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Abstract

Several formal systems, such as resolution and minimal model semantics, provide a framework
for logic programming. In this article, we will survey the use of structural proof theory as an
alternative foundation. Researchers have been using this foundation for the past 35 years to
elevate logic programming from its roots in first-order classical logic into higher-order versions
of intuitionistic and linear logic. These more expressive logic programming languages allow for
capturing stateful computations and rich forms of abstractions, including higher-order program-
ming, modularity, and abstract data types. Term-level bindings are another kind of abstraction,
and these are given an elegant and direct treatment within both proof theory and these extended
logic programming languages. Logic programming has also inspired new results in proof theory,
such as those involving polarity and focused proofs. These recent results provide a high-level
means for presenting the differences between forward-chaining and backward-chaining style in-
ferences. Anchoring logic programming in proof theory has also helped identify its connections
and differences with functional programming, deductive databases, and model checking.

1 Introduction

There are two broad approaches to relating logic with computational systems

(Miller 2006). On the one hand, there is the computation-as-model approach in which

computations determine models represented via mathematical structures containing such

items as nodes, transitions, and state. Logic is used in an external sense to make state-

ments about those structures. That is, computations are models, and logical expressions

are evaluated over such models. Intensional operators, such as the modal operators of

temporal and dynamic logics or the triples in Hoare logic, are often employed to express

propositions about the state change. This use of logic to represent and reason about

computation is probably the oldest and most successful use of logic with computation.

On the other hand, the computation-as-deduction approach uses pieces of logic’s syntax

(e.g. types, terms, formulas, and proofs) directly as elements of the specified computation.

There are two different approaches to modeling computation in this much more rarefied

setting depending on how they use proofs. The proof normalization approach views the

state of a computation as a proof term and the process of computing as normalization

(via β-reduction or cut-elimination). This approach to computing is based on the Curry-

Howard correspondence (Curry 1934; Howard 1980; Sørensen and Urzyczyn 2006) and can

provide a theoretical framework for functional programming (Martin-Löf 1982). The proof

search approach views the state of a computation as a sequent (a particular structured
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collection of formulas) and the process of computing as the search for a proof of a sequent:

the changes that take place in sequents capture the dynamics of computation. In the

broadest sense, proof search can be a foundation for interactive and automatic theorem

proving, model checking, and logic programming. This paper shall survey how the proof

search interpretation of the sequent calculus has been used to give a foundation to logic

programming.

Unifying the two most foundational perspectives of logic – model theory and proof

theory – was the goal of some of the earliest work on the foundations of logic program-

ming. However, these two perspectives on logic have their own concerns and internal

structure and results. As a result, divergence appeared when these two perspectives were

used to motivate new designs and theories about programming with logic. Taking models

as primary, along with the direct treatment of negation available in model theory, has

led to new logic programming languages, such as the answer set programming approach

to declarative programming (Lifschitz 2008; Brewka et al . 2011) (see also Section 10.6).

These developments have led to new applications of logic in subjects such as databases,

default reasoning, planning, and constraint solving. In this article, we survey, instead, the

development of new logic programming language designs and theories where proof the-

ory is taken as primary. Some application areas of these designs have been type systems,

proof assistants, proof checking, and the specification of operational semantics.

Symbolic logic is an appealing place to define a high-level programming language for

several reasons. First, it is a well-studied and mature formal language. As a result, it

has rich properties that enable manipulating and transforming its syntax in meaning-

preserving ways. Such manipulations include substitution into quantified expressions, the

unfolding of recursive definitions, and conversion to normal forms (such as conjunctive

normal form or negation normal form). Second, logics generally have multiple ways to

look at what a theorem is. For example, soundness and completeness results allow us to

identify theorems as those formulas that have a proof and are true in all models. Finally,

even for logics where model-theoretic approaches are less commonly used, such as linear

logic (Girard 1987), other deep principles, for example, cut-elimination, are available.

Given that we choose to work with symbolic logic, how should we connect logic with

logic programming? Clearly, the logical foundation of Prolog – first-order Horn clauses

– should be taken as an example of logic programming. Nevertheless, the notion of proof

search is a broad term, including, for example, interactive and automated theorem provers

where considerable cleverness is needed to discover lemmas and inductive invariants.

Obviously, including the discovery of lemmas and invariants should not be expected of

an interpreter or compiler of a logic program. Thus, it seems necessary to draw a line

between proof search in full logic and some simpler, automatable subset of logic.

2 The need for more expressive logic programming

Horn clauses are formulas of the form

∀x1 . . . ∀xn[A1 ∧ . . . ∧Am ⊃ A0] (n,m ≥ 0). (1)

Here, the symbol A (with or without subscripts and superscripts) is used as a syntactic

variable ranging over atomic formulas. Notice that this formula can also be written
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without conjunctions as

∀x1 . . . ∀xn[A1 ⊃ . . . ⊃ Am ⊃ A0],

where the bracketing of implications is to the right. In both cases, if m = 0 then we do

not write the implication. A simple generalization of Horn clauses can be given by the

following grammar-like description of two classes of formulas using the syntactic variables

G (for goal formulas) and D (for definite formulas).

G := A | � | G ∧G | ⊥ | G ∨G | ∃x.G (2)

D := A | G ⊃ D | � | D ∧D | ∀x.D (3)

Here, G-formulas are freely generated from atomic formulas, � (true), ⊥ (false), con-

junction, disjunction, and existential quantifiers. A D-formula is a generalization of Horn

clauses and these are such that any subformula occurrence to the left of an implication is

a G-formula. Using simple equivalences (which hold in classical and intuitionistic logics),

it is easy to show that a D-formula is logically equivalent to a conjunction of formulas

that are of the form (1) above.1

While the logic programs that can be written using first-order Horn clauses are Tur-

ing complete (Tärnlund 1977), programming languages, such as Prolog, based on Horn

clauses have various weaknesses that have been pointed out in the literature. A list of

some of these shortcomings is below.

Constraints: The usual approach to data structures in Prolog encodes them as first-

order terms using uninterpreted symbols. Occasionally, certain domains contain

values that are much better handled by special-purpose algorithms instead of

unification and strict syntactic equality. Constraint logic programming (Jaffar

and Lassez 1987) is a general framework for organizing the treatment of such

domains.

Negation-as-failure: The simplest theories of Horn clauses do not include negation.

Different versions of negation, such as negation-as-failure (Clark 1978), have been

added to most versions of Prolog.

Control of search: Prolog implements depth-first search, which provides a natural pro-

cedural interpretation of many Horn clause specifications while providing expensive

or non-terminating interpretations for other specifications. Prolog has evolved sev-

eral control mechanisms, such as ! (cut), ancestor checking, and tabled deduction.

Side-effects: For a specification language to become a programming language, it seems

necessary to accommodate primitives for side-effects and communications with

other components of modern computer systems. Primitives have been added to

Prolog to allow side effects (e.g., assert and retract) and input and output.

Abstraction mechanisms: The logic behind Prolog does not directly support modern

notions of abstractions, such as modules, abstract data types, higher-order pro-

gramming, and binding structures. Various extensions to Prolog addressing modu-

lar programming have been developed (ISO.org 2000) and incorporated into most

modern implementations of Prolog.

1 Throughout this article, the equivalence (in classical, intuitionistic, or linear logic) of two formulas B
and C means that the two entailments B � C and C � B are provable (in the respective logic).
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As this list shows, the development of programming language features on top of Horn

clauses has resulted in adding more to an exciting but weak core logic setting. The

work that this survey explores takes a different perspective to logic programming lan-

guage design. Instead of working with a simple and weak foundation, proof theory has

been used to imagine large and more expressive logical foundations, even going as far

as adding higher-order quantification and linear logic connectives. Given the generality

of such a large framework, it is doubtful that the entire framework can be effectively

implemented. However, the purpose of such imagining is not to provide the foundations

of a single, grand, practical logic programming language but rather to develop a frame-

work in which many different sublanguages can be extracted (only one of which consists

of Horn clauses). Such sublanguages would inherit some properties of the larger frame-

work, but their more narrow focus might allow for practical implementations. By way

of analogy, consider the problem of building parsers. Context-free grammars (CFG) pro-

vide an important framework for declaratively describing the structure of some languages.

Since that framework is flexible and high-level, general-purpose parsers are expensive: for

example, the Earley parser has O(n3) complexity cost for strings of length n (Earley

1970). Since this complexity is too high for use in, say, compilers, many subsets of the gen-

eral CFG framework have been developed, such as the LR(k) and LALR(k) grammars,

which describe fewer languages but have parsers with better time and space complex-

ity (Aho et al . 2007). As we shall note in Section 10, several subsets of the most general,

abstract logic programming framework have been identified and implemented in different

application areas.

3 Some formal frameworks for logic programming

A good formal framework for logic programming should satisfy some properties, such as

those listed here.

1. It should provide multiple and broad avenues for reasoning about logic programs.

We do not need new Turing machines because we do not need more specification

languages that obviously compute but which do not come with support for address-

ing the correctness of specifications.

2. It should allow for the positioning of the logic programming paradigm among other

programming and specification paradigms.

3. It should provide for a range of possible designs, leading to logic programming

languages that go beyond the one acknowledged example based on Horn clauses.

Hopefully, these new designs would address some of the shortcomings outlined in

the previous section.

The following section focuses on the use of structural proof theory as a foundation for

logic programming. The rest of this section describes three other popular approaches to

the formal foundations for logic programming.

3.1 Resolution

Following Robinson’s introduction of the resolution refutation method for automating

first-order logic (Robinson 1965), several researchers developed strategies to tame the
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search for refutations. One of these strategies is linear resolution, which was developed

independently by Loveland (1970), Luckham (1970), and Zamov and Sharonov (1971).

After the first Prolog system was developed at the University of Aix-Marseilles in 1972

(Colmerauer and Roussel 1993), Kowalski (1974) formalized its operational behavior

as linear resolution. Later, Apt and van Emden (1982) named this particular style of

resolution SLD-resolution (“Selective Linear Definite clause resolution”) and proved it

to be complete when restricted to Horn clauses.

As a framework, resolution has been used to provide a treatment of some exten-

sions of Prolog. For example, Clark (1978) introduced the if-and-only-if completion of

Horn clauses. He showed how the failure of an exhaustive and finite search for an SLD-

resolution refutation could be used to justify a proof of a negated goal. Clark’s extended

refutation procedure, now called SLDNF, received various descriptions and correctness

proofs (see, e.g. the papers by Apt and Bol (1994) and by Apt and Doets (1994) and

has been used to extend logic programming to include all of first-order classical logic

(Lloyd and Topor 1984). Resolution also allows for a simple approach to the treatment

of constraints and their flexible scheduling (Huet 1973). Minker and Rajasekar (1990)

specialized resolution to serve as a proof strategy for disjunctive logic programming. Love-

land’s Near-Horn Prolog (Loveland 1987; Loveland and Reed 1991) was also described

using resolution, although it was eventually given a description using sequent calculus

proofs (Nadathur and Loveland 1995; 1998) in the style we shall see in Section 5.

Although resolution refutations had some successes as a framework for logic program-

ming, this framework has been problematic for at least two reasons. First, it generally

relies on normal forms, such as conjunctive normal form, negation normal form, and

Skolem normal form. Such normal forms are not generally available outside of first-order

classical logic: in particular, these normal forms are not sound for intuitionistic logic.

Secondly, resolution is pedagogically flawed since it forces the attempt to prove the goal

G from the program P into the attempt to refute the set of formulas P∪{¬G}; switching
from proving to refuting is unfortunate, unintuitive, and, as we shall see, unnecessary. As

the author has argued elsewhere (2021), the use of Skolemization to simplify the struc-

ture of quantifiers in formulas appears to be the dominant reason for early automated

theorem proving systems to rely on building refutations instead of proofs. Since struc-

tural proof theory provides an alternative to Skolemization, that framework can rely on

proving instead of refuting.

3.2 Model theory

Given the success of denotational semantics to provide a mathematically precise notion

of meaning for various programming languages (Scott 1970; Stoy 1977) and given that

model theory for first-order classical logic was a well-developed topic before the advent

of logic programming, it was natural to consider using model theory as a semantics for

logic programming.

Apt, van Emden, and Kowalski provided the first steps to building such a semantics for

logic programming. They connected SLD-resolution to fixed-point operators on models

represented by sets of atomic formulas. In particular, the least-fixed point model seman-

tics was shown to characterize provable atomic formulas, while negation-as-failure was

shown to relate to the greatest-fixed point model (Apt and van Emden 1982; van Emden
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and Kowalski 1976). Model theory has also been used to provide various formal defini-

tions of negation-as-failure, including well-founded semantics (Van Gelder et al . 1991)

and stable models (Gelfond and Lifschitz 1988).

Model theory can sometimes be used to provide an equivalent perspective on prov-

ability. In particular, the familiar soundness and completeness theorems state that prov-

able statements are exactly the valid statements. Such a result can convince us that a

given proof system is not, in fact, ad hoc, inconsistent, or missing inferences or axioms.

Such confidence indeed arises from the earliest completeness theorems, such as the ones

given by Gödel (1930) and Henkin (1949). Today, however, experts in model theory and

category theory have sufficient “muscle” so that they can build complicated and ad

hoc semantic domains. As a result, soundness and completeness theorems are not as

compelling as they once were. Fortunately, proof theory comes with its own principles,

such as, for example, the cut-elimination theorem, which helps to rule out ad hoc and

inconsistent inference principles.

3.3 Operational semantics

Semantics can be given for logic programming by providing a mathematical description

of the language’s behavior. One such approach has been to use abstract machines, such

as the Warren Abstract Machine (WAM) (Warren 1983; Aı̈t-Kaci 1991), to describe the

behavior of logic programs. Such machines can be taken as formal models when they are

given a formal specification (Börger and Rosenzweig 1995b).

A few high-level and formal specifications of parts of Prolog’s operational semantics

have been developed starting a couple of decades ago and using different techniques: for

example, Andrews (1997) used a combination of a multi-valued logic and a transition

system, Li (1994) used the π-calculus, and Börger and Rosenzweig (1995a) used evolving

algebras. Such approaches to specification have the advantage that they can describe the

actual behavior of Prolog implementations when they need to deal with features such

as the cut ! control operator and the assert and retract predicates. Such features are

difficult or impossible to address using resolution refutations or model theory.

Since these specification styles are formal, any attempt to reason about them also

certainly requires using proof assistants. These specifications are used to address the

question “How do we implement a language?” and not the more general question “What

language should we implement?” While the former question is important, we shall focus

on a framework that addresses the latter question.

4 The trajectory of proof theory investigations

The term “proof theory” is often used in the logic programming literature to refer to some

characterization of provability � in contrast to validity |=. However, in many texts, prov-

ability is characterized indirectly using resolution refutations. In this paper, the term

“proof theory” is used exclusively to refer to the systems and methods introduced by

Gentzen in his famous paper (1935). In that article, Gentzen introduced both natural

deduction and the sequent calculus and proved the cut-elimination theorem for classical

and intuitionistic logics. Gentzen’s proof systems have been applied in many different

settings during the past several decades. In mathematics, they have been used to prove
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the consistency of various logical and arithmetic systems (Gentzen 1935); in logic, they

have been used to define various modal logics (Ono 1998; Wansing 2002); in linguistics,

they have been used to describe the structure of sentences (Lambek 1958); and in com-

putational logic, they have been used to provide the formal setting for discussing both

computing via proof normalization and proof search (see Section 1). We shall be partic-

ularly interested in using Gentzen’s proof systems to analyze the syntax and structure of

proofs themselves. With this emphasis, this topic is often called structural proof theory.

Good background material on this topic can be found in the papers by Gallier (1986),

Girard et al. (1989), Buss (1998), and Negri and von Plato (2001). Since the λ-calculus

will also be associated with our discussion of proof theory, the reader unfamiliar with

the basics of the λ-calculus can find good background material in the work of Baren-

dregt (1984), Huet (1975), Miller and Nadathur (2012), and Barendregt et al. (2013).

The following list of key applications of structural proof theory to logic programming

helps to provide an outline of the rest of this survey.

1. In Section 5.2, we position logic programming within the sequent calculus instead

of resolution and then describe the nature of goal-directed search and backward

chaining using sequent calculus inference rules.

2. Given that sequent calculus proof systems were known for first-order and higher-

order classical and intuitionistic logics, the first proof-theoretic extensions of logic

programming were investigated in these logics. For example, developing proof search

results within higher-order intuitionistic logic provided logic programming with

various forms of abstractions, including higher-order programming, modules, and

abstract data types (see Sections 5.3 and 5.4). The sequent calculus also enables

a new treatment of binding structures (within terms, formulas, and proofs): this

treatment is described in Section 6.

3. The appearance of linear logic provides new and sometimes surprising avenues for

extending logic programming to settings involving stateful and concurrent compu-

tations (see Section 7).

4. The proof theory of linear logic introduced the notions of polarity and focused

proofs (see Section 8). When these notions are applied to logic programming, they

allow for extending the notion of goal-directed proof. These notions also provide

an elegant description of both forward-chaining and backward-chaining inference.

5 Intuitionistic logic and proof search

In the 1980s, there were some early attempts to use various proof systems as frameworks

for logic programming based on extended versions of Horn clauses. For example, Hagiya

and Sakurai (1984) used Martin-Löf’s theory of iterated inductive definitions (1971) to

describe Horn clause reasoning and negation-as-failure. There were also several attempts

to extend Prolog to full first-order logic. In particular, Bowen (1982) described how

sequent calculus and unification could be merged; Haridi and Sahlin (1983) described an

implemented proof system using natural deduction; and Cellucci (1987) proposed using

tableaux proof systems for the specification of logic programming.

In the second half of the 1980s, several researchers discovered roles for intuitionistic

logic within computational logic that were not directly related to the Curry-Howard

https://doi.org/10.1017/S1471068421000533 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000533


866 D. Miller

correspondence (briefly described in Section 1). Instead, these roles supported the proof-

search paradigm. These discoveries, listed below, were made nearly simultaneously and

largely independently.

• Gabbay and Reyle developed N-Prolog, an extension to Prolog with hypothetical

goals (Gabbay and Reyle 1984; Gabbay 1985).

• The λProlog logic programming language by Nadathur and the author (1988; 2012)

lifted the Prolog language to higher-order intuitionistic logic. This logic provided

hypothetical and generic reasoning as well as higher-order programming for logic

programming (Miller et al . 1991).

• McCarty (1988a; 1988b) used Kripke model semantics of intuitionistic logic to study

an extension of logic programming that supported hypothetical reasoning.

• Paulson (1989) used natural deduction and intuitionistic logic to provide a frame-

work for the generic theorem prover at the core of the Isabelle prover. Some design

and implementation issues in that prover are closely related to design and imple-

mentation issues in the λProlog system.

• Hallnäs and Schroeder-Heister (1990; 1991) also explored a logic programming

interpretation of hypothetical reasoning using the proof theory of intuitionistic

logic.

• Mints and Tyugu (1990) used propositional intuitionistic logic to design and

automate their PRIZ programming system.

Also, during this period, the dependently typed λ-calculus LF (Harper et al . 1993)

was proposed as a framework for describing proof systems for intuitionistic logic: it was

also given a λProlog-inspired implementation within the Elf system (Pfenning 1989).

In the proof search setting, the successful completion of a (non-deterministic) compu-

tation is encoded by a cut-free proof. Here, proof normalization and cut elimination are

not part of the computation engine but instead can be involved in reasoning about com-

putation. See Section 10.4 for a discussion about proof-theoretic methods for reasoning

about logic programs.

5.1 Provability via the Sequent calculus

While we assume that the reader has some familiarity with the sequent calculus, we review

some basic concepts. Formally, a sequent is a pair of multisets of formulas, written as

Γ � Δ, and we speak of a formula occurrence in Γ as being on the left-hand side and a

formula occurrence in Δ as being on the right-hand side of that sequent. Gentzen’s proof

system for classical logic, called LK (Gentzen 1935), allows any number of formulas in

Δ, whereas his proof system for intuitionistic logic, called LJ, requires Δ to contain at

most one formula. Otherwise, proofs in intuitionistic and classical logics use the same set

of inference rules.

Inference rules that deal directly with logical connectives are called introduction rules

and are used to introduce logical connectives into the right or left sides of a sequent. The

following three inference rules are used to introduce the conjunction, disjunction, and

universal quantifier into the left-hand sides of sequents.

Γ, B,C � E

Γ, B ∧ C � E
∧L Γ, B � E Γ, C � E

Γ, B ∨ C � E
∨L Γ, [t/x]B � E

Γ, ∀x.B � E
∀L
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The ∧L rule says that one way to prove that E follows from B∧C and Γ is to prove that

E follows from B and C and Γ. The ∨L rule is the sequent calculus version of the rule

of cases : one way to prove that E follows from B ∨ C and Γ is to prove that E follows

from B and Γ (the first case) and that E follows from C and Γ (the second case). The

∀L rule says that one way to prove that E follows from ∀x.B and Γ is to prove that E

follows from [t/x]B and Γ, where t is some term and [t/x]B is the (capture avoiding)

substitution of t for x in B. Figure 1 contains introduction rules for the implication and

the universal quantifier.

At least three significant problems with the sequent calculus translate into difficulties

using it as a foundation for logic programming. Unlike resolution refutations, the sequent

calculus is not equipped with unification, which is recognized as an essential operation

in logic programming. For example, in the ∀L rule above, the substitution instance t for

∀x.B must be chosen when this rule is applied, even though the exact nature of that

term may not be known in detail until much later in the search for a proof. We set this

problem aside until Section 6.

A second serious problem with applying the sequent calculus to logic programming

is that its proofs are formless, low-level, and painful to use directly. To illustrate this

problem, consider the situation where A is an atomic formula and Γ is a multiset of 998

non-atomic formulas, and where we wish to find a proof of the sequent

Γ, B1 ∨B2, C1 ∧ C2 � A.

There can be 1000 choices of left introduction rules to attempt in order to prove this

sequent.2 Once one of those choices is made, it is likely that that rule yields at least one

premise that again has about 1000 non-atomic formulas on the left. For example, first

applying ∨L and then applying ∧L on each premise can yield

Γ, B1, C1, C2 � A

Γ, B1, C1 ∧ C2 � A
∧L Γ, B2, C1, C2 � A

Γ, B2, C1 ∧ C2 � A
∧L

Γ, B1 ∨B2, C1 ∧ C2 � A
∨L.

This tiny proof fragment is roughly one of about a million choices. Equally unfortunate

is what happens if the search for a proof fails to find a proof of the left premise. The

proof procedure could then choose to do these two inference rules in the opposite order,

namely giving rise to the proof fragment

Γ, B1, C1, C2 � A Γ, B2, C1, C2 � A

Γ, B1 ∨B2, C1, C2 � A
∨L

Γ, B1 ∨B2, C1 ∧ C2 � A
∧L.

However, this permutation of inference rules yields the same premises. As a result, proof

search will again fail on the left branch. Clearly, switching the order of these rules is not

important for completeness. Any high-level structure that sequent calculus proofs might

contain needs to be pulled out by extensive inference rule permutation arguments. Such

high-level structure in proofs will be more apparent when we upgrade sequent calculus

proofs to focused proofs in Section 8.

2 We shall use the left-hand side of a sequent to store a logic program. A logic program with 1000
formulas (clauses) is a small-to-medium-sized program.
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Fig. 1. The subset of Gentzen’s LJ proof system that applies to only ⊃ and ∀. In the ∀R rule,
the variable y is not free in any formula in the conclusion of that rule.

The third serious problem with applying the sequent calculus to logic programming is

that its inference rules are too tiny and not the right inference rules in many settings. For

example, consider a multiset of formulas Γ that contains the following two Horn clauses.

∀x∀y[adj x y ⊃ path x y]

∀x∀y∀z[path x z ⊃ path z y ⊃ path x y]

The effect of using these formulas in a proof can naturally be viewed as describing infer-

ence rules directly. For example, the backward-chaining interpretation of these formulas

seems best captured using the following pair of rules:

Γ � adj x y

Γ � path x y

Γ � path x z Γ � path z y

Γ � path x y
.

The forward-chaining interpretation of these formulas seems best captured using the

following pair of rules:

Γ, adj x y,path x y � A

Γ, adj x y � A

Γ, path x z, path z y,path x y � A

Γ, path x z, path z y � A
.

Note that none of these rules explicitly contain occurrences of logical connectives. When

we deal with polarization and focused proofs in Section 8, we will show how to con-

struct these inference rules from Horn clauses and how polarization selects between rules

following the backward-chaining or forward-chaining discipline.

5.2 Goal-directed proofs

Throughout this survey, we shall see several different sequent calculi presented as a

collection of inference rules. To simplify the presentation and comparison of such systems,

we shall usually restrict our attention to formulas containing just the logical connectives

for universal quantification and implication. For example, Figure 1 contains the subset of

Gentzen’s LJ proof system (Gentzen 1935) that applies to only the logical connectives ⊃
and ∀. Proof systems in the literature (e.g. Gentzen (1935)) usually contain more logical

connectives (e.g. disjunction, conjunction, and existential quantifiers). The variable y

used in the ∀R rule is called the eigenvariable for that rule.
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An early application of sequent calculus to logic programming was the development

of the technical term uniform proof to capture the notion of goal-directed search (Miller

et al . 1991). In particular, the sequent P � G describes the obligation to prove the goal

formula G from the (logic) program P.

To formalize the fact that a proof attempt is goal-directed, we will insist that whenever

the goal formula is non-atomic (hence, its top-level symbol is a logical connective), this

sequent can only be proved using a right introduction rule. Even if the left-hand side P
contains 1000 non-atomic formulas, a goal-directed proof must ignore the possibility of

introducing those formulas and only allow the right-hand formula to be selected. Only

when the top-level symbol of the goal formula is non-logical (i.e. it is a predicate symbol)

is the proof attempt permitted to consider the left-hand side. Such sequent calculus proofs

were called uniform proofs (Miller et al . 1991). In general, a uniform proof is divided

into two phases. One phase involves a sequence of right-introduction rules that performs

goal reduction. The other phase – the backward-chaining phase – selects a formula from

the left-hand side P and performs a sequence of left-introduction rules derived from that

one formula.

To illustrate a backward-chaining phase, consider the following proof fragment. Here,

P is a multiset of formulas that includes the two Horn clauses in the previous section

that describe the path predicate.

P � path a b

P � path b c path a c � path a c
init

P, path b c ⊃ path a c � path a c
⊃ L

P,P, path a b ⊃ path b c ⊃ path a c � path a c
⊃ L

P, path a b ⊃ path b c ⊃ path a c � path a c
contr

P, ∀x∀y∀z(path x y ⊃ path y z ⊃ path x z) � path a c
∀L× 3

P � path a c
contr

Here, a formula on the left is highlighted by underlining it. The backward-chaining phase

has four important features. First, it is invoked only if the goal on the right is atomic.

Second, only the highlighted formula is the site of a left-introduction rule. Third, if the

highlighted formula is atomic, then the sequent in which it occurs must be the conclusion

of the init rule: that is, the highlighted formula and the goal must be equal. Fourth and

finally, the contraction rule is responsible for selecting a formula on which to focus.

Note that during all steps in building this phase, the contraction rule may have to make

many choices: once that choice is taken, there is no longer any choice as to which left-

introduction rule gets applied. If we erase all sequents in the fragment above containing

an underlined formula, then the result is exactly one of the backward-chaining inference

rules from the previous section.

It is now possible to put these various notions together and define an abstract logic

programming language as a triple 〈D,G,�〉 such that for all finite subsets P of D and all

formulas G of G, P � G is provable if and only if the sequent P � G has a uniform proof.

Let D1 and G1 be collections of Horn clauses and goal formulas as described by lines

(2) and (3) in Section 2. Using basic proof theory arguments, it is easy to show that

〈D1,G1,�C〉 and 〈D1,G1,�I〉 are both abstract logic programming languages (here, �C
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and �I denote provability in classical and intuitionistic logics, respectively). Thus, Horn

clauses – using intuitionistic or classical logic – provide an example of an abstract logic

programming language. In a sense, Horn clauses form a setting that is so weak that it

cannot distinguish between classical and intuitionistic provability.

5.3 Higher-order Horn clauses

While the functional programming world has embraced higher-order programming since

its inception, logic programmers have often held such programming style at an arm’s

length. For example, Warren (1982) argued that higher-order predicate quantification

could be translated away and, as a result, an explicit higher-order extension to logic

programming was not needed. Similarly, HiLog (Chen et al . 1993) added mild extensions

to the syntax of Prolog to accommodate some aspects of higher-order programming, but

HiLog was restricted to maintain the first-order aspects of the underlying implementation

of Prolog.

Although Church did not use structural proof theory to introduce the higher-order

logic he called the Simple Theory of Types (1940), several proof-theoretic treatments of

the classical and intuitionistic versions of higher-order logic were developed in the decades

following its introduction (Takeuti 1953; Takahashi 1967; Girard 1971). When Gentzen’s

notion of sequent calculus is used to describe the classical and intuitionistic versions of

Church’s Simple Theory of Types, one gets an elegant proof system for very expressive

logics. There was also early work on implementing various aspects of theorem proving in

Church’s logic, including unification (Huet 1975), resolution (Andrews 1971; Huet 1973),

and general theorem proving (Andrews et al . 1984; Paulson 1989).

Starting with that earlier work, Nadathur and the author worked on trying for a gen-

uine, higher-order logic generalization to logic programming. They defined a notion of

higher-order Horn clauses (hohc), proved that they formed an abstract logic program-

ming language, and described the design of an interpreter for what was the basis of

an early version of λProlog (Miller and Nadathur 1986a; Nadathur 1987; Nadathur and

Miller 1990). In this new logic programming language, it is easy to write higher-order

programs, such as the following (using λProlog syntax).

type foreach, forsome (A -> o) -> list A -> o.

type mappred (A -> B -> o) -> list A -> list B -> o.

foreach P [].

foreach P [X|L] :- P X, foreach P L.

forsome P [X|L] :- P X; forsome P L.

mappred P [] [].

mappred P [X|L] [Y|K] :- P X Y, mappred P L K.

In the first two lines above, the types of three higher-order predicates are declared.

These type expressions follow a convention begun by Church (1940) in which o is used

to denote the type of formulas. Thus, a symbol of type nat -> o denotes a predicate of

one argument of type nat. Capital letters in type expressions denote type variables: thus,
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these type declarations are polymorphically typed in a sense similar to, say, ML (Milner

et al . 1990; Nadathur and Pfenning 1992).

Actually, hohc contained more than is necessary to capture higher-order relational pro-

gramming. For example, it includes quantification over non-primitive and non-relational

types as well as the simply-typed λ-calculus with equality and unification modulo

α, β, and η conversions. As a result, some sophisticated computations on syntactic

expressions containing bindings are possible in hohc, including, for example, program

transformations (Huet and Lang 1978) and natural language semantics (Miller and Na-

dathur 1986b). For those not interested in dealing with bindings in term structures,

Wadge (1991) and Bezem (2001) have developed restrictions to hohc that seem to cap-

ture what is needed for higher-order relational programming (including those displayed

above).

5.4 Hypothetical goals and modular structures

Consider the following definition for a larger class of definite (program) clauses and goal

formulas that extends the corresponding definition for Horn clauses and their goals (given

by lines (2) and (3) in Section 2) by adding implication and universal quantification to

goals.

G := A | � | G ∧G | ⊥ | G ∨G | ∃x.G | D ⊃ G | ∀x.G (4)

D := A | G ⊃ D | � | D ∧D | ∀x.D (5)

These definitions of G and D-formulas are mutually recursive. This definition is large

enough to contain the extended logic programming systems that were mentioned at the

beginning of Section 5. Compare the definition for D above with the following definition

of Harrop formulas (Harrop 1960):

H := A | B ⊃ H | � | H ∧H | ∀x.H,

where the syntactic variable B ranges over arbitrary first-order formulas. The D formulas

in (5) are such that any negatively occurring subformula of a D formula is such that

negatively occurring subformulas of them are again Harrop formulas. Motivated by this

observation, such D formulas are called first-order hereditary Harrop formulas (fohh)

(Miller et al . 1991).

Let D2 and G2 be collections of formulas described by lines (4) and (5). Using inductive

arguments with sequent calculus proofs, it can be shown that the triple 〈D2,G2,�I〉 is

an abstract logic programming language. Unlike the case with Horn clauses, the triple

〈D2,G2,�C〉 is not an abstract logic programming language. To see this, consider the

goal formula (p ⊃ q) ∨ p, where p and q are two propositional constants. Note that this

formula is classically provable since we have the following classical equivalences (using

only the associativity and commutativity of ∨ and the equivalence B ⊃ C ≡ ¬B ∨ C):

(p ⊃ q) ∨ p ≡ (¬p ∨ q) ∨ p ≡ q ∨ (¬p ∨ p) ≡ q ∨ (p ⊃ p).

Since the last of these formulas is true, they are all true and classically provable. However,

the sequent � (p ⊃ q) ∨ p does not have a uniform proof since uniformity requires that

this sequent is the conclusion of a right introduction of ∨ in which case either � p ⊃ q or

� p are provable: but, of course, neither of these sequents are provable.
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Goal formulas in fohh allow hypothetical goals: if we attempt to find a uniform proof of

the sequent P � D ⊃ G then that attempt leads to attempting to prove P, D � G. Note

that the left-hand side of sequents can get larger as one searches for a uniform proof. For

example, an attempt to find a uniform proof of the sequent

P � (D1 ⊃ (G1 ∧ (D2 ⊃ G2))) ∧G3 ∧ (D3 ⊃ G4)

must lead to attempts to prove the four sequents

P, D1 � G1 P, D1, D2 � G2 P � G3 P, D3 � G4.

Hence, the logic program (the left-hand side) for these subgoals can all be different. Such

an observation has been used to design a logic-based approach to modular programming

within logic programming: in particular, the goal D ⊃ G can be operationally interpreted

to mean that an individual goal can request that the program clauses in D are loaded

before attempting to prove G (Miller 1989).

The use of hypothetical goals to load code available for a certain scope is not supported

by classical logic. In particular, the intuitionistic logic interpretation of the goal (D ⊃ G)∨
H means that D is available during the search for the proof of G but not H. In classical

logic, this scoping breaks down since, classically, this formula is equivalent to G∨(D ⊃ H)

and to (D ⊃ (G ∨H)) (using the classical equivalences mentioned above). An overview

of modularity proposals for logic programming based on proof theory, Kripke semantics,

modal operators, and algebraic operators can be found in the survey by Bugliesi et

al. (1994).

Several researchers have used uniform proofs to motivate new proof procedures and new

logic programming designs. Nadathur (1993) presented a proof procedure for hereditary

Harrop formulas in which the interplay of unification and eigenvariables is explicitly

treated. Harland (1997) and Nadathur (1998; 2000) have also provided new proof systems

for classical logic based on using uniform proofs. Recently, such proofs have also been

used to describe a coinductive proof procedure for Horn clauses (Basold et al . 2019). As

we shall see in Section 7, uniform proofs have also been used to design various linear

logic programming languages.

6 Universal goals, binder mobility, and abstract data types

Logic programming based on hereditary Harrop formulas allows goals to be universally

quantified. We now describe the operational significance of that quantifier in logic pro-

gramming. Once again, Gentzen’s sequent calculus provides an elegant treatment for such

quantification using the notion of eigenvariable.

6.1 Eigenvariables as explicit bindings

The ∀R inference rule in Figure 1 replaces the universally quantified binding for x in its

conclusion with a free variable y in its premise. The 47th epigram of Alan Perlis (1982)

is worth repeating here: “As Will Rogers would have said, ‘There is no such thing as

a free variable.’ ” The wisdom of this epigram is that free variables are, in fact, bound

(or declared) somewhere, and that place should be made explicit. To this end, consider
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replacing the sequent Γ � E with Σ: Γ � E, where Σ is a list of distinct variables that are

considered bound over both Γ and E. Thus, the eigenvariables for a sequent are explicitly

bound over the sequent. The inference rules for the universal quantifier in Figure 1 are

then changed as follows.

Σ � t : τ Σ: Γ, [t/x]B � E

Σ: Γ, ∀xτ .B � E
∀L Σ, y : τ : Γ � [y/x]B

Σ: Γ � ∀τx.B ∀R

In the ∀R rule, the eigenvariable is now explicitly bound within the sequent. The ∀L
rule is also updated with the premise Σ � t : τ that ensures that the term t is built

from only the eigenvariable in the context Σ. If we limit ourselves to a simple single-

sorted first-order logic, then the type variable τ is set to just that sort. If we are working

with a multi-sorted logic, τ could range over the various sorts. Finally, if we are dealing

with the elementary type theory (Andrews 1974) subset of Church’s Simple Theory of

Types (Church 1940), then τ could range over all simple types, including higher-order

types.

The other inference rules are also given the Σ binder prefix, but there is no interaction

between those rules and this binder.

6.2 The λ-tree approach to syntax encoding

Those logic programming languages based directly on the sequent calculus have an ele-

gant and direct technique for specifying computations in which terms may include bind-

ings. This technique uses the three levels of bindings available in sequents: term-level

bindings (in, say, λ-terms), formula-level bindings (∀ and ∃ quantifiers), and proof-level

bindings (eigenvariables). Furthermore, logic specifications are capable of having such

bindings move between these different levels.

To illustrate this approach to computing with binders, consider an encoding of

untyped λ-terms into simply-typed terms. In particular, let type tm be the type of en-

coded untyped λ-terms and let app and abs be constants of types tm → tm → tm

and (tm → tm) → tm, respectively. The following three clauses define a function �·�
that translates untyped λ-terms into terms of type tm.

�(MN)� = (app �M� �N�) �λx.B� = (abs (λx.�B�)). �x� = x for variable x

Note that bound variables in the untyped λ-terms correspond to bound variables in terms

of type tm.

Consider now the problem of deciding whether or not an untyped λ-term can be given

a simple type. To represent simple types, we introduce the type ty and the constant

arrow : ty → ty → ty that represents the → in simple types. The following logic program

specifies the typeof M T predicate that should hold if and only if the untyped λ-term

M has simple type T (the type of typeof is tm → ty → o). Note that this specification

uses a program clause that contains both a universal quantifier and an implication in its

body.

∀B∀T∀T ′[typeof (abs B) (T → T ′) :- ∀x(typeof x T ⊃ typeof (B x) T ′)] ∧
∀M∀N∀T∀T ′[typeof (app M N) T :- typeof M (T ′ → T ) ∧ typeof N T ′]
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Now consider the following combination of inference rules that are built when type check-

ing a λ-abstraction.

Σ, x : Δ, typeof x T � typeof �B� T ′

Σ : Δ � ∀x (typeof x T ⊃ typeof �B� T ′)
∀R, ⊃ R

Σ : Δ � typeof �λx.B� (T → T ′)
backward chaining

The binding for x moves from the term-level, to the formula-level (as a quantifier), to the

proof-level (as an eigenvariable): these occurrences are underlined to highlight them. It

is in this sense that the sequent calculus supports the mobility of binders (Miller 2019):

that is, bound variables do not become free, instead, their scopes move.

Higher-order Horn clauses do not support the movement of bindings since no univer-

sally quantified goals nor eigenvariables are part of proof search involving them. In light

of this, λProlog, which originally started as an implementation of hohc was extended

to include both hypothetical and universally quantified goals in order to support binder

mobility.

The term higher-order abstract syntax (Pfenning and Elliott 1988) is often used to

describe systems in which the bindings in data structures are implemented using bindings

in a programming language. Unfortunately, this term is ambiguous since such identifica-

tion in the functional programming setting has almost no relationship with the approach

described above. For example, if one uses bindings in an ML-style language, then func-

tions are used to encode the syntax of terms with bindings. Such an encoding has many

shortcomings (Despeyroux et al . 1995; Hofmann 1999), and it does not generally support

checking the equality of syntax. Thus, the approach described above – providing binder

mobility and equality via (at least) α-conversion – has been named the λ-tree syntax

approach to differentiate it from the functional programming approach (Miller 2019).

The αProlog system (Cheney and Urban 2004) is a logic programming language

with a different approach to encoding and computing with syntax containing bindings.

Instead of using eigenvariables and binder mobility, αProlog is based on the logic of Pitts

(2003) which uses the Fraenkel-Mostowski permutation model of set theory to provide a

mechanism for generating and permuting the names used to encode binders.

6.3 Unification under a mixed prefix

Traditional unification can be seen as a technique for proving formulas of the form

∃x1 . . . ∃xn[t1 = s1 ∧ · · · ∧ tm = sm] (n ≥ 0),

where the quantifier prefix is purely existential. In principle, such unification problems

are sufficient to consider when building an interpreter for first-order Horn clauses. There

are at least two ways in which richer designs of logic programming languages force one

to consider performing unification under a mixed prefix, that is, where both existential

and universal quantifiers have the conjunction of equations in their scope.

One such extended design involves replacing first-order terms with simply-typed

λ-terms, as is the case of hohc. The equality theory of such typed terms is generally

assumed to contain not only the α, β, and η rules but also the ξ-rule, which states that

the two expressions λx.t = λx.s and ∀x.t = s are logically equivalent. Since the forward

direction of this equivalence is easily proved, the force of the ξ-rule is the converse. Using
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this equivalence, we can show that the unification problem ∃y[λz.y = λz.z] involving

λ-terms is equivalent to the mixed prefixed unification problem ∃y∀z[y = z], which is an

entirely first-order formula (assuming that the variables y and z have the same primitive

type). Furthermore, these formulas are, in fact, not provable (unless one has additional

axioms stating that the domain of quantification is a singleton set). Thus, more generally,

the unification of simply-typed λ-terms can be seen as having an ∃∀ prefix.

A second extended design arises in the simple use of fohh. For example, let Σ be some

list of eigenvariables and let P be the following set of fohh formulas.

{∀x. r x x, ∀y.[(∀z. r y z) ⊃ q y]}.
It should be clear that there is no proof of ∃x.q(x) from Σ and P. A proof attempt of this

goal can be sketched using the following arrangement of sequents and pseudo-inference

rules.

Σ � X : i

X = z
z : i : P � r X z

backward chaining

Σ: P � ∀z. r X z
∀R

Σ: P � q X
backward chaining

Σ: P � ∃x. q x
∃R

Here, i the a primitive type for quantification. We use X as a kind of logic variable:

instead of instantiating the existential quantifier with a term (as is the requirement in

Gentzen’s inference rules), we enter X as a kind of hole that we plan to fill later, but

we must remember that whatever fills that hole must be a term over the variables in

Σ. Finally, moving upwards through the series of sequents, we can conclude that we

have a proof if X is instantiated with z, which is an eigenvariable that is not a member

of Σ. Thus, these two conditions are contradictory, and, as a result, there is no proof.

Nadathur (1993) describes a unification procedure that works in the presence of the

quantifier alternations that occur during proof search with hereditary Harrop formulas.

The general problem of unification of simply-typed λ-terms under a mixed prefix can

be found in the work by the author (1992), which is itself an extension of the earlier

work by Huet on unification for typed λ-calculus (1975). While Skolemization is often

used in automated theorem provers to remove issues surrounding quantifier alternations,

an alternative exists that works with binder mobility. It is possible to rotate a universal

quantifier to the right over an existential quantifier: that is, ∀y∃x.B and ∃h∀y.[(hy)/x]B
represent the same unification problem. In the first, the term t instantiating x can contain

the eigenvariable associated with y, while in the second, h is instantiated with λy.t, which,

of course, does not contain y free. The type of the existentially quantified variable is raised

in this process: in particular, if y has type τ and x has type τ ′ then h has type τ → τ ′.
As a result, this operation is called raising, and it can be used to simplify all quantifier

prenexes to the ∃∀ kind (Miller 1992). (Raising is closely related to the ∀-lifting technique

use to deal with eigenvariables in Isabelle (Paulson 1989).) To illustrate raising, consider

the following unification problems where f is a function constant of two arguments.

∀x∃y∀z [(f z y) = (f z x)]

∀x∃y [λz(f z y) = λz(f z x)] (ξ)

∃h∀x [λz(f z (h x)) = λz(f z x)] (raising)

∃h [λxλz(f z (h x)) = λxλz(f z x)] (ξ)
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A solution is a substitution for the existentially quantified variables that makes the

equated terms the same (modulo αβη-convertibility). All of the above unification prob-

lems have their solutions in a one-to-one correspondence. In particular, the unique solu-

tion for the first problem is the substitution that maps y to x while the unique solution

for the last problem is the substitution that maps h to λx.x.

In the 1980s and earlier, there were many concerns that higher-order unification was too

complex to allow within the logic programming setting. While some concern is justifiable,

avoiding all forms of higher-order unification meant that the full story of unification in

quantificational first-order was not told. At the same time, early implementations of

higher-order unification in theorem provers indicated that it was not generally a bottle-

neck (Andrews et al . 1984; Paulson 1989). Part of the reason for the mild behavior of

higher-order unification seems to be that many uses of higher-order unification tend to

belong to the higher-order pattern unification fragment, which, like first-order unification,

is a decidable and unary subset of higher-order unification (Miller 1991a; Nipkow 1993).

In fact, systems such as Twelf (Pfenning and Schürmann 1999), Teyjus (Qi et al . 2015),

Elpi (Dunchev et al . 2015), and Minlog (Schwichtenberg 2006) can encounter arbitrary

higher-order unification problems but they only solve those unification problems that

fall within this fragment: in most practical situations, this approach to higher-order

unification is sufficient.

6.4 Abstract data types in logic programming

Similar to implications, universal quantifiers in goals can provide scope for term construc-

tors within goal formulas: exploiting such a scoping mechanism for constructors provides

a logic-based notion of abstract data type.

Judging from the name “eigenvariable”, one expects that they vary. However, eigenvari-

ables do not vary within a cut-free proof: they act more like constants given a particular

scope. It is only during cut-elimination that eigenvariables can vary since they are then

substituted by other terms. Thus, in the setting of proof search, it makes more sense to

view eigenvariables as scoped constants.

Assume that the variable y is free in the formula D but not in G. The interpreter

attempting to prove ∀y(D ⊃ G) will then introduce a new eigenvariable for y, say k,

and restrict all the current free variables so that they cannot be instantiated with terms

containing k. The program code [k/y]D can use the constant k to build data structures.

Of course, if we are building an interpreter that uses unification, care must be taken

to deal with the fact that some eigenvariables (constants) might be introduced before

or after logic variables are introduced. We addressed this issue in Section 6.3. In the

discussions above, the scope of y is, in a sense, only over D while we needed to use the

universal quantifier ∀y over the compound formula D ⊃ G, even though y is not free

in G. To provide for a more natural scoping mechanism, note that (∃x D) ⊃ G and

∀x(D ⊃ G) are equivalent (in intuitionistic logic) provided x is not free in G. Thus, we

can use an existential quantifier over program clauses to limit the scope of constants

used in those programs. Although (∃x D) ⊃ G is not a valid hereditary Harrop formula,

it is equivalent to ∀x(D ⊃ G), which is a valid such formula. To allow for the most

interesting examples, we shall allow higher-order quantification for such locally scoped

variables.
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Fig. 2. Two implementations of the predicates empty/enter/remove.

Consider the two existentially quantified conjunctions of Horn clauses displayed in Fig-

ure 2. In both of those formulas, the only constants that appear free are the predicates

empty, enter, and remove. The formula on the left is an implementation of a stack:

here, emp denotes the empty stack, and stk denotes the non-empty stack constructor.

In this case, the enter/remove predicates implement the last-in-first-out protocol. The

formula on the right is an implementation of a queue: here qu forms a difference list

in the usual style familiar to Prolog programmers (Clocksin and Mellish 1994). In this

case, the enter/remove predicates implement the first-in-first-out protocol. Note that

by hiding the internal implementation of the three predicates, it is possible to change

one of these implementations with the other without the calling code becoming bro-

ken. Of course, the calling code might well have a different behavior when we swap

implementations.

Hiding predicates is also possible using such higher-order quantification. For example,

the usual way to specify the relationship between a list and its reverse is often defined

using an auxiliary predicate, which can be hidden using a universal quantifier in a goal.

Consider the following hereditary Harrop formula.

∀L∀K. reverse L K :- ∀rev. (
[∀L. rev [] L L] ⊃

[∀X∀L∀K∀M. rev [X|L] K M :- rev L K [X|M ]] ⊃
rev L K [])

To prove an instance of the reverse relationship, this code instructs the proof search

mechanism to create a new eigenvariable that plays the role of an auxiliary predicate rev

and then loads two Horn clauses that define that auxiliary predicate before making a call

to that auxiliary predicate. As a result, it is impossible to access this auxiliary predicate

and its code from any other logic programming clauses that may be in the same context.

More examples of this approach to abstract data types in logic programming can be

found in Miller (2003) and Miller and Nadathur (2012).

7 Linear logic programming

All the previous developments in applying proof theory to logic programming took place

within classical and intuitionistic logic. When Girard introduced linear logic in (1987),

many researchers were eager to see if the story behind logic programming could be

extended further using this new logic (see the encyclopedia article (Di Cosmo and Miller

2019) for an overview of linear logic). This new logic also seemed to be an extension to

both classical and intuitionistic logic: as a result, there was the promise that linear logic

programming could subsume and extend the various forms of logic programming we have

already described. Also, the proof theory foundations of the logic programming paradigm
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had not provided any hints at how to account for either side-effects or concurrency: but

there were hints that linear logic should provide for exactly these missing features. Since

Girard gave a simple and clear presentation of linear logic using the sequent calculus,

many researchers started working on new logic programming designs almost immediately.

Below is a list of several logic programming languages that incorporate elements of

linear logic into their design. For more about linear logic programming, the reader is

referred to the author’s overview paper (2004).

• The LO (linear objects) language designed by Andreoli and Pareschi (1991) was

the first of those languages. LO was a kind of Horn clause logic where atomic

formulas were generalized to be more like a multiset of atomic formulas. The design

provided a natural notion of an object-as-process that has a built-in notion of

inheritance.

• Lolli is a simple extension to hereditary Harrop formulas (Hodas and Miller 1991;

1994). Essentially, the linear implication � is allowed to appear in the same way

as the intuitionistic implication can appear: at the top-level of both definite clauses

and goals. Lolli had the property that if a program never uses � as a goal formula,

then proofs and proof search are essentially the same as when using intuitionistic

logic. A new feature that Lolli provides over λProlog is a mechanism for describing

state and state change, including database updates and retraction.

• The Lygon system of Harland and Pym (1996) was designed following a proof-

theoretic analysis of goal-directed proof in linear logic (Pym and Harland 1994).

The application areas of Lygon and Lolli overlap significantly.

• The language ACL by Kobayashi and Yonezawa (1993; 1994) captures simple

notions of asynchronous communication by identifying the send and read primi-

tives with two complementary linear logic connectives.

• Lincoln and Saraswat developed a linear logic version of concurrent constraint

programming (Lincoln and Saraswat 1993; Saraswat 1993), and Fages, Ruet, and

Soliman have analyzed similar extensions to the concurrent constraint paradigm

(Ruet and Fages 1997; Fages et al . 1998).

• The Forum language (Miller 1996; Bruscoli and Guglielmi 2006) is essentially a

presentation of linear logic that allows for all of linear logic to be considered as

an abstract logic programming language. The proof-theoretic analysis of Forum

required lifting the notion of goal-directed proofs to deal with multiple-conclusion

sequents. Forum can be seen as the result of merging LO and Lolli.

An early observation about linear logic is that it supports multiset rewriting in

a rather direct fashion. Thus, linear logic programming can encode both Petri nets

(Gunter and Gehlot 1989; Kanovich 1995) and the process calculi, such as the π-calculus

(Miller 1993).

To illustrate how sequent calculus can be used to encode a small fragment of linear

logic (the fragment that deals with ⊃, �, and ∀), we present the LL proof system

in Figure 3. We continue to use ⊃ to denote (intuitionistic) implication and introduce

Girard’s linear implication �. Part of the informal meaning of linear implication is that

a proof of B � C is a proof of C in which the assumption B is used exactly once.

The corresponding informal meaning of the intuitionistic implication is that a proof of

B ⊃ C is a proof of C in which the assumption B is used any number of times, including
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Fig. 3. The LL proof system for ⊃, �, and ∀. In the ∀R rule, the variable y is not free in the
conclusion of that rule.

zero. To permit these two different accounting methods for assumptions, the left-hand

side of sequents is divided into two zones. In the sequent Γ ;Δ � E, the context Γ holds

the assumptions under the unbounded-use accounting, and the context Δ contains the

assumptions under the single-use accounting: we refer to Γ as the unbounded zone and

Δ as the bounded zone. Hodas and the author (1994) proved that LL (over the same

connectives) is sound and (relatively) complete for linear logic.

Girard’s original presentation of linear logic (1987) did not rely on using the two

implications � and ⊃. Instead, the implication B ⊃ C was defined as !B � C, where

! is one of linear logic’s exponentials. A formula marked by a ! can be contracted and

weakened when it appears on the left side of a sequent arrow. Dually, a formula marked

by the other exponential ? can be contracted and weakened when it appears on the right.

With these exponentials, linear logic can encode both classical and intuitionistic logics.

We have chosen not to use the exponentials of linear logic here, but if we did introduce

it, then the sequent B1, . . . , Bn ; Δ � E could be rewritten as !B1, . . . , !Bn,Δ � E.

When comparing the subset of the LJ proof system in Figure 1 with the LL proof

system in Figure 3, we see that the contraction and weakening rules are available only

in the unbounded zone, that the ⊃ R rule adds its hypothesis to the unbounded zone,

and that the � R rule adds its hypothesis to the bounded zone. Finally, also note

that the two left-introduction rules for implication treat their unbounded zones mul-

tiplicatively, meaning that every side-formula occurrence in the bounded context of

the conclusion occurs in a bounded zone of exactly one premise. Furthermore, in the

⊃ L rule, the bounded zone of the left premise must be empty. Also, note that the

only formula occurrences that are introduced on the left occur in the bounded zone.

The dereliction rule is responsible for moving a formula in the unbounded zone to the

bounded zone.

Figure 4 contains the simplification LL′ of LL in which we remove the cut-rule (since

we are generally interested here in cut-free proofs) and in which we fold the weakening

and contraction rules into other rules so these rules are never explicitly invoked. They

are still present in this simplified proof system, however. In particular, the init rule
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Fig. 4. The LL′ proof system results from building into the LL proof system the structural
rules of weak and contr.

allows the unbounded zone to be non-empty (since weakenings can be used to empty

that zone) and the two implication-left rules keep the the unbounded zone the same

in the premises and the conclusion. Also, the absorb rule links contraction with the

dereliction rule.

To illustrate how linear logic provides for new logic programs with new dynamics,

consider the following two linear logic formulas.

∀G.(sw on � G) � (sw off � toggle G)

∀G.(sw off � G) � (sw on � toggle G)

Linear logic contains the conjunction ⊗ (pronounced “tensor”) for which the equivalence

(A � B � C) ≡ ((A⊗B) � C) holds. Following the Lolli language conventions (Hodas

1994; Hodas and Miller 1994), we write the ⊗ as a comma and the converse of � as :-.

As a result, these two formulas can be written in the following Prolog-like style.

toggle(G) :- sw off, (sw on -o G).

toggle(G) :- sw on, (sw off -o G).

Using the proof system LL′ (Figure 4), we can build the following partial proof.

Γ ; sw off ,Δ � g

Γ ;Δ � sw off � g
� R

Γ ; sw on � sw on
init

Γ ; toggle g � toggle g
init

Γ ; (sw off � g) � (sw on � toggle g), sw on,Δ � toggle g
� L× 2

Γ ;∀G.(sw off � G) � (sw on � toggle g), sw on,Δ � toggle g
∀L

Γ ; sw on,Δ � toggle g
absorb

This derivation (and the analogous one using the other formula for toggle) essentially

interprets these two clauses for toggle as the following two admissible rules.

Γ ; sw off ,Δ � g

Γ ; sw on,Δ � toggle g and

Γ ; sw on,Δ � g

Γ ; sw off ,Δ � toggle g

Thus, the process of reducing the goal toggle g to g will flip the switch’s value stored as

the argument of (the presumably unique) sw-atom and will affect no other formula in

the bounded or unbounded zones. We can attempt something similar using intuitionistic

logic and hereditary Harrop: for example, consider the following specification for toggle.

∀G.(sw on ⊃ G) ⊃ (sw off ⊃ toggle G)

∀G.(sw off ⊃ G) ⊃ (sw on ⊃ toggle G)
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A proof fragment in intuitionistic logic starting with one of these formulas will look as

follows.

Γ, sw on, sw off � g

Γ, sw on � sw off ⊃ g
⊃ R

Γ, sw on � sw on
init

toggle g � toggle g
init

Γ,Γ, (sw off ⊃ g) ⊃ (sw on ⊃ toggle g), sw on, sw on � toggle g
⊃ L× 2

Γ, (sw off ⊃ g) ⊃ (sw on ⊃ toggle g), sw on � toggle g
several contr

Γ, ∀G.(sw off ⊃ G) ⊃ (sw on ⊃ toggle g), sw on � toggle g
∀L

Γ, sw on � toggle g
absorb

In this setting, we get the admissible rules

Γ, sw on, sw off � g

Γ, sw on � toggle g
and

Γ, sw on, sw off � g

Γ, sw off � toggle g
,

which is not what we expect from a proper switch.

The mechanism behind this simple example can easily be expanded to perform multiset

rewriting. Let H be the multiset rewriting system {〈Li, Ri〉 | i ∈ I} where for each i ∈ I

(a finite index set), Li and Ri are finite multisets. Define the relation M =⇒H N on

finite multisets to hold if there is some i ∈ I and some multiset C such that M is C �Li

and N is C �Ri. Let =⇒∗
H be the reflexive and transitive closure of =⇒H .

The H rewrite system can be encoded as a multiset of linear logic formulas as follows:

If H contains the pair 〈{a1, . . . , an}, {b1, . . . , bm}〉 then this pair is encoded as the clause

loop :- item a1, ..., item an,

(item b1 -o ... -o item bm -o loop).

If either n or m is zero, the appropriate portion of the formula is deleted. Here item is

a predicate of one argument that is used to inject multiset items into atomic formulas.

Operationally, this clause (destructively) reads the ai’s out of the bounded context, loads

the bi’s into that context, and then attempts another rewrite. Let ΓH be the set resulting

from encoding each pair in H. For example, if H = {〈{a, b}, {b, c}〉, 〈{a, a}, {a}〉} then

ΓH is the set of clauses

loop :- item a, item b, (item b -o item c -o loop).

loop :- item a, item a, (item a -o loop).

The following holds about this encoding of multiset rewriting: the relation

{a1, . . . , an} =⇒∗
H {b1, . . . , bm}

holds if and only if sequent Γ ;Δ, item(a1), . . . , item(an) � loop can be derived from the

sequent Γ ;Δ, item(b1), . . . , item(bm) � loop.

As these examples illustrate, the existence of formulas with limited use increases the

expressiveness of linear logic programs. Along with that increase in expressiveness comes

an increase in the cost of doing proof search. In particular, consider the � L inference

rule from Figure 4, namely,

Γ ;Δ1 � B1 Γ ;Δ2, B2 � E

Γ ;Δ1,Δ2, B1 � B2 � E
� L.

https://doi.org/10.1017/S1471068421000533 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000533


882 D. Miller

When reading this inference from bottom to top, one must decide to take the side-

formulas to B1 � B2 within the bounded context, say Δ, and split that multiset into

Δ1 (the formulas given to the left-premise) and Δ2 (the formulas given to the right-

premise). If Δ contains n occurrences of distinct formulas, then there are 2n possible

splittings available. It is possible to implement interpreters for linear logic programming

languages in which Δ is not split immediately into Δ1 and Δ2 but rather all of Δ is

given to, say, the proof attempt on the left premise. If that proof attempt is successful,

then Δ1 is taken to be those formulas consumed from the bounded context during that

attempt. The formulas that result from removing Δ1 from Δ yield Δ2. Such a lazy

splitting approach has been used in various implementations of linear logic programming

languages (Hodas and Miller 1994; Cervesato et al . 2000).

As we have seen, much of the novel expressiveness of linear logic programmings comes

from their ability to express multiset rewriting. In the specifications we have presented

above, there is, however, only one multiset that is subjected to rewriting, and that is

the multiset that forms the zone Δ in sequents of the form Γ ;Δ � E. An even more

expressive framework would allow the left-hand side to be divided into multiple zones

representing multiple multisets. In that setting, different parts of a logic program could

use different multisets for different purposes. It turns out that just such multiple-zone

sequents are possible in linear logic by noting that the exponentials of linear logic are not

canonical logical connectives. To explain what we mean by canonical, consider adding to

linear logic the logical connective &′ which has the same inference rules that exist for &.

In such an extended logic and proof system, it is easy to prove that B&C and B&′C are

logically equivalent formulas. As a result, we say that & is a canonical logical connective.

Nothing is gained by adding such a variant of &.

It is easy to show that all the connectives of linear logic are canonical except for

the exponentials ! and ?. That is, if we add a blue !b and a red !r to linear logic and

give them each the same inference rules that exist for !, we then have a more expres-

sive logic. Furthermore, it is possible to allow explicitly the contraction and weakening

rules to be applicable for formulas explicitly marked by, say, !b but not for !r. Danos

et al. (1993) proposed a linear logic system with such non-canonical exponentials and

illustrated their uses in the framework of the Curry-Howard correspondence. These non-

canonical exponentials are now called subexponentials (Nigam and Miller 2009). As we

have seen, the difference between the two zones on the left of sequents in Γ ;Δ � E

comes down to the fact that the formulas in Γ should be considered as having ! at-

tached to them while the formulas in Δ do not have ! attached. Thus, the existence

of n different subexponentials can now encode n + 1 zones on the left-hand side of se-

quents, and some of these zones will allow weakening and contraction (such as the Γ

zone), and other zones will allow neither of these structural rules (such as the Δ zone).

Similarly, expressions of the form !bB � C and !rB � C would provide new kinds

of implications. The additional expressiveness of subexponentials in the logic program-

ming setting has been developed a great deal in recent years: see the papers (Nigam

2009; Nigam and Miller 2009; Chaudhuri 2010a; Nigam et al . 2011; Olarte et al . 2015;

Despeyroux et al . 2016; Kanovich et al . 2019). Subexponentials have also been used to

encode concurrent process calculi (Nigam et al . 2017) and aspects of Milner’s bigraphs

(Chaudhuri and Reis 2015).
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Fig. 5. The LLf proof system. In these sequents, A denotes a syntactic variable for atomic
formulas.

8 Focusing and polarities

8.1 Extending two phases to linear logic

Once Girard introduced linear logic in (1987), Andreoli generalized the two-phase struc-

ture of uniform proofs (see Section 5.2) with the design of a focused proof system for

linear logic (Andreoli 1990; 1992). Two important insights distinguish focused proofs

from uniform proofs. First, Andreoli’s original focused proof system was defined for lin-

ear logic, which is more expressive than intuitionistic logic and contains an involutive

negation. Second, and more importantly, Andreoli’s phases were based on the notion of

invertibility and non-invertibility. From the proof search point-of-view, invertible rules

can be applied in a don’t-care-nondeterministic fashion, whereas the non-invertible rules

can be applied in a don’t-know-nondeterministic fashion. As it turns out, the distinction

between invertible and non-invertible inference rules is more fundamental than the dis-

tinction between left-hand side and right-hand side, especially in linear logic where the

systematic use of negation means that all sequents can be assumed to be one-sided.

Figure 5 presents a focused version of the LL′ proof system of Figure 4. This proof

system, which is a subset of the F proof system in Miller (1996), contains two kinds of

sequents. Sequents of the form Σ: Γ ;Δ � B are essentially the sequents that appear in

LL′ but in the LLf sequents of this style can only be the conclusion of right-introduction

rules or the decide or decide! rules. The second kind of sequent is of the form

Σ: Γ ;Δ ⇓ B � A

where A is an atomic formula. Here, the ⇓ provides the left-hand side of a sequent with

an additional zone between ⇓ and �: this new zone always contains exactly one formula.

Sequents containing a ⇓ are called focused sequents and they can only be the conclusion

of left-introduction rules or the init rule. Thus, we can see two phases in focused proof

construction. One phase involves only sequents containing ⇓ and having an atomic right-

hand side. The other phase involves only sequents that do not contain ⇓. If we revisit

the derivation in Section 5.2 containing underlined formulas, it is easy to rewrite that

derivation in the LLf proof system in such a way that the underlined formulas correspond

to the formulas next to the ⇓. The ⇓-phase corresponds to backward chaining and the

phase without the ⇓ corresponds to the goal-reduction phase of uniform proofs.

Andreoli’s focused proof system was for a version of linear logic that did not include

the � and ⊃ implications and, as a result, that proof system was one-sided (all formulas

are placed on the right of the sequent arrow). However, it is possible to revise Andreoli’s
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proof system to include both implications and identify the ⇓-phase with left-introduction

rules and the ⇓-free phase with right-introduction rules. This reorganization of focused

linear logic proofs is called the Forum logic programming language (Miller 1994; 1996).

This presentation of linear logic allows one to view logic programming using Horn clauses

(Section 5.2), hereditary Harrop formulas (Section 5.4), and Lolli (Section 7) all as subsets

of just the one, large logic programming language. The Forum presentation of linear

logic allows us to conclude that all of linear logic is an abstract logic programming

language (Miller 1996).

8.2 The dynamics of an abstract logic programming language

Recall that sequents are used to capture the state of a logic programming computation:

that is, the sequent Σ: P � G represents a configuration where the current logic pro-

gram is P, the current goal is G, and the current signature of eigenvariables (scoped

constants) is Σ. A natural and high-level characterization of logic programming lan-

guages is captured by the question: How richly can these configurations change during

the search for a proof? In other words, if Σ: P � G is the root of a derivation and

if Σ′ : P ′ � G′ is a sequent occurring above the root in that derivation, what is the

relationship between Σ and Σ′, between P and P ′, and between G and G′? Focused

proof systems, such as the LLf proof system of Figure 5, provides a natural and simple

way to answer this question. In particular, call a sequent of the form Σ: Γ ;Δ � A, for

atomic A, a border sequent. Such sequents occur between the goal reduction phase and the

backward-chaining phase. We can limit our questions about dynamics to just such border

sequents:

if Σ: Γ ;Δ � A is the root of a derivation and if Σ′ : Γ′ ; Δ′ � A′ is a border sequent

occurring above the root in that derivation, what is the relations between Σ and Σ′,
between Γ and Γ′, between Δ and Δ′, and between A and A′?

If Γ is a multiset of Horn clauses, then we can immediately say that Σ = Σ′, Γ = Γ′,
Δ = Δ′ and Δ must be, in fact, the empty multiset. Only the relationship between A and

A′ can be rich. That is, the left-hand side of the sequent is constant and global during the

entire computation. The only dynamics of computation must take place within atomic

formulas.

If Γ is a multiset of hereditary Harrop formulas, then we can immediately say that

Σ ⊆ Σ′, Γ ⊆ Γ′, Δ = Δ′ and Δ must be, in fact, the empty multiset. Thus, slightly richer

dynamics can take place in this setting since both the signature and the logic program

can grow as proof search progresses.

If Γ is a multiset of any formulas using ∀, ⊃, and �, then we can immediately say

again that Σ ⊆ Σ′ and Γ ⊆ Γ′ hold but that there is no simple relationship between Δ

and Δ′. The relationship between these two multiset sets can be, essentially, arbitrary

and depends on the nature of the logic programs available in that sequent.

8.3 Polarization applied to classical and intuitionistic logics

A standard presentation of linear logic does not involve implications (neither ⊃ nor �)

and, as such, a sequent calculus for it can use one-sided sequents. In that setting, it turns

out that the right-introduction rules for a given connective are invertible if and only if
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Fig. 6. The LJF′ proof system: LJF restricted to only ⊃ and ∀.

the right-introduction rules for the De Morgan dual of that connective are non-invertible.

Such a property suggests introducing the notion of the polarities of a logic connective

(Girard 1991; Andreoli 1992). In particular, a logical connective is negative if its right-

introduction rule is invertible, and a logical connective is positive if it is the De Morgan

dual of a negative connective.

Once polarity and focusing are described in terms of invertibility of inference rules, it

is possible to apply them to proof systems in other logics. For example, Girard (1991),

Danos et al. (1995), Curien and Munch-Maccagnoni (2010), and Wadler (2003) applied

these concepts to classical logic in order to develop well-structured notions of functional

programming in classical logic (via the Curry-Howard correspondence).

These concepts have also been applied in intuitionistic logic. For example, Herbe-

lin (1995) and Dyckhoff and Lengrand (2006) developed focused proof systems for in-

tuitionistic logic while the Ph.D. theses of Howe (1998) and Chaudhuri (2006) explored

more variations on focused proof systems for both linear and intuitionistic logics. Liang

and the author have developed focused proof systems for classical and intuitionistic first-

order logics – called LKF and LJF, respectively – which can account for these various,

earlier focused proof systems (Liang and Miller 2007; 2009).

To illustrate the use of LJF in our setting, consider the LJF′ proof system given in

Figure 6. This proof system is a subset of LJF and resembles the LLf . There are three

kinds of sequents.

1. unfocused sequents: Γ � B

2. left focused sequents: Γ ⇓B � A, with focus B

3. right focused sequents: Γ � A ⇓ , with focus A

Replacing ⇓ on the left with a comma and dropping ⇓ on the right yields a regular

sequent.

The formulas of LJF′ are given polarity as follows. Since the right rules for ⊃ and ∀ are

invertible, formulas of the form B1 ⊃ B2 and ∀x.B are negative. We shall assign a polarity

also to atomic formulas by allowing them to have an arbitrary (but fixed) polarity. Thus,

atomic formulas can be either positive or negative. In the more general setting, LJF has

more positive formulas (including disjunctions and existential quantifiers), but in this
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setting where we only consider implications and universal quantifiers, only atoms can be

positive formulas.

Uniform proofs, when restricted to the logical connectives for implication and universal

quantification, correspond to focused proofs where all atomic formulas are polarized

negatively.

The following result about LJF′ follows from the more general results for LJF given by

Liang and the author (2009). Let B be a first-order formula built from atomic formulas,

∀, and ⊃.

• If Γ � B is provable in LJ then for every polarization of atomic formulas, the

sequent Γ � B is provable in LJF′.
• If atoms are given some polarization and Γ � B is provable in LJF′, then Γ � B is

provable in LJ.

An immediate conclusion of this result is that the choice of the polarity of atoms does

not affect provability. As we shall see next, that choice can have a big impact on the

structure of proofs.

8.4 Characterizing forward and backward chaining

In the Curry-Howard correspondence, different control regimes for evaluation (e.g., call-

by-value and call-by-name) can be explained by different choices in polarizations in intu-

itionistic logic formulas (Brock-Nannestad et al . 2015; Esṕırito Santo 2016). In the proof

search setting, two familiar control strategies – top-down and bottom-up – can similarly

be explained by using two different polarizations of atomic formulas with the LJF proof

system. For example, consider the following partial derivation within LJF′.

Ξ1

Γ � r a b ⇓

Ξ2

Γ � r b c ⇓
Ξ3

Γ ⇓ r a c � A

Γ ⇓ r b c ⊃ r a c � A
⊃ L

Γ ⇓ r a b ⊃ r b c ⊃ r a c � A
⊃ L

Γ ⇓ ∀x∀y∀z(r x y ⊃ r y z ⊃ r x z) � A
∀L× 3

Here, A is some atomic formula, a, b, c are three terms, and the formula under focus in the

concluding sequent states that the r relation is transitive. To complete the construction

of this focused proof, we need to know the polarity of the atomic formulas r a b, r b c,

and r a c. If these atoms have been assigned the negative polarity, then Ξ3 is the initial

rule, and A is r a c. Also, Ξ1 and Ξ2 must end with the Release rule. As a result, the

inference rule constructed here is the following backward-chaining rule:

Γ � r a b Γ � r b c
Γ � r a c

On the other hand, if these atoms have been assigned the positive polarity then Ξ3 must

end in the Release rule, and Ξ1 and Ξ2 must be the initial rule, which implies that Γ

can be written as Γ′, r a b, r b c. As a result, the inference rule constructed here is the

following forward-chaining rule:

Γ′, r a b, r b c, r a c � A

Γ′, r a b, r b c � A

https://doi.org/10.1017/S1471068421000533 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000533


A Survey of the Proof-Theoretic Foundations of Logic Programming 887

The fact that these two choices of polarity for atoms yield these two styles of inference

rules was first published in the papers by Chaudhuri (2006) and Chaudhuri et al. (2008).

It is also possible for some atomic formulas to have positive polarity and some to have

negative polarity. For example, if the atoms r a b and r a c have negative polarity and

r b c has positive polarity then the inference rule built (from the focused derivation

above) is

Γ′, r b c � r a b

Γ′, r b c � r a c

The λRCC proof system (Jagadeesan et al . 2005) allows for mixing both forward chaining

and backward chaining in a superset of the hereditary Harrop fragment of intuitionistic

logic. In that proof system, forward chaining is used to encode constraint propagation as

found in concurrent constraint programming, and backward chaining is used to encode

goal-directed search as found in λProlog. While the λRCC proof system is not a focusing

system explicitly, Liang and the author (2009) showed that it can be accounted for

using LJF by polarizing the atomic formulas denoting constraints positive and polarizing

the remaining atomic formulas negative. Chaudhuri (2010b) also used flexible polarity

assignments to model magic set transformations.

Choosing between forward chaining and backward chaining can result in very different-

sized proofs. Consider, for example, the following specification of the Fibonacci series as

the set P of three Horn clauses.

fib 0 0, fib 1 1, ∀n∀f∀f ′[fib n f ⊃ fib (n+ 1) f ′ ⊃ fib (n+ 2) (f + f ′)]

If fn denotes the nth Fibonacci number then it is easy to prove that fib n m is provable if

and only if m = fn (assuming a suitable implementation of natural number arithmetic).

The impact of polarity assignment is on the structure of proofs. In particular, if all atomic

formulas are made negative, then there exists only one focused proof of fib n fn: this

one uses backward chaining, and its size is exponential in n. On the other hand, if all

atomic formulas are made positive, then there is an infinite number of focused proofs, all

of which use forward chaining: the smallest such proof has size linear in n.

Consider now the paper by Kowalski (1979) where he proposed the equation

Algorithm = Logic+ Control.

One component for controlling proof search with Horn clauses was identified in that

paper as “Direction (e.g., top-down or bottom-up)”. In the early literature on logic

programming, the connection between top-down and bottom-up search in Horn clauses

and resolution was known to be related to hyper-resolution (for bottom-up) and SLD-

resolution (for top-down). (See Warren (2018) for a description of how these two forms

of search have been integrated into a Prolog system using a tabling mechanism.) As the

discussion in this section makes clear, this particular component of control now has a

rather elegant proof-theoretic explanation: within a focused proof system, choose nega-

tive polarization for atoms to specify top-down (backward chaining) or choose positive

polarization for atoms to specify bottom-up (forward chaining). Choosing a mixture of

positive and negative polarity for atoms yields a mixture of these two search strategies.

Other aspects of control (of which there are many) are not captured by focusing classi-

cal, intuitionistic, and linear logics. For example, the left-to-right ordering of conjunctive

goals is not captured by focusing alone. For that, there have been some results surround-
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ing non-commutative logic (Lambek 1958; Retoré 1997; Abrusci and Ruet 1999; Polakow

and Pfenning 1999; Guglielmi 2007) and associated logic programming languages (Ruet

and Fages 1997; Polakow 2001). Still another aspect of control in logic programming is

to allow certain special goals to be treated as constraints that can be delayed and solved

by external solvers (Jaffar and Lassez 1987). This approach to constraints has been effec-

tively implemented in numerous Prolog systems, such as SWI-Prolog (Wielemaker et al .

2012) and in the Elpi implementation of λProlog (Guidi et al . 2019).

9 Advantages for connecting logic programming to proof theory

Using proof theory as a framework for describing and studying logic programming has

at least the following benefits.

1. This framework has allowed researchers to extend the role of logic in logic pro-

gramming beyond first-order Horn clauses to include much richer logics involving

higher-order quantification, intuitionistic logic, and linear logic.

2. This framework also makes it possible to see the simpler logic programs as part of

a richer logic (in the survey here, that logic is linear logic).

3. Proof theory has also made it possible to vividly compare the nature of functional

programming (as proof normalization) and logic programming (as proof search).

4. Given the often close relationship between type theory and the proof theory of

intuitionistic logic, there has been a strong flow of design principles and implemen-

tation techniques from logic programming to type systems: examples of such a flow

can be found in Pfenning (1988), Elliott (1989), Pfenning (1989), Felty and Miller

(1990), Pfenning (1991), and Cervesato and Pfenning (1996).

5. A satisfactory proof-theoretic treatment of Clark’s program completion (Clark

1978) was developed in the early 1990s using inference rules that worked directly

with equality and fixed points (Girard 1992; Schroeder-Heister 1993; McDowell and

Miller 2000). Those innovations allow sequent calculus proof systems to capture not

only negation-as-finite-failure but also a range of model checking problems (Heath

and Miller 2019).

Proving that cut elimination holds for a given sequent calculus proof system is probably

the most important meta-theoretical result for such a proof system. The cut-elimination

theorem usually implies the consistency of the logical system described by the proof

system, and it is usually the starting point for describing proof search strategies. It has

also been used to help in reasoning about logic programs as well. For example, collection

analysis of Horn clause logic programs can be done statically using linear logic and

cut-elimination (Miller 2008). The Abella theorem prover (Baelde et al . 2014) encodes

a two-level logic approach to reasoning about computation (Gacek et al . 2012). One

of these logic levels is for the logic programs used to specify computation; the second

logic level captures the first level’s metatheory using induction and coinduction. Two of

Abella’s tactics are based on the cut-elimination theorem for the logic specification level.

In many meta-theoretic proofs, these cut-elimination-based tactics immediately provide

proofs of key substitution lemmas, that is, lemmas stating that if a certain predicate

holds for a term, it also holds for all instances of that term (Gacek et al . 2012).
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Another advantage of basing a programming language within proof theory is that

complexity results regarding proof theory can be immediately applied to logic programs.

In particular, since it is known that any Turing computable function can be computed

using first-order Horn clauses (Tärnlund 1977), the first-order fragments of all the logic

programming languages we have seen are undecidable, since they all include provability

in Horn clauses. When we restrict to propositional logics, we have the following results:

satisfiability and provability in propositional Horn clauses is linear time (Dowling and

Gallier 1984), provability of propositional hereditary Harrop formulas is polynomial-space

complete (Statman 1979), and propositional linear logic is undecidable, even when there

are no propositional variables (Lincoln 1995).

In Section 2, we listed several shortcomings of Horn clause logic programming lan-

guages, such as Prolog. Some of these shortcomings are addressed, to some degree, by

linking logic programming more closely to proof theory. Probably the most significant

improvement to the logic programming paradigm is the inclusion of programming level

abstractions : as we have seen, the sequent calculus supports higher-order programming

(Section 5.3), modular program construction (Section 5.4), abstract syntax for data con-

taining bindings (Section 6.2), and abstract data types (Section 6.4). Making a connection

to linear logic also allows for certain forms of assert and retract to be provided (Sec-

tion 7). The use of the proof-theoretic notion of polarization and focused proof has also

provided descriptions of both bottom-up and top-down proof search as well as combina-

tions of these two (Section 8.4).

10 Prospects for logic programming

Logic programs have often been and continue to be deployed to build various kinds of

database systems, interpreters of other languages, parsers, and type inference engines: for

such examples, see the popular texts (Maier and Warren 1988; O’Keefe 1990; Clocksin

and Mellish 1994). Given the prominence of proof theory in this paper, the following

comments on the prospects for logic programming are limited to those tasks that demand

effective implementation of trustworthy logical deduction.

Traditionally, Prolog has not made a strong commitment to logical correctness given

the large number of non-logical primitives in it, ranging from assert/retract, to univ,

the cut control operator (!), negation-as-failure, and the absence of the occur-check. For-

tunately, more recent logic programming systems have put much more focus on imple-

menting sound logical reasoning. Systems such as Teyjus (Nadathur and Mitchell 1999;

Nadathur 2005), Elpi (Dunchev et al . 2015), miniKanren (Friedman et al . 2018), and

Makam (Stampoulis and Chlipala 2018), have made logical soundness a goal, at least for

core aspects of their implementations.

There are many places in the analysis of software, logic, and proof where logic pro-

gramming can be applied but where soundness is critical: we expand on several such

topics in the rest of this section.

10.1 Theorem proving

Several of today’s interactive theorem provers make use of LCF tactics and tacticals (Mil-

ner 1979; Gordon et al . 1979; Gordon 2000), which are themselves generally implemented
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using higher-order functional programs. With the advent of higher-order logic program-

ming languages, such as λProlog, the argument has been made that logic programming

would make for a more flexible and natural setting to implement such tactics and tacti-

cals, especially since the applications of tactics can fail and require backtracking (Felty

1989; 1993). More recently, the Elpi implementation of λProlog has been integrated into

Coq as a plugin (Tassi 2018) and used to help automate aspects of the Coq prover (Tassi

2019).

Early papers, such as those by Stickel (1988) and Wos and McCune (1991), point out

the rich connections between logic programming and automated deduction and the cross-

fertilizations of implementation techniques between those two domains. Some years later,

systems such as leanTAP (Beckert and Posegga 1995; Lisitsa 2003) and leanCop (Hodas

and Tamura 2001; Otten and Bibel 2003) were built around the notion of lean deduction

in which small Prolog programs were capable of capturing sound and complete theorem

provers for first-order logic.

10.2 Proof checking

The logic programming paradigm is a natural candidate for performing proof checking

(Miller 2017) for several reasons. First, there are many kinds of proof certificates in use

these days. In almost all cases, those certificates do not contain all the required details to

formally check a proof. Instead, many details are left implicit, and so the proof checker

will, in general, need to perform some forms of proof reconstruction. Here, standard

logic programming technology – unification and backtracking search – can be employed.

For example, a certificate might not contain the actual substitution terms needed to

instantiate a quantifier. Logic variables and unification can infer such substitution terms.

Similarly, claiming that a goal formula is already present in the context requires an index

into the context as the witness of that claim. Backtracking search can also be used to

find such a witness. Second, quantificational logic formulas and their proofs often contain

variable bindings to capture both quantifiers and eigenvariables. There are several logical

frameworks, in particular, higher-order hereditary Harrop formulas (by virtue of being

based on Church’s STT (1940) and the LF logical framework (Harper et al . 1993), that

provide a purely logic-based representation of such binding structures. Implementations

of such frameworks – λProlog and Twelf (Pfenning and Schürmann 1999) – treat binding

structures via both unification and backtracking search.

Early use of logic programming to implement proof checkers was explored within the

Proof Carrying Code project (Necula 1997; Appel and Felty 1999). In that context, logic

programming allowed for compact, flexible, and easy to understand proof checkers. Logic

programming was used as the core motivation of the foundational proof certificate (FPC)

project (Chihani et al . 2017). In that project, a proof certificate can be seen as a data

structure that incorporates control information for a simplistic sequent calculus theorem

prover. The FPC framework can be used as both a kernel itself (assuming that one is

willing to admit a logic programming implementation into the trusted base) or as part

of a toolchain that allows for the flexible manipulation of proof certificates. In the latter

setting, proof checking can be organized to transform a proof certificate with some details

missing into a fully detailed proof structure that could be given to existing and trusted

kernels, such as is found in Coq (Blanco et al . 2017).
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10.3 Software systems

If we consider programming as merely the activity of “writing and shipping code with the

hope that it does not do much harm” – which characterizes much about programming to

date – then it seems unlikely that logic programming languages will impact the building

of software systems. However, it seems clear that we should broaden the discipline of pro-

gramming to include many other activities that can improve the quality and correctness

of programming. Such activities can include automated testing, various kinds of static

analyses, program transformation and refinement, and proving partial or full functional

correctness of code. Once we add all of these activities to the programming discipline,

then logic programming can play a sizable role since it has important uses in all of these

additional activities.

Logic programming had early successful uses in the specification of the operational

semantics of programming language using either structural operational semantics

(Plotkin 1981; 2004) or natural semantics (Despeyroux 1986; Kahn 1987). For exam-

ple, the Typol subsystem (Despeyroux 1984; Clément et al . 1985; Despeyroux 1988) of

the Mentor (Donzeau-Gouge et al . 1984) and Centaur (Borras et al . 1988) systems com-

piled both dynamic and static semantic definitions of various programming languages into

Prolog in order to generate parsers, type checkers, compilers, interpreters, and debuggers.

Many of the early and most convincing logic programming applications in higher-

order, intuitionistic logic involved the mechanization of the meta-theory of functional

programming (Hannan 1990; Michaylov and Pfenning 1992; Hannan and Miller 1992;

Hannan 1993). Verifiable compilers have been described and implemented in Elf (Hannan

and Pfenning 1992) and in λProlog (Whalen 2005; Wang 2016; Wang and Nadathur 2016).

10.4 Reasoning directly with logic programs

Given that the logic programming specifications used to encode programming language

semantics and inference rules are concise and based on logic itself, there should be rich

ways to reason on such specifications directly. In the context of the Typol system, such

reasoning could be done by treating provable atomic goals as belonging to an inductive

data type (Despeyroux 1986). A more sophisticated approach to reasoning directly on

logic programming has been developed within the Abella theorem prover (Baelde et al .

2014). That prover includes such innovations as the ∇-quantifier (Miller and Tiu 2005;

Gacek et al . 2011) and the two-level logic approach to reasoning (Gacek et al . 2012). As

we mentioned above, the cut-elimination result for the object-logic (the logic program-

ming specification) is turned into a proof technique in Abella for reasoning about such

logic specifications.

10.5 A defense of declarative techniques

One advantage of having a proof theory for logic programming is that it sometimes

makes it possible to write compact, high-level specifications for which correctness is

easy to establish. At the same time, techniques such as partial evaluation (Lloyd and

Shepherdson 1991), program transformation (Pettorossi and Proietti 1994), and various

forms of static analysis can often be applied directly to specifications written using logical

expressions. As a result, rich manipulations of specifications are possible.
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As an example of how such manipulations can be applied to logic specifications in

a rich programming language, consider the following example, taken from Hannan and

Miller (1992). The specification of call-by-name evaluation of the untyped λ-terms can

be given as a binary relation using two higher-order Horn clauses and two constructors

(encoding the untyped λ-terms). Given its simplicity, the correctness of that specification

is easy to establish. Since that specification is written as logical formulas, a sequence of

transformations can be applied to that specification until it results in the specification of

an abstract machine in which an argument stack and De Bruijn numerals (De Bruijn 1972)

are used encode λ-terms. This latter specification can be written using only first-order

(binary) Horn clauses. Given the correctness of the initial specification and correctness

of the transformations used, the correctness of the derived low-level specification – which

has an effective implementation in Prolog – easily follows.

Similar examples can be found in Cervesato (1998), where aspects of the Warren ab-

stract machine were developed by the direct manipulation of higher-order logic specifi-

cations and in Pientka (2002), where proof theory techniques helped to design a strategy

for tabled evaluation of (higher-order) logic programs.

10.6 Further advances in proof theory

The relationship between logic programming and proof theory is not just in one direc-

tion. The author has documented in Miller (2021) several influences of logic programming

research on structural proof theory. One computational feature that is often desired in

the logic programming world is saturation: that is, one would like to know that for-

ward chaining from a given set of clauses will not yield new atomic facts being derived.

Saturation was a key component of the Gamma multiset rewriting programming lan-

guage (Banâtre and Métayer 1996) and the work on logical algorithms (Ganzinger and

McAllester 2001; 2002; Simmons and Pfenning 2008). Currently, structural proof theory

does not appear to have any techniques that can account for saturation.

Answer set programming (ASP), as described in papers by Brewka et al. (2011) and

Lifschitz (2008), is a form of declarative programming that describes computation as the

construction of stable models (Gelfond and Lifschitz 1988). The operational semantics

behind such search resembles Datalog’s bottom-up inference along with saturation and

the negation-as-failure approach to negation. While proof structures exist in this domain

(see, e.g., Marek and Truszczyński (1993) and Lifschitz (1996)), those structures are

seldom related to the proof structures found in structural proof theory (which has been

our focus here). Some of the proof-theoretic topics described in Sections 8.4 and 9 might

also relate proof structures to ASP. Schubert and Urzyczyn (2018) have considered initial

steps in that direction.

Finally, developing model-theoretic semantics for these rich proof-theory-inspired lan-

guages is interesting to considered. Lipton and Nieva (2018) have shown how to extend

the Kripke λ-models of Mitchell and Moggi (1991) to treat an extension to higher-order

hereditary Harrop with constraints. A Kripke-style model for Lolli was given in (Hodas

and Miller 1994). While Girard (1987) considered various forms of model theory seman-

tics for linear logic, his models have been hard to apply directly to logic programming:

an exception is the paper by Fages et al. (2001).
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11 Conclusion

Structural proof theory has played an essential role in understanding the nature and

structure of logic programming languages. This role has been significant when one wants

to have more expressive, dynamic, and modern versions of Prolog. The proof theory

of first-order and higher-order versions of intuitionistic and linear logics have provided

designs for logic programming languages that support higher-order and modular pro-

gramming, abstract data-types, and state. Additionally, the theory of focused proofs

provides a satisfying description of how to specify forward chaining and backward chain-

ing during proof search.

In 1991, Peter Schroeder-Heister (1991) and the author (1991b) (independently) wrote

opinion pieces in which they proposed that the sequent calculus was an appropriate

framework for exploring the semantics of logic in philosophical and computational set-

tings. The goal of those papers was to ensure that the term “semantics” was not just

understood in terms of model theory and denotational semantics. This survey outlines

the successes and methods that have arisen from using proof theory based on the sequent

calculus as a semantic framework for logic programming.
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D. Mundici, Eds. LNCS, vol. 713. Springer, 159–171.

https://doi.org/10.1017/S1471068421000533 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000533


896 D. Miller

Danos, V., Joinet, J.-B., and Schellinx, H. 1995. LKT and LKQ: sequent calculi for second
order logic based upon dual linear decompositions of classical implication. In Advances in Lin-
ear Logic, J.-Y. Girard, Y. Lafont, and L. Regnier, Eds. Number 222 in London Mathematical
Society Lecture Note Series. Cambridge University Press, 211–224.

Despeyroux, J. 1986. Proof of translation in natural semantics. In 1st Symposium on Logic in
Computer Science (LICS). IEEE, Cambridge, Mass, 193–205.

Despeyroux, J., Felty, A. and Hirschowitz, A. 1995. Higher-order abstract syntax in Coq.
In Second International Conference on Typed Lambda Calculi and Applications. Springer,
124–138.

Despeyroux, J., Olarte, C. and Pimentel, E. 2016. Hybrid and subexponential linear logics
technical report. In Proceedings of LSFA. ENTCS, vol. 332. Elsevier.

Despeyroux, T. 1984. Executable specification of static semantics. In Semantics of Data Types.
LNCS, vol. 173. Springer.

Despeyroux, T. 1988. TYPOL: A formalism to implement natural semantics. Research
Report 94, INRIA, Rocquencourt, France. Mar.

Di Cosmo, R. and Miller, D. 2019. Linear Logic. The Stanford Encyclopedia of Philosophy
(Summer 2019 Edition), Edward N. Zalta (ed.). https://plato.stanford.edu/archives/
sum2019/entries/logic-linear/.

Donzeau-Gouge, V., Huet, G. and Kahn, G. 1984. Programming environments based on
structured editors: the MENTOR experience. In Interactive Programming Environments,
D. R. Barstow, H. E. Shrobe, and E. Sandewall, Eds. McGraw-Hill.

Dowling, W. F. and Gallier, J. H. 1984. Linear-time algorithms for testing the satisfiability
of propositional Horn formulae. J. Log. Program. 3, 267–284.

Dunchev, C., Guidi, F., Coen, C. S. and Tassi, E. 2015. ELPI: fast, embeddable, λProlog
interpreter. In Logic for Programming, Artificial Intelligence, and Reasoning - 20th Interna-
tional Conference, LPAR-20, M. Davis, A. Fehnker, A. McIver, and A. Voronkov, Eds. LNCS,
vol. 9450. Springer, 460–468.

Dyckhoff, R. and Lengrand, S. 2006. LJQ: A strongly focused calculus for intuitionistic logic.
In Computability in Europe 2006, A. Beckmann and et al., Eds. LNCS, vol. 3988. Springer,
173–185.

Earley, J. 1970. An efficient context-free parsing algorithm. Communications of the ACM 13, 2,
94–102.

Elliott, C. 1989. Higher-order unification with dependent types. In Rewriting Techniques and
Applications. LNCS, vol. 355. Springer, 121–136.

van Emden, M. H. and Kowalski, R. A. 1976. The semantics of predicate logic as a program-
ming language. J. ACM 23, 4, 733–742.
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à l’élimination des coupures dans l’analyse et la théorie des types. In 2nd Scandinavian Logic
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