
 

Polytopic gain scheduled H� control for robotic manipulators
Zhongwei Yu,* Huitang Chen* and Peng-Yung Woo†
(Received in Final Form: February 6, 2003)

SUMMARY
A new approach to the design of a polytopic gain scheduled
H� controller with pole placement for n-joint rigid robotic
manipulators is presented. With linearization around the
equilibrium manifold, the robotic system is transformed into
a continuous linear parameter-varying (LPV) system with
respect to the equilibrium manifold. A filter is introduced to
obtain an augmented system, which is apt to have the
polytopic gain scheduled controller designed. This system is
put into a polytopic expression by a convex decomposition.
Based on the concepts of quadratic D-stability and quadratic
H� performance, the polytopic features are used to simplify
the controller design to be a vertices’ controller design for
the polytope. A state feedback gain, which satisfies H�

performance and dynamic characteristics for each vertex of
the polytope, is designed with a Linear Matrix Inequality
(LMI) approach. A global continuous gain scheduled
controller is then obtained by a synthesis of the vertex gains.
Experiments demonstrate the feasibility of the designed
controller.

KEYWORDS: Polytopic gain scheduled control; Manipulators;
LMI approach; Vertex gains.

1. INTRODUCTION
As a highly-coupled nonlinear system, the dynamics of a
manipulator changes along with the change of the manip-
ulator’s geometric features and inertia. Moreover, there are
model errors in modeling the robotic manipulator (e.g. the
unmodeled part in the high frequency range) and dynamic
uncertainties and external disturbances (e.g., the coupling
among joints, frictions, noise in sensors and executors etc).
In order to guarantee good dynamic characteristics in the
whole motion region, the controller design needs to attain
two objects, i.e. the disturbance attenuation and robust
stability, and the real-time adjustment of the controller
dynamics along with the change of the manipulator’s
geometric features and inertia. The first object can be
attained by H� synthesis techniques.1 It is necessary to use
gain schedule technique for the second object.2 However,
the existing robotic control schemes, such as the adaptive
control,3,4 the H� control,5,6 the fuzzy control7 and the neural
network control,8 work for only one of the objects. To have
a combination of the two aforementioned objects is one of
the topics in our research presented in this article.

In a conventional gain scheduled control,9–11 a nonlinear
system is linearized to be segments of linear subsystems at
different motion regions. In each of the linear region, a state
feedback gain is designed by using a certain linear robust
control method. The controller keeps on testing the system
states, deciding the motion regions and using the corre-
sponding gain control systems. For the conventional gain
scheduled controllers, it is required that the system states do
not change too fast, since a fast varying system means a fast
pass through the motion regions, which results in the fast
switching of the gains. In order to capture the nonlinearity
of the original system, the switching standard for the
different gains must be appropriately chosen. If the
switching standard is too coarse, the system performance
becomes poor and system stability is affected, especially
during the transition from one motion region to another. On
the other hand, if the regions are divided too finely, though
the system performance is improved and the system stability
is increased, a large amount of space is needed to store the
gains for the different motion regions. Therefore, it is
concluded that the conventional gain scheduled controllers
are only good for slow varying systems. Moreover, the
design of the conventional gain scheduled controllers does
not take into consideration of the time-varying property of
the system and does not have a theoretical basis for the
system stability and performance in the whole range of the
varying-parameters. Also, it usually takes a big off-line
computation load. These are fatal deficiencies of the
conventional gain scheduled controllers.

In order to overcome the aforementioned deficiency, the
polytope technique is proposed in this article. The linearized
state equation of the manipulator is expressed by a polytope.
Since it is a convex set, the polytope can be described
completely by the vertices. Thus, in the controller design, it
is unnecessary to have designs with respect to all the points
in the polytope. Computation load is much reduced, since
only designs with respect to the vertices are needed. At the
same time, continuous gains of the controller are obtained.

From the viewpoint of digital realization, fast controller
dynamics must be prevented. The used approach of the
feature weighting function is not feasible in practical
applications due to the resulted high-order controllers. In
this article, the multi-object expansion of polytope tech-
nique is proposed. Pole placement requirement is added in
the H� design so that the closed-loop poles are arranged to
enter into the appropriate regions in the left-half plane to
achieve satisfactory time response and closed-loop damp-
ing. Thus, large closed-loop poles are eliminated to prevent
fast controller dynamics.

Recently, the Linear Matrix Inequality (LMI), due to its
highly efficient solutions, has attracted the attention of the
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control area and become an important method in robust
control analysis and design. The LMI method makes the H�

synthesis become a problem of convex optimization.12

Essentially, the LMIs present a constrain relationship, which
offers more flexibility for combining some constraints in the
closed-loop system, and is suitable to multi-object con-
trollers such as H� and pole placement. The LMIs can be
solved efficiently by interior-point optimization algo-
rithms,13 especially the MATLAB LMI Control Toolbox.14

A new approach to the design of a polytopic gain
scheduled H� controller with pole placement for n-joint
rigid robotic manipulators is presented. With linearization
around the equilibrium manifold, the robotic system is
transformed into a continuous linear parameter-varying
(LPV) system with respect to the equilibrium manifold. A
filter is introduced to obtain an augmented system, which is
apt to have the polytopic gain scheduled controller
designed. This system is put into a polytopic expression by
a convex decomposition. Based on the concepts of quadratic
D-stability and quadratic H� performance, the polytopic
features are used to simplify the controller design to be a
vertices’ controller design for the system polytope. By
combining H� and pole placement object, a state feedback
gain which satisfies H� performance and dynamic character-
istics for each vertex of the system polytope is designed
with a LMI approach.15 A global continuous gain scheduled
controller is then obtained by a synthesis of the vertex
gains.

2. THE LPV TRANSFORMATION OF A ROBOTIC
SYSTEM AND ITS POLYTOPIC EXPRESSION
The dynamics equation of an n-joint rigid robotic manip-
ulator is

M(q)q̈+C(q, q̇)q̇+g(q)=� (1)

where q�Rn is the joint position vector, M(q)�Rn� n is the
inertia matrix, C(q, q̇)q̇�Rn is the centrifugal and Couliaulis
term, g(q)�Rn is the gravity term and ��Rn is the control
torque.

Suppose x1 =q, x2 = q̇ and X=(x1 x2)
T. (1) can be expressed

in a state space as

Ẋ=F(X)+G(X)� (2)

where F(X)=� [0n� n In� n ]X

�M�1(X)(C(X)+g(X))�
and G(Ẋ)=� 0n� 1

M�1(X)�.

For system (2), a varying-parameter �(t)=[�1(t), . . . , �1(t)]
T

�Rt[�(t) is written as � for simplicity in the following text]
is selected with its vertex set being V:={�1, . . . , �N} where
�i�Rl, i=1, . . . , N. After convex decomposition, the vary-
ing-parameter � changes in the polytope with its vertex set

being V, i.e., �=�N

i=1

�i (�)�i where, �i (�)≥0,�N

i=1

�i (�)=1.

Assume that there is an equilibrium manifold parameterized
by the varying-parameter �, i.e., there is a continuous
function Xe(�): Rl → Rn and �e(�): Rl → Rn such that for all
�, which has a vertex set V we have

0=F(Xe(�))+G(Xe(�))�e(�) (3)

where the varying-parameter � could be the function of the
system states, the inputs, the outputs or the external signals.
For a specified plant, the selection of the varying-parameter
� is not unique. The selection principle is that the selected
� is able to reflect the dynamic characteristics of the original
system. For every � at the equilibrium manifold (3), (2) can
be reduced, after a Jacobian linearization, to

˙̂x(t)=Â(�)x̂(t)+B̂(�)û(t) (4)

where x̂(t)=X(t)�Xe(�) û(t)=� (t)��e(�),

Â(�)=
	

	X
(F(X)+G(X)�) � Xe(�),�e(�) and B̂(�)=G(Xe(�)) in

which Â(�) and B̂(�) are the affine functions of the varying-

parameter �, i.e., [Â(�)B̂(�)]=�l

i=1

�i[Âi B̂i ], which can be

obtained by an appropriate selection of the varying-
parameter �.

Equation (4) is the LPV expression of the robotic system.
Since there are model errors such as the high-frequency
unmodeled part in robotic modeling and the dynamic
uncertainty and external disturbance in robotic motion such
as joint coupling, friction, and sensor and executor noise, an
equivalent disturbance wi (t) for the model errors, the
dynamic uncertainty and external disturbance is added in (4)
and then (4) is written as

˙̂x(t)=Â(�)x̂(t)+B̂1w(t)+B̂2(�)û(t) (5)

where B̂1 =�0n� n

In� n
�, B̂2(�)=B̂(�).

In (5), B̂2(�) is the affine function of the varying-parameter
� and therefore it is difficult to design the gain-scheduled
controller by using the polytopic technique, since this
system does not have the vertex property mentioned in
Theorem 1. A 1st-order filter is introduced to solve this
problem in this paper. Hereby define a new control input u
and the state equation of the filter is:

ẋu =Au Xu +Bu u

û=Cu xu (6)

where the coefficient matrices Au�Rn� n, Bu�Rn� n and
Cu�Rn� n are the filter design parameters. In the filter design,
the bandwidth is required to be broader than the expected
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system bandwidth. Define x=[x̂ xu ]T. Combining (5) and
(6), the augmented plant can be expressed as

ẋ=A(�)x+B1w+B2u (7)

where A(�)=�Â(�)
0

B̂2(�)Cu

Au
�= �l

i=1

�i Âi

0

�l

i=1

�i B̂iCu

Au

,

B1 =
0n� n

In� n

0n� n

and B2 =�0n� n

Bn� n
�.

It is seen that after the filter is introduced, matrix B2 in the
augmented plant (7) becomes a constant matrix. For such a
kind of structure, a gain-scheduled controller by using the
polytopic technique can be designed. While the perform-
ance index Z(t)�Rk� 1 expresses the disturbance-attenuation
performance for disturbance w(t), (7) can further be
expanded to be a LPV system:

P(�):
ẋ(t)=A(�)x(t)+B1w(t)+B2u(t)
Z(t)=C1x(t)+D1u(t)

(8)

where the coefficient matrices C1 and D1 of the performance
index satisfy CT

1 C1 =P and DT
1 D1 =Q, where P>0 and Q>0

are the weighting matrices. C1 and D1 are obtained based on
the requirement that the closed-loop system possesses the
H� performance 
 for any disturbance 

w�L2[0,+�), i.e., 
1


��

0
(xT Px+uT Qu)dt<
 ��

0
wTwdt

Since the varying-parameter � changes in the fixed polytope
with its vertex set being V and A(�) in system (8) is also the
affme function of the varying-parameter �, the state-space
matrices in system (8) change in a matrix polytope, i.e.

�A(�)
C1

B1

0
B2

D1
�=�N

i=1

�i (�)�A(�i )
C1

B1

0
B2

D1
�:

=�N

i=1

�i(�)�Ai

C1

B1

0
B2

D1
�

�i (�)≥0,�N

i=1

�i (�)=1

Thus, (8) is the polytopic expression of the robotic system
with a LPV transformation.

3. THE DESIGN OF THE POLYTOPIC GAIN
SCHEDULED H� CONTROLLER

3.1. Related definitions and theorems

Definition 1 (the LMI region).15

Suppose D is a subset of a complex plane. If there
exists a symmetric matrix �=[�kl ]�Rm� m and a matrix
�=[�kl ]�Rm� m such that D={z�C: fD(z)<0}, where
fD(z):=�+z�+z̄�T =[�kl +�kl z+�lk z̄]1≤k,l≤m is the character-
istic function of D and takes value in the m� m Hermitian
matrix space, then D is called a LMI region.

In the above definition, M=[�kl ]1≤k,l≤m expresses that M is
an m� m matrix with a general term �kl.

Definition 2 (Quadratic D-stability).
Suppose that for the LPV system ẋ=A( p)x with respect to p,
when p is a fixed value, its pole location in the LMI region
D can be described in the following:

MD(A( p),X)=[�kl X+�kl A(p)X+�lk XA( p)T]1≤k,l≤m

where X is a positive definite matrix, MD(A( p), X) and fD(z)
can be related by the following substitution (X, A( p)X,
XA( p)T ) ↔ (1, z, z̄). Then, the matrix A( p) is quadratic
D-stable if and only if there exists a symmetric positive
definite matrix X such that MD(A( p), X)<0 for all admis-
sible values of the parameter p.

Definition 3 (Quadratic H� performance).
For the LPV system with respect to p

ẋ=A( p)x+B( p)u
(9)

y=C( p)X+D( p)u

has quadratic H� performance 
 if and only if there exists a
positive definite matrix X>0 such that

BO
[A(p),B(p),C(p),D(p)](X,
):=

AT( p)X+XA( p)
BT( p)X
C( p)

XB( p)
�
I
D( p)

CT( p)
DT( p)
�
I

<0

for all admissible values of the parameter p.

Theorem 1 (Vertex property).
For the polytopic linear parameter-varying plant (9), where
the varying-parameter � changes in the polytope with
�1, · · · , �r as its vertices, i.e.,

p�CO(�1, · · · , �r)=��r

i=1

�i�i : �i ≥0,�r

i=1

�i =1�
and the state space matrix changes in a matrix polytope, i.e.,

�A( p)
C( p)

B( p)
D( p)��P:=CO��Ai

Ci

Bi

Di
�, i=1, · · · , r�,

the following three items are equivalent:
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(1) The system is quadratic D-stable with quadratic H�

performance 
.
(2) There exists a positive definite matrix X>0 such that for

all �A( p)
C( p)

B( p)
D( p)��P,

MD(A( p), X)<0

Bo
[A(p),B(p),C(p),D(p)] (X,
)<0

(3) There exists a positive definite matrix X>0, which
satisfies the following LMIs:

MD(Ai, X)<0
Bo

[Ai,Bi,Ci,Di ]
(X,
)<0

i=1, 2, · · · , r

Proof:
According to Definitions 2 and 3, it is evident (1) and (2)
are equivalent. Let us now prove the equivalence of (2) and
(3). When (2) holds, the polytopic vertices satisfy (3),
i.e., (3) holds. On the other hand, we noticed that

�A( p)
C( p)

B( p)
D( p)�=�r

i=1

�i�Ai

Ci

Bi

Di
�, where �i ≥0 and

�r

i=1

�i =1. Then MD(A( p), X)=�r

i=1

�iMD(Ai, X) and

Bo
[A(p),B(p),C(p),D(p)] (X,
)=�r

i=1

�i B
o
[Ai,Bi,Ci,Di ]

(X,
).Therefore if (3)

holds, (2) holds too.

3.2. The design of the polytopic controller
For the polytopic LPV system (8), we design a gain
scheduled state feedback controller with a same polytopic
structure:

u=K(�)x (10)

where K(�)=�N

i=1

�i(�)Ki and Ki is the vertex of the

polytopic controller.
The following theorem proves the feasibility of this

design.

Theorem 2.
In the design of the state feedback controller (10) for a
system expressed by (8), if there exists a positive definite
matrix X>0 such that Ki satisfies MD(Ai +Ki, X)<0 and
Bo

[Ai +Ki ,B1 ,C1 +D12Ki ,0] (X,
)<0, i=1, . . . , N, the designed poly-
topic controller (10) guarantees that the closed-loop system
is quadratic D-stable and has a quadratic H� performance 

between w(t) and Z(t) for all admissible values of the
varying-parameter �.

Proof:
Let the controller (10) be put into the system (8). The
closed-loop system is

ẋcl =��N

i=1

�i(�)(Ai +B2 Ki )�xcl +B1w

Z=��N

i=1

�i(�)(C1 +D12 Ki )�xcl

(11)

It is seen that the closed-loop system has also a polytopic
structure. According to Theorem 1, for LPV system (8) with
a polytopic structure, as long as all the polytopic vertices
satisfy MD(Ai +Ki, X)<0 and Bo

[Ai +Ki ,B1 ,C1 +D12Ki ,0] (X,
)<0,
i=1, . . . , N, the polytopic controller (10) guarantees the
closed-loop system is quadratic D-stable and has a quadratic
H� performance 
 between w(t) and Z(t) for all admissible
values of the varying parameter �.

Theorem 2 reveals that the key to the design of the
polytopic controller is to find a positive definite matrix X>0
and the vertices’ controllers Ki. We use LMI technique to
solve the problem. Figure 1 demonstrates the design
principle for the polytopic controller.

3.3. The design of the vertices’ controllers
From the polytopic parameter-varying system (8), the linear
time-invariant (LTI) systems at the vertices are

ẋ=Aix+B1w+B2u i=1, . . . , N
(12)

Z=C1x+D12u

Suppose Twzi (s) is the closed-loop transfer function between
w(t) and z(t), and its closed-loop realization is (Acli, Bcli,
Ccli, Dcli ). To obtain satisfied dynamic characteristics, the
closed-loop poles are required to be placed in the region
S(�, r,  ) in Figure 2. Confining the closed-loop poles in
this region ensures a minimum decay rate �, a minimum

Fig. 1. The design principle of the polytopic controller.

Fig. 2. The pole-placement region S(a, r, ).
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damping ratio �=cos , and a maximum undamped natural
frequency �d =r sin  within a certain scope. These, in turn,
bound the maximum overshoot, the frequency of oscillation,
the decay time, the rise time and the settling time. As is seen
from Definition 1, region S(�, r,  ) is a LMI region.

Theorem 3.
Given 
>0, there exists a positive-definite symmetric
matrix X and Li =Ki X, which satisfy the following LMIs:

Ai X+XAT
i +B2Li +LT

i BT
2 <(�2�)X (13)

� �rX
XAT

i +LT
i BT

2

AiX+B2Li

�rX �<0 (14)

�I11i

I21i

I12i

I22i
�<0 (15)

Ai X+XAT
i +B2Li +LT

i B
T
2

BT
1

C1X+D12Li

B1

�


D11

XCT
1 +LT

i DT
12

DT
11

�


<0 (16)

where

I11i =sin  · Ai X+X(sin  · Ai )
T +(sin  · B2)Li +Li

T(sin  · B2)
T

I21i =cos  · Ai X�cos  · XAi
T +cos  · B2Li �cos  · LT

i B2
T

I12i = IT
21i

I22i = I11i

i=1, . . . , N

Suppose (X*, L*) is one feasible solution of the above
LMIs. Then the matrix X* and the feedback gain
K*i =L*i (X*)�1 are the positive definite matrix Xcl >0 and the
vertices’ controllers, respectively, which satisfy Theorem 2.

Proof:
For the pole-placement region S(�, r, ) as shown in Figure
2, according to the relationship between MD(A, X) and fD(z),
the following LMIs, which satisfy the pole-placement
requirements, can be obtained from Definition 2 and
Theorem 1: there exists XD >0 such that

Acli XD +XD AT
cli +2�XD <0 (17)

��rXD

XD AT
cli

Acli XD

�rXD
�<0 (18)

� sin  (Acli XD +XD AT
cli )

cos  (XD AT
cli �Acli XD)

cos  (Acli XD �XD AT
cli )

sin  (Acli XD +XD AT
cli )
�<0 (19)

Also, from Definition 3 and Theorem 1, the LMI, which
guarantees Twzi (s) to possess a quadratic H� performance
	 Twzi 	 � <
, is: there exists X� >0 such that

Acli X� +X� AT
cli

BT
cli

Ccli X�

Bcli

�
I
Dcli

X�CT
cli

DT
cli

�
I
<0 (20)

From (11), Acli =Ai +B2Ki, Bcli =B1, Ccli =C1 +D12Ki and
Dcli =0. Suppose X=XD =X� >0, and Li =Ki X. With the
substitution of the above into (17)–(20), it is easy to obtain
(13)–(16).

The above inequality constraints can be easily solved by
some LMI optimization software, such as MATLAB LMI
Control Toolbox.14 It is worth noticing that all the feedback
gains for the vertices are obtained off-line. Real-time
calculation is only for (12). Therefore, in practical control,
the proposed controller in this paper has a small on-line
computation load and thus is easy to be realized. See Figure
3 for the overall control scheme.

4. EXPERIMENTS
Experimental studies are carried out on a self-designed
direct drive two-joint planar robotic manipulator (DDR)
shown in Figure 4.

The dynamics equation of the manipulator is expressed
as16

� a
b cos(2 �1)

b cos(2 �1)
c � · �̈1

̈2
�

+��b ̇ 2
2 sin(2 �1)

b ̇ 2
1 sin(2 �1)

�=��1

�2
� (21)

where a=5.6794 kg · m2, b=1.4730 kg · m2 and
c=1.7985 kg · m2.

Fig. 3. The block diagram of the closed-loop control.

Fig. 4. The direct-drive robotic manipulator.
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Defining M=ac�b2 cos2(2 �1), from (21) we obtain

̈1 =
bċ 2

2 sin(2 �1)+
1
2

b2 ̇ 2
1 sin 2(2 �1)

M

+
c�1 �b cos(2 �1)�2

M
(22)

̈2 =
�aḃ 2

1 sin(2 �1)�
1
2

b2 ̇ 2
2 sin 2(2 �1)

M

+
a�2 �b cos(2 �1)�1

M
(23)

Then

	̈1

	1

=
�bċ 2

2 cos(2 �1)�b2 ̇ 2
1 cos 2(2 �1)�b sin(2 �1)�2

M

+
b2 sin 2(2 �1)�bċ 2

2 sin(2 �1)+
1
2

b2̇ 2
1 sin 2(2 �1)

+c�1 �b cos(2 �1)�2�
M 2

	̈1

	2

=
bċ 2

2 cos(2 �1)+b2 ̇ 2
1 cos 2(2 �1)+b sin(2 �1)�2

M

+
b2 sin 2(2 �1)�bċ 2

2 sin(2 �1)+
1
2

b2̇ 2
1 sin 2(2 �1)

+c�1 �b cos(2 �1)�2�
M 2

	̈1

	̇1

=
b2 ̇1 sin 2(2 �1)

M

	̈1

	̇2

=
2bċ2 sin(2 �1)

M

	̈1

	�1

=
c
M

	̈1

	�2

=
�b cos(2 �1)

M

	̈2

	1

=
aḃ 2

1 cos(2 �1)+b2 ̇ 2
2 cos 2(2 �1)�b sin(2 �1)�1

M

+
b2 sin 2(2 �1)��aḃ 2

1 sin(2 �1)�
1
2

b2̇ 2
2 sin 2(2 �1)

+a�2 �b cos(2 �1)�1�
M 2

	̈2

	2

=
�aḃ 2

1 cos(2 �1)�b2 ̇ 2
2 cos 2(2 �1)+b sin(2 �1)�1

M

+
�b2 sin 2(2 �1)��aḃ 2

1 sin(2 �1)�
1
2

b2̇ 2
1 sin 2(2 �1)

+a�2 �b cos(2 �1)�1�
M 2

	̈2

	̇1

=
�2ab ̇1 sin(2 �1)

M

	̈2

	̇2

=
�b2̇2 sin 2(2 �1)

M

	̈2

	�1

=
�b cos(2 �1)

M

	̈2

	�2

=
a
M

At the equilibrium manifold Xe =(1e 2e ̇1e ̇2e)
T =(1e 2e 0+0)T

and �e =(0 0)T, let us linearize (22) and (23). Since

	̈1

	1

� (Xe, �e ) =0,
	̈1

	2

� (Xe, �e ) =0,
	̈1

	̇1

� (Xe, �e ) =0,
	̈1

	̇2

� (Xe, �e ) =0,

	̈2

	1

� (Xe, �e ) =0,
	̈2

	2

� (Xe, �e ) =0,
	̈2

	̇1

� (Xe, �e ) =0,
	̈2

	̇2

� (Xe, �e ) =0,

	̈1

	�1

� (Xe, �e ) =
c

ac�b2 cos2(2e �1e)
,

	̈1

	�2

� (Xe, �e ) =
�b cos(2e �1e)

ac�b2 cos2(2e �1e)
,

	̈2

	�1

� (Xe, �e ) =
�b cos(2e �1e

ac�b2 cos2(2e �1e)
,

	̈2

	�2

� (Xe, �e ) =
a

ac�b2 cos2(2e �1e)
,

the linearized equation is
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˙̂1
˙̂2
¨̂1
¨̂2

=

0
0
0
0

0
0
0
0

1
0
0
0

0
1
0
0

̂1

̂2
˙̂1
˙̂2

+

0
0
c

Me

�b cos(2e �1e)
Me

0
0

�b cos(2e �1e)
Me

a
Me

��̂1

�̂2
� (24)

where ̂1 =1 �1e, ̂2 =2 �2e, 
˙̂1 = ̇1 �̇1e = ̇1, 

˙̂2 = ̇2 �̇2e = ̇2,
�̂1 =�1 ��1e =�1, �̂2 =�2 ��2e =�2, and Me =ac�b2 cos2(2e �1e).

Since ac>>b2, Me 
ac. (24) can be written as:

˙̂x=Ax̂+Bû (25)

where A=

0
0
0
0

0
0
0
0

1
0
0
0

0
1
0
0

,

B=

0
0
1
a

�
b
ac

cos(2e �1e)

0
0

�
b
ac

cos(2e �1e)

1
c

,

x̂=(̂1 ̂2
˙̂1

˙̂2)
T and û= (�̂1 �̂2)

T.

It is seen from (25) that matrix B is the linear function of
cos(2e �1e), where 2e �1e is the angle between joint 1
and joint 2 in Figure 5. This angle decides the dynamic
characteristics of (25). Practically, the measured values of 2

and 1 can be regarded as the equilibrium points to linearize
the system (21). Thus, along with the changes of 2 and 1,
(25) can be regarded as a LPV system with respect to
cos(2 �1). This article uses the values of cos(2 �1) at
different angles to design the gain scheduled controller so as
to improve the control performance. However, it is difficult
to design a gain scheduled controller by using the polytope
technique for a LPV system with a structure of (25). A 1st-
order filter (6) is thus introduced in this paper to solve the
problem. The coefficient matrices take the following form:
Au =diag{�h,�h}, Bu =diag{d1, d2} and Cu =diag{l, l}.

h,d1,d2 and l are the filter design parameters. Define
x=[x̂ xu]

T. By combining (6) and (25), the augmented
system can be expressed as

ẋ= Ãx+B̃u (26)

0 0 1 0 0 0
0 0 0 1 0 0

where Ã=

0 0 0 0 l
a

�
bl
ac

cos(2e �1e)

0 0 0 0
�

bl
ac

cos(2e �1e)
l
c

0 0 0 0 �h 0

0 0 0 0 0 �h

0 0
0 0

and B̃=
0 0

.
0 0
d1 0
0 d2

It is seen that after the introduction of the filter, Ã
becomes a linear function of cos(2e �1e). For such a
structure, the polytopic technique can be used to design the

gain scheduled controller. Let �=�
bl
ac

cos(2e �1e). Such a

selection of � makes the system have only one varying-
parameter so that the design is simplified. From Figure 5,

2e �1e�[��, 0]. Thus, ��[�min, �max]=�–
bl
ac

,
bl
ac�. Since

�max ��

�max ��min

+
���min

�max ��min

=1, let �1(�)=
�max ��

�max ��min

and

�2(�)=
���min

�max ��min

. Such a selection of �1 and �2 makes the

system have a convex property. After a convex decomposi-
tion, the augmented system (26) can be expressed in a
polytopic form as

ẋ=��2

i=1

�i(�)Ai�x+B̃u (27)

0 0 1 0 0 0

0 0 0 1 0 0

where A1 =
0 0 0 0

1
a

�min)

0 0 0 0 �min

1
c

0 0 0 0 �h 0

0 0 0 0 0 �h
Fig. 5. The structure schematic drawing of the direct-drive robotic
manipulator.
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0 0 1 0 0 0

0 0 0 1 0 0

and A2 =
0 0 0 0

1
a

�max

.
0 0 0 0 �max

1
c

0 0 0 0 �h 0

0 0 0 0 0 �h

It is seen clearly that �1(�) and �2(�) are polytopic
coordinates, i.e., �1(�)>0, �2(�)>0 and �1(�)+�2(�)=1.

With the consideration of the disturbance w(t) and the
performance index Z(t), a polytopic LPV system as (8) can
be obtained by combining (27), where

0 0
0 0

A(�)=�2

i=1

�i(�)Ai B2 =B̃, B1 = 1 0 ,
0 1
0 0
0 0

�q1 0 0 0 0 0
0 �q2 0 0 0 0

C1 =
0 0 �q3 0 0 0 ,
0 0 0 �q4 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0
0 0

D12 = 0 0
0 0
�q5 0
0 �q6

and qi ≥0 (i=1, 2, 3, 4, 5, 6) are weighting factors.
Thus, for the planar two-joint direct-drive robotic manip-

ulator, we can design, according to Section 3, a polytopic
gain scheduled state feedback controller (10), which
guarantees the quadratic D-stability of the closed-loop
system and the quadratic H� performance 
 between the
external disturbance w(t) and the performance index Z(t) for
the whole range of the varyingparameter �. Here N=2, i.e.,

K(�)=�2

i=1

�i(�)Ki and Ki is the vertex of the polytopic

controller.
In our experiments, according to the real situation of the

robotic manipulator, the parameters of the filter are chosen
as h=20, d1 =1, d2 =1 and l=20. The weighting factors in
the performance index Z(t) are chosen as q1 =2.25, q2 =9,
q3 =1, q4 =16, q5 =1.44 and q6 =1,44. The system’s closed-
loop poles are required to be placed in the region of �=1,
r =20 and  =�/4. By using the command “mincx” in
MATLAB LMI Control Toolbox to optimize the LMIs in
Theorem 3, an optimized 
 =1.0248 can be obtained. The

state feedback gain matrices for the polytopic vertices are
designed, respectively:

K1 =�123.6096

�3.5l77

�10.8670

70.7212

78.2676

�0.0010

�0.9341

29.5344

9.1816

�3.6809

�9.0301

11.5475 �
K2 =�123.6096

3.5177

10.8670

70.7212

78.2676

0.0010

0.934l

29.5344

9.1816

3.6809

9.0301

11.5475�
The closed-loop poles corresponding to the vertices are:

{–16.7693�8.6555i,�15.2977,�5.4949,�4.3245,�2.0736}.

It is seen that the designed controller not only satisfies the
pole-placement requirements, but also has a good H�

performance due to a small optimized 
. After the design of
the vertices’ controllers for the polytope, the overall
polytopic controller satisfying Theorem 2 can be obtained
from (10). Figure 6 demonstrates the design principle of the
controller.

In our experiment, a square wave and a sinusoid wave are
used as reference inputs. The square wave is used to test the
switching ability as well as the stability and dynamic
characteristics of the system. The reference inputs for joint
1 and joint 2 are a square wave with a frequency of 0.125 Hz
and a sinusoidal wave, i.e., 2d =0.5+0.5 sin(0.25�t),
respectively. By using the proposed polytopic controller
(10), the joint position response and the control torque
curves are shown in Figure 7. A comparison between the
proposed controller and the single H� LTI controller is made
and the resulted responses are also shown in Figure 7.

It is seen from Figure 7(a) that under the functioning of
the polytopic gain scheduled H� controller, the robotic
manipulator has no overshooting, a smooth motion and a
small rise time in its step response. Also, the system has a

Fig. 6. The design principle of the polytopic controller for the
direct-drive manipulator.
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strong switching ability between different points. It is
evident that the step response under the functioning of a
single H� LTI controller is much worse. Figure 7(b)
demonstrates that though there is a distortion in the response
at the 4th second due to a sudden increase of the load on
joint 2 as a result of the position switching of joint 1, the
manipulator catches up the reference input right away under
the functioning of the polytopic gain scheduled H� con-
troller. The spikes in Figure 7(c) are corresponding to the
boundaries of the square wave input, while those for joint 2
shown in Figure 7(d) are due to the large impulse on joint 2
as a result of the sudden position switching of joint 1.

Also, we did a tracking experiment. Let the end-effector
of the manipulator track a circle of radius 0.6 m with a
speed of 1 m/s. The coordinates of the center of the circle is
(0.40 m, 0.30 m). The joint errors are recorded. Figure 8
demonstrates a comparison of the control performance

between the proposed controller and the conventional gain
scheduled PID controller. It is seen that the maximum errors
for joints 1 and 2 under the conventional gain scheduled PID
controller are 0.1°, respectively, with evident vibration,
while those under the proposed gain scheduled controller
are 0.04° and 0.03°, respectively, without any vibration.
Thus, a better control performance is demonstrated.

5. CONCLUSIONS
Thanks to the introduction of the polytope technique, the
design of a controller is transformed into a design of the
vertices’ controllers for the polytope in this paper. The
deficiency of the conventional gain scheduled controller,
i.e., a big computation load, working only for a slow varying
system, and a lack of theoretical guarantee of system
stability and performance in the whole range of the varying-
parameter, is overcome. With a combination of a H� design
and pole placement, the designed controller has the
performance of disturbance attenuation, robust stability and
fast dynamics resistance. It is feasible to digital realization.
In order to transform the linearized robotic state equation to
be a polytopic expression, which is liable to the design of a
gain scheduled controller, a 1st-order filter is introduced.
The design of the vertices’ controllers is the key to the
polytopic gain scheduled H� controller design. The LMI
technique is used in this paper to obtain the desired
optimized solution. The proposed polytopic gain scheduled
H� controller is applied to a two-joint direct-drive robotic
manipulator. Experiment results demonstrate the tracking
ability of the system. System stability is proved by the
performance of the system under a fast switching of a
square wave. Comparisons with the performance of the H�

LTI controller and the conventional gain scheduled PID

Fig. 7. Experimental results.

Fig. 8. Experimental results for tracking.
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controller demonstrate the superiority of the proposed
polytopic gain scheduled H� controller.
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