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We first describe a reduction from the problem of lower-bounding the number of distinct

distances determined by a set S of s points in the plane to an incidence problem between

points and a certain class of helices (or parabolas) in three dimensions. We offer conjectures

involving the new set-up, but are still unable to fully resolve them.

Instead, we adapt the recent new algebraic analysis technique of Guth and Katz [9], as

further developed by Elekes, Kaplan and Sharir [6], to obtain sharp bounds on the number

of incidences between these helices or parabolas and points in R
3. Applying these bounds,

we obtain, among several other results, the upper bound O(s3) on the number of rotations

(rigid motions) which map (at least) three points of S to three other points of S . In fact,

we show that the number of such rotations which map at least k � 3 points of S to k other

points of S is close to O(s3/k12/7).

One of our unresolved conjectures is that this number is O(s3/k2), for k � 2. If true, it

would imply the lower bound Ω(s/ log s) on the number of distinct distances in the plane.

1. The infrastructure

The motivation for the study reported in this paper comes from the celebrated and long-

standing problem, originally posed by Erdős [7] in 1946, of obtaining a sharp lower bound

for the number of distinct distances guaranteed to exist in any set S of s points in the

plane. Erdős has shown that a section of the integer lattice determines only Θ(s/
√

log s)

distinct distances, and conjectured this to be a lower bound for any planar point set. In

spite of steady progress on this problem, reviewed next, Erdős’s conjecture is still open.

† A preliminary version of this paper appeared in Proc. 26th ACM Symposium on Computational Geometry

(2010), pp. 413–422.
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L. Moser [14], Chung [4], and Chung, Szemerédi and Trotter [5] proved that the

number of distinct distances determined by s points in the plane is Ω(s2/3), Ω(s5/7), and

Ω(s4/5/polylog(s)), respectively. Székely [22] managed to get rid of the polylogarithmic

factor, while Solymosi and Tóth [20] improved this bound to Ω(s6/7). This was a real

breakthrough. Their analysis was subsequently refined by Tardos [24] and then by Katz

and Tardos [13], who obtained the current record of Ω(s(48−14e)/(55−16e)−ε), for any ε > 0,

which is Ω(s0.8641).

In this paper we transform the problem of distinct distances in the plane to an

incidence problem between points and certain kinds of curves (helices or parabolas) in

three dimensions. As we show, sharp upper bounds on the number of such incidences

translate back to sharp lower bounds on the number of distinct distances. Incidence

problems in three dimensions between points and curves have been studied in several

recent works [2, 6, 19], and a major push in this direction was made last year, with

the breakthrough result of Guth and Katz [9], who introduced methods from algebraic

geometry for studying problems of this kind. This has been picked up by the authors [6],

who obained worst-case tight bounds on the number of incidences between points and

lines in three dimensions (under certain restrictions).

The present paper serves two purposes. First, it studies in detail the connection between

the distinct distances problem and the corresponding 3-dimensional incidence problem. As

it turns out, there is a lot of interesting geometric structure behind this reduction, and the

paper develops it in detail. We offer several conjectures on the number of incidences, and

show how, if true, they yield the almost-tight worst-case lower bound Ω(s/ log s) on the

number of distinct distances. Unfortunately, so far we have not succeeded in proving these

conjectures. Nevertheless, we have made considerable progress on the incidence problem

itself, which is the second purpose of the study in this paper. We show how to adapt the

algebraic machinery of [9, 6, 12, 16] to derive sharp bounds for the incidence problem.

These bounds are very similar to, and in fact even better than, the bounds obtained in [6]

for point–line incidences, where they have been shown to be worst-case tight. However,

they are not (yet) good enough to yield significant lower bounds for distinct distances.

We believe that there is additional geometric structure in the particular problem studied

here, which should enable one to further improve the bounds, but so far this has remained

elusive.

The paper is organized as follows. We first describe the reduction from the planar

distinct distances problem to the 3-dimensional incidence problem mentioned above. In

doing so, we note and explore several additional geometric connections between the

two problems (as manifested, e.g., in the analysis of special surfaces given below). We

then present the tools from algebraic geometry that are needed to tackle the incidence

problem; they are variants of the tools used in [6, 9], adapted to the specific curves

that we need to handle. We then go on to bound the number of incidences. We first

bound the number of rotations in terms of the number of parabolas, and then bound

the number of incidences themselves. The latter task is achieved in two steps. We first

use a ‘purely algebraic’ analysis, akin to those in [6, 9], to obtain a weaker bound,

which we then refine in the second step, using more traditional space decomposition

techniques. The final bound is still not as good as we would like it to be, but it
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shows that the case studied in this paper ‘behaves better’ than its counterpart involving

lines.

Distinct distances and incidences with helices. We offer the following novel approach to

the problem of distinct distances.

(H1) Notation. Let S be a set of s points in the plane with x distinct distances. Let K

denote the set of all quadruples (a, b, a′, b′) ∈ S4, such that the pairs (a, b) and (a′, b′) are

distinct (although the points themselves need not be) and |ab| = |a′b′| > 0.

Let δ1, . . . , δx denote the x distinct distances in S , and let Ei = {(a, b) ∈ S2 | |ab| = δi}.
We have

|K| = 2

x∑
i=1

(
|Ei|
2

)
�

x∑
i=1

(|Ei| − 1)2 � 1

x

[ x∑
i=1

(|Ei| − 1)

]2

=
[s(s − 1) − x]2

x
.

(H2) Rotations. We associate each (a, b, a′, b′) ∈ K with a (unique) rotation (or, rather, a

rigid, orientation-preserving transformation of the plane) τ, which maps a to a′ and b to

b′. A rotation τ, in complex notation, can be written as the transformation z �→ pz + q,

where p, q ∈ C and |p| = 1. Putting p = eiθ , q = ξ + iη, we can represent τ by the point

(ξ, η, θ) ∈ R
3. In the planar context, θ is the anticlockwise angle of the rotation, and the

centre of rotation is c = q/(1 − eiθ), which is defined for θ �= 0; for θ = 0, τ is a pure

translation.

The multiplicity μ(τ) of a rotation τ (with respect to S) is defined as |τ(S) ∩ S | = the

number of pairs (a, b) ∈ S2 such that τ(a) = b. Clearly, one always has μ(τ) � s, and we

will mostly consider only rotations satisfying μ(τ) � 2. As a matter of fact, the bulk of the

paper will only consider rotations with multiplicity at least 3. Rotations with multiplicity

2 are harder to analyse.

If μ(τ) = k then S contains two congruent and equally oriented copies A,B of some

k-element set, such that τ(A) = B. Thus, studying multiplicities of rotations is closely

related to analysing repeated (congruent and equally oriented) patterns in a planar point

set; see [3] for a review of many problems of this kind.

Anti-rotations. In this paper we will also consider anti-rotations , which are rigid,

orientation-reversing transformations of the plane. Any anti-rotation can be represented

as a rotation, followed by a reflection about some fixed line, e.g., the x-axis (so, in complex

notation, this can be written as z �→ pz + q). Anti-rotations will be useful in certain steps

of the analysis.

(H3) Bounding |K|. If μ(τ) = k then τ contributes
(
k
2

)
quadruples to K . Let Nk (resp.,

N�k) denote the number of rotations with multiplicity exactly k (resp., at least k), for

k � 2. Then

|K| =

s∑
k=2

(
k

2

)
Nk =

s∑
k=2

(
k

2

)
(N�k − N�k+1) = N�2 +

∑
k�3

(k − 1)N�k.
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Figure 1. A lower bound construction of Θ(|S |3) rotations with multiplicity 3.

(H4) The main conjecture.

Conjecture 1.1. For any 2 � k � s, we have

N�k = O(s3/k2).

Suppose that the conjecture were true. Then we would have

[s(s − 1) − x]2

x
� |K| = O(s3) ·

[
1 +

s∑
k=3

1

k

]
= O(s3 log s),

which would have implied that x = Ω(s/ log s). This would have almost settled the problem

of obtaining a tight bound for the minimum number of distinct distances guaranteed to

exist in any set of s points in the plane, since, as mentioned above, the upper bound for

this quantity is O(s/
√

log s) [7].

We note that Conjecture 1.1 is rather deep; even the simple instance k = 2, asserting

that there are only O(s3) rotations which map (at least) two points of S to two other

points of S (at the same distance apart), seems quite difficult. In this paper we establish a

variety of upper bounds on the number of rotations and on the sum of their multiplicities.

In particular, these results provide a partial positive answer, showing that N�3 = O(s3);

that is, the number of rotations which map a (degenerate or non-degenerate) triangle

determined by S to another congruent (and equally oriented) such triangle, is O(s3).

Bounding N2 by O(s3) is still an open problem. See Section 5 for a simple proof of the

weaker bound N�2 = O(s10/3).

Lower bound. We next give a construction (suggested by Haim Kaplan) which shows the

following.

Lemma 1.2. There exist sets S in the plane of arbitrarily large cardinality, which determine

Θ(|S |3) distinct rotations, each mapping a triple of points of S to another triple of points

of S .

Proof. Consider the set S = S1 ∪ S2 ∪ S3, where

S1 = {(i, 0) | i = 1, . . . , s},
S2 = {(i, 1) | i = 1, . . . , s},
S3 = {(i/2, 1/2) | i = 1, . . . , 2s}.

See Figure 1.
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For each triple a, b, c ∈ {1, . . . , s} such that a + b − c also belongs to {1, . . . , s}, construct

the rotation τa,b,c which maps (a, 0) to (b, 0) and (c, 1) to (a + b − c, 1). Since the distance

between the two source points is equal to the distance between their images, τa,b,c is

well (and uniquely) defined. Moreover, τa,b,c maps the mid-point ((a + c)/2, 1/2) to the

mid-point ((a + 2b − c)/2, 1/2).

We claim that the rotations τa,b,c are all distinct. Indeed, suppose that two such rotations,

τa,b,c and τa′ ,b′ ,c′ , for distinct triples (a, b, c), (a′, b′, c′), coincide; call the common rotation τ.

We can represent τ as the rigid transformation which first translates the plane horizontally

by distance b − a, so that (a, 0) is mapped to (b, 0), and then rotates it around (b, 0) by

an appropriate angle 0 < θ < π, so that (c + b − a, 1) is mapped to (a + b − c, 1). Suppose

first that a �= a′. Since τ = τa,b,c = τa′ ,b′ ,c′ , it maps (a′, 0) to (a′ + b − a, 0) and then rotates

this point by angle θ around (b, 0), mapping it to a point outside the x-axis, contradicting

the fact that τa′ ,b′ ,c′ maps (a′, 0) to (b′, 0). If a′ = a then we must also have b′ = b, so

c′ �= c. But then it is impossible to turn, around (b, 0), the shifted point (c + b − a, 1) to

(a + b − c, 1) and the shifted point (c′ + b − a, 1) to (a + b − c′, 1), by the same angle, a

contradiction which shows that the two rotations are distinct.

Since there are Θ(s3) triples (a, b, c) with the above properties, the claim follows.

Remarks. (1) A ‘weakness’ of this construction is that all the rotations τa,b,c map a

collinear triple of points of S to another collinear triple. (In the terminology to follow,

these will be called flat rotations.) We do not know whether the number of rotations

which map a non-collinear triple of points of S to another non-collinear triple can be

Ω(|S |3). We tend to conjecture that this is indeed the case.

(2) We do not know whether Conjecture 1.1 is worst-case tight (if true). That is, we do not

know whether there exist sets S , with s = |S | arbitrarily large, so that there are Ω(s3/k2)

distinct rotations, each mapping at least k points of S to k other points of S .

(H5) Helices. To estimate N�k , we reduce the problem of analysing rotations and their

interaction with S to an incidence problem in three dimensions, as follows.

With each pair (a, b) ∈ S2 we associate the curve ha,b, in a 3-dimensional space

parametrized by (ξ, η, θ), which is the locus of all rotations which map a to b. That

is, the equation of ha,b is given by

ha,b = {(ξ, η, θ) | b = aeiθ + (ξ, η)}.

Putting a = (a1, a2), b = (b1, b2), this becomes

ξ = b1 − (a1 cos θ − a2 sin θ),

η = b2 − (a1 sin θ + a2 cos θ).
(1.1)

This is a helix in R
3, having four degrees of freeedom, which we parametrize by

(a1, a2, b1, b2). It extends from the plane θ = 0 to the plane θ = 2π; its two endpoints

lie vertically above each other, and it completes exactly one revolution between them.

(H6) Helices, rotations, and incidences. Let P be a set of rotations, represented by points

in R
3, as above, and let H denote the set of all s2 helices ha,b, for (a, b) ∈ S2 (note that
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a = b is permitted). Let I(P ,H) denote the number of incidences between P and H . Then

we have

I(P ,H) =
∑
τ∈P

μ(τ).

Rotations τ with μ(τ) = 1 are not interesting, because each of them only contributes 1 to

the count I(P ,H), and we will mostly ignore them. For the same reason, rotations with

μ(τ) = 2 are also not interesting for estimating I(P ,H), but they need to be included in

the analysis of N�2. Unfortunately, as already noted, we do not yet have a good upper

bound (i.e., cubic in s) on the number of such rotations.

(H7) Incidences and the second conjecture.

Conjecture 1.3. For any P and H as above, we have

I(P ,H) = O
(
|P |1/2|H |3/4 + |P | + |H |

)
.

Suppose that Conjecture 1.3 were true. Let P�k denote the set of all rotations with

multiplicity at least k (with respect to S). We then have

kN�k = k|P�k| � I(P�k, H) = O
(
N

1/2
�k |H |3/4 + N�k + |H |

)
,

from which we obtain, for k at least some sufficiently large constant,

N�k = O

(
s3

k2
+

s2

k

)
= O

(
s3

k2

)
.

This almost establishes Conjecture 1.1; to establish the lower bound for x (the number of

distinct distances), one would also need to show separately that N�2 = O(s3).

Remark. Conjecture 1.3 can also be formulated for an arbitrary subset H of all possible

helices.

Note that two helices ha,b and hc,d intersect in at most one point; this is the unique

rotation which maps a to b and c to d (if it exists at all, namely if |ac| = |bd|). Hence,

combining this fact with a standard cutting-based decomposition technique, similar to

what has been noted in [19], say, yields the weaker bound

I(P ,H) = O
(
|P |2/3|H |2/3 + |P | + |H |

)
, (1.2)

which, alas, only yields the much weaker bound N�k = O
(
s4/k3

)
, which is completely

useless for deriving any lower bound on x. (We will use this bound, though, in Section 6.)

(H8) From helices to parabolas. The helices ha,b are non-algebraic curves, because of

the use of the angle θ as a parameter. This can be easily remedied, in the following

standard manner. Assume that θ ranges from −π to π, and substitute, in equations (1.1),

Z = tan(θ/2), X = ξ(1 + Z2), and Y = η(1 + Z2), to obtain

X = (a1 + b1)Z
2 + 2a2Z + (b1 − a1),

Y = (a2 + b2)Z
2 − 2a1Z + (b2 − a2),

(1.3)
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which are the equations of a planar parabola in the (X,Y , Z)-space. (The parabola

degenerates to a line if b = −a, a situation that we will rule out by choosing an appropriate

generic coordinate frame in the original xy-plane.) We denote the parabola corresponding

to the helix ha,b as h∗
a,b, and refer to it as an h-parabola.

(H9) Joint and flat rotations. A rotation τ ∈ P is called a joint of H if τ is incident to

at least three helices of H whose tangent lines at τ are non-coplanar. Otherwise, still

assuming that τ is incident to at least three helices of H , τ is called flat.

Let τ = (ξ, η, θ) ∈ P be a rotation, incident to three distinct helices ha,b, hc,d, he,f . From

their equations, as given in (1.1), the directions of the tangents to these helices at τ are

(a1 sin θ + a2 cos θ, −a1 cos θ + a2 sin θ, 1),

(c1 sin θ + c2 cos θ, −c1 cos θ + c2 sin θ, 1),

(e1 sin θ + e2 cos θ, −e1 cos θ + e2 sin θ, 1).

Put p = cos θ and q = sin θ. Then the three tangents are coplanar if and only if∣∣∣∣∣∣
a1q + a2p −a1p + a2q 1

c1q + c2p −c1p + c2q 1

e1q + e2p −e1p + e2q 1

∣∣∣∣∣∣ = 0.

Simplifying the determinant, and recalling that p2 + q2 = 1, the condition is equivalent to∣∣∣∣∣∣
a1 a2 1

c1 c2 1

e1 e2 1

∣∣∣∣∣∣ = 0.

In other words, the three helices ha,b, hc,d, he,f form a joint at τ if and only if the three

points a, c, e (and thus also b, d, f) are non-collinear. That is, we have shown the following.

Claim 1.4. A rotation τ is a joint of H if and only if τ maps a non-degenerate triangle

determined by S to another (congruent and equally oriented ) non-degenerate triangle de-

termined by S . A rotation τ is a flat rotation if and only if τ maps at least three collinear

points of S to another collinear triple of points of S , but does not map any point of S outside

the line containing the triple to another point of S .

Remarks. (1) Note that if τ is a flat rotation, it maps the entire line containing the three

source points to the line containing their images. Specifically (see also below), we can

respectively parametrize points on these lines as a0 + tu, b0 + tv, for t ∈ R, such that τ

maps a0 + tu to b0 + tv for every t.

(2) For flat rotations, we also need to ensure, for technical reasons, that the three (or

more) helices incident to a flat rotation τ are such that their tangents at τ are all distinct.

This, fortunately, is always the case. Indeed, the preceding analysis is easily seen to imply

that if ha,b and hc,d meet at τ then their tangents at τ coincide if and only if a = c. But

then ha,b and ha,d cannot have a common point (rotation) unless b = d too, i.e., they are

the same helix; otherwise the common rotation would have to map a to the two distinct

points b and d, an impossibility.
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(H10) Special surfaces. In preparation for the forthcoming algebraic analysis, we need

the following property of our helices.

Let τ be a flat rotation, with multiplicity k � 3, and let 	 and 	′ be the corresponding lines

in the plane, such that there exist k points a1, . . . , ak ∈ S ∩ 	 and k points b1, . . . , bk ∈ S ∩ 	′,

such that τ maps ai to bi for each i (and in particular maps 	 to 	′). By definition, τ is

incident to the k helices hai,bi , for i = 1, . . . , k.

Let u and v denote unit vectors in the direction of 	 and 	′, respectively. Clearly, there

exist two reference points a ∈ 	 and b ∈ 	′, such that for each i there is a real number ti
such that ai = a + tiu and bi = b + tiv. As a matter of fact, for each real t, τ maps a + tu

to b + tv, so it is incident to ha+tu,b+tv . Note that a and b are not uniquely defined: we can

take a to be any point on 	, and shift b accordingly along 	′.

Let H(a, b; u, v) denote the set of these helices. Since a pair of helices can meet in at

most one point, all the helices in H(a, b; u, v) pass through τ but are otherwise pairwise

disjoint. Using the re-parametrization (ξ, η, θ) �→ (X,Y , Z), we denote by Σ = Σ(a, b; u, v)

the surface which is the union of all the h-parabolas that are the images of the helices in

H(a, b; u, v). We refer to such a surface Σ as a special surface.

An important comment is that most of the ongoing analysis also applies when only

two helices are incident to τ; they suffice to determine the four parameters a, b, u, v that

define the surface Σ.

We also remark that, although we started the definition of Σ(a, b; u, v) with a flat

rotation τ, the definition only depends on the parameters a, b, u, and v (and even there

we have, as just noted, one degree of freedom in choosing a and b). If τ is not flat it

may determine many special surfaces, one for each line that contains two or more points

of S which τ maps to other (also collinear) points of S . Also, as we will shortly see, the

same surface can be obtained from a different set (in fact, many such sets) of parameters

a′, b′, u′, and v′ (or, alternatively, from different flat rotations τ′). An ‘intrinsic’ definition

of special surfaces will be given shortly.

The surface Σ is a cubic algebraic surface, whose equation can be worked out as follows.

The equation of the parabola h∗
a+tu,b+tv corresponding to ha+tu,b+tv is

X = (a1 + b1 + t(u1 + v1))Z
2 + 2(a2 + tu2)Z + (b1 − a1 + t(v1 − u1)),

Y = (a2 + b2 + t(u2 + v2))Z
2 − 2(a1 + tu1)Z + (b2 − a2 + t(v2 − u2)).

We can view this as a parametrization of Σ using t and Z as parameters. We can simplify

these equations as

X = tQ1(Z) + Q3(Z),

Y = tQ2(Z) + Q4(Z),
(1.4)

where Q1, . . . , Q4 are quadratic polynomials in Z . Eliminating t from these equations gives

us the first version of the equation of Σ, which is

Q2(Z)X − Q1(Z)Y + (Q1(Z)Q4(Z) − Q2(Z)Q3(Z)) = 0. (1.5)

This is a quartic equation, although it is only linear in X and Y .

Note also that the cross-section of Σ by any plane Z = const. is a line, so Σ is a ruled

surface.
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We next reduce (1.5) to a cubic equation, as follows. Let (X0, Y0, Z0) denote the

coordinates of τ in the XY Z-frame. We note that Q1(Z0) = Q2(Z0) = 0. This can be

worked out explicitly, or concluded by noting that (X0, Y0, Z0) is a common point of all

our parabolas, so (X0, Y0, Z0) cannot determine t, meaning that the coefficients Q1(Z0)

and Q2(Z0) in (1.4) must both be zero.

Hence, each of the three polynomials Q2, Q1, and Q1Q4 − Q2Q3, appearing in the left-

hand side of (1.5), vanishes at Z0, and is therefore divisible by Z − Z0. Factoring Z − Z0

out, we get a reduced equation for Σ, of the form

E2(Z)X − E1(Z)Y + (E1(Z)Q4(Z) − E2(Z)Q3(Z)) = 0, (1.6)

where E1 and E2 are linear in Z . Recalling that

Q1(Z) = (u1 + v1)Z
2 + 2u2Z + (v1 − u1),

Q2(Z) = (u2 + v2)Z
2 − 2u1Z + (v2 − u2),

Q3(Z) = (a1 + b1)Z
2 + 2a2Z + (b1 − a1),

Q4(Z) = (a2 + b2)Z
2 − 2a1Z + (b2 − a2),

an explicit calculation yields

E1(Z) = (u1 + v1)(Z + Z0) + 2u2,

E2(Z) = (u2 + v2)(Z + Z0) − 2u1.

An additional explicit calculation shows that

E1(Z0) = 2v2 and E2(Z0) = −2v1. (1.7)

(To see, say, the first equality, we need to show that (u1 + v1)Z0 = v2 − u2. Writing

u = (cos α, sin α), v = (cos(α + θ), sin(α + θ)), where θ is the angle of rotation, and recalling

that Z0 = tan θ
2
, the claim follows by straightforward trigonometric manipulations.)

This allows us to rewrite

E1(Z) = (u1 + v1)Z + (u2 + v2),

E2(Z) = (u2 + v2)Z − (u1 + v1).
(1.8)

Hence, the ‘free’ term in (1.6) is the cubic polynomial

E1(Z)Q4(Z) − E2(Z)Q3(Z)

=
(
(u1 + v1)Z + (u2 + v2)

)(
(a2 + b2)Z

2 − 2a1Z + (b2 − a2)
)

−
(
(u2 + v2)Z − (u1 + v1)

)(
(a1 + b1)Z

2 + 2a2Z + (b1 − a1)
)
.

We refer to the cubic polynomial in the left-hand side of (1.6) as a special polynomial.

Thus a special surface is the zero set of a special polynomial.

(H11) The geometry of special surfaces. Special surfaces pose a technical challenge to the

analysis. Specifically, each special surface Σ captures a certain underlying pattern in the

ground set S , which may result in many incidences between rotations and h-parabolas, all

contained in Σ. The next step of the analysis studies this pattern in detail.

Consider first a simple instance of this situation, in which two special surfaces Σ, Σ′,

generated by two distinct flat rotations τ, τ′, coincide. More precisely, there exist four
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v

u

v

u

Figure 2. The configuration of u, v, u′, v′.

b0

1 2

1

2

a0

Figure 3. The structure of τ and τ′ on a common special surface Σ.

parameters a, b, u, v such that τ maps the line 	1 = a + tu to the line 	2 = b + tv (so that

points with the same parameter t are mapped to one another), and four other parameters

a′, b′, u′, v′ such that τ′ maps (in a similar manner) the line 	′
1 = a′ + tu′ to the line

	′
2 = b′ + tv′, and Σ(a, b; u, v) = Σ(a′, b′; u′, v′). Denote this common surface by Σ. Since the

surfaces coincide, the coefficients E1(Z), E2(Z) for (a, b, u, v) must be proportional to the

coefficients E ′
1(Z), E ′

2(Z) for (a′, b′, u′, v′). That is, we must have u′
1 + v′

1 = γ(u1 + v1) and

u′
2 + v′

2 = γ(u2 + v2), for some real γ. In other words, u′ + v′ = γ(u + v). Since u, v, u′, v′ are

unit vectors, the angle bisector between u and v must coincide with that between u′ and

v′, as depicted in Figure 2. Moreover, as is easily checked, if we let a0 be the intersection

point of 	1 and 	′
1, and let b0 be the intersection point of 	2 and 	′

2, then both τ and τ′

map a0 to b0, and h∗
a0 ,b0

is contained in Σ. (See Figure 3.) Indeed, τ′ lies on some parabola

h∗
p,q through τ which is contained in Σ, and τ lies on some parabola h∗

p′ ,q′ through τ′ which

is also contained in Σ. Since a pair of distinct h-parabolas meet in at most one point, the

two parabolas must coincide, so p = p′ and q = q′. However, by construction, p lies on 	1

and p′ lies on 	′
1, so this common point must be a0, and, similarly, q = q′ = b0, as claimed.

Since the preceding analysis applies to any pair of distinct rotations on a common

special surface Σ, it follows that we can associate with Σ a common direction w and a

common shift δ, so that for each τ ∈ Σ there exist two lines 	, 	′, where τ maps 	 to

	′, so that the angle bisector between these lines is in direction w, and τ is the unique

rigid motion, obtained by rotating 	 to 	′ around their intersection point 	 ∩ 	′, and then

shifting 	′ along itself by a distance whose projection in direction w is δ. The fact that

the shifts of any pair of rotations on Σ have the same w-component follows from the fact

that they both map the intersection point a0 of their source lines to the intersection point

b0 of their target lines; consult Figure 3.
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a

a1

a2

b

b1

b2

0

0

c

d

Figure 4. The geometric configuration corresponding to a parabola h∗
c,d contained in Σ.

Let Σ be a special surface, generated by H(a, b; u, v); that is, Σ is the union of all

parabolas of the form h∗
a+tu,b+tv , for t ∈ R. Let τ0 be the common rotation to all these

parabolas, so it maps the line 	0 = {a + tu | t ∈ R} to the line 	′
0 = {b + tv | t ∈ R}, so

that every point a + tu is mapped to b + tv.

Let h∗
c,d be a parabola contained in Σ but not passing through τ0. Take any pair of

distinct rotations τ1, τ2 on h∗
c,d. Then there exist two respective real numbers t1, t2, such

that τi ∈ h∗
a+tiu,b+tiv

, for i = 1, 2. Thus τi is the unique rotation which maps c to d and

ai = a + tiu to bi = b + tiv. In particular, we have |a + tiu − c| = |b + tiv − d|. This in turn

implies that the triangles a1a2c and b1b2d are congruent; see Figure 4.

Given c, this determines d, up to a reflection about 	′
0. We claim that d has to be on

the ‘other side’ of 	′
0, namely, be such that the triangles a1a2c and b1b2d are oppositely

oriented. Indeed, if they were equally oriented, then τ0 would have mapped c to d, and

then h∗
c,d would have passed through τ0, contrary to assumption.

Now form the two sets

A = {p | there exists q ∈ S such that h∗
p,q ⊂ Σ},

B = {q | there exists p ∈ S such that h∗
p,q ⊂ Σ}. (1.9)

The preceding discussion implies that A and B are congruent and oppositely oriented.

To recap, each rotation τ ∈ Σ, incident to k � 2 parabolas contained in Σ, corresponds

to a pair of lines 	, 	′ with the above properties, so that τ maps k points of S ∩ 	 (rather,

of A ∩ 	) to k points of S ∩ 	′ (that is, of B ∩ 	′). If τ is flat, its entire multiplicity comes

from points of S on 	 (these are the points of A ∩ 	) which are mapped by τ to points

of S on 	′ (these are points of B ∩ 	′), and all the corresponding parabolas are contained

in Σ. If τ is a joint then, for any other point p ∈ S outside 	 which is mapped by τ to a

point q ∈ S outside 	′, the parabola h∗
p,q is not contained in Σ, and crosses it transversally

at the unique rotation τ.

Note also that any pair of parabolas h∗
c1 ,d1

and h∗
c2 ,d2

which are contained in Σ intersect,

necessarily at the unique rotation which maps c1 to d1 and c2 to d2. This holds because

|c1c2| = |d1d2|, as follows from the preceding discussion.

Special surfaces are anti-rotations. Let Σ be a special surface, and let A,B be the subsets

of S associated with Σ, as in (1.9). Then there exists a single anti-rotation which maps A

to B. Conversely, any anti-rotation can be associated with a unique special surface in this
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manner. However, the number of incidences within a special surface may be larger than

the incidence count of the anti-rotation with the appropriate variants of the h-parabolas:

the former counts incidences between the points of A (or of B) and the lines that they

determine, while the latter only counts the size of A (or of B).

An alternative analysis. Recall equation (1.6) of Σ,

E2(Z)X − E1(Z)Y + (E1(Z)Q4(Z) − E2(Z)Q3(Z)) = 0,

where, writing λ = u1 + v1 and μ = u2 + v2,

E1(Z) = λZ + μ,

E2(Z) = μZ − λ.

Now let h∗
a,b be a parabola contained in Σ. Substituting the equations (1.3) of h∗

a,b into the

above equation, we get

(μZ − λ)[(a1 + b1)Z
2 + 2a2Z + (b1 − a1)]

− (λZ + μ)[(a2 + b2)Z
2 − 2a1Z + (b2 − a2)] + K(Z) ≡ 0,

where K(Z) = E1(Z)Q4(Z) − E2(Z)Q3(Z) is the ‘free’ cubic term in the equation of Σ. A

straightforward algebraic simplification of this equation yields

(Z2 + 1)[(μZ + λ)a1 − (λZ − μ)a2 + (μZ − λ)b1 − (λZ + μ)b2] + K(Z) ≡ 0.

In particular (an interesting observation in itself, albeit obvious from the definition of

X,Y , Z), K(Z) must be divisible by Z2 + 1, with the remainder being a linear function

of Z . Eliminating this factor, we get

μ(a1 + b1) − λ(a2 + b2) = c1,

λ(a1 − b1) + μ(a2 − b2) = c2,

for appropriate reals numbers c1, c2.

Now, writing u = (cos α, sin α) and v = (cos(α + θ), sin(α + θ)), where θ is the angle of

rotation, and observing that

u + v = (u1 + v1, u2 + v2) = (λ, μ) = cos
θ

2

(
cos

(
α +

θ

2

)
, sin

(
α +

θ

2

))
,

the containment of h∗
a,b in Σ is equivalent to the two conditions

(a + b) · (u − v) = c′
1,

(a − b) · (u + v) = c′
2,

for appropriate parameters c′
1, c

′
2. The geometric interpretation of the first condition is

that the mid-point of ab has to lie on a fixed line 	0 (whose direction, α + θ
2
, is parallel

to the angle bisector between the lines 	1, 	2 (see Figure 3). The second condition means

that b − a has a fixed component in the direction of 	0. In other words, h∗
a,b is contained

in Σ if and only if b = ϕ(a), where ϕ is the anti-rotation obtained as a reflection about

	0 followed by a shift parallel to 	0. This constitutes an alternative derivation of the

characterization of Σ given above.

https://doi.org/10.1017/S0963548311000137 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548311000137


Incidences in Three Dimensions and Distinct Distances in the Plane 583

(H12) Special surfaces and parabolas. Finally, we study intersection patterns involving

special surfaces. Let Σ be a special surface as above, and let Ξ be another (X,Y )-linear

surface of the form A(Z)X + B(Z)Y + C(Z) = 0. Then either Ξ coincides with Σ, or there

is at most one parabola contained in both of them. Indeed, the intersection of Ξ and Σ is

the curve satisfying

A(Z)X + B(Z)Y + C(Z) = 0,

E2(Z)X − E1(Z)Y + (E1(Z)Q4(Z) − E2(Z)Q3(Z)) = 0.

This is a linear system in X and Y . Suppose first that its determinant, A(Z)E1(Z) +

B(Z)E2(Z), does not vanish identically. Then, with the exception of finitely many values of

Z , we get a unique solution of the form X = F(Z), Y = G(Z), which can describe at most

one parabola. If the determinant vanishes identically, then the equation of Ξ can be written

as E2(Z)X − E1(Z)Y + D(Z) = 0, for an appropriate rational algebraic function D(Z). If

Ξ and Σ do intersect in a parabola, then we must have D(Z) ≡ E1(Z)Q4(Z) − E2(Z)Q3(Z),

so Ξ and Σ coincide. �
As a corollary, we have the following.

Lemma 1.5. Let Ξ be an (X,Y )-linear surface of the above form, and let τ be a flat rotation

contained in Ξ. Then either Ξ contains at least two of the parabolas incident to τ, and then

it must coincide with the corresponding special surface Σ, or Ξ contains at most one of these

parabolas, so at least two other parabolas cross Ξ at τ.

Corollary 1.6. No plane can contain two intersecting h-parabolas of C .

Proof. Suppose to the contrary that there exists a plane π that contains two intersecting

parabolas, h∗
a,b, h

∗
c,d, of C . The intersection point τ of these parabolas forms a special

surface Σ which contains both of them. Since π is an (X,Y )-linear surface which is not

special, we get a contradiction by Lemma 1.5.

Lemma 1.7. A special surface can contain at most s h-parabolas.

Proof. Let Σ be the given special surface. We claim that for each a ∈ S there can be at

most one point b ∈ S such that h∗
a,b ⊂ Σ. Indeed, suppose that there exist two such points

b1, b2 ∈ S . Since any pair of h-parabolas on Σ intersect, h∗
a,b1

and h∗
a,b2

meet at a rotation

τ, which maps a to both b1 and b2, an impossibility which completes the proof.

Lemma 1.8. The number of containments between n h-parabolas and E special surfaces is

O(E2/3n2/3 + E + n).

Proof. As argued above, a special surface Σ is characterized by an anti-rotation ϕΣ in

the plane, specified by a line 	 and a shift δ, such that ϕΣ(a) is the point obtained by

reflecting a about 	 and then by shifting the reflected point parallel to 	 by distance

δ. Thus Σ has three degrees of freedom, and can be parametrized by (α, β, δ), where
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y = αx + β is the equation of 	 and δ is the shift. We write Σ(α, β, γ) to denote the special

surface parametrized by (α, β, γ).

By construction, a parabola h∗
a,b is contained in Σ if and only if ϕΣ(a) = b.

We use the following parametric set-up. We represent each special surface Σ by the

corresponding triple (α, β, δ), and regard it as a point in parametric 3-space. Each parabola

h∗
a,b is mapped to the locus h̃a,b of all (points representing) special surfaces containing h∗

a,b.

This is a curve in the (α, β, δ)-space, given by the pair of scalar equations ϕΣ(α,β,δ)(a) = b.

This is a low-degree algebraic curve, whose concrete equations can be worked out explicitly,

but we skip over this step.

We thus have a system of E points and n such curves in 3-space, and we wish to

bound the number of incidences between them. We have the additional property, noted

in Lemma 1.5, that two curves meet in at most one point. By projecting these points and

curves onto some generic 2-plane, and using the Szemerédi–Trotter incidence bound [23],

one can easily show that that the number of incidences, and thus the number of original

containments, is at most O(E2/3n2/3 + E + n), as claimed.

Remark. If we represent each special surface by its corresponding anti-rotation, Lemma 1.8

simply bounds the number of incidences between E anti-rotations and n (appropriately

transformed copies of) h-parabolas, and the bound noted in (1.2) holds here as well.

2. Tools from algebraic geometry

We begin by reviewing and extending the basic tools from algebraic geometry which have

been used in [9] and in [6]. However, we develop them here in the context of incidences

between points and our h-parabolas, rather than the context of points and lines considered

in the previous papers.

So let C be a set of n � s2 h-parabolas in R
3. For each h∗ ∈ C , we denote the plane

containing h∗ by πh∗ and its equation as Lh∗ = 0, where Lh∗ is a linear polynomial. We

represent h∗ as the intersection curve of Lh∗ = 0 and Fh∗ = 0, where Fh∗ is one of the

quadratic equations in (1.3) defining h∗, say the first one.

Note that all the parabolas of C cross every plane of the form Z = const., each at a

single point.

Recalling the definitions in (H9), and similar to the case of lines, we say that a point1

a is a joint of C if it is incident to three parabolas of C whose tangents at a are non-

coplanar. Let J = JC denote the set of joints of C . We will also consider points a that are

incident to three or more parabolas of C , so that the tangents to all these parabolas are

coplanar, and refer to such points as flat points of C . We recall (see (H9)) that any pair

of distinct h-parabolas which meet at a point have distinct tangents at the point.

First, we note that a trivariate polynomial p of degree d which vanishes at 2d + 1 points

that lie on a common parabola h∗ ∈ C must vanish identically on h∗. Indeed, these points

are common roots of p and Fh∗ , restricted to the plane πh∗ . By Bézout’s theorem [17],

1 Recall that points in 3-space represent rotations in the plane. Later on we will mostly refer to them as

rotations, but in the more abstract algebraic treatment in this section we prefer to call them points.
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either these restricted polynomials have a common factor, or they have at most 2d roots.

Since Fh∗ is irreducible, it must divide the restricted p, so p must vanish identically on h∗,

as claimed.

Critical points and parabolas. A point a is critical (or singular) for a trivariate polynomial

p if p(a) = 0 and ∇p(a) = 0; any other point a in the zero set of p is called regular. A

parabola h∗ is critical if all its points are critical.

The following proposition is adapted from [6].

Proposition 2.1. Let f(x, y, z) and g(x, y, z) be two trivariate polynomials, of respective

degrees k and m, so that there are km + 1 parabolas of C on which both f and g vanish

identically. Then f and g have a common factor.

Proof. Assume that both f(x, y, z) and g(x, y, z) have a positive degree in x; this can

always be enforced by an appropriate rotation of the coordinate frame. It is then an easy

exercise to show that f and g have a common factor if and only if their resultant, when

viewing them as polynomials in x, is identically 0. Recall that the resultant is a polynomial

in y and z. (The same holds when f and g have any number of variables, including x, in

which case the resultant is a polynomial in the remaining variables.)

For any fixed value z0 of z, f(x, y, z0) and g(x, y, z0) have at least km + 1 common roots

(at the intersection points of the km + 1 parabolas with z = z0), so, by Bézout’s theorem

[17], they have a common factor. Therefore, the resultant, with respect to x, of f(x, y, z0)

and g(x, y, z0) is identically 0 (as a polynomial in y). Since this is true for every value z0

of z, it follows that the resultant of f(x, y, z) and g(x, y, z), with respect to x, vanishes

identically as a polynomial in y and z. Therefore, f(x, y, z) and g(x, y, z), as trivariate

polynomials, have a common factor.

Proposition 2.2. Let C be as above. Then any trivariate square-free polynomial p of degree

d can have at most d(d − 1) critical parabolas in C .

Proof. We prove the claim by induction on the degree d of p. The claim holds trivially

for d = 1, so assume that d > 1.

Assume first that p is irreducible. Apply Proposition 2.1 to p and px, say (where px
is a shorthand notation for ∂p/∂x). Both polynomials vanish identically on each critical

parabola, and their respective degrees are d and d − 1. If p had more than d(d − 1) critical

parabolas then p and px would have a common factor, which is impossible since p is

irreducible.

Suppose next that p is reducible (but square-free), and write p = fg, so that f and g

are non-constant polynomials which have no common factor (since p is square-free, this

can always be done). Denote the degrees of f and g by df and dg , respectively; we have

d = df + dg .

Let h∗ be a critical parabola for p. Then either f ≡ 0 on h∗ or g ≡ 0 on h∗ (or both).

Moreover, since ∇p = f∇g + g∇f ≡ 0 on h∗, it is easily checked that h∗ must satisfy (at

least) one of the following properties:
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(i) f ≡ g ≡ 0 on h∗,

(ii) h∗ is a critical parabola of f,

(iii) h∗ is a critical parabola of g.

Indeed, if (i) does not hold, we have, without loss of generality, f ≡ 0 on h∗, but g

vanishes only at finitely many points of h∗. On any other point a of h∗ we must then

have ∇f(a) = 0, which implies that ∇f is identically zero on h∗, so h∗ is critical for f. This

implies (ii); (iii) holds in the symmetric case where g ≡ 0 on h∗ but f does not vanish

identically on h∗.

By the induction hypothesis, the number of critical parabolas for f is at most df(df − 1),

and the number of critical parabolas for g is at most dg(dg − 1). Consider the parabolas

that satisfy (i) and intersect all of them by any of the planes z = z0, as in the proof of

Proposition 2.1. All the intersection points are roots of f = 0 and g = 0 on this plane, and,

as follows from the proof of Proposition 2.1, these bivariate polynomials have no common

factor (or, more precisely, they can have a common factor only at finitely many values

of z). Hence, by Bézout’s theorem, they have at most dfdg common roots. Altogether, the

number of critical parabolas for p is at most

df(df − 1) + dg(dg − 1) + dfdg < d(d − 1).

Proposition 2.3. Let a be a regular point of p, such that p ≡ 0 on three parabolas of C

passing through a. Then these parabolas must have coplanar tangents at a.

Proof. Any such tangent line must be contained in the tangent plane to p = 0 at a.

Hence, a point a incident to three parabolas of C whose tangent lines at a are non-

coplanar, so that p ≡ 0 on each of these parabolas, must be a critical point of p.

Proposition 2.4. Given a set S of m points in 3-space, there exists a non-trivial trivariate

polynomial p(x, y, z) which vanishes at all the points of S , of degree at most d, for any d

satisfying
(
d+3
3

)
> m.

Proof. (See [6, 9].) A trivariate polynomial of degree d has
(
d+3
3

)
monomials, and requiring

it to vanish at m points yields these many homogeneous equations in the coefficients of

these monomials. Such an underdetermined system always has a non-trivial solution.

Flat points and parabolas. Call a regular point τ of a trivariate polynomial p geometrically

flat if it is incident to three distinct parabolas of C (with necessarily coplanar tangent

lines at τ, no pair of which are collinear) on which p vanishes identically.2

Let τ be a geometrically flat point of p, and let h∗
1, h

∗
2, h

∗
3 ∈ C be three incident parabolas

on which p vanishes. Let ti denote the tangent line to h∗
i at τ, and let vi denote a unit

vector in the direction of ti, for i = 1, 2, 3.

2 Compare this definition with the one in [6] (see also [9]), where a geometrically flat point was defined there

as a point incident to at least three vanishing lines , all coplanar.
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The second-order Taylor expansion of p at τ has the form

q(τ + w) = p(τ) + ∇p(τ) · w +
1

2
wTHp(τ)w = ∇p(τ) · w +

1

2
wTHp(τ)w,

for any vector w, where

Hp(τ) =

⎛
⎝pxx pxy pxz
pxy pyy pyz
pxz pyz pzz

⎞
⎠

is the Hessian matrix of p; q is a quadratic polynomial (in w) which approximates p up

to third-order terms for sufficiently small values of |w|.
Our goal is to construct, using this approximation and the fact that p ≡ 0 on three

parabolas incident to τ, as above, a new polynomial, depending on p, which vanishes at

τ, and use this vanishing as a characterization of flat points. To do so, we need to make

the analysis more specific, and tailor it to the special form of h-parabolas.

Let τ be a flat point, and let a, b, u, v be the corresponding parameters in the xy-plane

(so τ maps a + tu to b + tv for each t ∈ R; see Remark (1) at the end of (H9)). Let

Σ = Σ(a, b; u, v) be the corresponding special surface spanned by the parabolas h∗
a+tu,b+tv ,

for all t (here we vary t continuously, but only finitely many corresponding parabolas

belong to C). Since τ is flat, there exist at least three parabolas h∗
a+tiu,b+tiv

, i = 1, 2, 3 (all

belonging to C , contained in Σ, and passing through τ), such that p ≡ 0 on each of them.

Let q denote, as above, the quadratic polynomial which is the second-order Taylor

expansion of p at τ. Let h∗ = h∗
a+tu,b+tv be one of the above parabolas on which p vanishes

identically. For τ′ in the vicinity of τ, p(τ′) − q(τ′) = O(|τ′ − τ|3), so, for points τ′ near τ

on h∗, we have q(τ′) = O(|τ′ − τ|3).
Let us continue to consider only points τ′ on h∗. Let (X0, Y0, Z0) (resp., (X,Y , Z)) be

the coordinates of τ (resp., τ′). The equations of h∗ (see (1.3)) are

X = (a1 + b1 + tu1 + tv1)Z
2 + 2(a2 + tu2)Z + (b1 − a1 + tv1 − tu1),

Y = (a2 + b2 + tu2 + tv2)Z
2 − 2(a1 + tu1)Z + (b2 − a2 + tv2 − tu2),

so we have

X − X0 = (Z − Z0)
(
(a1 + b1 + tu1 + tv1)(Z + Z0) + 2(a2 + tu2)

)
,

Y − Y0 = (Z − Z0)
(
(a2 + b2 + tu2 + tv2)(Z + Z0) − 2(a1 + tu1)

)
,

which we can further rewrite as

X − X0 = 2(Z − Z0)
(
(a1 + b1 + tu1 + tv1)Z0 + (a2 + tu2)

)
+ (Z − Z0)

2
(
a1 + b1 + tu1 + tv1

)
,

Y − Y0 = 2(Z − Z0)
(
(a2 + b2 + tu2 + tv2)Z0 − (a1 + tu1)

)
+ (Z − Z0)

2
(
a2 + b2 + tu2 + tv2

)
.

Let us simplify these equations as

X − X0 = 2(Z − Z0)A(t) + (Z − Z0)
2C(t),

Y − Y0 = 2(Z − Z0)B(t) + (Z − Z0)
2D(t),
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where A(t), B(t), C(t), and D(t) are all linear functions of t. If we substitute these equations

into the equation of q, assume that Z is very close to Z0, ignore terms which are at least

cubic in Z − Z0, and use the fact that q(τ′) = O(|τ′ − τ|3) for any τ′ on h∗ sufficiently close

to τ, we conclude that both the linear and the quadratic parts of q(τ′) (in Z − Z0) vanish

identically. The linear part is

(Z − Z0)∇p(τ) · (2A(t), 2B(t), 1),

and the quadratic part is

(Z − Z0)
2
(
∇p(τ) · (C(t), D(t), 0) +

1

2
(2A(t), 2B(t), 1)THp(τ)(2A(t), 2B(t), 1)

)
.

Hence we have

∇p(τ) · (2A(t), 2B(t), 1) = 0,

∇p(τ) · (C(t), D(t), 0) +
1

2
(2A(t), 2B(t), 1)THp(τ)(2A(t), 2B(t), 1) = 0.

Note that both equations vanish for (at least) three distinct values of t. Since the first

equation is linear in t and the second is quadratic in t, all the coefficients of both equations

are identically zero. Let us restrict ourselves to the coefficient of the linear term in the

first equation and of the quadratic term in the second one. Denote by α (resp., β) the

coefficient of t in A(t) (resp., B(t)). Then we have

αpX(τ) + βpY (τ) = 0,

α2pXX(τ) + 2αβpXY (τ) + β2pY Y (τ) = 0.

It is easily seen that α and β cannot both be zero (assuming a generic coordinate frame

in the original xy-plane), so eliminating them gives

p2
Y (τ)pXX(τ) − 2pX(τ)pY (τ)pXY (τ) + p2

X(τ)pY Y (τ) = 0, (2.1)

which is the constraint we were after.

In what follows, we refer to the left-hand side of (2.1) as Π(p). That is,

Π(p) = p2
Y pXX − 2pXpY pXY + p2

XpY Y ,

and this polynomial has to vanish at τ.

We have thus shown the following.

Proposition 2.5. Let p be a trivariate polynomial. If τ is a regular geometrically flat point

of p (with respect to three parabolas of C), then Π(p)(τ) = 0.

Remark. Note that the left-hand side of (2.1) is one of the three polynomials Πi(p) used

in [6] to analyse flat points in a 3-dimensional line arrangement. Specifically,

Π(p) = (e3 × ∇p)THp(e3 × ∇p),

where e3 is the unit vector in the z-direction; the other two polynomials are defined

analogously, using the other two coordinate vectors e1, e2. These polynomials form the

second fundamental form of p; see [6, 9] for details.
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In particular, if the degree of p is d then the degree of Π(p) is at most (d − 1) + (d −
1) + (d − 2) = 3d − 4.

In what follows, we call a point τ flat for p if Π(p)(τ) = 0. We will need the following

technical lemma.

Lemma 2.6. Let p be an irreducible trivariate polynomial, with the properties that

(i) Π(p)(τ) = 0 at each regular point τ of p = 0, and

(ii) p ≡ 0 on at least two distinct intersecting h-parabolas of C .

Then p is a special polynomial.

(Note that the converse of the lemma is trivial, because the second-order derivatives

pXX , pXY , and pY Y are all identically zero for a special polynomial p, and because of the

way such polynomials are constructed. Note also that the special case where p is linear

has already been handled in Corollary 1.6.)

Proof. Fix Z = Z0 and consider the restricted bivariate polynomial p̃(X,Y ) = p(X,Y , Z0).

Clearly, Π(p̃) = Π(p) on the plane π0 : Z = Z0. Hence Π(p̃) = 0 at each regular point

τ ∈ π0 of p = 0, and thus at each regular point of p̃. (Note that a regular point of p̃ is

also a regular point of p, although the converse need not be true.) Note also that p̃ is an

irreducible polynomial, except possibly for finitely many values of Z0.

As is well known [8, 15], the curvature of the plane curve p̃(X,Y ) = 0, at a regular

point of p̃, is given by

κ =
p̃2
Y p̃XX − 2p̃Xp̃Y p̃XY + p̃2

Xp̃Y Y

(p̃2
X + p̃2

Y )3/2
.

Hence this curve has zero curvature at every regular point of p̃, and thus, being the zero

set of an irreducible polynomial, it must be a single line. In other words, p is linear in

X and Y for every fixed Z , except for finitely many values, implying that its equation

is of the form p(X,Y , Z) = A(Z)X + B(Z)Y + C(Z), where A(Z), B(Z) and C(Z) are

univariate polynomials. We now exploit assumption (ii), denoting by Σ the unique special

surface determined by (and containing) the two given h-parabolas. The analysis in (H12)

then implies that Σ coincides with the zero set of p, so p is indeed a special polynomial,

as claimed.

Call an h-parabola h∗ ∈ C flat for p if all the points of h∗ are flat points of p (with

the possible exception of a discrete subset). Arguing as in the case of critical points, if h∗

contains more than 2(3d − 4) flat points then h∗ is a flat parabola.

As in [6, 9], we next show that, in general, trivariate polynomials do not have too many

flat parabolas. As before, we first establish this property for irreducible polynomials, and

then extend the analysis to more general polynomials.

Proposition 2.7. Let p be an irreducible trivariate polynomial of degree d � 2, which is not

a special polynomial. Then p can have at most 3d2 − 4d flat h-parabolas of C .
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Proof. Suppose to the contrary that there are more than 3d2 − 4d flat h-parabolas. As

above, restrict p and Π(p) to a fixed plane π0 of the form Z = Z0. The number of

common roots of p and Π(p) on π0 exceeds the product of their degrees. Since this holds

for every Z0, except for perhaps a finite number of values, Proposition 2.1 implies that

they must have a common factor. Since p is irreducible, p must be a factor of Π(p). This

implies that all the (regular) points at which p vanishes are flat. Hence, by Lemma 2.6, p

must be a special polynomial, a contradiction which completes the proof of the asserted

bound.

The previous proposition fails when p is linear, because Π(p) is identically zero. We will

later handle the linear case separately, exploiting the analysis in (H12) (or in Lemma 2.6).

Proposition 2.8. Let p be any trivariate square-free polynomial of degree d � 2 with no

special polynomial factors and no linear factors. Then p can have at most d(3d − 4) flat

h-parabolas in C .

Proof. If p is irreducible, the claim holds by Proposition 2.7. Otherwise, write p = fg

where f and g are non-constant polynomials with no common factors (and no special

polynomial or linear factors). Let df and dg denote their respective degrees, so d = df + dg .

By assumption, both df and dg are at least 2. Let τ be a regular flat point of p. Then

either f(τ) = g(τ) = 0, or only exactly one of f(τ), g(τ) vanishes. Hence, if h∗ is a flat

parabola for p then either both f and g vanish identically on h∗ or exactly one of them

vanishes identically on h∗, while the other has only finitely many zeros on h∗.

Now, as already argued in the proof of Proposition 2.2, there are at most dfdg parabolas

of the former kind. To handle parabolas of the latter kind, consider a regular point τ of

p at which f = 0 but g is non-zero. A simple calculation yields:

pX = fXg + fgX,

pY = fY g + fgY ,

pXX = fXXg + 2fXgX + fgXX,

pXY = fXY g + fXgY + fY gX + fgY Y ,

pY Y = fY Y g + 2fY gY + fgY Y .

Hence, at τ we have

pX(τ) = fX(τ)g(τ),

pY (τ) = fY (τ)g(τ),

pXX(τ) = fXX(τ)g(τ) + 2fX(τ)gX(τ),

pXY (τ) = fXY (τ)g(τ) + fX(τ)gY (τ) + fY (τ)gX(τ),

pY Y (τ) = fY Y (τ)g(τ) + 2fY (τ)gY (τ),

and therefore we have at τ, as is easily checked,

Π(p)(τ) = g3(τ)Π(f)(τ).
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That is, a regular flat point for p, at which f = 0 but g is non-zero, is a regular flat point

for f, and a symmetric statement holds when g = 0 but f is non-zero. Hence, any flat

parabola of the latter kind is either a flat parabola for f or a flat parabola for g. Arguing

by induction on the degree, the number of flat parabolas for p is thus at most

3d2
f − 4df + 3d2

g − 4dg + dfdg < 3d2 − 4d,

and the lemma follows.

3. Joint and flat rotations in a set of h-parabolas in R
3

In this section we extend the recent algebraic machinery of Guth and Katz [9], as further

developed by Elekes, Kaplan and Sharir [6], using the algebraic tools set forth in the

preceding section, to establish the bound O(n3/2) = O(s3) on the number of rotations with

multiplicity at least 3 in a collection of n h-parabolas.

Theorem 3.1. Let C be a set of at most n h-parabolas in R
3, and let P be a set of m

rotations, each of which is incident to at least three parabolas of C . Suppose further that no

special surface contains more than q parabolas of C . Then m = O(n3/2 + nq).

Remarks. (1) The recent results of [12, 16] imply that the number of joints in a set of

n h-parabolas is O(n3/2). The proofs in [12, 16] are much simpler than the proof given

below, but they do not apply to flat points (rotations) as does Theorem 3.1. Since flat

rotations are an integral part of the set-up considered in this paper, we need to count

them too, using the stronger Theorem 3.1. Moreover, even if we were to consider only

joint rotations, the analysis of their incidences with the h-parabolas will turn some of

them into flat rotations (by pruning some of the parabolas), so, as in [6], we will need to

face flat rotations, no matter what.

(2) By Lemma 1.7, we always have q � s, and we also have n1/2 � s, so the ‘worst-case’

bound on m is O(ns).

(3) Note that the parameter n in the statement of the theorem is arbitrary, not necessarily

the maximum number s2. When n attains its maximum possible value s2, the bound

becomes m = O(n3/2) = O(s3).

The proof of Theorem 3.1 uses the proof technique of [6], properly adapted to the

present, somewhat more involved context of h-parabolas and rotations.

Proof. We first prove the theorem under the additional assumption that q = n1/2. The

proof proceeds by induction on n, and shows that m � An3/2, where A is a sufficiently

large constant whose choice will be dictated by the forthcoming analysis. The statement

holds for all n � n0, for some constant n0, if we choose A to be sufficiently large. Fix

n > n0, and suppose that the claim holds for all n′ < n. Let C and P be as in the statement

of the theorem, with |C| = n, and suppose to the contrary that |P | > An3/2.
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We first apply the following iterative pruning process to C . As long as there exists a

parabola h∗ ∈ C incident to fewer than cn1/2 rotations of P , for some constant 1 � c � A

that we will fix later, we remove h∗ from C , remove its incident rotations from P , and

repeat this step with respect to the reduced set of rotations. In this process we delete at

most cn3/2 rotations. We are thus left with a subset of at least (A − c)n3/2 of the original

rotations, each surviving parabola is incident to at least cn1/2 surviving rotations, and

each surviving rotation is incident to at least three surviving parabolas. For simplicity,

continue to denote these sets as C and P .

Choose a random sample Cs of parabolas from C , by picking each parabola independ-

ently with probability t, where t is a small constant that we will fix later.

The expected number of parabolas that we choose is tn1 � tn, where n1 is the number

of parabolas remaining after the pruning. We have n1 = Ω(n1/2), because each surviving

parabola is incident to at least cn1/2 surviving rotations, each incident to at least two other

surviving parabolas; since all these parabolas are distinct (recall that a pair of parabolas

can meet in at most one rotation point), we have n1 � 2cn1/2. Hence, using Chernoff’s

bound, as in [6] (see, e.g., [1]), we obtain that, with positive probability,

(a) |Cs| � 2tn,

(b) each parabola h∗ ∈ C contains at least 1
2
ctn1/2 rotations that lie on parabolas of Cs.

(To see (b), take a parabola h∗ ∈ C and a rotation τ ∈ P ∩ h∗. Note that τ will be incident

to a parabola of Cs with probability at least t, so the expected number of rotations in

P ∩ h∗ which lie on parabolas of Cs is at least ctn1/2. This, combined with Chernoff’s

bound, implies (b).)

We assume that Cs does indeed satisfy (a) and (b), and then (recalling that c � 1)

choose n1/2 arbitrary rotations on each parabola in Cs, to obtain a set S of at most 2tn3/2

rotations.

Applying Proposition 2.4, we obtain a non-trivial trivariate polynomial p(X,Y , Z) which

vanishes at all the rotations of S , whose degree is at most the smallest integer d satisfying(
d+3
3

)
� |S | + 1, so

d � �(6|S |)1/3� � (12t)1/3n1/2 + 1 � 2(12t)1/3n1/2,

for n (i.e., n0) sufficiently large. Without loss of generality, we may assume that p is square-

free: by removing repeated factors, we get a square-free polynomial which vanishes on

the same set as the original p, with the same upper bound on its degree.

The polynomial p vanishes on n1/2 points on each parabola in Cs. This number

is larger than 2d: if we choose t sufficiently small to satisfy 4(12t)1/3 < 1. Hence p

vanishes identically on all these parabolas. Any other parabola of C meets at least 1
2
ctn1/2

parabolas of Cs, at distinct points, and we can also make this number larger than 2d,

with an appropriate choice of t and c (we need to ensure that ct > 8(12t)1/3). Hence, p

vanishes identically on each parabola of C .

Later we will also need the property that each parabola of C contains at least 10d

points of P ; that is, we require that cn1/2 > 10d, which will hold if c > 20(12t)1/3.

To recap, the preceding paragraphs impose several inequalities on c and t, and a couple

of additional similar inequalities will be imposed later on. All these inequalities are easy
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to satisfy by choosing t < 1 to be a sufficiently small positive constant, and c a sufficiently

large constant. (These choices will also affect the choice of A: see below.)

We note that p can have at most d/3 special polynomial factors (since each of them

is a cubic polynomial); i.e., p can vanish identically on at most d/3 respective special

surfaces Ξ1, . . . ,Ξk , for k � d/3. Similarly, p can have at most d linear factors. We factor

out all these special polynomial and linear factors from p, and let p̃ denote the resulting

polynomial, which is a square-free polynomial without any special polynomial factors or

linear factors, of degree at most d.

Consider one of the special surfaces Ξi, and let ti denote the number of parabolas

contained in Ξi. Then any rotation on Ξi is either an intersection point of (at least) two

of these parabolas, or it lies on at most one of them. The number of rotations of the

first kind is O(t2i ). Any rotation τ of the second kind is incident to at least one parabola

of C which crosses Ξi transversally at τ. We note that each h-parabola h∗ can cross

Ξi in at most three points. Indeed, substituting the equations of h∗ into the equation

E2(Z)X − E1(Z)Y + K(Z) = 0 of Ξi (see (1.6)) yields a cubic equation in Z , with at most

three roots. Hence, the number of rotations of the second kind is O(n), and the overall

number of rotations on Ξi is O(t2i + n) = O(n), since we have assumed in the present

version of the proof that ti � n1/2.

Summing the bounds over all surfaces Ξi, we conclude that altogether they contain

O(nd) rotations.

The case of linear factors of p is even simpler. Indeed, by Corollary 1.6, the (planar) zero

set π of such a linear factor cannot contain two intersecting parabolas, so each rotation

τ on π must be incident to at least two crossing parabolas, implying that the number

of such rotations is O(n). Since there are at most d linear factors, the overall number of

rotations of this kind is also O(nd).

Together, there are at most O(nd) rotations lying on the zero sets of the special

polynomial factors and linear factors of p, which we bound by bn3/2, for some absolute

constant b.

We remove all these vanishing special surfaces and planes, together with the rotations

and the parabolas which are fully contained in them, and let C1 ⊆ C and P1 ⊆ P denote,

respectively, the set of those parabolas of C (rotations of P ) which are not contained in

any of these vanishing surfaces.

Note that there are still at least three parabolas of C1 incident to any remaining rotation

in P1, since none of the rotations of P1 lie in any of the removed surfaces, so all parabolas

incident to such a rotation are still in C1.

Clearly, p̃ vanishes identically on every h∗ ∈ C1. Furthermore, every h∗ ∈ C1 crosses

each special surface Ξi in at most three points, and each plane factor in at most two

points, for a total of at most 2d such points.

Note that this also holds for every parabola h∗ in C \ C1, if we only count inter-

sections of h∗ with the special surfaces Ξi and the plane factors, which do not fully

contain h∗.

Hence, each h∗ ∈ C1 contains at least 8d rotations of P1. Since each of these rotations

is incident to at least three parabolas in C1, each of these rotations is either critical or

geometrically flat for p̃.
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Consider a parabola h∗ ∈ C1. If h∗ contains more than 2d critical rotations then h∗ is

a critical parabola for p̃. By Proposition 2.2, the number of such parabolas is at most

d(d − 1). Any other parabola h∗ ∈ C1 contains more than 6d geometrically flat points and

hence h∗ must be a flat parabola for p̃. By Proposition 2.8, the number of such parabolas

is at most d(3d − 4). Summing up, we obtain

|C1| � d(d − 1) + d(3d − 4) < 4d2.

We require that 4d2 < n/2; that is, 32(12t)2/3 < 1, which can be guaranteed by choosing

t sufficiently small.

We next want to apply the induction hypothesis to C1, with the parameter 4d2 (which

dominates the size of C1). For this, we first need to argue that each special surface

contains at most (4d2)1/2 = 2d parabolas of C1. Indeed, let Ξ be a special surface. Using

(1.6), eliminate, say, Y from the equation of Ξ and substitute the resulting expression into

the equation of p̃, to obtain a bivariate polynomial p̃0(X,Z). Let h∗ be a parabola of C1

contained in Ξ. We represent h∗ by its X-equation of the form X = Q(Z), and observe that

p̃0(X,Z) vanishes on the zero set of X − Q(Z). Hence p̃0 must be divisible by X − Q(Z).

Note that, in a generic coordinate frame in the xy-plane, two different parabolas cannot

have the same equation X = Q(Z), because this equation uniquely determines a1, b1, and

a2, and then, in a generic frame, b2 is also uniquely determined. Note also that the degree

of p̃0 is at most 3d, and that the degree of each factor X − Q(Z) is 2, implying that Ξ can

contain at most 3d/2 parabolas of C1.

An important observation, which we will use in the proof of the general version of the

theorem, is that the argument just given does not use the assumed bound on the number

of h-parabolas contained in a special surface, but, rather, establishes this bound ‘from

scratch’ for the subproblem involving P1 and C1. That is, even if the original problem

does not satisfy the extra assumption in the restricted version, the subproblems that it

generates always do satisfy it.

Hence, the maximum number of parabolas of C1 contained in a special surface is at

most 3d/2 � (4d2)1/2, so, by the induction hypothesis, the number of points in P1 is at

most

A(4d2)3/2 � A

23/2
n3/2.

Adding up the bounds on the number of points on parabolas removed during the pruning

process and on the special surfaces Ξi (which correspond to the special polynomial factors

of p), and the plane factors of p, we obtain

|P | � A

23/2
n3/2 + (b + c)n3/2 � An3/2,

with an appropriate, final choice of t, c, and A. This contradicts the assumption that

|P | > An3/2, and thus establishes the induction step for n, and, consequently, completes

the proof of the restricted version of the theorem.

Proof of the general version. The proof proceeds almost exactly as the proof of the

restricted version, except for the analysis of the number of rotations on the special
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surfaces Ξi. As noted above, we encounter this difference only once, in handling the

original problem: When we apply the induction step, we always fall into the restricted

set-up.

By assumption, each special surface Ξi contains at most q h-parabolas. We modify the

preceding analysis, so that each parabola is considered only once. That is, we iterate over

the special surfaces in some order. When handling a surface Ξi, we consider only those

h-parabolas that are not contained in any previously processed surface, and bound the

number of rotations that they contain. Then we remove these parabolas and rotations

from further considerations and go to the next surface.

As argued above, a special surface Ξi containing ti (surviving) parabolas contains at

most O(t2i + n) rotations which lie on these parabolas (and on no previously processed

parabola). Summing these bounds over all special surfaces, and using the fact that ti � q

for each i, we get an overall bound O(nd + q
∑

i ti) = O(n3/2 + nq), as asserted. �
We summarize the remarks following Theorem 3.1, combined with Lemma 1.2, in the

following corollary.

Corollary 3.2. Let S be a set of s points in the plane. Then there are at most O(s3) rotations

which map some (degenerate or non-degenerate) triangle spanned by S to another (congruent

and equally oriented ) such triangle. This bound is tight in the worst case.

In the following section we will continue to adapt the analysis of [6] to obtain bounds

on the number of incidences between helices (h-parabolas) and rotations with multiplicity

�3, and, consequently, obtain bounds on |P�k|, for any k � 3.

4. Incidences between parabolas and rotations

In this section we further adapt the machinery of [6] to derive an upper bound on the

number of incidences between m rotations and n h-parabolas in R
3, where each rotation

is incident to at least three parabolas (i.e., has multiplicity � 3).

Theorem 4.1. For an underlying ground set S of s points in the plane, let C be a set of at

most n � s2 h-parabolas defined on S , and let P be a set of m rotations with multiplicity at

least 3 (with respect to C). Then

I(P , C) = O(m1/3n + m2/3n1/3s1/3).

Remark. As is easily checked, the first term dominates the second term when m � n2/s,

and the second term dominates when n2/s < m � ns (the inequality m � ns follows from

Theorem 3.1 and Lemma 1.7). In particular, the first term dominates when n = s2, because

we have m = O(s3) = O(n2/s)

Proof. The proof of Theorem 4.1 proceeds in two steps. We first establish a bound which

is independent of m, and then apply it to obtain the m-dependent bound asserted in the

theorem.
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For the first step, we have the following.

Theorem 4.2. Let C be a set of at most n � s2 h-parabolas defined on S , and let P be a

set of rotations with multiplicity at least 3 with respect to C , such that no special surface

contains more than n1/2 parabolas of C . Then the number of incidences between P and C is

O(n3/2).

Proof of Theorem 4.2. Write I = I(P , C) for short, and put m = |P |. We will establish the

upper bound I � Bn3/2, for some sufficiently large absolute constant B, whose specific

choice will be dictated by the various steps of the proof. Suppose then to the contrary

that I > Bn3/2 for the given C and P .

For h∗ ∈ C , let ν(h∗) denote the number of rotations incident to h∗. We refer to ν(h∗)

as the multiplicity of h∗. We have
∑

h∗∈C ν(h∗) = I . The average multiplicity of a parabola

h∗ is I/n.

We begin by applying the following pruning process. Put ν = I/(6n). As long as there

exists a parabola h∗ ∈ C whose multiplicity is smaller than ν, we remove h∗ from C , but

do not remove any rotation incident to h∗. We keep repeating this step (without changing

ν), until each of the surviving parabolas has multiplicity at least ν. Moreover, if, during

the pruning process, some rotation τ loses �μ(τ)/2� incident parabolas (where μ(τ) is the

original number of parabolas of C incident to τ), we remove τ from P . This decreases the

multiplicity of some parabolas, and we use the new multiplicities in the test for pruning

further parabolas, but we keep using the original threshold ν.

When we delete a parabola h∗, we lose at most ν incidences with surviving rotations.

When a rotation τ is removed, the number of current incidences with τ is smaller than or

equal to twice the number of incidences with τ that have already been removed. Hence, the

total number of incidences that were lost during the pruning process is at most 3nν = I/2.

Thus, we are left with a subset P1 of the rotations and with a subset C1 of the parabolas,

so that each h∗ ∈ C1 is incident to at least ν = I/(6n) rotations of P1, and each rotation

τ ∈ P1 is incident to at least three parabolas of C1 (the latter is an immediate consequence

of the rule for pruning a rotation). Moreover, we have I(P1, C1) � I/2. It therefore suffices

to bound I(P1, C1).

Let n1 = |C1|. Since at least three parabolas in C1 are incident to each rotation in

P1, it follows that each parabola in C1 is incident to at most n1/2 rotations of P1, and

therefore I(P1, C1) � n2
1/2. Combining this with the fact that I(P1, C1) � I/2, we get that

n1 � B1/2n3/4.

We fix the parameters

x =
n1

n1/2
and t = δ

n1

n
,

for an appropriate absolute constant δ < 1, whose value will be fixed shortly. Clearly,

t < 1, and we can also ensure that x < ν, i.e., that I > 6n1n
1/2, by choosing B > 6.

Furthermore, since n1 � B1/2n3/4, we have x � B1/2n1/4.

We construct a random sample Cs
1 of parabolas of C1 by choosing each parabola

independently at random with probability t; the expected size of Cs
1 is tn1. Now take x
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(arbitrary) rotations of P1 on each parabola of Cs
1 (which can always be done since x < ν),

to form a sample P s of rotations in P1, of expected size at most txn1.

For any parabola h∗ ∈ C1, the expected number of rotations of P1 ∩ h∗ which lie on

parabolas of Cs
1 is at least tν (each of the at least ν rotations a ∈ P1 ∩ h∗ is incident to at

least one other parabola of C1, and the probability of this parabola to be chosen in Cs
1 is

t). We assume that B is large enough so that

tν = δ
n1

n

I

6n
� δB

6

n1

n1/2

is larger than 2x (it suffices to choose B > 12/δ). Since tν > 2x = Ω(n1/4), and the expected

size of Cs
1 is

tn1 =
δn2

1

n
� Bδn1/2,

we can use Chernoff’s bound to show that there exists a sample Cs
1 such that:

(i) |Cs
1| � 2tn1, and

(ii) each parabola h∗ ∈ C1 contains at least 1
2
tν > x rotations of P1 which lie on parabolas

of Cs
1.

In what follows, we assume that Cs
1 satisfies these properties. In this case, we have

|P s| � 2txn1.

Now construct, using Proposition 2.4, a non-trivial square-free trivariate polynomial p

which vanishes on P s, of smallest degree d satisfying
(
d+3
3

)
� |P s| + 1, so

d � �(6|P s|)1/3� � (12txn1)
1/3 + 1 = (12δ)1/3

n1

n1/2
+ 1

� 2(12δ)1/3
n1

n1/2

for n sufficiently large (for small values of n we ensure the bound by choosing B sufficiently

large, as before).

We will choose δ < 1/6144, so x > 4d.

As above, and without loss of generality, we may assume that p is square-free: factoring

out repeated factors only lowers the degree of p and does not change its zero set.

The following properties hold.

(a) Since x > 2d, p vanishes at more than 2d rotations on each parabola of Cs
1, and

therefore, as already argued, it vanishes identically on each of these parabolas.

(b) Each parabola h∗ ∈ C1 contains at least 1
2
tν > x > 2d rotations which lie on parabolas

of Cs
1. Since, as just argued, p vanishes at these rotations, it must vanish identically on

h∗. Thus, p ≡ 0 on every parabola of C1.

Before proceeding, we enforce the inequality d2 < 1
8
n1 which will hold if we choose δ

so that (12δ)2/3 < 1/32. Similarly, an appropriate choice of δ (or B) also ensures that

ν > 10d.

We next consider all the special polynomial and linear factors of p, and factor them

out, to obtain a square-free polynomial p̃, of degree at most d, with no special polynomial

or linear factors. As in the previous analysis, p can have at most d/3 special polynomial

factors and at most d linear factors, so it can vanish identically on at most d/3 special
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surfaces Ξ1, . . . ,Ξk , for k � d/3, and on at most d plane factors. Let C2 ⊆ C1 denote the

set of those parabolas of C1 which are not contained in any of these vanishing surfaces.

For each parabola h∗ ∈ C2, p̃ vanishes identically on h∗, and (as argued above) at most

2d rotations in P1 ∩ h∗ lie in the surfaces Ξi or in the vanishing planes. Hence, h∗ contains

at least 8d remaining rotations, each of which is either critical or flat for p̃, because each

such point is incident to at least three parabolas (necessarily of C2) on which p̃ ≡ 0.

Hence, either at least 2d of these rotations are critical, and then h∗ is a critical parabola

for p̃, or at least 6d of these rotations are flat, and then h∗ is a flat parabola for p̃. Applying

Propositions 2.2 and 2.8, the overall number of parabolas in C2 is therefore at most

d(d − 1) + d(3d − 4) < 4d2 <
1

2
n1.

On the other hand, by assumption, each vanishing special surface Ξi contains at most

n1/2 parabolas of C . The same holds for each plane factor π. Indeed, the parabolas

contained in π are pairwise disjoint (see Corollary 1.6), and each of them contains at least

ν = I/(6n) rotations. If π contained more than n1/2 parabolas, it would have to contain

more than νn1/2 > (B/6)n rotations. This, however, is impossible, if B > 6, because each

such rotation is incident to at least two crossing parabolas, and each crossing parabola

meets π at most twice, so the number of rotations on π is at most n1 < n, a contradiction.

Hence the number of parabolas contained in the vanishing special surfaces and planes

is at most n1/2d < 1
4
n1/2x � 1

4
n1, with our choice of δ.

Hence, the overall number of parabolas in C1 is smaller than 1
2
n1 + 1

4
n1 < n1, a

contradiction that completes the proof of Theorem 4.2. �

Proof of Theorem 4.1. Write I = I(P , C) for short. Set

ν = cm1/3 and μ = max

{
cn

m2/3
,
cn1/3s1/3

m1/3

}
,

for some sufficiently large constant c whose value will be determined later, and apply the

following pruning process. As long as there exists a parabola h∗ ∈ C whose multiplicity

is smaller than ν, we remove h∗ from C , but do not remove any rotation incident to h∗.

Similarly, as long as there exists a rotation τ ∈ P whose multiplicity is smaller than μ, we

remove τ from P . Of course, these removals may reduce the multiplicity of some surviving

rotations or parabolas, making additional rotations and parabolas eligible for removal.

We keep repeating this step (without changing the initial thresholds ν and μ), until each

of the surviving parabolas has multiplicity at least ν and each of the surviving rotations

has multiplicity at least μ. We may assume that μ � 3, by choosing c sufficiently large and

using Theorem 3.1 and Lemma 1.7.

When we delete a parabola h∗, we lose at most ν incidences with surviving rotations.

When a rotation τ is removed, we lose at most μ incidences with surviving parabolas. All

in all, we lose at most

nν + mμ � 2cm1/3n + cm2/3n1/3s1/3

incidences, and are left with a subset P1 of P and with a subset C1 of C , so that each

parabola of C1 is incident to at least ν rotations of P1, and each rotation of P1 is incident
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to at least μ parabolas of C1 (these subsets might be empty). Put n1 = |C1| and m1 = |P1|.
We have

I � I(P1, C1) + 2cm1/3n + cm2/3n1/3s1/3,

so it remains to bound I(P1, C1), which we do as follows.

We fix some sufficiently small positive parameter t < 1, and construct a random sample

P s
1 ⊂ P1 by choosing each rotation of P1 independently with probability t. The expected

size of P s
1 is m1t, and the expected number of points of P s

1 on any parabola of C1 is

at least νt = ctm1/3. Chernoff’s bound implies that, with positive probability, |P s
1 | � 2m1t,

and |P s
1 ∩ h∗| � 1

2
ctm1/3 for every h∗ ∈ C1. We can therefore assume that P s

1 satisfies all

these inequalities. (For the bound to apply, m1 (and m) must be at least some sufficiently

large constant; if this is not the case, we turn the trivial bound m1n (or mn) on I into

the bound O(m
1/3
1 n) (or O(m1/3n)) by choosing the constant of proportionality sufficiently

large.)

Construct, using Proposition 2.4, a non-trivial square-free trivariate polynomial p which

vanishes on P s
1 , whose degree is at most the smallest integer d satisfying

(
d+3
3

)
� 2tm1 + 1,

so

d � �(12tm1)
1/3� � 3t1/3m

1/3
1 ,

assuming (as above) that m1 is sufficiently large.

Choosing c to be large enough, we may assume that νt > 20d. (This will hold if we

ensure that ct > 60t1/3.) This implies that p vanishes at more than 10d points on each

parabola h∗ ∈ C1, and therefore it vanishes identically on each of these parabolas.

As in the previous analysis, we factor out the special polynomial and linear factors of

p, obtaining a square-free polynomial p̃, of degree at most d, with no special polynomial

or linear factors. Let Ξ1, . . . ,Ξk denote the special surfaces on which p vanishes identically

(the zero sets of the special polynomial factors of p), for some k � d/3.

Let C2 ⊆ C1 (resp., P2 ⊆ P1) denote the set of those parabolas of C1 (resp., rotations of

P1) which are not contained in any of the special surfaces Ξi or in the plane factors of p.

Put C ′
2 = C1 \ C2 and P ′

2 = P1 \ P2.

For each parabola h∗ ∈ C2, p̃ vanishes identically on h∗, and, as argued in the proof of

Theorem 3.1, at most 2d rotations of P1 ∩ h∗ lie in the surfaces Ξi or in the plane factors.

Hence, h∗ contains more than 8d rotations of P2, and, arguing as in the preceding proof,

each of these rotations is either critical or flat for p̃. Hence, either more than 2d of these

rotations are critical, and then h∗ is a critical parabola for p̃, or more than 6d of these

rotations are flat, and then h∗ is a flat parabola for p̃. Applying Propositions 2.2 and 2.8,

the overall number of parabolas in C2 is therefore at most

d(d − 1) + d(3d − 4) < 4d2.

We now apply Theorem 4.2 to C2 and P2, with the bound 4d2 on the size of C2. The

conditions of this theorem hold for these sets: clearly, each rotation in P2 is incident to at

least three parabolas of C2. For the other condition, we argue exactly as in the proof of

Theorem 3.1, to conclude that any special surface can contain at most 3d/2 parabolas of

C1, establishing the second condition of Theorem 4.2. This theorem then implies that the
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number of incidences between P2 and C2, which is also equal to the number of incidences

between P2 and C1, is

I(P2, C1) = I(P2, C2) = O((4d2)3/2) = O(d3) = O(m).

Moreover, since each parabola of C2 contains at least four times more rotations of P2

than of P ′
2, this bound also applies to the number of incidences between P ′

2 and C2.

It therefore remains to bound the number of incidences between P ′
2 and C ′

2, namely,

between the rotations and parabolas contained in the vanishing special surfaces Ξi and

plane factors. To do so, we first iterate over the special surfaces, say, in the order Ξ1, . . . ,Ξk .

For each surface Ξi in turn, we process the rotations and parabolas contained in Ξi and

then remove them from further processing on subsequent surfaces.

Let us then consider a special surface Ξi. Let mi and ni denote, respectively, the number

of rotations and parabolas contained in Ξi, which were not yet removed when processing

previous surfaces. The number of incidences between these rotations and parabolas can

be bounded by the classical Szemerédi–Trotter incidence bound [23] (see also (1.2)), which

is O(m
2/3
i n

2/3
i + mi + ni). Summing these bounds over all the special surfaces Ξi, and using

Hölder’s inequality and the fact, established in Lemma 1.7, that ni � s, we get an overall

bound of

O

(∑
i

(
m

2/3
i n

2/3
i + mi + ni

))
= O

(
s1/3

∑
i

m
2/3
i n

1/3
i +

∑
i

(mi + ni)

)

= O
(
m2/3n1/3s1/3 + m + n

)
,

where we use the facts that
∑

i mi � m and
∑

i ni � n, which follow since in this analysis

each parabola and rotation is processed at most once. The two linear terms satisfy

n = O(m1/3n) (the bound obtained in the pruning process), and m = O(m2/3n1/3s1/3) since

m = O(ns); see Remark (2) following Theorem 3.1.

Handling the plane factors, which we do next, is much simpler, because all the parabolas

contained in such a factor π are pairwise disjoint, so the number of incidences involving

these parabolas is at most mπ , the number of points, not yet removed, on π, for a total of

at most O(m) incidences.

We are not done yet, because each rotation of P ′
2 is processed only once, within the

first surface Ξi or plane containing it. This, however, can be handled as in [6]. That is,

let τ be a rotation which was processed within the first surface Ξi containing it. Suppose

that τ also lies on some later surface Ξj , with j > i, or on some plane, and let h∗ be a

parabola contained in that latter surface, which has not been removed yet; in particular,

h∗ is not contained in Ξi, and thus meets it transversally, so the incidence between h∗ and

τ can be regarded as one of the transversal incidences in Ξi, which we have been ignoring

so far. To count them, we simply recall that each parabola, whether of C ′
2 or of C2, has

at most three transversal intersections with a surface Ξi (see the proof of Theorem 3.1),

for a total of at most d crossings with all the vanishing special surfaces. Since each of

these parabolas contains at least 10d rotations of P1, those ‘transversal incidences’ are

only a fraction of the total number of incidences, and we simply ignore them altogether.

A similar analysis handles transversal incidences with rotations on the plane factors.
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To recap, we obtain the following bound on the number of incidences between P1

and C1:

I(P1, C1) = O
(
m + m1/3n + m2/3n1/3s1/3

)
= O

(
m1/3n + m2/3n1/3s1/3

)
.

Adding the bound 2cm1/3n + cm2/3n1/3s1/3 on the incidences lost during the pruning

process, we get the asserted bound. �
It is interesting to note that the proof technique also yields the following result.

Corollary 4.3. Let C be a set of n h-parabolas and P a set of points in 3-space which

satisfy the conditions of Theorem 4.1. Then, for any k � 1, the number M�k of points of P

incident to at least k parabolas of C satisfies

M�k =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

O
(ns

k3

)
for k � s2/3/n1/3,

O

(
n3/2

k3/2

)
for s2/3/n1/3 � k � n1/3,

O

(
n2

k3
+

n

k

)
for k > n1/3.

Proof. Write m = M�k for short. We clearly have I(P , C) � km. Theorem 4.1 then

implies km = O(m1/3n + m2/3n1/3s1/3), from which the first two bounds follow. If k > n1/3

we use the other bound (in (1.2)), to obtain km = O(m2/3n2/3 + m + n), which implies that

m = O(n2/k3 + n/k) (which is in fact an equivalent statement of the classical Szemerédi–

Trotter bound).

5. Further improvements

In this section we further improve the bound in Theorem 4.1 (and Corollary 4.3) using

more standard space decomposition techniques. We show the following.

Theorem 5.1. The number of incidences between m arbitrary rotations and n h-parabolas,

defined for a planar ground set with s points, is

O∗(m5/12n5/6s1/12 + m2/3n1/3s1/3 + n
)
,

where the O∗(·) notation hides polylogarithmic factors. In particular, when all n = s2 h-

parabolas are considered, the bound is

O∗(m5/12s7/4 + s2
)
.

Proof. We dualize the problem as follows. We map each parabola h∗
a,b to the point

ĥa,b = (a, b) = (a1, a2, b1, b2) in R
4. Each rotation τ is mapped to a 2-plane τ̂, which is the

locus of all points ĥ such that τ is incident to h∗. This is indeed a 2-plane, because the

equations of τ, either (1.1) in the (ξ, η, θ)-frame, or (1.3) in the (X,Y , Z)-frame, are a pair

of linear (independent) equations in (a1, a2, b1, b2).

So in this new set-up we have n points and m 2-planes in 4-space, and we wish to bound

the number of incidences between these points and 2-planes. We note that any pair of
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these 2-planes intersect in at most one point. (The corresponding statement in the primal

set-up is that two rotations can be incident to at most one common h-parabola.)

To bound the number of incidences, we first project the points and 2-planes onto

the 3-space b2 = 0. We claim that, with a generic choice of the coordinate frame in the

original xy-plane, the projected points remain distinct. Indeed, a point (a1, a2, b1, b2), dual

to an h-parabola h∗
a,b, is projected to the point (a1, a2, b1), so the projected point uniquely

determines a, and also b, because we may assume that no two points of S have the same

x-coordinate b1. Hence the projected points are all distinct.

This is not necessarily the case for the 2-planes. Indeed, consider a 2-plane τ̂. Its

projection onto the a1a2b1-space is the plane satisfying the first equation of (1.3), say,

namely

X = (a1 + b1)Z
2 + 2a2Z + (b1 − a1).

It is easily checked that this equation uniquely determines the X and Z components of τ,

leaving Y (i.e., the shift along the y-direction that τ makes after its initial pure rotation)

undetermined. Thus it is possible that several distinct rotations, all with the same X and

Z components, are projected to the same 2-plane. This has the potential danger that

the projection loses incidences, when several 2-planes, incident to a common point τ̂, get

projected into the same plane, so that, instead of several incidences with τ̂ in 4-space,

we get only one incidence in the projection. Nevertheless, this bad situation cannot arise.

This follows from the easy observation that two distinct rotations with the same X and

Z components cannot both map a point (a1, a2) into the same point (b1, b2).

To recap, after the projection we get n points and at most m planes in R
3, and our goal

is to bound the number of incidences between them. More precisely, we want to bound

only the number of original incidences. We note that each such incidence appears as an

incidence in the projection, but not necessarily the other way around. We recall that, in

general, the number of incidences between n points and m planes in 3-space can be mn

in the worst case, because of the possibility that many points lie on a common line and

many planes pass through that line. This situation can also arise in our set-up, but we

will apply a careful analysis to show that the number of original incidences that project

to such a degenerate configuration is much smaller.

We proceed as follows. We fix a parameter r, to be determined shortly, and construct

the following decomposition of 3-space. First, we note that the projected points (a1, a2, b1)

have only s distinct a1-coordinates, which are the x-coordinates of the points of S .

Similarly, they have only s distinct b1-coordinates. We partition the 3-space by a set R1

of r planes orthogonal to the a1-axis, so that within each resulting slab the projected

points have at most s/r distinct a1-coordinates. We construct a similar collection R2

of r planes orthogonal to the b1-axis, so that within each resulting slab the projected

points have at most s/r distinct b1-coordinates. We then choose a random sample R0 of

r of the projected planes. We take the set R = R0 ∪ R1 ∪ R2 of 3r planes, construct their

arrangement, and decompose each of its cells into simplices. We obtain O(r3) simplices,

and the construction and the standard ε-net theory [11] imply that, with high probability,

the following properties hold for every simplex σ of the partition:
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(i) σ is crossed by at most O
(
m
r

log r
)

projected 2-planes;

(ii) the projected points that fall into σ have at most s/r distinct a1-coordinates and at

most s/r distinct b1-coordinates. Further refining the simplices, if necessary, we can

also assume that

(iii) each simplex contains at most n/r3 projected points.

Property (ii) is crucial. It asserts that the number of points of S which induce the

parabolas whose dual points project into a fixed simplex is at most 2s/r; more precisely,

there are only s/r ‘source’ points of S and only s/r ‘target’ points, so that each of these

parabolas is of the form h∗
a,b, where a is one of the s/r source points and b is one of the

s/r target points. (Note, by the way, that the number of parabolas, n/r3, involved in a

subproblem is much smaller than the maximum possible value (s/r)2, when r � 1.)

We now apply Theorem 4.1 to each simplex σ; that is, to the set Cσ of those parabolas

whose (projected) dual points lie in σ, and to the set Pσ of those rotations whose

(projected) dual 2-planes cross σ. Put mσ = |Pσ| and nσ = |Cσ|. We note that some

rotations in Pσ may be incident to no more than two parabolas in Cσ; these rotations

contribute O(mσ) = O
(
m
r

log r
)

to the overall incidence bound. By Theorem 4.1 we thus

have3

I(Pσ, Cσ) = O
(
m1/3

σ nσ + m2/3
σ n1/3

σ (s/r)1/3 + mσ

)
.

Summing these bounds over all cells σ, we get an overall bound of∑
σ

I(Pσ, Cσ) = O∗(r3 ·
(
(m/r)1/3n/r3 + (m/r)2/3(n/r3)1/3(s/r)1/3 + m/r

))
= O∗(m1/3n/r1/3 + rm2/3n1/3s1/3 + mr2

)
,

where, as above, O∗(·) hides polylogarithmic factors.

We also have to add to the bound incidences involving points, which are projections dual

to parabolas, which lie on the boundaries of the cells of the cutting. Let q = (a1, a2, b1),

the projection of a (unique) point ĥa,b, be such a point. Let f denote the face whose

relative interior contains q. If f is a 2-face of some simplex σ, we can associate q with

σ: except for the single plane containing f, any other plane incident to q must cross σ,

and we can count the incidence within the subproblem of σ. The uncounted incidences,

at most one per parabola, add up to at most n.

If f is a vertex (so q = f) then any plane through f either bounds or crosses some

adjacent simplex, so the total number of such incidences is O∗(r3 · (m/r)) = O∗(mr2).

The harder situation is when f is an edge. Again, if a plane crosses f at q, we can count

this incidence within any adjacent simplex, arguing as in the case where f is a 2-face. The

difficult case is when the plane contains f, and we handle it as follows.

It is simpler to consider f as a full line of intersection of two sampled planes, rather

than a single edge. (The decomposition, though, also has other edges, obtained in the

decomposition of arrangement cells into simplices; these edges require a slightly different

3 Here we cannot argue, as we did earlier, that the term mσ is subsumed by the other terms, because of the

possibility that some of the mσ rotations are incident to only one or two parabolas in a subproblem.
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Figure 5. Many projected dual points lying on a common line: the situation in the xy-plane.

treatment, given below.) Let q1, . . . , qt be the projected dual points that lie on f, and let

h∗
ai,bi

denote the parabola corresponding to qi, for i = 1, . . . , t. Consider the rotations τ

whose dual 2-planes project to planes containing f. Rotations τ of this kind which are

incident to just one of the parabolas h∗
ai,bi

are easy to handle, because the number of

incidences involving these rotations is at most m (for the fixed line f), for a total of

O∗(mr2).

Consider then those rotations τ which are incident to at least two of the parabolas

h∗
ai,bi

. Since the points (ai1, ai2, bi1) lie on a common line, it follows that the points ai are

also collinear in the original xy-plane, lying on a common line 	0. The points bi are not

necessarily collinear, but they have the property that, for any pair of indices i �= j, the

ratio (bj1 − bi1)/(aj1 − ai1) is fixed. See Figure 5.

Now if τ is incident to two parabolas h∗
ai,bi

, h∗
aj ,bj

, then τ maps ai to bi and aj to bj . In

particular, |aiaj | = |bibj |. This, and the fact that (bj1 − bi1)/(aj1 − ai1) is fixed, imply that

τ maps 	0 to the line through bi and bj , and that the slope of this line has a fixed absolute

value λ. Hence, considering, with no loss of generality, only lines of the latter kind with

positive slope, we can partition {q1, . . . , qt} into equivalence classes, so that, for each class,

all the corresponding points bi lie on a common line of slope λ. Moreover, there is at

most one rotation that is incident to at least two parabolas from the same class (and no

rotation can be incident to two parabolas from different classes). Thus the total number

of incidences of this kind, for the fixed f, is at most t. Summing over all lines f, we get a

total of O(n) such incidences.

In the preceding analysis we considered only intersection lines between sampled planes,

but, as noted, the cutting has additional edges, interior to cells of the arrangement.

We handle such edges in almost the same way as above. That is, we consider such an

edge e, and argue, exactly as above, that the number of original incidences involving

points on e and planes that contain e is proportional to the number ne of points on

e plus the number me of planes containing e. (Incidences involving planes that cross e

are also handled exactly as above, with the same resulting bound.) The sum
∑

e ne is

still at most n. For the other sum
∑

e me, we note that the number of edges e is O(r3)

(instead of O(r2) in the preceding analysis), but each edge e can be contained in at most

O
(
m
r

log r
)

planes, as follows easily from the ε-net theory (this holds with high probability,

but we may assume that our sample does indeed have this property). Hence, we have∑
e me = O∗(r3 · (m/r)) = O∗(mr2), the same bound as above.

Altogether, the number of incidences is thus

O∗(m1/3n/r1/3 + mr2 + rm2/3n1/3s1/3 + n
)
.
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We now choose

r =

(
n2/3

m1/3s1/3

)3/4

=
n1/2

m1/4s1/4
.

This choice of r makes the first and third terms in the incidence bound equal to each

other, and they both dominate the second term, as is easily verified, using the fact that

n � s2.

Note also that 1 � r � m when

n2/5

s1/5
� m � n2

s
.

Assume first that m lies in this range. Then the incidence bound becomes

O
(
m5/12n5/6s1/12 + n

)
.

When m > n2/s, we use r = 1 and get the bound

O
(
m1/3n + m2/3n1/3s1/3 + m

)
.

Since n2/s < m � ns, the second term dominates the two other terms, and the bound is

thus O(m2/3n1/3s1/3).

Finally, when m < n2/5/s1/5, we use the Szemerédi–Trotter bound in (1.2), which is easily

seen to yield the bound O(n). Adding all these bounds, the theorem follows.

Using this bound, we can strengthen Corollary 4.3, as follows.

Corollary 5.2. Let C be a set of n h-parabolas and P a set of rotations, with respect to

a planar ground set S of s points. Then, for any k � 3, the number M�k of rotations of P

incident to at least k parabolas of C satisfies

M�k = O∗
(
n10/7s1/7

k12/7
+

ns

k3
+

n

k

)
.

For n = s2, the bound becomes

M�k = O∗
(

s3

k12/7

)
.

Proof. The proof is similar to the proof of Corollary 4.3, and we omit its routine

details.

6. Conclusion

In this paper we have reduced the problem of obtaining a near-linear lower bound for

the number of distinct distances in the plane to a problem involving incidences between

points and a special class of parabolas (or helices) in three dimensions. We have made

significant progress in obtaining upper bounds for the number of such incidences, but we
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are still short of tightening these bounds to meet the conjectures on these bounds made

in the introduction.

To see how far we still have to go, consider the bound in Corollary 5.2, for the case

n = s2, which then becomes O∗(s3/k12/7). (Here M�k coincides with N�k as defined in

(H3).) Moreover, we also have the Szemerédi–Trotter bound O(s4/k3), which is smaller

than the previous bound for k � s7/9. Substituting these bounds in the analysis of (H3)

and (H4), we get

[s(s − 1) − x]2

x
� |K| = N�2 +

∑
k�3

(k − 1)N�k

= N�2 + O(s3) ·

⎡
⎣1 +

s7/9∑
k=3

1

k5/7
+

∑
k>s7/9

s

k3

⎤
⎦ = N�2 + O(s29/9).

It is fairly easy to show that N�2 is O(s10/3), by noting that N�2 can be upper-bounded

by O
(∑

i |Ei|2
)
, where Ei is as defined in (H1). Using the upper bound |Ei| = O(s4/3) [21],

we get

N�2 = O

(∑
i

|Ei|2
)

= O(s4/3) · O
(∑

i

|Ei|
)

= O(s10/3).

Thus, at the moment, N�2 is the bottleneck in the above bound, and we only get the (weak)

lower bound Ω(s2/3) on the number of distinct distances. Showing that N�2 = O(s29/9) too

(hopefully, a rather modest goal) would improve the lower bound to Ω(s7/9), still a rather

weak lower bound.

Nevertheless, we feel that the reduction to incidences in three dimensions is fruitful for

the following reasons.

(i) It sheds new light on the geometry of planar point sets, related to the distinct distances

problem.

(ii) It has given us a new, and considerably more involved set-up in which the new

algebraic technique of Guth and Katz could be applied. As such, the analysis in

this paper might prove useful for obtaining improved incidence bounds for points

and other classes of curves in three dimensions. The case of points and circles is an

immediate next challenge.

Another comment is in order. Our work can be regarded as a special variant of the

complex version of the Szemerédi–Trotter theorem on point–line incidences [23]. In the

complex plane, the equation of a line (in complex notation) is w = pz + q. Interpreting

this equation as a transformation of the real plane, we get a homothetic map, i.e., a rigid

motion followed by a scaling. We can therefore rephrase the complex version of the

Szemerédi–Trotter theorem as follows. We are given a set P of m pairs of points in the

(real) plane, and a set M of n homothetic maps, and we seek an upper bound on the

number of times a map τ ∈ M and a pair (a, b) ∈ P ‘coincide’, in the sense that τ(a) = b.

In our work we only consider ‘complex lines’ whose ‘slope’ p has absolute value 1 (these

are our rotations), and the set P is simply S × S .

The main open problems raised by this work are as follows.
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(a) Obtain a cubic upper bound for the number of rotations which map only two points of

the given ground planar set S to another pair of points of S . Any upper bound smaller

than O(s3.1358) would already be a significant step towards improving the current lower

bound of Ω(s0.8641) on distinct distances [13].

(b) Improve further the upper bound on the number of incidences between rotations and

h-parabolas. Ideally, establish Conjectures 1.1 and 1.3.
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