clinically relevant con-
ditions, history of neurological diseases and head trauma with loss
of consciousness. Absence of psychiatric illness in HC was estab-
lished using the Structured Clinical Interview for DSM-IV
(SCID). Family history of psychiatric disorders was an exclusion
criterion for HC. At the time of scan acquisition, all patients
were on stable treatment with first and/or second-generation anti-
psychotics since at least four weeks. All procedures contributing
to this work comply with the ethical standards of the relevant
national and institutional committees on human experimentation
and with the Helsinki Declaration of 1975, revised in 2008. All
participants gave their informed consent. All procedures were
approved by the ethics committee at Bari University Hospital.

Demographics, neuropsychological, and clinical assessment

Participants were evaluated for handedness with the Edinburgh
Handedness Inventory (Oldfield, 1971) and for socio-economic sta-
tus (SES) (Hollingshead, 1975). The SES considers the occupational
status and the educational level of both parents. The Schizotypal
Personality Questionnaire (SPQ) (Raine, 1991) was administered
to HC. The SPQ is a 74-item validated self-report questionnaire
with a ‘yes/no’ response format for the assessment of Schizotypal
Personality. We used a three-factor model including positive, nega-
tive, and disorganized factors (Vollema and Hoijtink, 2000).
Non-complete questionnaires were excluded. One hundred and
seventy-four HC with complete SPQ evaluation were used for the
association analyses between SPQ scores and machine learning out-
comes. Demographics and SPQ scores of this sample are reported in
Table 1 and eTable 1. To investigate homogeneity between levels of
schizotypy in our cohort with those of larger populations, SPQ
scores in our sample were compared with those of a previous
study including healthy individuals (Fonseca-Pedrero et al., 2018).
SM 1.2 and eTable 1 report statistics on this comparison.

Imaging data acquisition and preprocessing

Structural magnetic resonance imaging data were acquired with a
General Electric (Milwaukee, WI, USA) 3 Tesla whole-body scan-
ner using a standard quadrature head coil. We used a whole-brain
T1 inversion recovery fast spoiled gradient recalled sequence with
the following parameters: TR = 26 ms/TE = 3 ms/NEX = 1; flip
angle 6°; bandwidth 31.25; field of view 250 mm; matrix size
256 × 256; 124 contiguous 1.3 mm thickness axial slices; voxel
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size = 0.9 × 0.9 × 1.3 mm; acquisition time 6′08′′. Images included
in the study were free of neurological abnormalities (assessed by
TP, a board-certified neuro-radiologist), acquisition, and segmen-
tation artifacts (SM 1.3). Data were pre-processed with SPM8
(http://www.fil.ion.ucl.ac.uk/spm). Gray matter and white matter
images were normalized using DARTEL and re-sampled to
1.1 mm3 isotropic voxels, in order to soften potential issues related
to non-isotropic acquisition of images (Mechelli et al., 2005).

Brain features extraction for machine learning multivariate
analyses

We performed two different regions of interest (ROIs) analyses
using two sets of brain features. The first set encompassed the
thalamus, taking into account its subdivision in different nuclei.
The second set encompassed the entire brain and was used as a
negative control to suggest specificity of the results for multivari-
ate volumetric patterns of thalamic nuclei. These two sets of brain
features were obtained as follows:

(1) Thalamic Subdivisions (ThSub). We used an already pub-
lished procedure (Pergola et al., 2017) based on the
‘Thalamus atlas’ (Krauth et al., 2010; Jakab et al., 2012) to
obtain gray matter volume estimates (GMV) of the whole
thalamus and seven thalamic nuclei bilaterally (anterior/mid-
line nuclei; mediodorsal thalamic nucleus; intralaminar
nuclei; ventrolateral nucleus; ventral anterior region; genicu-
late nuclei; pulvinar; see SM 1.4).

(2) Automated Anatomic Labeling (AAL). We used GMV esti-
mates of 106 ROIs available in the Automated Anatomical
Labeling atlas (Tzourio-Mazoyer et al., 2002). We excluded
thalamic ROIs to have a spatially independent control set.

GMV estimates of each ROI were marginalized for gender, lin-
ear as well as quadratic terms of age, and total brain GMV esti-
mate. Linear model residuals of each ROI were used as features
in the following multivariate classification analyses.

Machine learning multivariate classification

We separately used each set of brain features to classify participants
– HC v. SCZ – taking advantage of a machine learning approach.
We used Random Forests (Breiman, 2001) to train two independ-
ent classifiers based on the ThSub and AAL brain features. We

used the caret R package v.6.0–77 (Kuhn, 2008) to implement a
nested-designed supervised model (SM 1.5). All the analyses
were performed with R 3.4.1. We used a nested-designed frame-
work to separate train and test sets, to cross-validate the train
set, and to estimate accuracy in the test set. Critically, the test set
is independent of the train set since subjects have not been used
to build the classifier rules (Bzdok and Meyer-Lindenberg, 2018).
To further control sampling bias, we computed model performance
as the average test set accuracy and its standard deviation over
re-samplings of the train set (permutations = 1000). Furthermore,
we also computed sensitivity, specificity, positive, and negative pre-
dictive values. Moreover, we computed feature importance in dis-
criminating HC v. SCZ (SM 1.5). To assess the statistical
significance of the classification performance of both classifiers,
we permuted diagnostic labels of each classifier to generate the cor-
respondent random null distribution of classification accuracy
(permutations = 1000). We defined the empirical p value as the
number of times the accuracies in the null distribution are greater
than the average accuracy of the true classifier, divided by the num-
ber of permutations. Moreover, to quantify the magnitude of the
difference between the true accuracy distribution and its null distri-
bution, we computed the Cohen’s d confidence interval 95% (CI95).

To obtain an index of the likelihood of a subject to be classified
as SCZ, we defined the global classification score (π-SCZ) for each
subject as the average of Random Forests classification scores (SM
1.5). Note that classification scores were computed in the test set
at each re-sampling, thus providing an unbiased prediction esti-
mate. π-SCZ ranges between 0 and 1 and is an index of the like-
lihood to be classified as SCZ (0 = highest likelihood to be
classified as HC; 1 = highest likelihood to be classified as SCZ).
When π-SCZ⩾ 0.5, the subject was classified as SCZ, otherwise
was classified as HC.

Importantly, the homogeneity of the feature set is a necessary
assumption to consider π-SCZ dependent on the phenotype
under investigation. On this basis, in the present study, we did
not consider premorbid intelligence as a feature of interest in
our primary analysis, as we did in a previous investigation
(Pergola et al., 2017). We adopted this approach because it
would have generated a different set of classification rules
accounting for premorbid intelligence–thalamic interactions.
Thus, π-SCZ would have been dependent on a multivariate
space not specifically related to thalamic patterns only.
However, we included premorbid intelligence in a supplementary
analysis to control for its effect on classification (SM 1.6).

Table 1. Demographics of the sample used in this study

HC SCZ HC v. SCZ p value HCSPQ

Gender M/F 118/137 93/38 χ2 = 20.4 <0.001 75/99

Age in years Mean (S.D.)
range

26.5 (6.7)
18–63

32.9 (9.0)
16–58

|t| = 7.2 <0.001 25.6 (6.7)
18–63

SES 40.8 (16.1) 29.3 (15.4) |t| = 6.8 <0.001 42.0 (15.6)

Handedness 0.69 (0.5) 0.73 (0.4) |t| = 0.8 0.4 0.68 (0.5)

SPQ – – – – 10.6 (8.0)

SPQ Positive – – – – 4.6 (4.5)

SPQ Negative – – – – 6.7 (5.4)

SPQ Disorganized – – – – 3.3 (3.5)

HC, healthy controls; SCZ, patients with schizophrenia; M, male; F, female; S.D., standard deviation; SES, socio-economic status; SPQ, Schizotypal Personality Questionnaire.
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Following analyses were based on the association between HC
misclassification and schizotypy. In particular, we aimed to inves-
tigate whether differences in the performance of ThSub- v.
AAL-based algorithms might have driven the association between
HC misclassification and schizotypy. With this purpose, we
checked whether the two algorithms outperformed each other
in terms of specificity (χ2-test), considering both the whole sam-
ple and those with complete SPQ evaluation. Then, we explored
the overlap between predictions of the two classifiers that we
quantified as the percentage of subjects attributed to the same
class. In this way, despite of almost equivalent classification per-
formances, different algorithms may correctly classify divergent
groups of subjects, which may have specific phenotypic attributes.
Furthermore, we investigated the algorithm performance stability
running additional analyses including only HC with SPQ and
adopting a dimensionality reduction technique for the AAL data-
set (SM 1.6). Finally, we sought to replicate previous findings
(Pergola et al., 2017) including univariate t tests between individ-
ual thalamic nuclei GMV and diagnosis (SM 1.7).

Relevance of schizotypy to misclassification and classification
scores

We investigated how schizotypy affected the HC v. SCZ classifica-
tion outcome based on the multivariate structural patterns of thal-
amic nuclei. With this aim, we assessed the association of levels of
schizotypy with the likelihood to be classified as SCZ (π-SCZ). As
we specified above, π-SCZ closer to 1 indicated greater probability
for an SCZ-like pattern, while π-SCZ close to 0 indicated greater
probability for an HC-like pattern. Thus, we considered true
negatives (TN, i.e. HC classified as such) the HC with a π-SCZ
< 0.5, and false positives (FP, i.e. HC erroneously classified as
SCZ) the HC with a π-SCZ⩾ 0.5. Then, we performed an analysis
of covariance (ANCOVA) with FP/TN as the independent vari-
able. SPQ total scores and SPQ factor scores were used as the
dependent variables in separate models, with age, gender, hand-
edness, and SES as covariates. Furthermore, we explored the asso-
ciation of π-SCZ with SPQ scores performing multiple regressions
with the same covariates.

To test the specificity of the findings for multivariate structural
patterns of thalamic nuclei compared to whole-brain features, we
repeated all these analyses using the classification outcome based
on AAL. Results were Bonferroni corrected considering the four
SPQ and the two machine learning analyses (n = 2 × 4 = 8, α =
0.00625). Effect sizes are reported as partial-r2. To further support
the relevance of multivariate patterns, we checked whether SPQ
scores are individually correlated with thalamic nuclei GMV
(SM 1.7).

Relevance of demographics to misclassification and
classification scores

We verified whether misclassification and classification scores
were associated with demographics to investigate other plausible
sources of misattribution (SM 1.8).

Results

Machine learning multivariate classification

Table 2 reports machine learning performance statistics. The
ThSub algorithm based on the thalamic features yielded an

accuracy of 72.5% (empirical p value < 0.001, Cohen’s d CI95
2.34–2.57; Fig. 1a). The AAL algorithm based on whole-brain fea-
tures yielded an accuracy of 67.6% (empirical p value = 0.018,
Cohen’s d CI95 1.44–1.64; Fig. 1b). Despite almost equivalent pre-
diction accuracies, the overlap among classifiers prediction at the
single-subject level was 61.1%. Bilateral mediodorsal and anterior-
midline nuclei showed both high multivariate feature relevance
(empirical p value < 0.0001) and association with diagnosis (cor-
rected p value < 0.05; eTable 2). Performance remained stable
through sensitivity analyses (eTable 3). Notably, specificity values
did not differ (χ2 = 0.3, p value = 0.57).

Misclassification and classification scores are related to
positive schizotypy

Decomposing the performance of the ThSub classifier, we found
that 42 out of 174 HC were misattributed to SCZ diagnosis (FP,
specificity = 75.9%). ANCOVA indicated that FP scored higher
for the total SPQ score (F1,169 = 4.4, p value = 0.037) compared
to TN. Analysis of the three SPQ subscales indicated greater
scores in FP for the positive schizotypy subscale (F1,169 = 9.5, cor-
rected p value = 0.019, partial-r2 = 0.053; Table 3; Fig. 2a) but not
for the negative (p value = 0.073) and disorganized subscales
(p value = 0.46). Furthermore, there was a positive association
between π-SCZ and positive schizotypy (t169 = 2.9, corrected
p value = 0.038, partial-r2 = 0.046; Table 3; Fig. 2b). This associ-
ation was not significant for total SPQ, negative, and disorganized
factors (p values > 0.1).

All these analyses were not significant when using AAL (speci-
ficity = 82.2%) as the classifier of interest. In particular, FP were not
associated with higher SPQ scores when compared with TN, nor
π-SCZ was associated with SPQ scores (p values > 0.05; Table 3).
Again, specificity values did not differ among classifiers (χ2 = 1.7,
p value = 0.19), suggesting that the results are not dependent on
algorithm performance. Moreover, SPQ scores were not associated
with individual thalamic nuclei GMV (p values > 0.1).

Misclassification and classification scores are not associated
with demographics

FP and TN did not differ in terms of sex, age, SES, and handed-
ness when using the ThSub classifier (p values > 0.1; Table 3). FP
had higher right-hand scores compared to TN when using the
AAL classifier (p value = 0.0013). π-SCZ was not associated with
demographics (p values > 0.05; Table 3).

Discussion

In the present study, we found that multivariate structural pat-
terns of thalamic nuclei allow discrimination between healthy
subjects and patients with SCZ. Furthermore, we found that
high positive schizotypy confers to HC proneness to misclassifica-
tion as SCZ based on such thalamic features. Overall, these find-
ings suggest the relevance of multivariate structural thalamic
patterns as a biological phenotype of SCZ. Furthermore, they sug-
gest that an increase in the levels of schizotypy in HC implicates
greater similarity between their thalamic structural patterns and
those of SCZ. This biological configuration may result in misattri-
bution of HC to the clinical population by a machine learning
algorithm.

These findings are consistent with the previous reports
describing thalamic structural abnormalities in HC with high
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schizotypy scores (Byne et al., 2001; Takahashi et al., 2008; Kuhn
et al., 2012), first-degree relatives (Byne et al., 2009; Okada et al.,
2016; Pergola et al., 2017), and SCZ compared to HC (Glahn
et al., 2008; Fornito et al., 2009; van Erp et al., 2016).
Furthermore, they are consistent with the evidence of anomalies
in thalamo-cortical circuitry in SCZ (Lynall et al., 2010; van
den Heuvel et al., 2010; Salomon et al., 2011; Anticevic et al.,
2014; Woodward et al., 2016) and in individuals at familial risk
for this disorder (Anticevic et al., 2015; Antonucci et al., 2016).
Moreover, they are in line with the psychosis dimensional
model, which posits a continuous phenotypic variation in the
general population with patients laying at the extreme of the
phenotypic distribution (Claridge, 1997; Ettinger et al., 2015;
Lenzenweger, 2015). Within this framework, they suggest that
multivariate thalamic structural patterns are biological correlates
of a continuum between schizotypy and SCZ.

Interestingly, we found that the thalamic-based misclassifica-
tion is specifically related to the cognitive-perceptual (i.e. positive)
domain of schizotypy. This relationship is consistent with the
models involving thalamic nuclei in salience (Gilbert and
Sigman, 2007; Peters et al., 2016) and in the regulation of high-
order cognitive functioning (Sherman, 2016). In SCZ, abnormal-
ities of the structure of the thalamus (Andreasen et al., 1994) may
implicate abnormal integration of perceptual inputs and sensory
gating, which may result in positive symptoms (Pynn and
DeSouza, 2013; Vukadinovic, 2014), and in cognitive anomalies
related to the disruption of thalamo-cortical reciprocal connec-
tions (Gilbert and Sigman, 2007; Bolkan et al., 2017; Schmitt
et al., 2017). In this perspective, a possible speculation on our
findings is that a thalamic volumetric configuration related to
schizotypy may contribute to cognitive-perceptual sub-clinical
phenomena lying in a continuum with symptoms of full-blown

SCZ. Future brain imaging studies might investigate this topic
from a longitudinal perspective (Ferguson and Gao, 2014).

Interestingly, we did not find the association between schizo-
typy and misclassification based on whole-brain features.
Moreover, we found that the individuals correctly discriminated
by ThSub only partially overlap with those correctly discriminated
by AAL classifier. These results suggest that there is no relation-
ship between multivariate whole-brain features and schizotypy.
Indeed, this construct appears more specifically related to the
thalamic structural patterns.

The HC/SCZ classification accuracy of the present study was
comparable with those found in other reports using neuroimaging
brain features only (Nieuwenhuis et al., 2012; Anticevic et al., 2014;
Rozycki et al., 2017; Salvador et al., 2017), confirming the potential
role of the thalamus as a disease biomarker (Anticevic et al., 2014;
Pratt et al., 2018). Differently, other approaches (Nieuwenhuis
et al., 2017; Dwyer et al., 2018) model simultaneously neuroana-
tomical and behavioral data to predict diagnosis or SCZ develop-
ment in cohorts of individuals at high risk (Zarogianni et al.,
2017). However, while the latter approaches point to improve pre-
diction accuracy by adding more layers of information, here we
investigated possible sources of misclassification associated with
inter-individual phenotypic heterogeneity of thalamic nuclei.
Indeed, prediction accuracy of multivariate predictive models
remains steadily between 70% and 80% in the psychiatric field
(Nieuwenhuis et al., 2017; Rozycki et al., 2017; Salvador et al.,
2017; Schwarz et al., 2019). The reasons behind this boundary
merit further investigation. In this regard, we excluded that the
demographical variables collected in this study were a source of
misclassification, confounding machine learning outcome.

A limitation of this study is that it is based on the dimensional
model of schizotypy in continuum with SCZ (Ettinger et al.,

Table 2. Machine learning classification performances

Accuracy
%

Sensitivity
%

Specificity
%

Mean (S.D.) NPV% PPV%
Empirical
p value Cohen’s d CI95

ThSub 72.5 (3.6) 59.1 (7.3) 79.4 (4.9) 79.2 (3.6) 59.9 (6.0) <0.001 2.34–2.57

AAL 67.6 (3.7) 39.7 (8.4) 81.8 (6.1) 72.6 (2.5) 53.6 (7.9) 0.018 1.44–1.64

Table reports statistics of the classification performance (HC v. SCZ) obtained by the Thalamic Subdivisions (ThSub) and the Automated Anatomic Labeling (AAL) Random Forests classifiers.
CI95, 95% confidence interval; NPV, negative predictive value; PPV, positive predictive value; S.D., standard deviation.

Fig. 1. Density plots of Random Forests classification
accuracies. Density curves compare classification
accuracy (x-axis) distribution over 1000 re-sampling
between (a) the Thalamic Subdivisions features
(ThSub) or (b) the Automated Anatomic Labeling
whole-brain features (ALL) with the respective null dis-
tribution obtained through permutation of diagnostic
labels.

Psychological Medicine 1505

https://doi.org/10.1017/S0033291719001430 Published online by Cambridge University Press

https://doi.org/10.1017/S0033291719001430


2015). However, the alternative categorical model (Meehl, 1989;
Lenzenweger, 2015) should be considered for future investiga-
tions. Moreover, SPQ scores in our sample are lower when com-
pared with other healthy populations (Fonseca-Pedrero et al.,
2018) and show reduced variability (SM 1.2 and eTable 1). This
is particularly true for the disorganized factor: thus, the non-
significant association may reflect a floor effect. Another limita-
tion is that HC and SCZ were not homogeneous for age, gender,
and SES. We considered the effects of age and gender on GMV
estimates and did not find any association of SES with classifica-
tion outcomes. Indeed, a full match of these variables between
groups would have dramatically decreased the sample size. A

further limitation is that machine learning algorithms could be
theoretically confounded by a large number of individual attri-
butes that have not been collected in this study. Future machine
learning studies should assess further sources of misclassification
and whether risk- or resilience-related structural variations for
psychosis may be present in the brain. Finally, intra-diagnostic
variability merits further investigation. Here, we did not collect
SPQ for SCZ. Although schizotypy construct may be valid also
in patients, literature is mixed on this topic (Brosey and
Woodward, 2015; Cicero et al., 2019).

In conclusion, the findings of the present study suggest that the
multivariate signatures of thalamic nuclei structure relate to positive

Table 3. Association of classifiers outcome with SPQ scores and demographics in healthy controls

Machine learning analyses ThSub AAL
False positive/true negative 42/132 31/143
Specificity % 75.9 82.2

Test statistic p value Test statistic p value

Misclassification
ANCOVA (F-value)

SPQ 4.4 0.037* 1.1 0.286

Positive 9.5 0.0024** 0.1 0.935

Negative 3.2 0.073 3.2 0.075

Disorganized 0.5 0.460 0.7 0.397

χ2-test (χ2) Sex 0.3 0.566 1.3 0.252

t-test (t-value) Age −0.3 0.798 −0.1 0.969

Hollingshead −1.2 0.222 −1.2 0.238

Edinburgh 0.1 0.952 3.3 0.0013

Classification probability
Multiple regression (t-value)

SPQ 1.6 0.121 1.1 0.296

Positive 2.9 0.0048** 0.6 0.866

Negative 1.1 0.264 1.9 0.060

Disorganized 0.1 0.908 0.8 0.784

t-test (t-value) Sex (m > f) <0.1 0.997 1.1 0.269

Linear regression
(t-value)

Age −0.3 0.753 −1.6 0.105

Hollingshead −0.5 0.624 −1.5 0.146

Edinburgh −0.7 0.472 1.2 0.203

Table reports test statistics and uncorrected p values: *p value < 0.05; **p values surviving multiple comparisons threshold (α = 0.00625) in bold font.
ThSub, Thalamic Subdivisions; AAL, Automated Anatomic Labeling; SPQ, Schizotypal Personality Questionnaire.

Fig. 2. Relevance of positive schizotypy for healthy con-
trols classification. (a) Boxplot showing that false posi-
tives (FP, healthy controls misclassified to SCZ
diagnosis) have higher positive schizotypy scores than
true negatives (TN, healthy controls correctly classified).
(b) Scatterplot showing the relationship between the
likelihood to be classified as SCZ (π-SCZ) based on
multivariate volumetric patterns of thalamic nuclei
and positive schizotypy scores. Shaded area indicates
95% confidence interval.
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schizotypy in healthy individuals and strengthen the role of the
thalamus in cognitive-perceptual disturbances related to SCZ.
Future studies are needed to fully investigate the potential of this
topic and further disentangle how structural thalamic abnormal-
ities are key for the pathophysiology of this brain disorder.
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