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Abstract We study the consequences of stationary and semi-stationary set reflection. We show that

the semi-stationary reflection principle implies the Singular Cardinal Hypothesis, the failure of the weak
square principle, etc. We also consider two cardinal tree properties introduced recently by Weiss, and
prove that they follow from stationary and semi-stationary set reflection augmented with a weak form

of Martin’s Axiom. We also show that there are some differences between the two reflection principles,
which suggests that stationary set reflection is analogous to supercompactness, whereas semi-stationary
set reflection is analogous to strong compactness.
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Introduction

Reflection principles are a way of transferring large cardinal properties to small
cardinals. Over the years, a large number of such principles have been considered, and a
rich theory has been developed with numerous applications not only to pure set theory
but also to various other areas of mathematics. Some of the earliest and most important
reflection principles concern reflection of various classes of stationary sets. In this paper,
we will consider the stationary reflection principle SR, introduced by Foreman et al. [2],
which asserts that, for every λ> ω2, the following statement SR(λ) holds.

If S is a stationary subset of [λ]ω, then there is I ⊆ λ of cardinality ω1 such that ω1 ⊆ I
and S ∩ [I]ω is stationary in [I]ω.

SR and its variations have been studied extensively by a number of authors, and it
has been shown that it has important consequences in cardinal arithmetic, infinite
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combinatorics, topology, algebra, etc. One of the key observations of [2] is that SR
implies the following principle (†).

Every poset preserving stationary subsets of ω1 is semi-proper.

This allowed Foreman et al. [2] to show that, in the standard model for the Semi
Proper Forcing Axiom (SPFA), a provably maximal forcing axiom, Martin’s Maximum
(MM), holds. Somewhat later, Shelah [8] showed that MM follows outright from SPFA.
The principle (†) in itself has many important consequences; for instance, already in
[2] it was shown that it implies that the nonstationary ideal NSω1 is precipitous, and
that Strong Chang’s Conjecture holds. It is therefore interesting in its own right. In
[10, Chapter XIII, 1.7], Shelah showed that (†) is equivalent to a certain reflection
principle. In order to explain this, we will introduce some notation.

For countable sets x and y, we say that y is an ω1-extension of x if x ⊆ y and
x ∩ ω1 = y ∩ ω1. We will write xv y to say that y is an ω1-extension of x. Given S ⊆ [λ]ω,
for some λ > ω1, we will say that S is full if S is closed under ω1-extensions. Shelah [10]
showed that (†) is equivalent to the statement SSR, which says that, for every λ > ω2,
the following statement SSR(λ) holds.

If S is a full stationary subset of [λ]ω, then there is I ⊆ λ of cardinality ω1 such that
ω1 ⊆ I and S ∩ [I]ω is stationary in [I]ω.

One may be tempted to conjecture that the assumption that S is full in the above
statement is innocuous and that SSR is equivalent to SR. However, the first author [7]
showed that this is not the case; indeed, SSR is strictly weaker than SR. One of the goals
of the present paper is to show that SSR nevertheless has many of the consequences
as SR; it implies the Singular Cardinal Hypothesis, the failure of a weak version of the
square principle, etc.

Another topic of this paper has to do with two cardinal properties recently introduced
and studied by Weiss [14]. We first recall the relevant definitions. Suppose that κ is a
regular cardinal and that λ > κ. By Fn(κ, λ, 2) we denote the set of all partial functions
of size <κ from λ to {0, 1}. A (κ, λ)-tree is a family F ⊆ Fn(κ, λ, 2) which is closed
under restrictions and such that for every u ∈ [λ]<κ there is f ∈F with dom(f ) = u. We
denote by levu(F ) the u-level of F , i.e., the set {f ∈F : dom(f ) = u}. A (κ, λ)-tree is
called thin if levu(F ) is of size < κ, for all u ∈ [λ]<κ . A cofinal branch through F is a
function b : λ→ {0, 1} such that f � u ∈F , for every u ∈ [λ]<κ . A level sequence of F is
a sequence Ef = (fu : u ∈ [λ]<κ) such that fu ∈ levu(F ) for all u ∈ [λ]<κ . Given a (κ, λ)-tree
and a level sequence Ef of F , we will say that a branch b of F is ineffable for Ef if the
set {u ∈ [λ]<κ : b � u = fu} is stationary in [λ]<κ . Given a regular cardinal κ > ω1 and
λ > κ, the two cardinal tree property TP(κ, λ) states that every thin (κ, λ)-tree has a
cofinal branch. We say that κ has the strong tree property if TP(κ, λ) holds for every
λ > κ. Given κ and λ as before, we let ITP(κ, λ) denote the statement that, for every
thin (κ, λ)-tree and a level sequence Ef of F , there is an ineffable branch for Ef . We say
that κ has the super tree property if ITP(κ, λ) holds for every λ > κ. Note that if κ
is inaccessible then every (κ, λ)-tree is thin. With this in mind, we can now reinterpret
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classical results of Jech [3] and Magidor [6]. Namely, in our terminology, Jech [3] showed
that an uncountable cardinal is strongly compact if and only if it is inaccessible and has
the strong tree property. Similarly, Magidor [6] showed that an uncountable cardinal κ
is supercompact if and only if it is inaccessible and has the super tree property. These
results are analogous to the classical reformulation of weak compactness, which states
that an uncountable cardinal κ is weakly compact if and only if it is inaccessible and
the usual tree property holds for κ; see for instance [4]. Since all known proofs of the
consistency of strong forcing axioms require supercompact cardinals, it was natural to
expect that they would imply these two cardinal properties for κ = ω2. This was indeed
confirmed by Weiss [14], who showed that the Proper Forcing Axiom (PFA) implies
that ω2 has the super tree property. Moreover, Viale and Weiss [15] showed that, if the
universe V is obtained by forcing over some inner model M by a forcing notion which has
the κ-chain condition and the κ-approximation property, then, if κ has the strong tree
property in V, it also has the strong tree property in M. If, moreover, the forcing notion
is proper, then the same holds for the super tree property. Since all known methods for
producing a model of PFA start from an inaccessible cardinal κ in some universe M and
produce a generic extension by a forcing notion which has the above property and in
which κ becomes ω2, it follows that they require at least a strongly compact cardinal.
We will show that SR together with MAω1(Cohen) implies the super tree property
of ω2 and that SSR together with MAω1(Cohen) implies the strong tree property of
ω2. This suggests that SR + MAω1(Cohen) should have the consistency strength of
a supercompact cardinal whereas SSR + MAω1(Cohen) should have the strength of a
strongly compact cardinal. We also show that SSR +MAω1(Cohen) does not imply the
super tree property of ω2.

This paper is organized as follows. In ğ 1, we present the notation and basic facts used
in this paper. In ğ 2, we prove that SSR implies the failure of weak square principles. In
ğ 3, we prove that SR+MAω1(Cohen) and SSR+MAω1(Cohen) imply the super and the
strong tree properties, respectively. Finally, in ğ 4, we prove that SSR implies the SCH.

1. Preliminaries

In this section, we present the notation and basic facts used in this paper. For a set A of
ordinals, let lim(A) be the set of all limit points in A. Moreover, let sup+(A)= sup{α + 1 :
α ∈ A}. We often use sup+ instead of sup, since it slightly simplifies our arguments. For
an ordinal λ and a regular cardinal κ < λ, let Eλκ = {α < λ : cof(α)= κ}.

Let A be a set and F be a function from [A]<ω to A. We say that x ⊆ A is closed under
F if F(a) ∈ x, for all a ∈ [x]<ω. For each x ⊆ A, let clF(x) be the closure of x under F, i.e.,
the smallest subset y of A which contains x and is closed under F.

Let κ be a regular uncountable cardinal and A be a set including κ. Recall that a
subset C of [A]<κ is said to be club if and only if it is ⊆-cofinal in [A]<κ , and closed under
unions of ⊆-increasing sequence of length < κ. S ⊆ [A]<κ is said to be stationary if it
intersects all club subsets of [A]<κ . We often use the well-known fact that S is stationary
in [A]<κ if and only if for any function F : [A]<ω→ A there exists a nonempty x ∈ S which
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is closed under F and such that x ∩ κ ∈ κ. We say that X ⊆ [A]κ is stationary (or club) if
X is stationary (or club) in [A]<κ+ .

For a set A and a limit ordinal η, we say that A is internally approachable of length η
if there exists a ⊆-increasing sequence (xξ : ξ < η) such that

⋃
ξ<η xξ = A and such that

(xξ : ξ < ζ) ∈ A, for all ζ < η.
Suppose that A = (A,E, . . .) is a structure in a countable first-order language and

E is a well-ordering of A. Then A has definable Skolem functions. For each X ⊆ A, let
HullA(X) be the Skolem hull of X in A, i.e., HullA(X) is the smallest M elementary
submodel of A such that X ⊆M. We say that a structure A = (A, . . .) is an expansion of
a structure A′ = (A, . . .) if A is obtained by adding countably many constants, functions,
and predicates to A′. We use the following fact due to Baumgartner [1].

Fact 1.1 (Baumgartner [1]). Let θ be a regular uncountable cardinal and E a
well-ordering of Hθ . Let A = (Hθ ,∈,E, . . .) be a structure in a countable language,
and suppose that M is an elementary submodel of A and λ is a regular uncountable
cardinal with λ ∈M. Let δ = sup(M ∩ λ). Then HullA(M ∪ δ) ∩ λ= δ.
Proof. It suffices to prove that HullA(M∪δ)∩λ⊆ δ. Take an arbitrary α ∈HullA(M∪δ)∩
λ. Then there are a formula ϕ(v0, v1, v2), b ∈ [δ]<ω, and p ∈M such that α is the unique
element with A |H ϕ[α, b, p]. Take γ ∈M ∩ λ with b ∈ [γ ]<ω, and for each a ∈ [γ ]<ω let
h(a) be the least ξ < λ with A |H ϕ[ξ, a, p] if such ξ exists. Then h is a partial function
from [γ ]<ω to λ, and h ∈M by the definability of h and the elementarity of M. Then

α = h(b) < sup(ran(h)) ∈M ∩ λ.
Hence α ∈ δ. �

Next, we give our notation and facts relevant to singular cardinal combinatorics.
Recall that the SCH is the statement that λcof(λ) = λ+ for all singular cardinals λ
with 2cof(λ) < λ. We say that the SCH fails at a singular cardinal λ if 2cof(λ) < λ, and
λcof(λ) > λ+. We use the following well-known theorem.

Fact 1.2 (Silver [11]). Suppose that λ is the least singular cardinal at which SCH fails.
Then cof(λ)= ω.

We also use Shelah’s PCF theory. Since we will only be working with singular
cardinals of cofinality ω, we make the relevant definitions only in this case. Let Eλ =
(λn : n ∈ ω) be a strictly increasing sequence of regular cardinals, and let λ = supn∈ω λn.
We let

∏ Eλ denote
∏

n∈ω λn. For a set x of ordinals with |x| < λ0, let χ Eλx ∈
∏ Eλ be the

characteristic function of x, i.e., χ Eλx (n) = sup+(x ∩ λn) for each n ∈ ω. We will omit the
superscript Eλ in χ Eλx if it is clear from the context.

For functions f , g : ω→On, we use the following notation:

f < g
def⇔ ∀n f (n) < g(n)

f <∗ g
def⇔ ∃m ∀n> mf (n) < g(n)

f =∗ g
def⇔ ∃m ∀n> mf (n)= g(n).
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Moreover, for m< ω, we use the following:

f <m g
def⇔ ∀n> m f (n) < g(n)

f =m g
def⇔ ∀n> m f (n)= g(n).

f 6 g, f 6∗ g, and f 6m g are defined in the same way as f < g, f <∗ g, and f <m g.
A <∗-increasing cofinal sequence in

∏ Eλ of length λ+ is called a scale on Eλ. A scale
(fβ : β < λ+) is called a better scale if for any α < λ+ of uncountable cofinality there
exists a club C ⊆ α and σ : C→ ω such that, for any β, γ ∈ C with β < γ , we have
fβ <max{σ(β),σ (γ )} fγ . We use the following fact.

Fact 1.3 (Shelah [9]). Suppose that λ is a singular cardinal of cofinality ω such that
µω < λ for all µ < λ and such that λω > λ+. Then there exists a strictly increasing
sequence of regular cardinals of length ω which converges to λ and on which a better scale
exists.

2. Failure of weak square

It is known, due to Veličković [13], that SR implies the failure of �(λ) for all regular
λ> ω2. Recall that �(λ) says that there is a sequence (Cα : α ∈ lim(λ)) such that:

(i) Cα is a club subset of α, for all α,
(ii) if α ∈ lim(Cβ), then Cα = Cβ ∩ α,
(iii) there are no club C ⊆ λ with C ∩ α = Cα for all α ∈ lim(C).

In this section, we prove that SSR also implies the negation of �(λ) for all regular
λ> ω2.

Theorem 2.1. Assume that λ is a regular cardinal > ω2 and that SSR(λ) holds. Then
�(λ) fails.

Our proof is based on that in [13]. To prove Theorem 2.1, we need several
preliminaries.

First, we give a modification of SSR, which is also used in ğ 4. For countable sets x and
y, we write xv∗ y if

(i) xv y,
(ii) sup+(x)= sup+(y),
(iii) sup+(x ∩ γ )= sup+(y ∩ γ ) for all γ ∈ Eλω1

∩ x.

Given X ⊆ [λ]ω, for some λ > ω1, we say that X is weakly full if X is upward closed
under v∗.
Lemma 2.2. Assume that λ > ω2 and that SSR(λ) holds. Then, for any weakly full
stationary X ⊆ [λ]ω there exists I ∈ [λ]ω1 including ω1 such that X ∩ [J]ω is stationary for
all J ⊆ λ such that I ⊆ J and sup+(J)= sup+(I).

Proof. Let X be a weakly full stationary subset of [λ]ω. Take a sufficiently large regular
cardinal θ and a well-ordering E of Hθ , and let A = (Hθ ,∈,E, λ). Let Y be the set of
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all y ∈ X with HullA(y)∩λ= y, and let Y be the upward closure of Y under v. By SSR(λ),
there is I′ ∈ [λ]ω1 such that ω1 ⊆ I′ and Y ∩ [I′]ω is stationary. Let I be one of such I′
with the least sup+. We show that I witnesses the lemma for X. To this end, we make a
preliminary definition. Let

Z0 = {z ∈ [I]ω : ∃y ∈ Y, yv z ∧ sup+(y)= sup+(z)}.

Claim. Z0 is stationary in [I]ω.

Proof. Assume not. Then

Z = {z ∈ [I]ω : ∃y ∈ Y, yv z ∧ sup+(y) < sup+(z)}
is stationary in [I]ω. For each z ∈ Z, choose yz ∈ Y such that yz v z and sup+(yz) <

sup+(z), and let βz = min(z \ sup+(yz)). Note that βz > ω1. By Fodor’s Lemma, we
can find β such that Z′ = {z ∈ Z : βz = β} is stationary in [I]ω. Let I′ = I ∩ β. Then
{z∩β : z ∈ Z′} is stationary in [I′]ω. Moreover, z∩β ∈ Y for each z ∈ Z′, because z∩β w yz.
So Y ∩ [I′]ω is stationary. Note also that ω1 ⊆ I′ and |I′| = ω1. But sup+(I′) < sup+(I).
This contradicts the choice of I. �

Now we prove that I witnesses the lemma for X. Take an arbitrary J ⊆ λ with I ⊆ J
and sup+(J)= sup+(I). Let

Z1 = {z ∈ [J]ω : z ∩ I ∈ Z0 ∧ sup+(z ∩ I)= sup+(z) ∧HullA(z) ∩ ω1 = z ∩ ω1}.
Then Z1 is stationary in [J]ω, because Z0 is stationary, sup+(J) = sup+(I), and ω1 ⊆ J.
We show that Z1 ⊆ X. In order to see this, take an arbitrary z ∈ Z1. We prove that z ∈ X.
First, we can take y ∈ Y with y v z and sup+(y) = sup+(z). Recall that Y ⊆ X and that
X is closed under v∗. So it suffices to prove that y v∗ z. For this, all we have to show
is that sup+(y ∩ γ ) > sup+(z ∩ γ ) for every γ ∈ Eλω1

∩ y. Suppose that γ ∈ Eλω1
∩ y. Let

M = HullA(y) and N = HullA(z). Note that M ∩ ω1 = y ∩ ω1 = z ∩ ω1 = N ∩ ω1. Then,
since γ ∈M ⊆ N and cof(γ ) = ω1, we have that sup+(M ∩ γ ) = sup+(N ∩ γ ). Moreover,
sup+(z∩ γ )6 sup+(N ∩ γ ), and sup+(y∩ γ )= sup+(M ∩ γ ) by the definition of Y. Hence
sup+(y ∩ γ )> sup+(z ∩ γ ). �

Next, we present a game which will be used to construct a weakly full stationary
set. Let λ be a regular cardinal > ω2. For a function F : [λ]<ω→ λ, let G1(λ,F) be the
following game of length ω:

I α0 γ0 α1 γ1 · · · αn γn · · ·
II β0 β1 · · · βn · · ·

I and II in turn choose ordinals < λ. In the nth stage, first I chooses αn, then II chooses
βn, and then I again chooses γn > αn, βn of cofinality ω1. I wins if

clF({γn : n ∈ ω}) ∩ [αm, γm)= ∅
for every m ∈ ω. Otherwise, II wins.
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Lemma 2.3. Let λ be a regular cardinal > ω2 and F be a function from [λ]<ω to λ.
Then I has a winning strategy for the game G1(λ,F).

Proof. Since G1(λ,F) is an open game for player I, by the Gale–Stewart Theorem,
one of the players has a winning strategy. Assume towards contradiction that II has a
winning strategy, say τ . We will find a play (αn, βn, γn : n ∈ ω) in which II follows τ , but
which is won by I.

Let θ be a sufficiently large regular cardinal. First, build an ∈-chain {Mn : n < ω} of
elementary submodels of Hθ containing F and τ as elements and such that γn =Mn ∩ λ
is an ordinal < λ of cofinality ω1. Let x = clF({γn : n ∈ ω}) and αn = sup(x ∩ γn), for each
n. Note that αn < γn, since x is countable and cof(γn) = ω1. Finally, let (βn : n ∈ ω) be
a sequence of II’s moves according to τ against (αn, γn : n ∈ ω). Note that βn < γn, since
α0, γ0, . . . , αn−1, γn−1, αn ∈ Mn and Mn is an elementary submodel of Hθ containing τ .
Now (αn, βn, γn : n ∈ ω) is a legal play of G1(λ,F) in which II has followed τ . However,
x ∩ [αn, γn) = ∅, for each n, by the definition of the αn. Therefore I wins this play, a
contradiction. It follows that I has a winning strategy in G1(λ,F), as required. �

Now we prove Theorem 2.1.

Proof of Theorem 2.1. Assuming that �(λ) holds, we prove that SSR(λ) fails. Let
EC = (Cα : α ∈ lim(λ)) be a �(λ)-sequence. Let X be the set of all x ∈ [λ]ω which have limit
order type and there is ξ < sup+(x) such that

(1) sup(x ∩ Csup+(x))6 ξ ,

(2) cof(min(x \ β))= ω1, for all β ∈ Csup+(x) \ ξ .

Here, note that X is weakly full. So it suffices to prove the following claims.

Claim 1. X is stationary in [λ]ω.

Proof. Take an arbitrary function F : [λ]<ω → λ. We find x ∈ X closed under F. By
Lemma 2.3, fix a winning strategy τ of I for G1(λ,F). Let C be the set of all limit
ordinals β < λ closed under τ and F. Note that C is club in λ.

Subclaim. There is δ ∈ lim(C) ∩ Eλω such that C ∩ δ \ Cδ is unbounded in δ.

Proof. Assume otherwise. Then, by the Pressing Down Lemma, we can find a
stationary subset S of lim(C) ∩ Eλω and ξ < λ such that C ∩ (ξ, δ) ⊆ Cδ, for all δ ∈ S.
Suppose that α, β ∈ lim(C) \ (ξ + 1) and α < β. Since S is unbounded in λ, there is
δ ∈ S \ β. Since C ∩ (ξ, δ) ⊆ Cδ, it follows that both α and β are limit points of Cδ.
By condition (ii) of the definition of �(λ), we have that Cα = Cδ ∩ α and Cβ = Cδ ∩ β.
Therefore Cα = Cβ ∩ α. Let

D=
⋃
{Cα : α ∈ C \ (ξ + 1)}.

It follows that D ∩ α = Cα, for all α ∈ lim(D), which contradicts the fact that EC is a
�(λ)-sequence. �
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Now, let us fix δ ∈ lim(C) ∩ Eλω such that C ∩ δ \ Cδ is unbounded in δ. Take a strictly
increasing sequence (δn : n ∈ ω) in C ∩ δ \ Cδ which is cofinal in δ. For each n ∈ ω, we can
take βn < δn such that [βn, δn) ∩ Cδ = ∅, because δn is a limit ordinal which is not in Cδ.
Then, let (αn, γn : n ∈ ω) be a sequence of I’s moves according to τ against (βn : n ∈ ω).
Moreover, let x= clF({γn : n ∈ ω}). It suffices to prove that x ∈ X.

To see this, first note that sup+(x) = δ, because δ is closed under F. Next note that
αn+1 < δn for each n ∈ ω, because δn is closed under τ . Moreover, Cδ ∩ δn+1 ⊆ βn+1 ⊆ γn+1

by the choice of βn+1. Hence Cδ ∩ [δn, δn+1) ⊆ [αn+1, γn+1) for every n ∈ ω. Note that
x ∩ [αn+1, γn+1)= ∅ for each n ∈ ω, because I wins with the play (αn, βn, γn : n ∈ ω). Thus
x∩Cδ ⊆ δ0. Moreover, min(x \ β)= γn+1 for all β ∈ Cδ ∩ [δn, δn+1), and cof(γn+1)= ω1 by
the rule of G1(λ,F). Therefore ξ = δ0 witnesses that x ∈ X. �

Claim 2. The conclusion of Lemma 2.2 fails for X.

Proof. It suffices to prove that X ∩ [δ]ω is non-stationary for every ordinal δ ∈ λ \ ω1.
If δ is a successor ordinal, then X ∩ [δ]ω is clearly non-stationary. Next, suppose that
cof(δ)= ω. Let Z0 be the set of all z ∈ [δ]ω such that sup+(z)= δ and such that z ∩ Cδ is
unbounded in δ. Then Z0 is club in [δ]ω, and X ∩ Z0 = ∅. Thus X ∩ [δ]ω is non-stationary.

Finally, suppose that cof(δ) > ω. Let Z1 be the set of all z ∈ [δ]ω such that
sup+(z) ∈ lim(Cδ) and such that z ∩ Cδ is unbounded in sup+(z). Then Z1 is club in
[δ]ω. Here, note that z ∩ Csup+(z) is unbounded in sup+(z) for each z ∈ Z1, because
Cδ ∩ sup+(z)= Csup+(z). So X ∩ Z1 = ∅. �

This concludes the proof of Theorem 2.1. �

3. ITP and TP

In this section, we prove that SR +MAω1(Cohen) implies the super tree property at ω2

and that SSR +MAω1(Cohen) implies the strong tree property at ω2. Here, note that
the tree property at ω2 implies the failure of CH and that SR and SSR are consistent
with CH. So SR or SSR alone does not imply the super or strong tree property at ω2,
respectively. We also prove that SSR + MAω1(Cohen) does not imply the super tree
property at ω2.

Theorem 3.1. (a) If SR and MAω1(Cohen) hold, then ω2 has the super tree property.
(b) If SSR and MAω1(Cohen) hold, then ω2 has the strong tree property.

Before we prove Theorem 3.1, we introduce some notation. For an ordinal λ > ω2 and
a set M, let

uλM =
⋃
([λ]ω1 ∩M).

We will omit the superscript λ in uλM if it is clear from the context. The following is a key
lemma.

Lemma 3.2. Assume MAω1(Cohen). Let λ be an ordinal > ω2 and F be a thin
(ω2, λ)-tree. Let θ be a sufficiently large regular cardinal. Then there are stationarily
many M ∈ [Hθ ]ω such that, for all f ∈ levuM (F ), exactly one of the following holds.
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(1) There exists b ∈λ 2 ∩M with b � uM = f .
(2) There exists u ∈ [λ]ω1 ∩M with f � u 6∈M.

To prove this lemma, we need two further lemmas. First, let θ be a regular cardinal
> ω2. For a function F : [Hθ ]<ω→ Hθ and ξ < ω1, let G2(θ,F, ξ) be the following game
of length ω:

I J0 J1 · · · Jn · · ·
II K0 K1 · · · Kn · · ·

In the nth stage, first I chooses Jn ∈ [Hθ ]ω1 and then II chooses Kn ∈ [Hθ ]ω1 with Kn ⊇ Jn.
II wins if and only if

clF(ξ ∪ {Kn : n ∈ ω}) ∩ ω1 = ξ.
Lemma 3.3. Let θ be a regular cardinal > ω2. Then, for any function F : [Hθ ]<ω→ Hθ
there exists ξ < ω1 such that II has a winning strategy for G2(θ,F, ξ).

Proof. Take an arbitrary function F : [Hθ ]<ω→ Hθ . Towards contradiction, assume that
II does not have a winning strategy for G2(θ,F, ξ), for any ξ < ω1. Since each G2(θ,F, ξ)
is an open–closed game, I has a winning strategy, say τξ , in G2(θ,F, ξ), for each ξ . Let
Eτ = (τξ : ξ < ω1). Take a sufficiently large regular cardinal µ and a countable elementary
submodel M of Hµ containing θ , F, and Eτ . Let ζ =M ∩ ω1. By induction on n, let

Jn = τζ ((Km : m< n)),

Kn =
⋃
ξ<ω1

τξ ((Km : m< n)).

Then (Jn,Kn : n ∈ ω) is a legal play of G2(θ,F, ζ ) in which I has moved according
to τζ . Here, note that Kn ∈ M, for each n, by the elementarity of M. Moreover,
ζ = M ∩ ω1 and M is closed under F. Hence clF(ζ ∪ {Kn : n ∈ ω}) ⊆ M, and thus
clF(ζ ∪ {Kn : n ∈ ω}) ∩ ω1 = ζ . Therefore II wins the play (Jn,Kn : n ∈ ω) in G2(θ,F, ζ ),
which contradicts the fact that τζ is a winning strategy of I. �

The second one is a lemma on very thin (ω2, λ)-trees.

Lemma 3.4. Let λ be an ordinal > ω2 and F be an (ω2, λ)-tree such that levu(F ) is
countable for every u ∈ [λ]6ω1 . Then there is a countable subset B of λ2 and a club C in
[λ]6ω1 such that, for any u ∈ C and f ∈ levu(F ), there is a unique b ∈B with b � u= f .

Proof. Let θ be a sufficiently large regular cardinal and W0 be the set of all elementary
submodels K of Hθ which have cardinality ℵ1 and are internally approachable of
length ω1. Note that W0 is stationary in [Hθ ]6ω1 . For each K ∈ W0, we can find
xK ∈ [K ∩ λ]6ω1 ∩ K such that f0 � xK 6= f1 � xK for any distinct f0, f1 ∈ levK∩λ(F ). To
see this, first note that, since levK∩λ(F ) is countable, there is a countable subset yK

of K ∩ λ such that f0 � yK 6= f1 � yK , for all distinct f0, f1 ∈ levK∩λ(F ). Then, since K
is internally approachable of length ω1, we can find xK ∈ K such that yK ⊆ xK . Now,
by the Pressing Down Lemma, there is x ∈ [λ]6ω1 such that W1 = {K ∈ W0 : xK = x} is
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stationary. Let U = {K ∩ λ : K ∈W1}. Note that U is stationary in [λ]6ω1 . Let A be the
set of all h ∈ levx(F ) such that, for every u ∈ U, there is f ∈ levu(F ) with f � x = h.
For each h ∈ A and u ∈ U, let f h

u be the unique element of levu(F ) with f h
u � x = h.

Here, note that, if h ∈ A, and u, v ∈ U, then f h
u � (u ∩ v) = f h

v � (u ∩ v). This is because,
if we take w ∈ U with u, v ⊆ w, then f h

u = f h
w � u, and f h

v = f h
w � v. For each h ∈ A, let

bh =⋃{f h
u : u ∈ U} ∈λ 2, and let B = {bh : h ∈ A}. Clearly, B is a countable subset of λ2.

Note that bh � u ∈ levu(F ) for all u ∈ [λ]6ω1 , since U is ⊆-cofinal in [λ]6ω1 . Let D be the
collection of all elementary submodels K of Hθ which have size ℵ1 and contain all the
relevant objects. Then D is a club in [Hθ ]ω1 and C = {K ∩ λ : K ∈ D} is a club in [λ]ω1 .
We claim that B and C are as desired. In order to see this, fix K ∈ D and f ∈ levK∩λ(F ).
Let h = f � x. Then h ∈ levx(F ) ⊆ K, and f � u witnesses that there is g ∈ levu(F ) with
g � x = h, for every u ∈ U ∩ K. So it follows from the elementarity of K that h ∈ A.
Moreover, f � u = f h

u for all u ∈ U ∩ K, and
⋃
(U ∩ K) = K ∩ λ by the elementarity of K.

Therefore f =⋃
u∈U∩K f h

u = bh � (K ∩ λ). �

Proof of Lemma 3.2. Take an arbitrary function F : [Hθ ]<ω → Hθ . We find a
countable elementary submodel M of [Hθ ] closed under F such that, for any f ∈
levuM (F ), either (1) or (2) in Lemma 3.2 holds. Let E be a well-ordering of Hθ . By
changing F if necessary, we may assume that, if a subset M of Hθ is closed under F,
then M is an elementary submodel of (Hθ ,∈,E) and contains λ and F . By Lemma 3.3,
let ξ < ω1 be such that II has a winning strategy, say τ , for G2(θ,F, ξ). Moreover, take
a sufficiently large regular cardinal µ and a countable elementary submodel N of Hµ
containing all the relevant objects. The desired M will be a subset of N and will be
obtained by applying MAω1(Cohen) to an appropriate poset.

Let P be the set of partial plays of the form p = 〈Jp
0,Kp

0, . . . , Jp
np−1,Kp

np−1〉 in the
game G2(θ,F, ξ) in which II follows his/her winning strategy τ . We call the integer np

the length of p. Moreover, let up
i = Kp

i ∩ λ, for all i < np. We order P by reverse end
extension. We will apply MAω1(Cohen) to the poset PN =P ∩ N. Note that, since N is
countable, so is PN .

Given K ∈ [Hθ ]ω1 ∩ N, let

DK = {p ∈PN : K ⊆ Kp
i , for some i< np}.

Then DK is dense in PN , for all such K. Next, for u ∈ [λ]6ω1 , let (f u
ζ : ζ < ω1) be

the E-least enumeration of levu(F ), and let A(u) = {f u
ζ : ζ < ξ}. Note that (A(u) : u ∈

[λ]6ω1) ∈ N. Then, for each f ∈ levuN (F ), let

Ef = {p ∈PN : f � up
i 6∈ A(up

i ), for some i< np}.

Claim. Suppose that f ∈ levuN (F ) and that Ef is not dense in PN . Then there is
b ∈λ 2 ∩ N such that b � uN = f .

Proof. Let f ∈ levuN (F ) be such that Ef is not dense in PN . We find b ∈λ 2 ∩ N such
that b � uN = f . Fix p ∈PN which has no extensions in Ef . Let

W = {K ∈ [Hθ ]ω1 : p̂〈J,K〉 ∈P, for some J},
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and let U = {K ∩ λ : K ∈ W}. Note that W,U ∈ N and that W and U are ⊆-cofinal in
[Hθ ]ω1 and [λ]ω1 , respectively. Note also that, by the choice of p, f � u ∈ A(u), for all
u ∈ U ∩ N. Let G be the set of all g ∈F such that

(i) g � u ∈ A(u), for all u ∈ U with u⊆ dom(g),
(ii) for any u ∈ U with dom(g)⊆ u, there exists h ∈ A(u) with g⊆ h.

Since all the parameters in the definition of G are in N and N is elementary in Hµ,
it follows that G ∈ N. Note also that f � v ∈ G for all v ∈ [λ]6ω1 ∩ N, by the fact that
f � u ∈ Au for all u ∈ U ∩ N and the elementarity of N. It follows that levu(G ) is nonempty,
for all u ∈ [λ]6ω1 , again by the elementarity of N. Clearly, G is closed under restrictions.
So G is an (ω2, λ)-tree. Moreover, all the levels of levu(G ) are countable. Let B ⊆λ 2
and C ⊆ [λ]6ω1 be those obtained by applying Lemma 3.4 for G . We may assume that
B,C ∈ N by the elementarity of N. Take an ⊆-increasing sequence (un)n of elements of
C ∩ N such that

⋃{un : n < ω} = uN . Moreover, for each n, let bn be the unique element
of B with bn � un = f � un. Note that bm = bn for each m, n by the uniqueness. Therefore
b0 � uN = f . Moreover, b0 ∈ N, since B ∈ N and B is countable. Therefore b0 is as
desired. �

Now, let D be the set of the DK , for K ∈ [Hθ ]ω1 ∩ N, and E the set of the Ef , for
f ∈ levuN (F ), such that there is no b ∈λ 2 ∩ N with b � uN = f . Then D and E are
dense subsets of PN . Moreover, D is countable, and E has cardinality at most ℵ1,
since the cardinality of levuN (F ) is at most ℵ1. By MAω1(Cohen), we can find a filter
G in PN which meets all the sets of D ∪ E . Let rG = ⋃

G. Then rG is an infinite
run of the game G2(θ,F, ξ) in which II follows τ and therefore wins. Let us say that
rG = 〈J0,K0, J1,K1, . . .〉, and let un = Kn ∩ λ, for all n. Let

M = clF(ξ ∪ {Kn : n ∈ ω}).
We show that this M is as desired. Prior to this, note that M is an elementary submodel
of (Hθ ,∈,E) and contains λ and F . Moreover, M ∩ ω1 = ξ , since II wins the play rG.
Moreover, uM = uN , since G meets all the dense sets in D .

Now, f ∈ levuM (F ), and suppose first that (1) fails for f , i.e., there is no b ∈λ 2 ∩ M
such that b � uM = f . Then G ∩ Ef 6= ∅. Let n be such that f � un 6∈ A(un). Note that
A(un) = levun(F ) ∩ M, since un = Kn ∩ λ ∈ M and M ∩ ω1 = ξ . So f � un 6∈ M. Thus un

witnesses (2) for f . Next, suppose that there exists b ∈λ 2 ∩ N such that b � uM = f .
Then we can find an integer n such that b ∈ Kn, by the D-genericity of G. Since
Kn ∈ M ∩ [Hθ ]ω1 , we can find u ∈ [λ]6ω1 ∩ M such that c � u 6= d � u for any distinct
c, d ∈λ 2∩Kn. Then c 7→ c � u is an injection from λ2∩Kn to u2, and this injection belongs
to M. Hence c ∈M if and only if c � u ∈M, for any c ∈λ 2 ∩ Kn. Here, note that b 6∈M by
our assumption that (1) fails for f . Therefore f � u= b � u 6∈M. �

Using Lemma 3.2, we prove Theorem 3.1.

Proof of Theorem 3.1. (a) Assume SR and MAω1(Cohen). Let λ be an ordinal > ω2,
F be a thin (ω2, λ)-tree, and Ef = (fu : u ∈ [λ]6ω1) be a level sequence of F . We will
find an ineffable branch for Ef . Let θ be a sufficiently large regular cardinal, let E be a
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well-ordering of Hθ , and let A = (Hθ ,∈,E). Moreover, let Z be the set of all countable
elementary submodels M of A containing λ and F and such that either (1) or (2) of
Lemma 3.2 holds, for any f ∈ levuM (F ). Then Z is stationary in [Hθ ]ω, by Lemma 3.2.
Let W be the set of all K ∈ [Hθ ]ω1 such that ω1 ⊆ K and Z ∩ [K]ω is stationary in [K]ω.
By SR, it follows that W is stationary in [Hθ ]6ω1 .

Claim. For any K ∈W, there is bK ∈λ 2 ∩ K such that bK � (K ∩ λ)= fK∩λ.

Proof. Fix K ∈ W, and let f = fK∩λ. Note that K is an elementary submodel of A,
since Z ∩ [K]ω is stationary. Then levu(F ) is a subset of K, for all u ∈ [λ]6ω1 ∩ K, since
levu(F ) is an element of K of size ℵ1 and ω1 ⊆ K. Since Z ∩ [K]ω is stationary in [K]ω,
we can find M ∈ Z ∩ [K]ω such that, letting N =HullA(M ∪ {f }), we have that N ∩ K =M.
Note that f � u ∈ M, for all u ∈ [λ]6ω1 ∩ M, since f � u ∈ K ∩ N, for every such u. So
(2) of Lemma 3.2 fails for f � uM and M. Hence (1) holds for f � uM and M; that is,
there is b ∈λ 2 ∩M with b � uM = f � uM. Note that b ∈ K. Hence it suffices to show that
b � (K ∩ λ) = f . Note that both b � (K ∩ λ) and f are functions on K ∩ λ which are in
N. Moreover, b � (K ∩ λ) and f coincide on N ∩ (K ∩ λ), since N ∩ (K ∩ λ) =M ∩ λ, and
b � uM = f � uM. Hence b � (K ∩ λ)= f , by the elementarity of N. �

By the Pressing Down Lemma, we can find b ∈λ 2 such that bK = b, for stationarily
many K ∈W. It follows that b is an ineffable branch for Ef .

(b) Assume SSR and MAω1(Cohen). Let λ be an ordinal > ω2 and F be a thin
(ω2, λ)-tree. We will find a cofinal branch for F . Let θ , E, A, and Z be as in the proof
of (a). Moreover, let Z∗ be the upward closure of Z under v. By SSR, there is K ∈ [Hθ ]ω1

such that ω1 ⊆ K and Z∗ ∩ [K]ω is stationary in [K]ω. Here, note that Z∗ ∩ [K∗]ω is
stationary, for any K∗ ⊇ K. Hence, by replacing K with HullA(K) if necessary, we may
assume that K is an elementary submodel of A and contains λ and F as elements. Pick
any f ∈ levK∩λ(F ). Then f � u ∈ K, for all u ∈ [λ]6ω1 ∩ K. So we can take M∗ ∈ Z∗ ∩ [K]ω,
which is an elementary submodel of A, contains λ and F as elements, and is such
that f � u ∈M∗, for all u ∈ [λ]6ω1 ∩M∗. Let M ∈ Z be such that M vM∗. Here, note that
levu(F )∩M = levu(F )∩M∗, for any u ∈ [λ]6ω1 ∩M, since both M and M∗ are elementary
submodels of A, levu(F ) is of size ℵ1, and M ∩ ω1 = M∗ ∩ ω1. Hence f � u ∈ M, for all
u ∈ [λ]6ω1 ∩M, and so (2) of Lemma 3.2 fails for f � uM and M. Thus there is b ∈λ 2 ∩M
with b � uM = f � uM. Then b � u ∈ levu(F ), for all u ∈ [λ]6ω1 ∩M. So b � u ∈ levu(F ), for
all u ∈ [λ]6ω1 , by the elementarity of M. So, b is a cofinal branch of F , as required. �

We now show that the conjuction of SSR and MAω1(Cohen) is not sufficient to imply
the super tree property for ω2.

Theorem 3.5. Assume that there exists a strongly compact cardinal. Then there exists a
forcing extension in which SSR and MAω1(Cohen) hold but ω2 does not have the super
tree property.

Theorem 3.5 follows easily from the following facts.

Fact 3.6 (Magidor). Assume that κ is a supercompact cardinal. Then there is a forcing
extension in which κ is strongly compact but not supercompact.
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Fact 3.7 (Shelah [10, Chapter XIII, 1.6 and 1.10]). Assume that κ is a strongly
compact cardinal. Let (Pα, Q̇β : α 6 κ, β < κ) be a revised countable support iteration
of semi-proper posets of size < κ such that κ = ω2 in VPκ . Then SSR holds in VPκ .

Fact 3.8 (Viale–Weiss [15]). Assume that κ is an inaccessible cardinal. Assume also that
there exists a countable support iteration (Pα, Q̇β : α 6 κ, β < κ) of proper posets of size
< κ such that κ has the super tree property in VPκ . Then κ is supercompact in V.

Proof of Theorem 3.5. Assume that κ is strongly compact in V. By Fact 3.6, we
may assume that κ is not supercompact. Let (Pα, Q̇β : α 6 κ, β < κ) be the countable
support iteration of Cohen forcing. Here, recall that a revised countable support
iteration coincides with a countable support iteration for proper posets. Note also that
κ = ω2 in VPκ . Hence SSR holds in VPκ , by Fact 3.7. Moreover, MAω1(Cohen) holds in
VPκ . By Fact 3.8, ω2 does not have the super tree property in VPκ . �

We end this section with some remarks. In Theorem 3.5, we have proved that
SSR+MAω1(Cohen) does not imply the super tree property at ω2. In fact, we can prove
that it does not imply ITP(ω2, ω3). We outline the proof. For a regular uncountable
cardinal κ, let

Uκ = {u ∈ [κ+]<κ : u ∩ κ ∈ κ ∧ otp(u)= (u ∩ κ)+}.
It is easy to see that, if κ is κ+-supercompact, then Uκ is stationary in [κ+]<κ . On the
other hand, Krueger [5] proved that this does not follow from the strong compactness
of κ.

Fact 3.9 (Krueger [5]). Assume that κ is a supercompact cardinal. Then there is a
forcing extension in which κ is strongly compact, and Uκ is non-stationary.

Moreover, by some extra work and using the ideas of [14, 15], we can prove the
following.

Fact 3.10. Assume that κ is an inaccessible cardinal. Assume also that there is a
countable support iteration (Pα, Q̇β : α 6 κ, β < κ) of proper posets of size < κ such
that ITP(κ, κ+) holds in VPκ . Then Uκ is stationary in [κ+]<κ in V.

Using Facts 3.9 and 3.10 instead of Facts 3.6 and 3.8, by the same argument as
Theorem 3.5, we can prove that SSR+MAω1(Cohen) does not imply ITP(ω2, ω3).

On the other hand, we can also prove that SSR +MAω1(Cohen) implies ITP(ω2, ω2).
Assume SSR, and suppose that F is a thin (ω2, ω2)-tree and that Ef = (fu : u ∈ [ω2]6ω1) is
a level sequence of F . Let θ , E, A, and Z be as in the proof of Theorem 3.1. Here, recall
the fact, due to Foreman et al. [2], that SSR (equivalently (†)) implies Strong Chang’s
Conjecture. In fact it implies the following.

There is a club set of M ∈ [Hθ ]ω such that HullA(M ∪ {δ}) ∩ δ =M ∩ ω2, for stationarily
many δ ∈ ω2.

Take such M ∈ Z, and let E be the set of all δ ∈ ω2 with HullA(M ∪ {δ}) ∩ δ = M ∩ ω2.
Then, by the same argument as in the proof of Theorem 3.1(a), for any δ ∈ E there is
bδ ∈ω2 2 ∩ M such that bδ � δ = fδ. Take b ∈ω2 2 such that {δ ∈ E : bδ = b} is stationary.
Then b is an ineffable branch for Ef .
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4. Singular Cardinal Hypothesis

In this section, we prove that SSR implies the SCH. In fact, we prove the following.

Theorem 4.1. Assume that λ is a singular cardinal of cofinality ω and that SSR(λ+)
holds. Then, for any strictly increasing sequence Eλ = (λn : n < ω) of regular cardinals
converging to λ, there are no better scales on Eλ.

Assume Theorem 4.1 for a moment. We sketch how it is used to show that SSR
implies the SCH. First, assuming SSR, we show by induction that κω = κ, for every
regular κ > ω2. The base case of the induction follows from the fact, due to Foreman et
al. [2], that SSR implies Strong Chang’s Conjecture and the fact, due to Todorčević [12],
that Strong Chang’s Conjecture implies 2ω 6 ω2. The only problem in the induction
occurs if κ = λ+, for some singular limit λ of cofinality ω. In this case, by the induction
hypothesis we have that µω < λ, for all µ < λ. Then, by Theorem 4.1 and Fact 1.3, it
follows that λω = λ+. Therefore, κω = κ, for all regular κ > ω2. Now, combining this with
Fact 1.2, we obtain the following.

Corollary 4.2. SSR implies SCH. �

To prove the theorem, we make some preliminary remarks. First, we present a game
which is a variant of the game used in ğ 2.

Let Eλ = (λn : n ∈ ω) be a strictly increasing sequence of regular cardinals > ω2, let
λ = supn∈ω λn, and let EE = (En,i : n ∈ ω, i ∈ 2) be a sequence such that each En,i is a
stationary subset of Eλn

ω1
. Moreover, let Eb = (bξ : ξ < ω1) be a sequence of functions from

ω to 2. For a function F : [λ+]<ω→ λ+ and ξ < ω1, let G3(EE, Eb,F, ξ) be the following
game of length ω:

I α0 δ0, ε0 α1 δ1, ε1 · · · αn δn, εn · · ·
II β0, γ0 β1, γ1 · · · βn, γn · · ·

In the nth stage, first I chooses αn < λn, then II chooses βn < λn and γn < λ
+. Then I

again chooses δn > αn, βn with δn ∈ En,bξ (n) and εn < λ
+ with εn > γn. I wins if, letting

x= clF(ξ ∪ {δn, εn : n ∈ ω}), we have

(i) x ∩ ω1 = ξ ,
(ii) x ∩ [αm, δm)= ∅, for every m.

Otherwise, II wins.

Lemma 4.3. Let Eλ, λ, EE, Eb, and F be as above. Then there exists ξ < ω1 such that I has
a winning strategy for G3(EE, Eb,F, ξ).

Proof. Towards a contradiction, assume that I does not have a winning strategy in
G3(EE, Eb,F, ξ), for every ξ < ω1. Since each G3(EE, Eb,F, ξ) is an open–closed game, by the
Gale–Stewart Theorem, II has a winning strategy, say τξ , for all ξ . We will find ζ < ω1

and a play (αn, βn, γn, δn, εn : n ∈ ω) of G3(EE, Eb,F, ζ ) in which II follows his/her strategy
τζ , yet I wins the game.
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Let Eτ = (τξ : ξ < ω1). Take a sufficiently large regular cardinal θ . Then we can find a
system (Kn,i : n ∈ ω, i ∈ 2) of elementary submodels of (Hθ ,∈) containing Eλ and Eτ) such
that δn,i = Kn,i ∩ λn ∈ En,i, for each n and i, and such that Kn,i ∈ Kn′,i′ if n< n′ and i, i′ ∈ 2.
Let εn,i = sup+(Kn,i ∩ λ+), for each n and i. Then we can take ζ < ω1 such that

clF(ζ ∪ {δn,i, εn,i : n ∈ ω, i ∈ 2}) ∩ ω1 = ζ.
For each n, let Kn, δn and εn be Kn,bζ (n), δn,bζ (n) and εn,bζ (n), respectively. Moreover, let

x= clF(ζ ∪ {δn, εn : n ∈ ω}),
and let αn = sup+(x ∩ δn) for each n. Note that αn < δn, since x is countable and
cof(δn) = ω1. Finally, let (βn, γn : n ∈ ω) be a sequence of II’s moves according to τζ
against (αn, δn, εn : n ∈ ω). Note that ζ, α0, δ0, ε0, . . . , αn−1, δn−1, εn−1, αn ∈ Kn, and that
Kn is an elementary submodel of Hθ , for all n. Hence βn ∈ Kn ∩ λn = δn. Moreover,
γn ∈ Kn∩λ+, and so γn < εn. Thus (αn, βn, γn, δn, εn : n ∈ ω) is a legal play of G3(EE, Eb,F, ζ )
in which II moves according to his/her winning strategy τζ . On the other hand,
x ∩ [αm, δm) = ∅, for every m, by the choice of αm and δm. Moreover, x ∩ ω1 = ζ by
the choice of ζ and x. Therefore I wins this play of the game. This is a contradiction. �

Next, we give a standard lemma on better scales.

Lemma 4.4. Let Eλ = (λn : n < ω) be a strictly increasing sequence of regular cardinals,
and let λ= supn∈ω λn. Suppose that Ef = (fβ : β < λ+) is a better scale on Eλ. Then, for any
regular θ > λ+, there are stationarily many N ∈ [Hθ ]ω with χN 6∗ fsup+(N∩λ+), where χN

is the characteristic function of N (see § 1).

Proof. Suppose that θ is a regular cardinal bigger than λ+. It is sufficient to show that,
for every expansion A of (Hθ ,∈), there is a countable elementary submodel N of A such
that χN 6∗ fρ , where ρ = sup(N ∩ λ+). In order to find such an N, first take a continuous
∈-chain (Nξ : ξ < ω1) of countable elementary submodels of A containing all the relevant
parameters. Let ρξ = sup(Nξ ∩ λ+). Then, since Ef is a better scale, we can find m < ω

and a stationary S ⊆ ω1 such that (fρξ : ξ ∈ S) is <m-increasing. Here, note that, if ξ < η,
then χNξ <

∗ fρη , since Nξ ∈ Nη and Nη is an elementary submodel of A. So, by shrinking S
and increasing m if necessary, we may assume that χNξ <m fρη for any ξ, η ∈ S with ξ < η.
Take η ∈ lim(S). Then χNξ <m fρη , for all ξ ∈ S ∩ η. Moreover, χNη (n) = supξ∈S∩η χNξ (n),
for all n, since Nη =⋃

ξ∈S∩η Nξ . So χNη 6m fρη . Therefore N = Nη is as desired. �

Now, we prove Theorem 4.1. In the proof, we will use Lemma 2.2 as well as
Lemmas 4.3 and 4.4.

Proof of Theorem 4.1. Towards a contradiction, assume that Eλ = (λn : n < ω) is a
strictly increasing sequence of regular cardinals converging to λ, and that there is a
better scale Ef = (fβ : β < λ+) on Eλ. We may also assume that λ0 > ω2. Fix a sequence
EE = (En,i : n ∈ ω, i ∈ 2) such that En,0 and En,1 are disjoint stationary subsets of Eλn

ω1
,

for all n, and fix a sequence Eb = (bξ : ξ < ω1) of functions from ω to 2 such that, if
ξ 6= η, then bξ 6=∗ bη. Moreover, for each x ⊆ λ+, let ex be the function on ω defined
by ex(n)=min(x \ fsup+(x)(n)). (If x \ fsup+(x)(n)= ∅, then let ex(n)= 0.) Then let X be the
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set of all x ∈ [λ+]ω such that, letting ξ = x ∩ ω1 ∈ ω1, we have

(i) fsup+(x) < χx,

(ii) ex(n) ∈ En,bξ (n), for all but finitely many n.

Note that X is weakly full. So, it suffices to prove the following two claims.

Claim 1. X is stationary in [λ+]ω.

Proof. Take an arbitrary function F : [λ+]<ω → λ+. We need to find x ∈ X which is
closed under F. By Lemma 4.3, fix ξ < ω1 such that there is a winning strategy
τ of I in G3(EE, Eb,F, ξ). Moreover, take a sufficiently large regular cardinal θ and a
well-ordering E of Hθ , and let A = (Hθ ,∈,E,F, τ ). Then, by Lemma 4.4, we can find a
countable elementary submodel N of A, containing F and τ , such that χN 6∗ fρ , where
ρ = sup(N ∩ λ+). Let βn = fρ(n), for each n, and take an increasing cofinal sequence
(γn : n ∈ ω) in N ∩ λ+. Then let (αn, δn, εn : n ∈ ω) be a sequence of I’s moves according to
τ against (βn, γn : n ∈ ω), and let x= clF(ξ ∪{δn, εn : n ∈ ω}). It suffices to show that x ∈ X.
In order to see this, first note that x ∩ ω1 = ξ , since (αn, βn, γn, δn, εn : n ∈ ω) is a play
of G3(EE, Eb,F, ξ) in which I moves according to his/her winning strategy τ . Note also
that sup(x) = ρ. This is because sup(x) > supn∈ω εn > supn∈ω γn = ρ. On the other hand,
note that x⊆ HullA(ρ) ∩ λ+. Indeed, βn, γn < ρ, for all n, and τ,F ∈ HullA(ρ). Moreover,
HullA(ρ) ∩ λ+ = ρ, by Fact 1.1. Therefore sup(x) 6 ρ. It follows that x ∩ ω1 = ξ . Also x
satisfies (i), since fρ(n) = βn < δn ∈ x ∩ λn, for every n. In order to check (ii), first note
that αn < χN(n), for each n, since

αn ∈HullA(N ∪ χN(n)) ∩ λn = χN(n).

Here, the former ∈-relation is because {βm, γm : m < n} ⊆ N ∪ χN(n), and the latter
equality is by Fact 1.1. Then αn < fρ(n), for all but finitely many n, since χN 6∗ fρ . Note
also that δn ∈ x and that x ∩ [αn, δn)= ∅, since I wins the play (αn, βn, γn, δn, εn : n ∈ ω) in
G3(EE, Eb,F, ξ). Hence ex(n)= δn, for all but finitely many n. Moreover, δn ∈ En,bξ (n) by the
rules of G3(EE, Eb,F, ξ). Thus x satisfies (ii). �

Claim 2. The conclusion of Lemma 2.2 fails for X.

Proof. Towards a contradiction, assume that the conclusion of Lemma 2.2 holds for X.
Then we can find u ∈ [λ]ω1 such that ω1 ⊆ u and X ∩ [u]ω is stationary. Clearly, sup(u) is
a limit ordinal. We consider two cases, according to whether the cofinality of sup(u) is ω
or ω1.

First, suppose that cof(sup(u))= ω. Then the set

Y = {x ∈ [u]ω : sup(x)= sup(u) and range(eu)⊆ x}
is club in [u]ω. Note that ex = eu for all x ∈ Y. Take x0, x1 ∈ X ∩ Y with x0 ∩ ω1 6= x1 ∩ ω1,
and let ξi = xi ∩ ω1 for i = 0, 1. Then ex0 = eu = ex1 , since x0, x1 ∈ Y, and so bξ0 =∗ bξ1 ,
since x0, x1 ∈ X. This contradicts the choice of Eb and the fact that ξ0 6= ξ1.

Next, suppose that cof(sup(u)) = ω1. Since Ef is a better scale, we can find a club C in
sup(u) and σ : C→ ω such that fβ <max{σ(β),σ (γ )} fγ for any β, γ ∈ C with β < γ . Let h
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and e be functions on ω defined by

h(n) = sup{fβ(n) : β ∈ C ∧ n> σ(β)},
e(n) =min(u \ h(n)).

Moreover, let Z be the set of all x ∈ [u]ω such that

(iv) sup(x) ∈ C;
(v) x ∩ h(n)⊆ fsup(x)(n), for every n> σ(sup(x));

(vi) range(e)⊆ x.

Then it is easy to see that Z contains a club subset of [u]ω. Here, note that, if x ∈ Z,
then ex(n) = e(n) for all n > σ(sup+(x)). Then we can get a contradiction by the same
argument as in the case when cof(sup(u))= ω. �

This completes the proof of Theorem 4.1. �
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