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Abstract
Using the panel data of 89 economies from 1995–2012, this study examines the major
drivers of agricultural emissions while considering affluence, energy intensity, agriculture
value added and economic integration. We find long-run cointegration among the vari-
ables. Furthermore, our empirical results based on a dynamic fixed effects autoregressive
distributed lag model show that the increases in income and economic integration – proxied
by trade and foreign direct investment (FDI) – are the major contributors to higher green-
house gas (GHG) emissions from agriculture in the short run. Additionally, the increases in
income, agriculture value added and energy consumption are the major drivers of agricul-
tural emissions in the long run. Notably, trade openness and FDI inflows have significantly
negative effects on GHG emissions from agriculture in the long run. These results apply to
methane and nitrous oxide emissions. The empirical findings vary across three subsamples
of countries at different development stages.
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1. Introduction
Despite a declining share in total greenhouse gas (GHG) emissions from 13.44 per cent
in 1991 to 11.3 per cent in 2012, the total emissions from agriculture increased from
4,561 to more than 5,381Mt in carbon dioxide (CO2) equivalent during the same period
(WRI, 2015). One of the reasons for this relatively small share of agricultural emissions
in total GHG emissions is that, compared to other sectors, the agricultural sector gener-
ally consumes less energy, for example, electricity and heat, industry, and transportation
(Krey et al., 2012). From a historical perspective, agricultural production was formerly
household-based or undertaken in areas using little or no energy, and transportationwas
often within short distances, which entailed little or no fuel use (Amate and De Molina,
2013). However, the evolution of agriculture to large-scale production in the last ten
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years might have changed this. Agricultural activities were one of the important sources
of global GHG emissions (e.g., see Calvin et al., 2016). Furthermore, there are two other
critical emissions from agriculture, namely, nitrous oxide (N2O) emissions (Audet et al.,
2017) and methane (CH4) emissions (Caro et al., 2019), which have been neglected in
the literature (Perlman et al., 2013).

A few studies have examined the determinants of CO2 emissions from agriculture
(see, for instance, Robaina-Alves and Moutinho, 2014; Luo et al., 2017; Castesana et al.,
2018), but most have focused on the measurements of emissions or had no theoretical
framework for empirical investigation. For instance, Audet et al. (2017) examined the
case of Sweden from 2014–2015 and documented that agricultural streams added a sig-
nificant source of N2O emissions to the environment. Luo et al. (2017) used the Tapio
decouplingmethod for the case of 30 Chinese provinces from 1997–2014 and concluded
that fertilizer and cattle were the main drivers of CO2 emissions in agriculture. Recently,
Castesana et al. (2018) noted that mineral fertilizers, manure in pasture, manure man-
agement and agricultural waste burning were the main sources of NH3 emissions in
agriculture for Argentina from 2000–2012. Furthermore, in the context of globalization,
trade openness and foreign direct investment (FDI) inflows should also be considered
(Kastratović, 2019) because theymight be critical sources of emissions for host countries
(Naranpanawa, 2011; Pao and Tsai, 2011; Ren et al., 2014; Le et al., 2016).

This study attempts to provide new insights into the determinants of agricultural
emissions by analyzing the impacts of income level, agriculture value added, energy con-
sumption, trade (export and import) and FDI inflows on the emissions from agriculture.
To achieve this objective, we employ one of the most important theoretical frameworks
in environmental economics – namely, the Stochastic Impacts by Regression on Popu-
lation, Affluence and Technology (STIRPAT) model – to examine the effects of income
level, agricultural development, energy intensity, energy structure and economic inte-
gration on emissions from agriculture in a sample of 89 countries from 1995–2012.
In addition, we might reasonably expect differences in the determinants of agricul-
tural emissions across countries at different income levels. As such, we investigate the
drivers of total GHG emissions from agriculture for three types of countries: low and
lower-middle-income countries (LMEs), upper-middle-income countries (UMEs) and
high-income countries (HIEs). In addition, the determinants of agricultural emissions
are identified in both the short run and the long run to provide more insights for policy
formulation in different time horizons.
Specifically, this study attempts to address three research questions:

(1) Do income per capita, agriculture value added, energy consumption per capita,
trade, export, import and FDI significantly affect agricultural GHG emissions?

(2) Do themajor drivers ofGHGemissions from agriculture differ between the short
run and the long run?

(3) Do the major drivers of GHG emissions from agriculture vary across types of
GHG emissions and subsamples of countries at different development stages?

Methodologically, this study employs an extended version of the STIRPAT model
of Dietz and Rosa (1997) by including economic integration, namely, trade openness
(Ertugrul et al., 2016) and FDI (Ren et al., 2014; Zhu et al., 2016; Rafindadi et al., 2018), as
augmented factors. The data are collected from the World Bank’s World Development
Indicators and WRI (2015). Subject to data availability, the total GHG emissions are
extracted from 1995–2012, and N2O and CH4 emissions are obtained from 1995–2008.
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The remainder of this study is organized as follows. Section 2 reviews the related liter-
ature to derive the knowledge gaps that our study endeavors to fill. The model, data and
methodology are presented in section 3. Section 4 reports and discusses the empirical
results in three regards: (i) total GHG emissions from agriculture with different model
specifications, (ii) comparison of the estimation results among different types of GHG
emissions from agriculture, and (iii) comparison of the estimation results among three
subsamples of countries at different economic development stages. Section 5 concludes
the study.

2. Literature review
Although the agricultural sector plays a vital role in the economy with regard to food
security and nutrition, along with other economic, environmental and social impacts
(Li et al., 2016), this sector is also often presented as one of the major sources of CO2
emissions contributing to global warming and climate change (Oenema et al., 2001;
Tubiello et al., 2013; Calvin et al., 2016; Agovino et al., 2019). Cole et al. (1997) acknowl-
edged that technological advancement could helpmitigateCO2,CH4 andN2Oemissions
from the agriculture sector.

Beyond the measures related to land use, soil fertility and decisions on crop produc-
tion and forests (De Pinto et al., 2016), Franks and Hadingham (2012) have suggested
that policies attempting to reduce the emissions from agriculture should focus on the
demand-side rather than the supply-side factors. This suggestion explains why many
scholars have attempted to empirically investigate the determinants of agricultural emis-
sions from the demand-side economic factors (Sebri and Abid, 2012; Chen et al., 2017;
Paul et al., 2018; Waheed et al., 2018). For instance, Ben Jebli and Ben Youssef (2017)
investigated a panel of five North African countries from 1980–2011 and found bidirec-
tional causality between CO2 emissions and agriculture in the short run and the long
run.

Table A1 in the online appendix summarizes some studies on agricultural emis-
sions. Overall, the current literature on agricultural emissions has mostly focused on
the measurement or estimation of emissions (see Castesana et al., 2018; Rehman et al.,
2019). Only a few studies have examined the determinants of agricultural emissions. For
instance, Kastratović (2019) investigated the impacts of FDI on agricultural emissions
but only considered CO2 emissions and did not conduct a robustness check or short-run
and long-run estimations. In another study, emissions from the agricultural sector were
decomposed into factors such as economic growth, energy intensity, energy structure,
human capital accumulation, emissions factors and labor productivity (Robaina-Alves
and Moutinho, 2014). Ben Jebli and Ben Youssef (2019) studied the case of Brazil from
1980–2013 and documented that per capita combustible renewables and waste con-
sumption and agriculture value added seemed to have negative impacts on total CO2
emissions in the long run. Thus, insights can be gleaned from understanding the short-
run and long-run determinants of agricultural emissions, especially at a global level,
rather than the country level (see Ben Jebli and Ben Youssef, 2019) or a short time hori-
zon. Understanding the dynamics of the determinants of agricultural emissions is also
crucial for policy formulation in this field.

Overall, according to our review of the literature, a solid theoretical framework
that can guide the effective determination of agricultural emissions is not in the lit-
erature. Although GHG emissions per unit of agricultural product have been reduced
at the global level (Bennetzen et al., 2016), the rapid growth of economic integration
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and technology in recent decades continue to induce higher emissions from agricul-
ture (WRI, 2015). The differences in emissions were also noted across economies (Dace
and Blumberga, 2016). In addition, the short-run and long-run effects of the drivers of
agricultural emissions should be investigated (Li et al., 2016).

The subject matter of this study is so important that it must be urgently addressed
because reducing agricultural emissions provides significant economic and social bene-
fits. For example, Giannadaki et al. (2018) showed that agricultural ammonia emissions
strongly contribute to fine particulatematter (PM2.5) air pollution andhave significantly
adverse impacts on human health, leading to increased mortality rate. They indicated
that a 50 per cent reduction in agricultural emissions could prevent more than 200 thou-
sand deaths per year in the 59 countries included in their study, notably in Europe,
Russia, Turkey, the United States, Canada and China, accompanied by economic bene-
fits of billions of US dollars (US$). In the European Union (EU), the mortality rate could
be reduced by 18 per cent with an annual economic benefit of US$89 billion. Within the
EU, 140 thousand deaths could be prevented per year with an associated economic ben-
efit of approximately US$407 billion. A cost-benefit assessment of ammonia emissions
abatement options for the EU indicates that the reduction of agricultural emissions gen-
erates net financial and social benefits. Therefore, an investigation of the drivers of total
emissions in the agricultural sector across different income levels is worthwhile.

3. Model, data, andmethodology
3.1 Model
In the current literature on the emissions from agriculture, there are four common
approaches: the index decomposition method, the bottom-up method, the system opti-
mization, and the econometric approaches (see Xu and Lin (2017) for further details).
In this study, we apply the econometric methods to the extended STIRPAT model to
investigate the agricultural emissions’ determinants. The STIRPATmodel is based on the
IPATmodel by Ehrlich and Holdren (1971), which relates the impacts of human aspects
and activities including population (P), affluence (A), and technology (T) on the envi-
ronment (I). The IPAT model (Ehrlich and Holdren, 1971) is a mathematical notation
of the impacts of human activities on the environment, which can be expressed as:

I = P × A × T. (1)

In this model, the environment (I) must be broadly considered with the inclusion of
the physical environment of urban ghettos, the human behavioral environment and the
epidemiological environment (Ehrlich and Holdren, 1971). That is, population growth,
population size, population density, resource utilization anddepletion, and environmen-
tal deteriorationmust be considered jointly. In themodel, I represents the environmental
impacts of human activities, which ismodeled as amultiplication function of three terms:
population (P), affluence (A) (i.e., income level), and technology (T) (i.e., the efficiency
of resource utilization). The proposed proxies for the variables in this model are as fol-
lows. I could be measured using ecological footprint analysis. Additionally, P represents
the population of an area, such as the world, and is expressed in human numbers. A
represents the average consumption of each person in the population, which is com-
monly proxied by gross domestic product (GDP) per capita. As an efficiency factor, the
environmental effects of T can vary in many ways. Hence, the unit for T is reliant on the
situation to which I =PAT is being applied.
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The IPAT model is a heuristic model and cannot be used for estimation. As such,
the stochastic version of IPAT was developed by Dietz and Rosa (1997), namely, the
STIRPAT model, for empirical testing. The STIRPAT model can be summarized as
follows:

Iit = αitP
β1
it A

β2
it T

β3
it εit , (2)

where I, P, A, and T have the same implications as in the IPAT framework for country i
at time t. α represents the country-specific effect. β1, β2, and β3 are the elasticities of the
environmental impacts with respect to P, A and T, respectively. The logarithmic form of
model (2) for testing takes the following form:

lnIit = αit + β1lnPit + β2lnAit + β3lnTit + lnεit . (3)

Because the purpose of our study is to examine the determinants of emissions in the
agricultural sector (across countries), equation (3) can be reformulated by integrating
the appropriate factors. The equation therefore becomes:

lnAEit = αit + β1lnPOPit + β2lnLnGDPit + β3lnEIit + εit , (4)

in which AE is GHG emissions from agriculture; POP is population; GDP is GDP, a
proxy for affluence (economic development); and EI is energy consumption, a proxy for
the technological progress in emissions reduction (Rafiq et al., 2016; Lin and Zhu, 2017).
ε is the residual term.

Furthermore, the nature of the agricultural sector implies that there are other poten-
tial determinants of agricultural emissions such as trade openness (Ertugrul et al., 2016)
and FDI inflows (Ren et al., 2014; Zhu et al., 2016; Rafindadi et al., 2018). Specifi-
cally, trade, exporting and importing may facilitate extra economic activities that affect
agricultural emissions. By contrast, the FDI inflows may have implications for the tech-
nological advancement in the production function, which help improve the efficiency
in energy consumption, reducing emissions from the agricultural sector. This supports
the pollution halo hypothesis. Nevertheless, the FDI inflows may also have unfavorable
effects on the emissions because multinational firms could take advantage of the weak
environmental regulations in the host countries (especially developing countries). This
is in line with the pollution-haven hypothesis.

This study thus contributes to the scarce literature on agricultural emissions by pro-
viding a comprehensive analysis that explicitly considers all potential contributors of
agricultural emissions in the baseline model. The drivers of agricultural emission are
examined in an augmented version of the STIRPATmodel, as in equation (4), by adding
a set of additional explanatory variables. Specifically, our study is conducted with an
annual panel dataset of 89 countries (table A2a, online appendix)1 and three subsam-
ples – 31 HIEs, 26 UMEs, and 32 l LMEs2 – from 1995 to 2012. The classification of
three subsamples into groups based on country and income level is the same as that of
the World Bank’s country classification.3

1We excluded 68 countries from our global sample because the data required for empirical analysis was
missing, namely, the data of agricultural value added, energy use and FDI net inflows. Please refer to table
A2b in the online appendix for further details.

2See table A3 in the online appendix for data descriptions of the three subsamples.
3According to the World Bank, for the 2020 fiscal year, low-income economies are defined as those

with a gross national income (GNI) per capita, calculated by using the World Bank Atlas method, of
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For the model in equation (4), this study conducts data analysis in per capita terms
by dividing both sides of the equation by the total population.4 The extended STIRPAT
model used in this study then takes the following form:

AEit = α0 + α1tAEit−1 + β1Incomeit + β2Agriit + β3Energyit
+ β4Tradeit + β5FDIit + εit , (5)

in which i, t denote country i at year t. AE is the total GHG emissions from agricul-
ture, expressed in per capita terms. Income represents affluence, proxied by GDP per
capita. Agri is agricultural value added per capita. Energy is proxied by energy use (kg of
oil equivalent) per capita. Trade represents trade openness, proxied by total trade value
per capita. All these variables are taken as natural logarithms. With this transformation,
the estimated coefficients refer to the elasticities of agricultural emissions to the corre-
sponding factors in themodel (Sadorsky, 2013). FDI is the ratio of net FDI inflow toGDP
to proxy for the capital flow. α and β are the constant and coefficients. ε is the residual
term. In addition, export and import values per capita are used to compare the effects of
trade openness on agricultural emissions through export and import channels. Finally,
two other types of agricultural emissions – CH4 and N2O emissions – are employed for
comparison purposes.

3.2 Data analysis
All the detailed descriptions of the variables are presented in the online appendix (table
A3). Data descriptions of the full sample are presented in table A4, while table A5 refers
to the data description of each income–country group.Meanwhile, table A6 reports their
correlation matrix.

The dynamic of agricultural activities and emissions of the income groups in the past
decades has provided some notable results. The ratio of agricultural-value-added-to-
GDP is stable in the case of HIEs, while it decreased for both middle-income groups.
In the case of low-income economies, the contribution of agriculture to GDP decreased
in the period before 2003; afterward, it fluctuated with a slight increase in the following
period (figure A1, online appendix). At the global level, the total emissions from agri-
culture are stable for the period before 2003 and increase in the period afterward (figure
A2, online appendix).

Across the income–country groups, the total emissions increased for the case of
upper-middle-income countries, and their total emissions exceeded the emissions from
the high-income-country group in 2005 (figure A3, online appendix). The emissions
from lower-middle-income and low-income economies presented the same pattern.We
can therefore divide the countries into three groups: LMEs, UMEs and HIEs.

In 1995, the five largest emitters in agriculture were China, India, the United States,
Brazil andRussia (figureA4, online appendix).Most of these countries, except for Russia,
remained the world’s largest emitters in 2012 (figure A5, online appendix). Specifically,
the total emissions in China and India increased substantially, and the emissions in the
United States and Brazil did not fluctuate much.

US$1,025 or less in 2018; lowermiddle-income economies are thosewith aGNIper capita betweenUS$1,026
and US$3,995; upper middle-income economies are those with a GNI per capita between US$3,996 and
US$12,375; and high-income economies are those with a GNI per capita of US$12,376 or more. See https://
datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups.

4We would like to thank an anonymous reviewer for this helpful suggestion.
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As shown in online appendix table A4, trade, import and export have strong posi-
tive correlations, approximately 0.99. As such, including these three variables altogether
in the same equation will probably cause the problem of collinearity in the estimation.
Therefore, we estimated the models using trade, export and import separately, one by
one, for each equation.5

The study sample of this research has a relatively large number of cross-sections
(N = 89 countries) and a reasonably long time dimension (1995–2012, namely, T = 18
years). To examine the existence of cross-sectional dependence in our study sample,
Pesaran’s CD test (Pesaran, 2020) is applied to the lagged variables. The results in table
A7 (online appendix) show the existence of cross-sectional dependence in the vari-
ables. We therefore conducted the Pesaran (2007) CIPS (Z(t-bar)) unit root tests for
the variables in levels and first differences.

Except for the total emissions and agriculture value-added variables, which are sta-
tionary at the 1 per cent level, and trade openness and export, which are stationary at the
10 per cent level, the remaining variables are nonstationary at the levels. The CIPS unit
root tests for the variables in the first differences show that all the variables are station-
ary at the 1 per cent level. In this case, we recruit different panel cointegration tests: the
Kao cointegration test (Kao, 1999), the Pedroni cointegration test (Pedroni, 1999), and
the Westerlund cointegration test (Westerlund, 2005). The results (see table A8, online
appendix) indicate strong empirical evidence of long-run cointegration relationships
between the variables.

3.3 Estimation method
Because the variables are a mixture of I(0) and I(1) stationarities, in addition to the exis-
tence of cointegration, the autoregressive distributed lagmodel (ARDLmodel) for panel
data is probably the most suitable estimator (Odhiambo, 2009; Bildirici, 2014; Abdullahi
et al., 2015).

Dynamic panel data estimation is often conducted by using difference or system
GMM estimators to manage endogeneity. However, with the existence of cointegra-
tion, these estimators are no longer appropriate methods. Furthermore, in our empirical
study, we have cointegration among the variables in combination with the mixture of
the I(0) and I(1) variables. In this case, the ARDL is regarded as the most appropriate
estimator (Odhiambo, 2009; Bildirici, 2014; Abdullahi et al., 2015).Moreover, the ARDL
model allows us to identify short-term and long-term effects by including lags of depen-
dent and independent variables, whether the regressors are endogenous or exogenous
(Pesaran and Smith, 1995; Pesaran and Shin, 1998). This model can thus solve the prob-
lem of endogeneity in dynamic panel data. With the potential existence of country fixed
effects and time fixed effects, the dynamic fixed effects estimator (DFE) is used for the
ARDL model (Asteriou and Monastiriotis, 2004). The DFE-ARDL model first detects
the short-run and long-run influences of the regressors, and then deals with fixed effects.
Moreover, the bias of this estimator is reduced to zero when the time dimension of data
is becoming larger, which is suitable for our case with relatively long time dimensions –
that is, 1995–2012 (18 years) and 1995–2008 (14 years).

5For example, refer to the results in table 3 where trade is estimated first (column 1), then FDI is added
into the estimation with trade (column 2). In column 3, trade is dropped, and export is estimated instead.
FDI is then added in the estimation with export in column 4. Similarly, only import and FDI are estimated
in columns 5 and 6. The same strategy is applied throughout the remaining estimations (tables 4 and 5).
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Overall, the DFE-ARDL model can help manage the problems of endogeneity, het-
eroscedasticity and fixed effects (Pesaran and Shin, 1998), and estimate the short-run
and long-run influences of the regressors.6 Nevertheless, with this approach, we assume
that there is only one cointegration relationship among the variables of interest.

4. Results and discussions
All the empirical results regarding the short-run and long-run effects of the potential
determinants of agricultural emissions for the whole sample of 89 countries are summa-
rized in table 1. Furthermore, the results from performing the same analysis for CH4
emissions and N2O emissions are reported in table 2, and those from conducting a
similar analysis for the three subsamples are presented in tables 3–5.

4.1 Determinants of agricultural emissions: short-run and long-run effects
4.1.1 Baseline model
First, we examine the determinants of total agricultural emissions based on our main
specificationwith the inclusion of income, agriculture value added, energy consumption,
trade, and FDI inflows as the regressors (equation (5)).

Table 1 shows the estimation results for the whole sample of 89 economies from 1995
to 2012.According to themainmodel specification in column2of table 3, in the long run,
income, agriculture value added and energy consumption per capita appear to contribute
positively and significantly to the emissions from the agricultural sector. Specifically, the
coefficient is 0.2183 for income, 0.1416 for agriculture value added, and 0.1371 for energy
consumption. This finding is consistent with the literature of environmental economics,
that is, economic development is one of the major causes of environmental degradation
(Le et al., 2019). The result of this study thus adds new evidence regarding economic
development and its increasing impact on emissions from agriculture. The result is also
in line with other studies (e.g.,Waheed et al., 2018); that is, increasing agricultural activi-
ties leads to higher CO2 emissions. The findings provide global evidence on the long-run
impacts of agricultural production on CO2 emissions and add to the literature that has
been mostly based on the country level (e.g., see Waheed et al. (2018) for Pakistan and
Ben Jebli and Ben Youssef (2019) with evidence for Brazil).

The positive influence of economic development (proxied by the level of income per
capita) on agricultural emissions is consistent with the literature and the STIRPAT the-
ory, which claim that affluence is one of the major causes of emissions. This finding is
also in line with findings from other studies (Zhangwei and Xungang, 2011; Tian et al.,
2014), according to which economic development increases income level, which gener-
ates demand for agricultural products and hence agricultural production. This situation
induces higher capital-intensive production in agriculture and high energy intensity
generating emissions. Additionally, the long-run positive impacts of agricultural value
added and energy consumption on agricultural emissions are expected in theory.

Furthermore, trade and FDI seem to have significant and negative long-run impacts
on agricultural emissions. This finding highlights the crucial roles of economic integra-
tion in reducing agricultural emissions in the long run, which is in line with the pollution
halo hypothesis. The positive short-run impact of FDI inflows on agricultural emissions

6Technical details of the ARDL model for panel data analysis in this study are presented in online
appendix B.
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Table 1. Determinants of total emissions in agriculture: DFE ARDL

Dep. var: AE (1) (2) (3) (4) (5) (6)

Short-run effects

EC term −0.3935*** −0.3992*** −0.3832*** −0.3920*** −0.3927*** −0.3963***
[0.0208] [0.0210] [0.0205] [0.0207] [0.0209] [0.0211]

D.Income 0.1894*** 0.2119*** 0.1752** 0.1966*** 0.2116*** 0.2327***
[0.0713] [0.0721] [0.0705] [0.0712] [0.0701] [0.0709]

D.Agri −0.0237 −0.0242 −0.0245 −0.0257 −0.0219 −0.0219
[0.0170] [0.0171] [0.0165] [0.0166] [0.0170] [0.0171]

D.Energy −0.0026 −0.0102 0.0007 −0.0094 −0.0031 −0.0088
[0.0429] [0.0431] [0.0429] [0.0431] [0.0430] [0.0433]

D.Trade 0.0303* 0.0264
[0.0182] [0.0185]

D.FDI 0.0011** 0.0014*** 0.0010**
[0.0005] [0.0005] [0.0005]

D.Export 0.0404** 0.0384**
[0.0170] [0.0173]

D.Import 0.0198 0.0155
[0.0160] [0.0163]

Cons. 1.8552*** 1.8390*** 1.8186*** 1.7823*** 1.8880*** 1.8824***
[0.1972] [0.1987] [0.2000] [0.2015] [0.1966] [0.1982]

Long-run effects

Income 0.2314*** 0.2183*** 0.2056*** 0.2036*** 0.1830*** 0.1665***
[0.0614] [0.0614] [0.0627] [0.0620] [0.0579] [0.0584]

Agri 0.1425*** 0.1416*** 0.1148*** 0.1158*** 0.1470*** 0.1450***
[0.0283] [0.0283] [0.0277] [0.0274] [0.0289] [0.0293]

Energy 0.1151** 0.1371** 0.1151* 0.1432** 0.1142* 0.1323**
[0.0587] [0.0585] [0.0605] [0.0597] [0.0589] [0.0590]

Trade −0.1835*** −0.1766***
[0.0252] [0.0254]

FDI −0.0031** −0.0041*** −0.0024*
[0.0014] [0.0014] [0.0014]

Export −0.1550*** −0.1530***
[0.0234] [0.0231]

Import −0.1697*** −0.1611***
[0.0242] [0.0250]

N 1,506 1,498 1,506 1,498 1,506 1,498

Notes: *, **, and *** denote statistical significance at the 10 per cent, 5 per cent, and 1 per cent levels, respectively.
Standard errors are in brackets.

is probably consistent with evidence found in Kastratović (2019), and the negative influ-
ence in the long run is consistent with Pazienza (2015). Additionally, according to our
review of the literature, no study has investigated the impacts of trade activities on agri-
cultural emissions. Our finding implies that trade openness and FDI inflows can result in
technological spillovers to host countries’ agricultural sector, shifting the techniques of
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Table 2. Determinants of GHG emissions in agriculture: comparisons of CH4 and N2O emissions

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Dep. var: ME (CH4 emissions) NE (N2O emissions)

Short-run effects

EC term −0.2191*** −0.2208*** −0.2215*** −0.2231*** −0.2175*** −0.2191*** −0.3011*** −0.3025*** −0.3033*** −0.3046*** −0.2995*** −0.3008***
[0.0256] [0.0259] [0.0255] [0.0258] [0.0256] [0.0259] [0.0267] [0.0269] [0.0267] [0.0269] [0.0267] [0.0269]

D.Income −0.0026 0.0041 −0.0318 −0.0322 0.0339 0.0429 0.0510 0.0567 0.0234 0.0233 0.0728 0.0796
[0.1176] [0.1194] [0.1163] [0.1184] [0.1169] [0.1185] [0.1458] [0.1480] [0.1445] [0.1471] [0.1448] [0.1468]

D.Agri −0.0182 −0.0174 −0.0239 −0.0235 −0.0084 −0.0070 −0.0156 −0.0138 −0.0217 −0.0208 −0.0097 −0.0072
[0.0275] [0.0278] [0.0268] [0.0270] [0.0275] [0.0278] [0.0342] [0.0345] [0.0333] [0.0335] [0.0341] [0.0345]

D.Energy −0.0354 −0.0407 −0.0396 −0.0473 −0.0269 −0.0304 −0.0165 −0.0214 −0.0216 −0.0292 −0.0100 −0.0133
[0.0709] [0.0716] [0.0704] [0.0711] [0.0711] [0.0718] [0.0878] [0.0887] [0.0874] [0.0883] [0.0880] [0.0889]

D.Trade 0.0706** 0.0683** 0.0475 0.0444
[0.0327] [0.0332] [0.0405] [0.0411]

D.FDI 0.0010 0.0012 0.0011 0.0011 0.0013 0.0011
[0.0010] [0.0010] [0.0010] [0.0012] [0.0012] [0.0012]

D.Export 0.1043*** 0.1068*** 0.0808** 0.0826**
[0.0303] [0.0309] [0.0377] [0.0384]

D.Import 0.0319 0.0275 0.0226 0.0177
[0.0275] [0.0280] [0.0340] [0.0347]

Cons. 1.1721*** 1.1566*** 0.9841*** 0.9469*** 1.2772*** 1.2647*** 1.6942*** 1.6835*** 1.5252*** 1.4939*** 1.8013*** 1.7928***
[0.3592] [0.3626] [0.3597] [0.3651] [0.3584] [0.3610] [0.4192] [0.4238] [0.4210] [0.4289] [0.4165] [0.4200]

(continued)
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Table 2. Continued

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Dep. var: ME (CH4 emissions) NE (N2O emissions)

Long-run effects

Income 0.1537 0.1518 0.2794 0.2976 0.0287 0.0207 0.1526 0.1554 0.2364 0.2496 0.0590 0.0597
[0.1996] [0.2012] [0.1959] [0.1987] [0.1889] [0.1909] [0.1790] [0.1807] [0.1751] [0.1775] [0.1695] [0.1718]

Agri 0.1718* 0.1709* 0.1933** 0.1930** 0.1430 0.1398 0.2582*** 0.2576*** 0.2646*** 0.2640*** 0.2425*** 0.2415***
[0.0885] [0.0892] [0.0843] [0.0846] [0.0900] [0.0912] [0.0804] [0.0812] [0.0769] [0.0775] [0.0814] [0.0827]

Energy −0.0092 0.0052 0.0247 0.0391 −0.0341 −0.0192 −0.2418 −0.2333 −0.2197 −0.2094 −0.2599 −0.2518
[0.2047] [0.2061] [0.2017] [0.2033] [0.2064] [0.2079] [0.1856] [0.1876] [0.1836] [0.1858] [0.1867] [0.1886]

Trade −0.1803** −0.1769** −0.1666** −0.1678**
[0.0861] [0.0877] [0.0773] [0.0790]

FDI −0.0018 −0.0025 −0.0022 −0.0004 −0.0012 −0.0003
[0.0046] [0.0045] [0.0048] [0.0042] [0.0041] [0.0043]

Export −0.2471*** −0.2510*** −0.2075*** −0.2117***
[0.0789] [0.0793] [0.0702] [0.0708]

Import −0.1027 −0.0938 −0.1156 −0.1152
[0.0813] [0.0847] [0.0731] [0.0764]

N 1,153 1,147 1,153 1,147 1,153 1,147 1,153 1,147 1,153 1,147 1,153 1,147

Notes: *, **, and *** denote statistical significance at the 10 per cent, 5 per cent, and 1 per cent levels, respectively. Standard errors are in brackets.
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Table 3. Determinants of total emissions in agriculture: LMEs

Dep. var: AE (1) (2) (3) (4) (5) (6)

Short-run effects

EC term −0.3695*** −0.3854*** −0.3672*** −0.3865*** −0.3586*** −0.3709***
[0.0338] [0.0349] [0.0335] [0.0347] [0.0338] [0.0348]

D.Income 0.0672 0.0995 0.0541 0.0915 0.0718 0.0986
[0.1082] [0.1103] [0.1083] [0.1107] [0.1077] [0.1098]

D.Agri 0.0303 0.0254 0.0335 0.0294 0.0293 0.0250
[0.0271] [0.0276] [0.0262] [0.0264] [0.0274] [0.0279]

D.Energy −0.0915 −0.1094* −0.0792 −0.1000 −0.0964 −0.1114*
[0.0640] [0.0650] [0.0638] [0.0647] [0.0645] [0.0656]

D.Trade 0.0429* 0.0422*
[0.0239] [0.0250]

D.FDI 0.0014 0.0018 0.0013
[0.0012] [0.0012] [0.0012]

D.Export 0.0441* 0.0409*
[0.0230] [0.0239]

D.Import 0.0364* 0.0355
[0.0210] [0.0220]

Cons. 1.4858*** 1.4595*** 1.4869*** 1.4449*** 1.4973*** 1.4804***
[0.2771] [0.2806] [0.2763] [0.2797] [0.2806] [0.2844]

Long-run effects

Income 0.2478** 0.2167** 0.2345** 0.2078** 0.1919** 0.1600
[0.0973] [0.0964] [0.0958] [0.0939] [0.0977] [0.0983]

Agri 0.1083** 0.1308*** 0.0581 0.0834* 0.1070** 0.1238**
[0.0491] [0.0493] [0.0454] [0.0450] [0.0525] [0.0533]

Energy 0.3408*** 0.3793*** 0.3483*** 0.3923*** 0.3058*** 0.3379***
[0.0991] [0.0971] [0.0998] [0.0970] [0.1017] [0.1004]

Trade −0.2285*** −0.2273***
[0.0437] [0.0443]

FDI −0.0039 −0.0050* −0.0037
[0.0028] [0.0028] [0.0030]

Export −0.1979*** −0.1977***
[0.0375] [0.0369]

Import −0.1957*** −0.1896***
[0.0439] [0.0454]

N 541 536 541 536 541 536

Notes: *, **, and *** denote statistical significance at the 10 per cent, 5 per cent, and 1 per cent levels, respectively.
Standard errors are in brackets.

production toward less pollution. Overall, economic integration (proxied by trade open-
ness and FDI inflows) shows long-run negative effects on agricultural emissions. This
result is strong evidence against the recent trend of closing the economy in the United
States and some other large economies such as the United Kingdom.

The absolute value of the error correction (EC) term is estimated to be approximately
−0.3935; this is statistically significant and implies a relatively speedy adjustment to
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Table 4. Determinants of total emissions in agriculture: UMEs

Dep. var: AE (1) (2) (3) (4) (5) (6)

Short-run effects

EC term −0.4848*** −0.4816*** −0.4776*** −0.4772*** −0.4874*** −0.4827***
[0.0410] [0.0409] [0.0408] [0.0407] [0.0411] [0.0410]

D.Income 0.4985*** 0.5791*** 0.4061** 0.4618*** 0.5295*** 0.6291***
[0.1804] [0.1835] [0.1766] [0.1783] [0.1732] [0.1774]

D.Agri −0.0814** −0.0797* −0.0874** −0.0943** −0.0758* −0.0660
[0.0412] [0.0411] [0.0393] [0.0393] [0.0417] [0.0418]

D.Energy 0.0961 0.0710 0.0780 0.0477 0.1091 0.0887
[0.1043] [0.1047] [0.1040] [0.1045] [0.1048] [0.1048]

D.Trade −0.0292 −0.0472
[0.0494] [0.0499]

D.FDI 0.0042** 0.0042** 0.0047***
[0.0017] [0.0017] [0.0018]

D.Export 0.0136 0.0166
[0.0427] [0.0427]

D.Import −0.0458 −0.0782*
[0.0423] [0.0439]

Cons. 2.6514*** 2.6428*** 2.6288*** 2.5642*** 2.7377*** 2.7469***
[0.4379] [0.4368] [0.4498] [0.4491] [0.4280] [0.4280]

Long-run effects

Income 0.2114* 0.2030* 0.2051* 0.2154* 0.1369 0.1340
[0.1174] [0.1204] [0.1243] [0.1249] [0.0969] [0.1019]

Agri 0.1552*** 0.1343** 0.1300** 0.1194** 0.1581*** 0.1339**
[0.0588] [0.0601] [0.0551] [0.0551] [0.0590] [0.0621]

Energy −0.0747 −0.0748 −0.0886 −0.0754 −0.0568 −0.0717
[0.1058] [0.1084] [0.1073] [0.1095] [0.1065] [0.1086]

Trade −0.1242** −0.1014
[0.0600] [0.0620]

FDI −0.0032 −0.0043 −0.0027
[0.0029] [0.0029] [0.0031]

Export −0.0995* −0.0932*
[0.0545] [0.0546]

Import −0.1032* −0.0760
[0.0527] [0.0577]

N 442 441 442 441 442 441

Notes: *, **, and *** denote statistical significance at the 10 per cent, 5 per cent, and 1 per cent levels, respectively.
Standard errors are in brackets.

equilibrium after short-run shocks. In detail, approximately 39.35 per cent of disequi-
librium caused by previous period shocks converges back to the long-run equilibrium.
In other words, it takes approximately 2.54 years (1/0.3935= 2.54 years) to correct
disequilibrium in the case of total emissions. Thus, the correction is rapid.

In the short run, we are only able to find two statistically significant effects of the
explanatory variables on agricultural emissions: the positive impacts of income and
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Table 5. Determinants of total emissions in agriculture: HIEs

Dep. Var: AE (1) (2) (3) (4) (5) (6)

Short-run effects

EC term −0.3211*** −0.3193*** −0.3028*** −0.3013*** −0.3348*** −0.3325***
[0.0348] [0.0350] [0.0341] [0.0343] [0.0349] [0.0351]

D.Income 0.1100 0.1080 0.0797 0.0756 0.1737* 0.1727*
[0.0983] [0.0986] [0.0928] [0.0931] [0.0999] [0.1002]

D.Agri −0.0237 −0.0218 −0.0302 −0.0285 −0.0152 −0.0130
[0.0206] [0.0207] [0.0203] [0.0205] [0.0203] [0.0205]

D.Energy 0.0324 0.0333 0.0313 0.0317 0.0397 0.0409
[0.0552] [0.0554] [0.0553] [0.0555] [0.0549] [0.0551]

D.Trade 0.0372 0.0353
[0.0280] [0.0282]

D.FDI 0.0003 0.0004 0.0003
[0.0004] [0.0004] [0.0004]

D.Export 0.0608** 0.0597**
[0.0262] [0.0263]

D.Import 0.0064 0.0043
[0.0265] [0.0267]

Cons. 1.8644*** 1.8182*** 1.8614*** 1.8098*** 1.8238*** 1.7807***
[0.3622] [0.3679] [0.3654] [0.3712] [0.3604] [0.3659]

Long-run effects

Income 0.1534 0.1599 0.0738 0.0826 0.2016* 0.2064*
[0.1155] [0.1170] [0.1192] [0.1209] [0.1110] [0.1124]

Agri 0.2022*** 0.2009*** 0.1994*** 0.1976*** 0.2024*** 0.2016***
[0.0430] [0.0439] [0.0457] [0.0465] [0.0410] [0.0419]

Energy −0.0133 −0.0040 −0.0132 −0.0018 −0.0217 −0.0138
[0.0993] [0.1014] [0.1058] [0.1078] [0.0948] [0.0970]

Trade −0.1820*** −0.1829***
[0.0374] [0.0378]

FDI −0.0007 −0.0010 −0.0005
[0.0018] [0.0019] [0.0017]

Export −0.1547*** −0.1561***
[0.0379] [0.0382]

Import −0.1962*** −0.1969***
[0.0362] [0.0367]

N 523 521 523 521 523 521

Notes: *, **, and *** denote statistical significance at the 10 per cent, 5 per cent, and 1 per cent levels, respectively.
Standard errors are in brackets.

FDI inflows. Although the positive influence of income is consistent with that found
in the long run, that of FDI inflows is different from the finding in the long run. The
significantly positive impact of FDI inflows on agricultural emissions in the short run
supports the pollution haven hypothesis, which refers to possible asymmetries between
foreign capital and local environmental standards. Specifically, through foreign invest-
ment,multinational firms – especially those engaged in highly polluting activities – could
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take advantage of the weaker environmental standards in the host countries. In this
regard, a higher level of FDI inflows could lead to higher emissions in the FDI recipient
country.

Furthermore, the insignificant short-run impacts of agriculture value added and
energy use, which are among the major long-run drivers of agricultural emissions,
imply that the determinants of agricultural emissions vary across time horizons (see
Sadorsky, 2013). For instance, in the case of FDI inflows, in the short term, countries
may have incentives to attract large amounts of FDI inflows for promoting economic
activities, which probably come at the cost of higher emissions. However, in the longer
term, although economic growth may not be as important as sustainable develop-
ment goals, countries may impose stringent environmental regulations on FDI inflows.
Green FDI projects will become a higher priority, which facilitates the spillover of
environment-friendly technologies and thus reduces emissions.

4.1.2 Robustness check: different model specifications
For a robustness check, we perform the same analysis on different specifications of the
model. Specifically, we conduct the same empirical analysis for five other models, with
somemodification in the specification compared with the baseline model, as follows: (1)
we drop FDI inflows from the main specification (column 1 in table 3); (2) we drop FDI
inflows and replace trade with export (column 3 in table 3); (3) we keep FDI inflows and
keep export (in lieu of trade) (column in table 3); (4) we drop FDI inflows and replace
trade with import (column 5 in table 3); and (5) we keep FDI inflows and keep import
(in lieu of trade) (column 6 in table 3).

Overall, we obtain findings similar to the baseline model. The results show that
income (proxied by log of GDP per capita) has a significantly positive coefficient ranging
from 0.1752 to 0.2327 in the short run and 0.1665 to 0.2314 in the long run. Agricul-
tural development (proxied by agriculture value added) and energy consumption have
significantly positive coefficients in the long run. The coefficients vary from 0.1148 to
0.1470 for agricultural development and from 0.1142 to 0.1371 for energy consumption.
Additionally, the elasticities of emissions with respect to energy intensity and agricul-
ture value added are insignificant in the short run. The results imply that affluence is
a critical driver of agricultural emissions in both the short run and the long run. More
specifically, the long-run impacts seem to be much larger than those in the short run. In
addition, agricultural development and energy consumption are crucial contributors of
GHG emissions from agriculture in the long run.

The results in table 1 also reveal that the elasticities of agricultural emissions to trade
openness, export, import and FDI inflows have positive short-run coefficients, but they
are only statistically significant for FDI inflows and export. Notably, all the elasticities
of agricultural emissions to trade openness, export, import and FDI are negative and
significant in the long run. The consistency in signs and statistical significance of the
estimates confirm the robustness of our estimations.

Regarding the speed of adjustment to the long-run equilibrium, the estimate of the EC
term is relatively similar among the six models, which ranges from −0.38 to −0.40, and
statistically significant. This finding shows that all six models indicate a similar speed
of adjustment toward the long-run equilibrium. Specifically, approximately 38–40 per
cent of the disequilibrium caused by previous period shocks turns back to the long-run
equilibrium. Approximately 2.5–2.63 years are necessary to correct the disequilibrium
in these equations.
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4.1.3 Comparison: different emissions
Next, for comparison purposes, we conduct the same empirical analysis to examine the
determinants of CH4 and N2O emissions from agriculture (which are available until
2008) for the whole sample. The results reported in table 2 reaffirm the significantly pos-
itive impacts of income for both CH4 and N2O emissions in the long run. Notably, the
results show significantly positive short-run impacts and significantly negative long-run
impacts of economic integration, particularly for trade openness, export and import, on
CH4 emissions and N2O emissions. Additionally, other factors, including income, agri-
culture value added and energy consumption, seem to have insignificant effects in the
short run. The results suggest that although increased trade openness is a crucial source
of CH4 and N2O emissions from agriculture in the short run and long run, increased
economic integration could helpmitigate agricultural emissions in the long run. By con-
trast, agricultural development significantly contributes to higher agricultural emissions
in the long run.

The results re-emphasize the positive contribution of economic integration through
trade openness and capital openness to the environment through reducing the types of
agricultural emissions. This evidence is probably the first global evidence on the impacts
of trade openness on agricultural different emissions, and it adds new evidence on the
influences of FDI inflows. This finding enhances the contribution of our study to the
literature because the findings concern both strands of economic integration (i.e., trade
and FDI) in addition to decomposing the effects into short-run and long-run effects,
which is meaningful for policy formation or interventions.

The EC term of the CH4 emissions models is estimated at −0.22 on average (i.e., the
speed of adjustment is 22 per cent per year), implying that the average time of adjustment
to the long-run equilibrium is approximately 4.5 years. Additionally, the EC term of the
N2O emissions models is estimated to be−0.30 on average (i.e., the speed of adjustment
is 30 per cent per year), meaning that the average time of full adjustment to the long-run
equilibrium is approximately 3.3 years.

4.2 Determinants of agricultural emissions across different income groups
Tables 3, 4 and 5 report the results for conducting a similar empirical analysis for three
subsamples of countries: LMEs, UMEs, and HIEs.

In the case of LMEs (table 3), the results indicate that trade openness, export and
import have significantly positive influences on total agricultural emissions in the short
run. All the other variables have insignificant coefficients. In the long run, the results
show that income, agriculture value added and energy consumption have significantly
positive impacts on agricultural emissions; and trade openness, FDI inflows, export and
import have significantly negative effects. Becausemost of the LMEs in our study sample
are developing countries, the negative effects of FDI inflows on agricultural emissions is
opposite that of the findings of Kastratović (2019). This difference could be attributable
to the different types of FDI inflows used in the empirical estimations. Kastratović (2019)
used data on FDI inflows in agriculture, whereas we use the net inflows of aggregate FDI
to the whole economy. Thus, the FDI net inflows to agriculture in LMEs may reduce
emissions as expected in Kastratović (2019), but the aggregate FDI inflows as employed
in our study do not.7

7The data for FDI inflows in agriculture are unavailable for a global study.
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The results imply that economic development in LMEs is not a significant source
of their agricultural emissions in the short run because agricultural sectors in these
LMEs are reliant on labor-intensive production. Additionally, in the long run, economic
development, agricultural development and energy consumption appear to be impor-
tant drivers of GHG emissions in agriculture in LMEs. Similar to the whole sample, the
results reaffirm that enhanced economic integration causes higher agricultural emissions
in the short run but reduces it in the long run.

Table 4 shows the estimation results for the group of UMEs. The results show that
increases in income level result in significantly positive impacts on agricultural emis-
sions in both the short run and the long run. Additionally, agricultural development
proxied by agriculture value added has significantly negative impacts in the short run
but significantly positive impacts in the long run. Notably, FDI inflows appear to have
significantly positive effects in the short run and negative (but insignificant) influences
in the long run. Trade openness, export and import mostly have negative impacts in the
short run (statistically insignificant) and in the long run (statistically significant). The
results imply that economic development and FDI inflows are critical contributors to
higher agricultural emissions in UMEs in the short run, and agricultural development
is the long run. Additionally, trade openness seems to be a major mitigator of GHG
emissions from agriculture in the long run.

Finally, the estimation results for the HIEs are reported in table 5. We observe that
most of the examined factors have insignificantly positive influences on agricultural
emissions in the short run. The only exception is export, which has significantly positive
impacts, and income, which has significantly negative impacts on GHG emissions from
agriculture. In the long run, the results demonstrate the significantly positive impacts of
agricultural development and significantly negative impacts of economic integration fac-
tors including trade openness, export and import on agricultural emissions. The results
imply that agricultural development is a crucial driver of higher agricultural emissions in
HIEs in the long run, and economic integration – especially trade openness – is a major
mitigator of agricultural emissions.

Our results are obtained from three income–country groups and are consistent with
those of Fan et al. (2006) and Le et al. (2016, 2019); that is, the impacts of different factors
on emissions vary across groups of countries at different levels of economic develop-
ment. Overall, compared with poorer countries, richer countries tend to better manage
environmental sustainability (Le et al., 2019).

For the speed of adjustment to the long-run equilibrium, table 3 shows that the EC
term of the total emissions (AE) models for LMEs is estimated at −0.36 on average (i.e.,
the speed of adjustment is 36 per cent per year), indicating that the average time of adjust-
ment to the long-run equilibrium is approximately 3 years. Table 4 shows that the EC
term of the AE models for UMEs is estimated at −0.48 on average (i.e., the speed of
adjustment is 48 per cent per year), suggesting the average time of adjustment to the
long-run equilibrium is approximately 2 years. Table 5 shows that the EC term of the
AE models for HIEs is estimated at −0.32 on average (i.e., the adjustment speed is 32
per cent per year), meaning the average time of adjustment to the long-run equilibrium
is approximately 3 years.

5. Conclusion
Although agriculture plays a major role in the economy (Li et al., 2016), it also increases
vulnerability in terms of global warming and climate change (Oenema et al., 2001;
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Tubiello et al., 2013; Calvin et al., 2016; Agovino et al., 2019). Because agricultural
activities are one of the major sources of GHG emissions, further understanding of the
determinants of agricultural emissions is required. This study uses a global sample of 89
economies from 1995–2012 to examine the short-run and long-run influences of eco-
nomic factors on total emissions from agriculture. Using advanced estimation methods
for long-run cointegration estimations, namely, a dynamic fixed effects ARDL model,
both the short- and long-run effects are investigated.

The principal findings of our study are as follows. First, income level, agricultural
development and energy consumption seem to be the major contributors to the increase
in GHG emissions from agriculture. Specifically, income level appears to be a crucial
driver of agricultural emissions in both the short run and the long run, and agricultural
development and energy consumption are the major sources in the long run. Notably,
economic integration, including trade openness, export, import and FDI net inflows,
shows a significantly positive impact on agricultural emissions in the short run, but has
significantly negative effects in the long run. This finding implies that there are long-run
environmental benefits of economic integration, particularly in reducing GHG emis-
sions from agriculture. Notably, the results for the two types of agricultural emissions,
namely, CH4 and N2O emissions, show consistent findings regarding the unfavor-
able short-run and favorable long-run environmental effects of economic integration.
Consistency is also found for the long-run impacts of income level and agricultural devel-
opment on GHG emissions from agriculture. The speed of adjustment to the long-run
equilibrium is also found to be similar across different model specifications of the same
emission type.

Second, the dynamics of the determinants of agricultural emissions are mostly con-
sistent with some heteroscedasticity across different income–country groups. In LMEs,
income level, agricultural development and energy consumption appear to be the main
drivers of agricultural emissions in the long run, and economic integration has positive
short-run impacts and negative long-run impacts. In UMEs, income level is a crucial
contributor to higher agricultural emissions in the short run, and income and agricul-
tural development are the main long-run drivers. Notably, trade openness appears to
have negative impacts in both the short and the long run, and FDI inflows induce higher
agricultural emissions in the short run. In HIEs, agricultural development is the crucial
source of agricultural emissions in the long run. Economic integration, especially export,
is a driver of higher GHG emissions from agriculture in the short run, but trade open-
ness, export and import appear to reduce agricultural emissions in the long run. These
findings have meaningful implications for policymakers in mitigating GHG emissions
from the agricultural sector.

Because the growth of food demand worldwide is likely to increase in the next few
decades, substantial increases in GHG emissions by the agri-food sector are expected,
unless improved management systems are adopted (Verge et al., 2007). The findings of
this study have several implications. First, the theoretical models to explain the aggregate
emissions in environmental economics could be used to explain the dynamics of CO2
emissions from a special sector, namely, the agriculture sector in our study. Our empir-
ical results reveal that economic development, agricultural development and energy
consumption are the main factors explaining agricultural emissions. Thus, a plan for
a sustainable development strategy for agricultural production should consider these
factors, for instance, using less energy.

Furthermore, policymakers should pay attention to agricultural activities, one of
the major contributors to emissions from agriculture. Addressing climate change in
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agricultural development should involve adopting green technologies in food produc-
tion and reducing food loss and waste, which help reduce emission intensity (Galford
et al., 2020). For instance, in this regard, to reduce waste, individuals’ food consumption
behaviors must change. FAO (2019) estimates that one-third of the world’s food is lost
or wasted each year. Every effort to reduce food waste could help lower emissions and
thereby support sustainable development. As such, wemay have a win–win situation for
international development (Galford et al., 2020).

In addition, the findings of the negative impacts of economic integration on agricul-
tural emissions in the long run could generatemeaningful implications for policymakers.
Instead of being against economic openness, governments should support this process
with an appropriate strategy, that is, suitable regulations and policies to attract green FDI
should be prioritized. Additionally, fair trade with a policy to support agricultural prod-
uct upgrading would, in return, benefit farmers such that they could practice sustainable
agricultural production. This recommendation is also supported byHodges et al. (2011),
who documented that poor investment led to the majority of food loss and waste in the
early stages of the value chain.

Overall, for all groups of countries, because we find that agricultural activities con-
tribute to a higher level of emissions from this sector in the long run, there is room for
improvement in ecosystem and natural resource management in countries of all income
levels, including the HIEs. This implication is consistent with the findings of Le et al.
(2019).

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.
1017/S1355770X20000315
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