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FORCING CONSTRUCTIONS AND COUNTABLE BOREL
EQUIVALENCE RELATIONS

SU GAO, STEVE JACKSON, EDWARD KROHNE, AND BRANDON SEWARD

Abstract. We prove a number of results about countable Borel equivalence relations with forcing
constructions and arguments. These results reveal hidden regularity properties of Borel complete sections
on certain orbits. As consequences they imply the nonexistence of Borel complete sections with certain
features.

§1. Introduction. This paper is a contribution to the study of countable Borel
equivalence relations. We consider Borel actions of countable groups on Polish
spaces and study the orbit equivalence relations which they generate. Properties
such as hyperfiniteness, treeability, chromatic numbers, matchings, etc. have
received much interest both in ergodic theory and descriptive set theory. Typically,
investigations into these properties begin with the construction of Borel complete
sections possessing special properties. In this paper we introduce new methods
based on forcing techniques for studying Borel complete sections. We use forcing
constructions to prove the existence of certain regularity phenomena in complete
sections. This of course prevents the existence of complete sections with certain
features. These results generally fail if one is allowed to restrict to a comeager or
co-null set, and thus go beyond what is provable using those ideals. We note that
recent work of Thomas [17] and Marks [12] explore the use of Martin’s ultrafilter
and its generalizations as a largeness notion (see also [11] for other recent uses of
determinacy in the study of Borel equivalence relations).

Since the results of this paper were obtained, Seward and Tucker-Drob showed a
universality result for free actions of countable groups (Theorem 2.1). The referee
observed that this result could be used to give alternate proofs of our results. In
some cases this is just a cosmetic change to the forcing arguments, but in other cases
a quite different action of the group must be considered and the alternate proof
using the Seward and Tucker-Drob result seems like a genuinely different argument.
For this reason we have, with the referee’s permission, often given this alternate
argument in addition to, or instead of, the forcing argument.

Recall that a set S is a complete section for an equivalence relation E if S meets
every E-class. A classic result on complete sections is the Slaman–Steel lemma
which states that every aperiodic countable Borel equivalence relation E admits
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874 SU GAO ET AL.

a decreasing sequence of Borel complete sections Sn with empty intersection (this
result is stated explicitly as Lemma 6.7 of [9], where they attribute it to Slaman-Steel;
the proof is implicit in Lemma 1 of [16]). This result played an important role in their
proof that every equivalence relation generated by a Borel action of Z is hyperfinite.
A long-standing open problem asks if every equivalence relation generated by a
Borel action of a countable amenable group must be hyperfinite, and progress on
this problem is in some ways connected to strengthening the Slaman–Steel lemma.
In particular, constructing sequences of complete sections (“marker sets”) with
certain geometric properties is central to the proofs of [4, 14] that every equivalence
relation generated by the Borel action of an abelian, or even locally nilpotent, group
is hyperfinite. In particular, the constructions in [4, 14] build complete sections Bn
(facial boundaries) which are sequentially orthogonal, or repel one another, so that
the sequence Sn =

⋃
i>n Bi is decreasing and vanishes. Thus, the question of what

kinds of marker sets various equivalence relations can admit is an important one.
Our first theorem unveils a curious property which limits how quickly a sequence

of complete sections can vanish. In fact, this theorem says that if a sequence of
complete sections vanishes, then it must do so arbitrarily slowly.

Theorem 1.1. Let Γ be a countable group, X a compact Polish space, and Γ � X
a continuous action giving rise to the orbit equivalence relation E. Let (Sn)n∈N be a
sequence of Borel complete sections of E. If (An)n∈N is any sequence of finite subsets
of Γ such that every finite subset of Γ is contained in some An, then there is an x ∈ X
such that for infinitely many n we have An · x ∩ Sn �= ∅.

We remark that the above result is easily seen to be inherited from subspaces,
so one can instead simply require that X contain a compact invariant subset. In
particular, by results in [7, 8] the above result holds when X = F (2Γ), where F (2Γ)
is the set of points in 2Γ having trivial stabilizer.

This theorem was motivated by a similar result for the case when eachSn is clopen,
the proof of which is a straightforward topological argument without forcing. We
will define a forcing notion, called orbit forcing, that will allow us to give a proof of
Theorem 1.1 that is essentially a generalization of the topological proof.

We remark that, after learning of the above theorem, Conley and Marks obtained
another interesting result on the behavior of distances to sequences of complete
sections [1].

The orbit forcing can be used to obtain more results, the following being an
example.

Theorem 1.2. If B ⊆ F (2Γ) is a Borel complete section then B meets some orbit
recurrently, i.e., there is x ∈ F (2Γ) and finite T ⊆ Γ such that for any y ∈ [x],
T · y ∩ B �= ∅.

Again, if B is assumed to be clopen then the result follows from the fact that
minimal elements form a dense set in F (2Γ) [8, Theorem 5.3.6]. We find that the
most direct way to obtain this “Borel result” is to mimic the topological proof but
use forcing.

The above result can be strengthened in various ways. For example, in the case
of Γ = Zd we can require that the recurrences occur at odd distances (distance here
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FORCING CONSTRUCTIONS AND COUNTABLE BOREL EQUIVALENCE RELATIONS 875

refers to the taxi-cab metric induced by the �1 norm ‖(g1, ... , gd )‖ = |g1| + ··· +
|gd |).

Theorem 1.3. Let d ≥ 1. If B ⊆ F (2Z
d
) is a Borel complete section then B meets

some orbit recurrently with odd distances, i.e., there is x ∈ F (2Z
d
) and finite T ⊆

{g ∈ Zd : ‖g‖ is odd } such that for any y ∈ [x], T · y ∩ B �= ∅.

It is worth noting that Theorem 1.3, and in fact all of the forcing results in
this paper, can be proved using the orbit forcing method. However, we believe
that forcing arguments in general may provide a new path for studying countable
Borel equivalence relations. Thus, in order to demonstrate the flexibility of forcing
arguments in this setting, we define and use other forcing notions beyond the orbit
forcing. We choose to prove the above theorem by using a notion of an odd minimal
2-coloring forcing.

Another forcing notion we introduce is that of a grid periodicity forcing. Using
this forcing, we obtain the following result which reveals a surprising amount of
regularity in complete sections.

Theorem 1.4. Let d ≥ 1. If B ⊆ F (2Z
d
) is a Borel complete section then there is

an x ∈ F (2Z
d
) and a lattice L ⊆ Zd such that L · x ⊆ B .

If B ⊆ F (2Z
d
) is a Borel set but not a complete section, then there is x with

Zd · x ∩ B = ∅. Thus we have the following immediate corollary.

Corollary 1.5. Let d ≥ 1. If B ⊆ F (2Z
d
) is Borel then there is an x ∈ F (2Z

d
)

and a lattice L ⊆ Zd such that either L · x ⊆ B or L · x ∩ B = ∅.

Marks [11] has proved a similar result for free groups using Borel determinacy.
Also, after discussing Theorem 1.4 with him, he generalized Theorem 1.4 to all
countable residually finite groups [13]. His proof also uses forcing, though it uses
none of the forcing notions we introduce here. This again suggests that the flexibility
in choosing a forcing notion may be important for future applications to Borel
equivalence relations.

The above results can be viewed as ruling out certain Borel complete sections
(marker sets) with strong regularity properties. Alternatively, they can be viewed
as saying that Borel marker sets must, on some equivalence classes, exhibit
regular structure. In general, regular marker sets and structures are desirable in
hyperfiniteness proofs or Borel combinatorial results (e.g., in the study of Borel
chromatic numbers). The negative results stated below unveil a fine line between
what is possible and what is not possible.

In [4], the first two authors proved that all equivalence relations generated by Borel
actions of countable abelian groups are hyperfinite (this has since been extended to
locally nilpotent groups [14]). For the finite equivalence relations they construct,
the shapes of the classes at a sufficiently large scale look like rectangles. However, at
finer and finer scales the shapes appear to be increasingly fractal-like. We use forcing
to prove a claim made in [4] stating that this fractal-like behavior is necessary. This
fact indicates that hyperfiniteness results of this type have a necessary degree of
complexity. The theorem below is stated for rectangles but the proof works for any
reasonable polygon.
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Theorem 1.6. There does not exist a sequence Rn of Borel finite subequivalence
relations on F (2Z

2
) satisfying all the following:

(1) (regular shape) For each n, each marker region R of Rn is a rectangle.
(2) (bounded size) For each n, there is an upper bound w(n) on the size of the edge

lengths of the marker regions R in Rn.
(3) (increasing size) Letting v(n) denote the smallest edge length of a marker region

R of Rn, we have limn v(n) = +∞.
(4) (vanishing boundary) For each x ∈ F (2Z

2
) we have that limn �(x, ∂Rn) =

+∞.

Our last two negative results touch upon the theory of Borel chromatic numbers. It
is not difficult to show that F (2Z

2
) has Borel chromatic number strictly greater than

2. By using the odd minimal 2-coloring forcing, we show that in fact there cannot
exist any Borel chromatic coloring of F (2Z

2
) which uses two colors on arbitrarily

large regions.

Theorem 1.7. There does not exist a Borel chromatic coloring f : F (2Z
2
) →

{0, 1, ... , k} such that for all x ∈ F (2Z
2
) there are arbitrarily large rectangles R in

Z2 such that f(R · x) consists of only two elements of {0, 1, ... , k}.

A useful structure for the study of Borel graphs and chromatic numbers is the
notion of toast or “barrier” as named in [2]. For example, in [2] Conley and Miller
used barriers to prove that for a large class of Borel graphs G, the Baire-measurable
and �-measurable chromatic numbers of G are at most twice the standard chromatic
number of G minus one. In a similar fashion, the existence of a toast structure on
F (2Z

2
) would easily imply the existence of a Borel chromatic 3-coloring. As a

consequence of Theorem 1.1, we deduce that there is no toast structure which is
layered.

Corollary 1.8. There is no Borel layered toast onF (2Z
d
), i.e., there is no sequence

of finite subequivalence relations {Tn} ofE
Zd on some subsets dom(Tn) ⊆ F (2Z

d
) such

that

(0)
⋃
n dom(Tn) = F (2Z

d
).

(1) For eachTn-equivalence class C, and eachTm-equivalence classC ′ wherem > n,
if C ∩ C ′ �= ∅ then C ⊆ C ′.

(2) For each Tn-equivalence class C there is a Tn+1-equivalence class C ′ such that
C ⊆ C ′ \ ∂C ′.

We mention that unlayered toast (defined in Section 4) does exist and thus F (2Z
2
)

does have Borel chromatic number 3. This result will appear in [6].

§2. Preliminaries. In this section we present some preliminaries that will be used
throughout the rest of the paper. Other undefined notions can be found in [3, 10].

2.1. Countable Borel equivalence relations and group actions. In this paper we will
be concerned mainly with countable Borel equivalence relations. Let X be a Polish
space and E an equivalence relation on X. E is Borel if it is a Borel subset ofX × X .
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E is countable if each E-equivalence class is countable. For x ∈ X , we let [x]E denote
the E-equivalence class of x, i.e.,

[x]E = {y ∈ X : x E y}.

When there is no ambiguity we will omit the subscript and only write [x].
Countable Borel equivalence relations typically arise from orbit equivalence

relations of countable group actions. If Γ is a countable discrete group and Γ � X
is a Borel action of Γ on a Polish space X, then the orbit equivalence relation EXΓ
defined by

EXΓ = {(x, y) ∈ X × X : ∃g ∈ Γ (g · x = y)}

is obviously a countable Borel equivalence relation. Conversely, by a well-known
theorem of Feldman–Moore, every countable Borel equivalence relation is of the
form EXΓ for some Borel action Γ � X of a countable group Γ. For this reason,
whenever we speak of a countable Borel equivalence relation E we assume that there
has been fixed a Borel action of a countable group Γ � X so that E = EXΓ . For any
x ∈ X , note that [x] = Γ · x; we also refer to [x] as the orbit of x.

If Γ � X and Γ � Y are two actions of Γ on Polish spaces X and Y, respectively,
a Γ-map, or an equivariant map, from X to Y is a map ϕ : X → Y such that for all
g ∈ Γ and x ∈ X ,

ϕ(g · x) = g · ϕ(x).

If in addition ϕ is injective, it will be called a Γ-embedding or an equivariant
embedding.

For a countable group Γ, the Bernoulli(left)shift of Γ is the action Γ � 2Γ defined
by

(g · x)(h) = x(g–1h),

forx ∈ 2Γ andg, h ∈ Γ. The shift action is continuous and enjoys certain universality
properties. Consider the action Γ � 2Γ×� is defined by

(g · x)(h, n) = x(g–1h, n),

for x ∈ 2Γ×� , g, h ∈ Γ, and n ∈ �. A theorem of Becker–Kechris states that this
latter action is a universal Borel Γ-action. That is, for any Borel action Γ � X of Γ
on a Polish space X, there is a Borel Γ-embedding from X into 2Γ×� . In view of this,
any Γ-action on a Polish space X is Borel isomorphic to the action of Γ restricted
to an invariant Borel subset of 2Γ×� . In [15] Seward and Tucker-Drob showed the
following (the free part F (2Γ) of the shift action is defined below).

Theorem 2.1 [15, Theorem 1.1]. Suppose Γ is a countable group and Γ � X
a free Borel action on a Polish space X. Then there is an equivariant Borel map
ϕ : X → F (2Γ) from the action Γ � X to the action of Γ on F (2Γ).

A particularly important action for this paper is the shift action of Γ = Zd on
X = 2Z

d
. In this case we write E

Zd for the orbit equivalence relation EXΓ . We will

frequently restrict the action to the free part F (2Z
d
), and we will also write F (2Z

d
)
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878 SU GAO ET AL.

for the restriction of the orbit equivalence relation to the free part (which is also a
Polish space).

2.2. Aperiodicity, hyperaperiodicity, and minimality. Let Γ be a countable group,
X a Polish space, and Γ � X a Borel action. An element x ∈ X is aperiodic if for
any nonidentity g ∈ Γ, g · x �= x. The set of all aperiodic elements of X is called the
free part of X, and is denoted as F (X ). When F (X ) = X we say that the action is
free. The free part F (2Γ) of the shift action is a Polish space.

An element x ∈ X is hyperaperiodic if the closure of its orbit is contained in the
free part of X, i.e., [x] ⊆ F (X ). We have the following characterization.

Lemma 2.2 [7]. A point x ∈ 2Γ is hyperaperiodic if and only if for all eΓ �= s ∈ Γ,
there is a finite T ⊆ Γ such that

∀g ∈ Γ ∃t ∈ T x(gst) �= x(gt).

Hyperaperiodic points are also called 2-colorings. Unfortunately, in this paper
we will also consider graph colorings in the usual sense that adjacent vertices have
different colors. If k many colors are used, we will refer to such colorings as graph
k-colorings or chromatic k-colorings.

The action Γ � X is minimal if every orbit is dense, i.e., [x] = X for every x ∈ X .
In general, we call an element x ∈ X minimal if the induced action of Γ on [x]
is minimal. When X is a compact Polish space and the action is continuous, an
application of Zorn’s lemma shows that there always exist minimal elements. In
fact, when X is compact Polish (or even compact with a well-ordered base) we can
prove this in ZF (i.e., we don’t need any form of AC to prove this).

Fact 2.3 (ZF). Let X be a compact T2 topological space with a well-ordered base
{U�}�<	. Let Γ be a group and (g, x) �→ g · x ∈ X a continuous action of Γ on X.
Then there is an x ∈ X which is minimal.

If the action of Γ is only Borel, then the same conclusion holds if X is compact
and Polish [8, Lemma 2.4.4].

Proof. LetK0 = X . We define by transfinite recursion on the ordinals a sequence
of non-empty compact sets Kα ⊆ X which are decreasing, in that if α < � then
K� ⊆ Kα , and also invariant, in that if x ∈ Kα then [x] = {g · x : g ∈ Γ} ⊆ Kα .
For α limit we set Kα =

⋂
�<α K� . For the successor case, suppose Kα is defined,

and is non-empty, compact, and invariant. IfKα is minimal, we are done. Otherwise
there is a least � < 	 such that U� ∩Kα �= ∅ and Kα – sat(U�) �= ∅ (here sat(U ) =
{y : ∃x ∈ U∃g ∈ Γ y = g · x} is the saturation of U under the equivalence relation
on X generated by Γ). This exists since we are assuming there is a non-empty,
compact (hence closed), invariant K � Kα . Let Kα+1 = Kα – sat(U�). Since the
action of Γ is continuous, sat(U�) is open, so Kα+1 is non-empty and compact. It is
also invariant (the difference of two invariant sets), and properly contained in Kα .
As the sets Kα are decreasing, the sequence must terminate in some Kα which is
minimal. �

Corollary 2.4 (ZF). A continuous action of a Polish group Γ on a compact Polish
space X has a minimal element.
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In the case of 2Γ, minimality is captured by the following combinatorial condition,
which is well known and follows from a simple compactness argument. We will use
the following fact repeatedly.

Lemma 2.5 (cf., e.g., [8]). A point x ∈ 2Γ is minimal if and only if for every finite
A ⊆ Γ there is a finite T ⊆ Γ such that

∀g ∈ Γ ∃t ∈ T ∀a ∈ A x(gta) = x(a).

It was proved in [8] that minimal 2-colorings exist on every countable group Γ.

2.3. Borel complete sections, Borel graphs, and geometry on orbits. For a Polish
space X with a countable Borel equivalence relation E, a complete section S is a
subset of X that meets every orbit of X, i.e., for any x ∈ X , S ∩ [x] �= ∅. Complete
sections are frequently built to posses properties of geometric significance and for
this reason are informally called marker sets.

A countable equivalence relation on a standard Borel space X is called hyperfinite
if there is an increasing sequence of Borel equivalence relations

R0 ⊆ R1 ⊆ R2 ⊆ ···

on X with all Rn-equivalence classes finite, such that E =
⋃
n Rn.

We mostly focus our attention on complete sections of the free part F (2Γ) of
Bernoulli shifts Γ � 2Γ. The following useful consequence of Theorem 2.1 allows
us to sometimes draw useful conclusions by considering other Γ-actions.

Fact 2.6. Suppose P is a collection of sequences of subsets of Γ. Then the following
are equivalent:

(1) For every sequence Bn of Borel complete sections of the shift action of Γ on
F (2Γ), there exists anx ∈ F (2Γ) so that the sequencen ∈ N �→ {� ∈ Γ : � · x ∈
Bn} is in P.

(2) There exists a free Borel action Γ � X of Γ on a Polish space X such that
for every sequence B ′

n of Borel complete sections of this action, there exists an
x ∈ X so that the sequence n ∈ N �→ {� ∈ Γ : � · x ∈ B ′

n} is in P.

Proof. We show (2) implies (1). By Theorem 2.1 there is a Γ-equivariant Borel
map φ : X → F (2Γ). If (Bn)n∈N is a sequence of Borel complete sections for F (2Γ),
then B ′

n = φ–1(Bn) is a sequence of Borel complete sections for X. By (2), there is
x ∈ X so that the sequence n �→ {� ∈ Γ: � · x ∈ B ′

n} is in P. Hence, φ(x) ∈ F (2Γ)
and the sequence n �→ {� ∈ Γ: � · φ(x) ∈ Bn} = {� ∈ Γ: � · x ∈ B ′

n} is in P. �

The following notions and terminology are tools to study the geometric structures.
Fix d ≥ 1. For an element g = (g1, ... , gd ) ∈ Zd , let

‖g‖ =
d∑
i=1

|gi |.

The metric induced by this norm is often called the taxi-cab metric. If x, y ∈ F (2Z
d
)

are in the same orbit, then there is a unique gx,y ∈ Zd with gx,y · x = y, and we define
�(x, y) = ‖gx,y‖. If y �∈ [x], we just let �(x, y) = +∞. This � is thus a distance
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880 SU GAO ET AL.

function that is a metric on each orbit. For A ⊆ F (2Z
d
) we also define �(x,A) =

min{�(x, y) : y ∈ A}. If A is a complete section, then �(x,A) < +∞ for any x.
In general, for any finitely generated group Γ with a finite symmetric generating

set S (meaning �–1 ∈ S for every � ∈ S), a number of standard objects can be
associated with the space 2Γ. First, there is the Cayley graph CS(Γ) = (Γ, D) with
Γ as the vertex set and with the edge relation D defined by

(g, h) ∈ D ⇐⇒ ∃� ∈ S (g = �h).

The Cayley graph induces a Borel graph CS(2Γ) = (2Γ, D̃) on 2Γ, where the edge
relation D̃ is defined as

(x, y) ∈ D̃ ⇐⇒ ∃� ∈ S (x = � · y).

The geodesics in CS(2Γ) give a distance function �Γ, i.e., �Γ(x, y) is the length of
the shortest path from x to y in CS(2Γ). Note that the distance function � defined
above for 2Z

d
is an example of the more general �Γ, with S being the set of standard

generators for 2Z
d
.

If A ⊆ 2Γ, the boundary of A, denoted ∂A, is the set

∂A = {x ∈ A : ∃� ∈ S � · x �∈ A}.

§3. Orbit forcing. We start with a very general forcing construction in which one
generically builds an element in a Polish space with a countable Borel equivalence
relation.

Definition 3.1. Let E be a countable Borel equivalence relation on a Polish space
X, and let x ∈ X . The orbit forcing Px = PEx is defined by

Px = {U ⊆ X : U is open and U ∩ [x]E �= ∅}

with its elements ordered by inclusion, that is, U ≤ U ′ iff U ⊆ U ′.

Since U ∩ [x] �= ∅ iff U ∩ [x] �= ∅, we can view the sets U ∩ [x] as the objects
in the forcing notion, in which case the forcing notion Px can simply be viewed as
ordinary Cohen forcing on the closed subspace Y = [x] of X. Thus, as with usual
Cohen forcing, we can regard forcing arguments using Px as category arguments on
the space [x]. Nevertheless, we will see that the forcing proofs can be more intuitive
than category arguments.

We employ throughout the usual metamathematical convention/abuse that we
avoid talking about countable transitive models M and pretend that we can force
over V (we can replace V in the arguments by such an M).

As remarked in the previous section, we can view the countable Borel equivalence
relation E as coming from a Borel action of a countable group Γ, and view the
space X as a certain invariant Borel subset of 2Γ×� . Now if G is Px-generic over V,
the space XV [G ] continues to be a standard Borel space and EV [G ] continues to be
a countable Borel equivalence relation. Moreover, the generic G can be identified
with an element xG ∈ XV [G ]. With a slight abuse of terminology we will refer to xG
as a generic element of X for the orbit forcing Px . Note that we always have that
xG ∈ [x]E , where both the orbit and the closure are computed in V [G ].
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As a first application of the orbit-forcing we present a general result, Theorem
3.4, about sequences of complete sections in equivalence relations generated by
continuous actions of countable groups on compact spaces. This includes the case
of Bernoulli shift actions on 2Γ and F (2Γ) since there exist compact invariant sets
X ⊆ F (2Γ) [7, 8]. First we recall a well-known definition and fact.

Definition 3.2. Consider a Borel action of a countable group Γ on a Polish space
X. A point x ∈ X is recurrent if for every open set U ⊆ X with U ∩ [x] �= ∅, there
is a finite T ⊆ Γ so that for all y ∈ [x] there is t ∈ T with t · y ∈ U .

Lemma 3.3. Let Γ be a countable group, X a compact Polish space, and Γ � X a
continuous, minimal action. Then every x ∈ X is recurrent.

Proof. Fix a point x ∈ X and a non-empty open set U with U ∩ [x] �= ∅.
Enumerate Γ as �1, �2, ... and set Tn = {�i : 1 ≤ i ≤ n}. Towards a contradiction,
suppose that for every n there is xn ∈ [x] with Tn · xn ∩U = ∅. Since X is compact,
there is an accumulation point y of the sequence xn. Now for any i ∈ N we have
�i · xn �∈ U for every n ≥ i . Since Γ acts continuously and U is open, it follows
that �i · y �∈ U . Thus the orbit of y does not meet U and hence is not dense, a
contradiction to the minimality of the action. �

Theorem 3.4. Let Γ be a countable group, X a compact Polish space, and Γ � X
a continuous action giving rise to the orbit equivalence relation E. Let (An)n∈N be a
sequence of finite subsets of Γ such that every finite subset of Γ is contained in some
An. Let (Sn)n∈N be a sequence of Borel complete sections of E. Then there is an x ∈ X
such that for infinitely many n we have An · x ∩ Sn �= ∅.

Proof. Since X is compact, we may fix anx ∈ X which is minimal. LetP = Px be
the corresponding orbit forcing. Let p = U ∩ [x] ∈ P and fixN ∈ N. By minimality
of x, there is a finiteT ⊆ Γ such that for all z ∈ [x] there is a t ∈ T with t · z ∈ U . Let
n > N be such thatT –1 ⊆ An. Let G be generic forPwith corresponding realxG . The
statements that ∀z ∈ [x] (Sn ∩ [z] �= ∅) and ∀z ∈ [x] (T · z ∩U �= ∅) are Π1

1 and so
by absoluteness continue to be true inV [G ]. Since xG ∈ [x], there is a y ∈ [xG ] ∩ Sn.
So there is a t ∈ T with t · y ∈ U , and t–1 · (t · y) ∈ Sn. Since t · y is also generic,
there is a q ≤ p such that q � An · ẋ ∈ Sn. This shows 1 � ∃∞n (An · ẋ ∩ Sn �= ∅).
Thus there are infinitely many n such that An · xG ∩ Sn �= ∅, and by absoluteness
there is a z ∈ V ∩ [x] such that An · z ∩ Sn �= ∅ for infinitely many n. �

We have the following immediate corollary concerning complete sections in
F (2Z

d
).

Corollary 3.5. Let f : N → N be such that lim supn f(n) = +∞. Let {Sn} be a
sequence of Borel complete sections of F (2Z

d
). Then there is an x ∈ F (2Z

d
) such that

for infinitely many n we have �(x, Sn) < f(n).

Proof. Let x be any 2-coloring (or hyperaperiodic element) in 2Z
d
. ThenX = [x]

is a compact invariant subspace of F (2Z
d
). Apply Theorem 3.4 to X withAn = {� ∈

Zd : ‖�‖ < f(n)}. �
Remark 3.6. (1) The proof of Theorem 3.4 still works if each Sn is just assumed

to be absolutely Δ1
2, instead of Borel. By this we mean there are Σ1

2 statements ϕ and
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� which define Sn, andX – Sn and such thatϕ,� continue to define complimentary
sets in all forcing extension V [G ] of V.

(2) The proof of Theorem 3.4 shows that we may weaken the hypothesis of
Corollary 3.5 that the Sn are complete sections to the statement that for each
x ∈ F (2Z

d
) and for each n there is an m ≥ n such that Sm ∩ [x] �= ∅. However, we

need to assume now that lim infn f(n) = +∞.

As we mentioned above, a forcing argument using Px is essentially the same as a
category argument on the subspace [x] of the Polish space X. In Theorem 3.7 we
will illustrate this by using this alternate approach.

As a consequence of the methods of Theorem 3.4 we are able to obtain some
results on the existence of recurrent points.

Theorem 3.7. Let Γ be a countable group, X a compact Polish space, Γ � X a
continuous action, Y a Polish space, and Γ � Y a Borel action. Let ϕ : X → Y be a
Borel equivariant map. Then there is an x ∈ X such thatϕ(x) is a recurrent point of Y.

Proof. By replacing X with an invariant subspace and using Corollary 2.4 we
may assume that Γ � X is minimal. Fix a countable base V for Y. For each V ∈ V
the preimageϕ–1(V ) is Borel and hence there is a (possibly empty) open setUV ⊆ X
withUV�ϕ–1(V ) meager. By the Baire category theorem,X ′ = X \

⋃
�∈Γ

⋃
V∈V � ·

(UV�ϕ–1(V )) is non-empty. Fix any x ∈ X ′. We claim that ϕ(x) is recurrent.
Consider an open set W ⊆ Y with W ∩ [ϕ(x)] �= ∅. Then there is V ∈ V with
V ⊆W and V ∩ [ϕ(x)] �= ∅. So ϕ–1(V ) ∩ [x] �= ∅ and our choice of x implies
UV ∩ [x] �= ∅. By Lemma 3.3 x is recurrent, so there is a finite set T ⊆ Γ with
T · y ∩UV �= ∅ for all y ∈ [x]. The definition of X ′ then gives T · y ∩ ϕ–1(V ) �= ∅

for all y ∈ [x]. We conclude that T · y ∩W �= ∅ for all y ∈ [ϕ(x)]. Thus ϕ(x) is
recurrent. �

Corollary 3.8. For any countable group Γ, any Borel action Γ � Y of Γ on a
Polish space Y, and any Borel equivariant map ϕ : F (2Γ) → Y , there is an x ∈ F (2Γ)
such that ϕ(x) is recurrent.

Proof. By [7, 8], there is an invariant compact set X ⊆ F (2Γ). Now apply
Theorem 3.7 to X. �

Corollary 3.9. Let � be a Polish topology on F (2Γ) having the same Borel sets
as the standard topology. Then there is a �-recurrent point.

Corollary 3.10. If B ⊆ F (2Γ) is a Borel complete section then B meets some
orbit recurrently, i.e., there is x ∈ F (2Γ) and finite T ⊆ Γ such that for any y ∈ [x],
T · y ∩ B �= ∅.

Proof. Let � be a Polish topology on F (2Γ) with B ∈ � and having the same
Borel sets as the standard topology (cf. [3, Section 4.2]). Apply Corollary 3.9. �

In Theorem 7.4 we will strengthen Corollary 3.10 in the case Γ = Zd by showing
that on some orbit B must contain a lattice.

§4. Borel layered toast. In this short section we present another application of
Corollary 3.5 on the non-existence of certain types of strong marker structure on
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F (2Z
d
). The name “toast” for the type of structure defined below was coined by

Miller. We will define two versions of this notion, the general or “unlayered” toast
structure, and the more restrictive notion of “layered” toast. These are both strong
types of marker structures to impose on the orbits of F (2Z

d
). We can consider

both the Borel as well as the clopen versions of these notions, which leads to four
separate questions concerning the existence of these structures. It turns out that a
Borel unlayered toast structure does exist, but the answers are no for all the other
existence questions. We present the proof for the nonexistence of Borel layered toast
here; the other results are presented in [5, 6].

We note that the notion of toast arose naturally through its connections
with interesting problems in Borel combinatorics. For example, in [6] we use
Borel unlayered toasts to construct a Borel chromatic 3-coloring of F (2Z

d
) (and

thus showing that F (2Z
d
) has Borel chromatic number 3). In this construction,

the regions between the toast layers (that is, the points in a Tn class minus⋃
m<n dom(Tm)) are chromatically 2-colored. Theorem 6.9 later in this paper will put

strong restrictions on chromatically 2-colored regions of Borel colorings in F (2Z
2
).

Toast structures have been constructed modulo meager sets and modulo �-null sets
by Conley and Miller and used to bound the Baire-measurable and �-measurable
chromatic numbers of many Borel graphs [2].

First we make precise the notion of a toast marker structure.

Definition 4.1. Let {Tn} be a sequence of subequivalence relations of E
Zd on

some subsets dom(Tn) ⊆ F (2Z
d
) with each Tn-equivalence class finite. Assume⋃

n dom(Tn) = F (2Z
d
). We say {Tn} is a (unlayered)toast if:

(1) For each Tn-equivalence class C, and each Tm-equivalence class C ′ where
m > n, if C ∩ C ′ �= ∅ then C ⊆ C ′.

(2) For each Tn-equivalence class C there is m > n and a Tm-equivalence class
C ′ such that C ⊆ C ′ \ ∂C ′.

We say {Tn} is a layered toast if, instead of (2) above, we have

(2′ ) For each Tn-equivalence class C there is a Tn+1-equivalence class C ′ such
that C ⊆ C ′ \ ∂C ′.

Figure 1 illustrates the definitions of layered and unlayered toast.

Theorem 4.2. There is no Borel layered toast on F (2Z
d
).

Proof. Suppose {Tn} were a sequence of Borel subequivalence relations of E
Zd

on some subsets dom(Tn) ⊆ F (2Z
d
) forming a layered toast structure on F (2Z

d
).

For each n let ∂Tn be the union of all boundaries of the Tn-equivalence classes.
For x ∈ F (2Z

d
), let fx : N → N be defined by fx(n) = �(x, ∂Tn) if x ∈ dom(Tn)

and fx(n) = 0 otherwise. This is well-defined as each Tn-equivalence class is finite.
Since {Tn} is a layered toast, by (2′) we have dom(Tn) ⊆ dom(Tn+1) for all n. For
x ∈ F (2Z

d
), let n0 be large enough so that x ∈ dom(Tn0). We claim that for n ≥ n0

that fx(n) < fx(n + 1). To see this, let n ≥ n0, and let a = fx(n). Let g ∈ Zn with
‖g‖ ≤ a. It follows easily from the definitions of a and ∂Tn that g · x isTn-equivalent
to x (if we choose a path p from �0 to g of length a, then by an easy induction along
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Figure 1. (a) Layered toast. (b) Unlayered toast.

the path we have that g ′ · x is Tn-equivalent to x for all g ′ in p). So, from property
(2′) we have that g · x /∈ ∂Tn+1. Thus, �(x, ∂Tn+1) > a. So, for all x ∈ F (2Z

d
) and

all sufficiently large n (which may depend on x) we have fx(n) < fx(n + 1).
If we let f : N → N be the function f(n) =

√
n, then for all x ∈ F (2Z

n
) we

have that for all but finitely many n ∈ N that �(x, ∂Tn) > f(n). This violates
Corollary 3.5. �

§5. Bounded geometry of marker regions. In this section we prove a nonexistence
theorem for marker regions in F (2Z

2
) that are of regular shape. A version of this

theorem was stated without proof as Theorem 3.5 of [4].
Before stating the theorem we make some comments about its significance.

Suppose E is a finite subequivalence relation of F (2Z
n
). Since the action is free

and Zn is abelian, it makes sense to speak of the shape of an E-equivalence class
[x]E . This is the equivalence class (under translation by elements of Zd ) of the
finite set A ⊆ Zn given by A = {g ∈ Zn : g · x E x}). We also call the E-equivalence
classes marker regions.

In the proof [4] of the hyperfiniteness of abelian group actions, the essential
ingredient is the construction of orthogonal marker regions for F (2Z

<�
). Given

a sequence d1 < d2 < ··· of distance scales, a sequence of finite subequivalence
relations En with marker regions Rn was constructed which witnessed the
hyperfiniteness of F (2Z

<�
) in the sense that if xE y then for large enough n we

have xEn y. Equivalently, for any x ∈ F (2Z
<�

), the distance ϕx(n) = �(x, ∂Rn)
from x to the boundary of its region in Rn goes to infinity. A key aspect of the
construction is that the marker regions R ∈ Rn become increasingly fractal-like as
n increases. At scale dn each R ∈ Rn is roughly a rectangle, but at the smaller scales
di the region R has increasingly irregular boundary.
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Figure 2. The construction of the condition q.

It is natural to ask if the fractal-like nature of the construction is necessary.
Theorem 5.1 says that it is. We state the result for rectangles for simplicity, but the
argument also applies to polyhedra with a bounded number of sides.

Theorem 5.1. There does not exist a sequence Rn of Borel finite subequivalence
relations on F (2Z

2
) satisfying all the following:

(1) (regular shape) For each n, each marker region R of Rn is a rectangle.
(2) (bounded size) For each n, there is an upper bound w(n) on the size of the edge

lengths of the marker regions R in Rn.
(3) (increasing size) Letting v(n) denote the smallest edge length of a marker region

R of Rn, we have limn v(n) = +∞.
(4) (vanishing boundary) For each x ∈ F (2Z

2
) we have that limn �(x, ∂Rn) =

+∞.

Proof. We sketch a simple Cohen forcing/category proof of the result. Let P be
Cohen forcing to add an element of 2Z

2
, so conditions p are finite functions from

Z2 to {0, 1}, and are ordered by extension. Let p ∈ P and fix n0 ∈ N. By extending
p we may assume dom(p) is a rectangle centered at (0, 0), say with maximum side
length ‖p‖. Suppose q ≤ p is constructed as shown in Figure 2, where we stagger
the vertical offsets of the rectangles (which are copies of p) by 1 as we move to the
adjacent column to the right. Note that if q is any condition constructed in this
manner and L is a horizontal line segment of points in Z2 ∩ dom(q) with length
greater than 2‖p‖2, and L is not within ‖p‖ of the boundary of dom(q), then for
one of the copies p′ of p in q we will have that p′ is centered at a point of L.

Let n > n0 be large enough so that v(n) > 2‖p‖2. Extend p to a condition q by
the above staggering pattern so that q has dimensions greater than 3w(n). If xG is
a generic extending q, then for some R ∈ Rn ∩ [xG ] we will have that one of the
horizontal boundary segments of R will have length ≥ v(n) and will be contained
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in q (and not within ‖p‖ of the boundary of dom(q)). Thus, one of the copies p′

of p in q is centered on ∂R. Since the shift of a generic is also generic, there is an
r ≤ q with r � ∃n > n0 (ẋG ∈ ∂Rn). This shows that for infinitely many n we have
ẋG ∈ ∂Rn which contradicts (3). �

We now present an alternate proof due to the referee of Theorem 5.1 using Fact 2.6.

Alternate proof of Theorem 5.1. We will make use of Fact 2.6. Let

X = lim←−Z2/(3nZ× 2nZ) = {f ∈
∏
n

Z2/(3nZ× 2nZ) : ∀n ϕn(f(n + 1)) = f(n)},

where ϕn : Z2/(3n+1Z× 2n+1Z) → Z2/(3nZ× 2nZ) is the canonical homomorphism.
Consider the action ofZ2 on X defined by the rule ((a, b) · f)(i) = f(i) + [(a, a + b)].
Since 3n and 2n are relatively prime, by the Chinese remainder theorem, for every
[(i, j)] ∈ Z2/(3nZ× 2nZ) there is k ∈ N with [(k, k)] = [(i, j)]. Hence, for every non-
empty basic open set U, there is a finite S ⊆ Z such that

⋃
k∈S(k, 0) ·U = X .

Suppose a sequence Rn of finite Borel subequivalence relations satisfies conditions
(1)–(3). We claim that for comeager many x, there are infinitely many n such that
x ∈ ∂Rn (hence condition (4) must fail ). By the Baire category theorem, it suffices to
show that for every N ∈ N the set of x with x ∈ ∂Rn for some n ≥ N is comeager.

Fix N and fix a non-empty basic open set U. As above, fix a finite set S ⊆ Z

with
⋃
k∈S(k, 0) ·U = X . By (3) we can fix n ≥ N with v(n) ≥ supk∈S |k|. Set B =

{x ∈ X : ∀k ∈ S (– k, 0) · x ∈ ∂Rn}. Since v(n) ≥ supk∈S |k|, B meets the boundary
of every Rn-class. So B is a complete section and therefore must be non-meager as
X =

⋃
�∈Z2 � · B . In particular, B is non-meager in

⋃
k∈S(k, 0) ·U = X and therefore⋃

k∈S(– k, 0) · B is non-meager in U. Of course,
⋃
k∈S(– k, 0) · B ⊆ ∂Rn by definition

of B, so ∂Rn is non-meager in U. It follows that the set of x with x ∈ ∂Rn for some
n ≥ N is non-meager in every non-empty basic open set, and is therefore comeager.

The alternate proof given above has the advantage that it did not need the bounded
size (assumption (2)) condition. It is also possible to give a forcing proof which
shows this stronger result. Briefly, construct x ∈ F (2Z

2
) which is x-minimal. By this

we mean that if a pattern p ∈ 2[–n,n]2 appears in x, then there is a kp ∈ N such
that for any y ∈ [x] there is a k ≤ kp such that (k, 0) · y is in the neighborhood
Np determined by p. This can be done, for example, by letting x be the limit of xn,
where xn is defined on a domain [an, bn] × Z and has a vertical period pn, and letting
xn+1 be obtained from xn by placing adjacent copies of xn, with all possible vertical
shifts ≤ pn, and then changing the values on the right-most vertical line to have
period pn+1 > pn and such that the nth non-zero shift sn ∈ Z2 – {(0, 0)} will not be
a period. If Px is the orbit-forcing corresponding to x, then an argument similar to
that above shows that 1 � ∃∞n (ẋG ∈ ∂Rn). It is not immediately clear if (2) can
be eliminated for the more general statement about polygons.

§6. Minimal 2-coloring forcing on F (2Z
d
). We introduce a forcing Pmt which we

call the minimal two-coloring forcing and a variantPomt , the odd minimal two-coloring
forcing, and use them to obtain several results. Pmt is a natural forcing to generically
add an xG which is a minimal 2-coloring. While this forcing can be defined for any
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countable group, we describe it here just for the group Zd , and in fact take d = 2 as
the general case is entirely similar.

Definition 6.1. The minimal2-coloring forcing Pmt on Z2 consists of conditions

p = (p, n, t1, ... , tn, T1, ... , Tn,m,f1, ... , fm, F1, ... , Fm),

where m, n ∈ N, p ∈ 2<Z
2

with dom(p) = [a, b] × [c, d ] for some a, b, c, d ∈ Z,
t1, ... , tn ∈ Z2 – {(0, 0)}, f1, ... , fm ∈ 2<Z

2
, and T1, ... , Tn, F1, ... , Fm are finite

subsets of Z2 such that the following conditions are satisfied:

(a) (2-coloring property) For any 1 ≤ i ≤ n and g ∈ dom(p) there is � ∈ Ti
such that g + �, g + ti + � ∈ dom(p) and p(g + �) �= p(g + ti + �).

(b1) (minimality) For any 1 ≤ j ≤ m and g ∈ dom(p) there is � ∈ Fj such
that g + � + dom(fj) ⊆ dom(p) and for all u ∈ dom(fj), p(g + � + u) =
fj(u).

(b2) (minimality with flips) For any 1 ≤ j ≤ m and g ∈ dom(p) there is � ∈ Fj
such that g + � + dom(fj) ⊆ dom(p) and for all u ∈ dom(fj), p(g + � +
u) = 1 – fj(u).

We let n(p), �t(p), etc. denote the components of p.
If p, q ∈ Pmt , we define q ≤ p iff q ⊇ p, n(q) ≥ n(p), m(q) ≥ m(p), ti(q) = ti(p)

and Ti(q) = Ti(p) for all 1 ≤ i ≤ n(p), and fj(q) = fj(p) and Fj(q) = Fj(p) for
all 1 ≤ j ≤ m(p).

Properties (a) and (b1) will ensure the generic xG is respectively a 2-coloring and
minimal, while (b2) will aid in the arguments. We now prove a few simple lemmas
which show that Pmt does indeed add a minimal 2-coloring in 2Z

2
. As the proofs of

the lemmas are straightforward, we give sketches, leaving some details to the reader.

Lemma 6.2. For any g ∈ Z2, the setDg = {q ∈ Pmt : g ∈ dom(q)} is dense in Pmt .

Proof. Let p ∈ Pmt and g ∈ Z2. We need to find q ≤ p with g ∈ dom(q). Let
q be obtained by tiling a large rectangle in Z2 containing g with copies of p. Let
n(q) = n(p) and likewise for the other components. It is easy to check that (a), (b1),
and (b2) are still satisfied by q. �

Ifp ∈ 2<Z
2
, we let p̄ ∈ 2<Z

2
be defined by dom(p̄) = dom(p) and p̄(g) = 1 – p(g)

for g ∈ dom(p). We call p̄ the “flip”of p.

Lemma 6.3. For any t ∈ Z2 – {(0, 0)} the set

Et = {q ∈ Pmt : ∃1 ≤ i ≤ n(q) ti(q) = t}
is dense in Pmt .

Proof. Let t = (t1, t2) ∈ Z2 – {(0, 0)} and p ∈ Pmt . We construct q ≤ p with
t = ti(q) for some 1 ≤ i ≤ n(q). Let q ∈ 2Z

2
be obtained by tiling a large rectangular

region with copies of p, say using a (2a + 1) × (2a + 1) array of copies of p,
except for the center copy where we use instead p̄. We assume a > max{t1, t2}.
We let n(q) = n(p) + 1, tn(q) = t, and Tn(q) = [– w,w] × [– w,w] where w is the
maximum side length of q, and the other components of q and p are equal. For
any g ∈ dom(q) there is a � ∈ Tn(q) such that g + � is in the center copy of p̄, and
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g + t + � is not in the center copy. If q(g + �) �= q(g + t + �) then we are done,
and otherwise there is a �′ so that g + �′ is in a copy of p adjacent to the center
copy, in the same relative position, and such that neither g + �′ nor g + t + �′ are
in the center copy. We then have q(g + �′) = 1 – q(g + �) = 1 – q(g + t + �) = 1 –
q(g + t + �′), since g + t + � and g + t + �′ are in the same relative positions in
copies of p (and not the center copy). This shows (a) for q, and (b1) and (b2) are
easy. �

Lemma 6.4. For any finite set A ⊆ Z2, the set

DA = {q ∈ Pmt : ∃1 ≤ j ≤ m(q) A ⊆ dom(fj(q))}
is dense in Pmt .

Proof. Let p ∈ P and A ⊆ Z2 be finite. From Lemma 6.2 we may assume that
A ⊆ dom(p). Let q consist of p together with a copy of p̄ immediately to the right. Let
m(q) = m(p) + 1, Fm(q) = [– w,w] × [– w,w] where w is the maximum dimension
of q, and fm(q) = p � A. Then (b1) trivially holds form(q) and (b2) holds since the
right copy is p̄. �

In fact, the above proof gives the following lemma.

Lemma 6.5. For any p ∈ Pmt , the set

Dp = {q ∈ Pmt : ∃1 ≤ j ≤ m(q) p ⊆ fj(q)}
is dense below p in Pmt .

Proof. As in the previous proof, define q to be a tiling with one copy of p and a
copy of p̄ to the right. �

Putting these lemmas together we have the following.

Lemma 6.6. If xG is generic for Pmt , then xG is a minimal 2-coloring.

Proof. Lemma 6.2 gives that xG ∈ 2Z
2
. Lemma 6.3 gives that xG is a 2-coloring.

To see that xG is minimal, let A ⊆ Z2 be finite, and let f = xG � A. Let p ∈ G be
such that dom(p) ⊇ A. From Lemma 6.5 there is a q ∈ G with f ⊆ fj for some
1 ≤ j ≤ m(q). We then have that Fj(q) witnesses the minimality condition for A,
that is, for all g ∈ Z2 there is a t ∈ Fj(q) such that xG(g + t + u) = f(u) for all
u ∈ dom(f) = A. �

Using Lemma 6.6 and the proof of Theorem 3.4 we can get a direct proof of
Corollary 3.5 which is self-contained and does not rely on the a priori construction
of a minimal 2-coloring.

We next define the variation Pomt.

Definition 6.7. The odd minimal 2-coloring forcing Pomt is defined exactly as Pmt
in Definition 6.1 except that we add the requirement that if dom(p) = [a, b] × [c, d ]
then both b – a + 1 and d – c + 1 are odd. That is, the rectangle representing the
domain of p must have odd numbers of vertices on each of the sides.

The following result intuitively states that any Borel complete section in F (2Z
2
)

has an odd recurrence on some orbit.
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Theorem 6.8. Let O = {g ∈ Z2 : ‖g‖ is odd}. If B ⊆ F (2Z
2
) is a Borel complete

section then there is x ∈ F (2Z
2
) and finite T ⊆ O such that for any y ∈ [x], T · y ∩

B �= ∅.

Proof. Let xG be a generic real for Pomt . Since BV [G ] continues to be a Borel
complete section, there is g0 ∈ Z2 such that g0 · xG ∈ B . Since g0 · xG is also generic,
we may assume g0 = (0, 0), that is, xG ∈ B . Let p ∈ G with p � ẋG ∈ B . Note that
for any q ≤ p there is an r ≤ q such that r contains two disjoint copies of p at an odd
distance apart. We can, in fact, get r by placing three copies of q next to each other,
since dom(q) is a rectangle with an odd number of vertices on each side. This implies
that there is a q ∈ G with q ≤ p and such that q contains two disjoint copies of p
an odd distance apart. Since xG is minimal, there is N ∈ N such that for all g ∈ Z2

there is a � ∈ Z2 with ‖�‖ ≤ N such that � · (g · xG) ∈ Uq , where Uq is the basic

open set in 2Z
2

determined by q. We may assume N is greater than the maximum
dimension of dom(q). Fix any y ∈ [xG ]. Fix � with ‖�‖ ≤ N such that � · y ∈ Uq .
In particular � · y ∈ Up. Let h ∈ O be such that ‖h‖ ≤ N and h · (� · y) ∈ Up. Since
� · y and h · (� · y) are also generic, they are both in B. One of ‖�‖, ‖h + �‖ is odd
so we are done, letting T be all elements of O of norm ≤ 2N . �

Alternate proof of Theorem 6.8. We will make use of Fact 2.6. Consider the
canonical action of Z2 on the inverse limit

X = lim←−Z2/(3nZ)2 =

{
f ∈

∏
n

Z2/(3nZ)2 : ∀n ϕn(f(n + 1)) = f(n)

}
,

whereϕn : Z2/(3n+1Z)2 → Z2/(3nZ)2 is the canonical homomorphism. It is easy to see
that X is compact and that the action is free, continuous, and minimal. Now fix a Borel
complete section B. We must have that B is non-meager as otherwiseX =

⋃
�∈Z2 � · B

would be meager. Consequently, there is a non-empty basic open set U such that B is
comeager in U.

Since U is basic open, there is a finite partial function p with domain k ∈ N such
that U = {f ∈ X : f ⊇ p}. Hence,

⋃
�∈T ′ � ·U = X where

T ′ = {(n,m) ∈ Z2 : 0 ≤ n,m < 3k}.

Now fixing g = (3k, 0) we have that g ·U = U and thus (� + g) ·U = � ·U for all
� ∈ Z2. Now setting

T = {� ∈ T ′ : ‖�‖ is odd} ∪ {� + g : � ∈ T ′ and ‖�‖ is even},

we have that every element of T has odd length and
⋃
�∈T � ·U = X . Now fix a

point x in the comeager set X \
⋃
�∈Z2 � · (U \ B). For any y ∈ [x] we have y ∈ X =⋃

�∈T � ·U and hence there is � ∈ T with �–1 · y ∈ U . Moreover, our choice of x
implies that �–1 · y �∈ U \ B . Hence �–1 · y ∈ B as desired.

The next theorem is about Borel chromatic k-colorings of F (2Z
2
). It says that

there does not exists a Borel chromatic k-coloring f of F (2Z
2
) such that on every

orbit there are arbitrarily large regions on which f induces a chromatic 2-coloring.
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Theorem 6.9. Suppose f : F (2Z
2
) → {0, 1, ... , k – 1} is a Borel function. Then

there is an x ∈ F (2Z
2
) and anM ∈ N such that if the map t �→ f(t · x) is a chromatic

2-coloring on [a, b] × [c, d ], then min{b – a, d – c} ≤M .

Proof. This follows easily by considering a generic xG for Pomt as in the proof
of Theorem 6.8. Alternatively, we give the following proof using Fact 2.6.

Consider the natural action ofZ2 on the inverse limitX = lim←−Z2/(3nZ)2. Suppose

f : X → {0, 1, ... , k – 1} is a Borel function. As X =
⋃k–1
i=0 f

–1(i), we can fix i so
that B = f–1(i) is non-meager. Let U be a non-empty basic open set such that B
is comeager in U. Since U is basic open, there is n ∈ N such that � ·U = U for all
� ∈ (3nZ)2. By the Baire category theorem the set B ′ =

⋂
�∈(3nZ)2 � · B is comeager

in U. Fix anyx ∈ B ′ and note thatf(� · x) = i for all � ∈ (3nZ)2. SetM = 2 · 3n and
consider a rectangle [a, b] × [c, d ] with b – a, d – c > M . Then there is � ∈ (3nZ)2

with �, � + (3n, 0) ∈ [a, b] × [c, d ] and hence f(� · x) = i = f((� + (3n, 0)) · x). Of
course, since (3n, 0) has odd length, any chromatic 2-coloring of [a, b] × [c, d ] would
have to assign them different colors. Therefore the restriction of f to {g · x : g ∈
[a, b] × [c, d ]} cannot be a chromatic 2-coloring. �

§7. Grid periodicity forcing. We introduce another variation of the minimal
2-coloring forcing which will show that Borel complete sections in F (2Z

d
) must

have orbits on which highly regular structure is exhibited. We will take d = 2 for
the following arguments for simplicity, though the arguments in the general case are
only notationally more complicated.

Definition 7.1. Let n be a positive integer. The grid periodicity forcing Pgp(n)
is defined as follows. A condition p ∈ Pgp(n) is a function p : R \ {u} → {0, 1}
whereR = [a, b] × [c, d ] is a rectangle inZ2 withw = b – a + 1, h = d – c + 1 both
powers of n, and u ∈ R. We write R(p), w(p), h(p), u(p) for the corresponding
objects and parameters.

We define q ≤ p iffR(q) is obtained by a rectangular tiling by copies ofR(p) and
if c ∈ R(q) is in the copy R(p) + t and c – t �= u(p), then q(c) = p(c – t). Also,
u(q) must be equal to one of the copied translates of u(p).

Figure 3 illustrates the extension relation for Pgp.

Lemma 7.2. Let xG be generic for Pgp. Then xG is a minimal 2-coloring.

Proof (sketch). To see xG is a 2-coloring, fix s ∈ Z2 \ {(0, 0)}. The set

Ds = {p ∈ Pgp : ∃g ∈ dom(p) (g + s ∈ dom(p) and p(g) �= p(g + s))}

is easily dense in Pgp. Let p ∈ Ds ∩G , and say R(p) has dimensions w × h. Let
g0 ∈ dom(p) be such that g0 + s ∈ dom(p) and p(g0) �= p(g0 + s). Note that xG
is periodic with period (w, h) except for the points of the form u(p) + (aw, bh).
From this it follows that the 2-coloring property for s is witnessed for xG by the set
T = [– N,N ] × [– N,N ] where N = max{w, h}.

The proof that xG is minimal is a similar easy argument. �
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Figure 3. The extension relation in the grid periodicity forcing Pgp.

Since xG is a minimal 2-coloring, we certainly have that xG is not periodic, that
is, xG ∈ F (2Z

2
). However, xG satisfies some weak form of periodicity as the next

lemma shows.

Lemma 7.3. Let xG be a generic real for Pgp(n).

(i) For any vertical or horizontal line � in Z2, xG � � is periodic with period a power
of n.

(ii) For any finite A ⊆ Z2, there is a lattice L = (wZ) × (hZ), with both w and h
powers of n, and there is u ∈ Z2 \ (A+ L) such that xG is constant on k + L
whenever k + L �= u + L.

Proof. (ii) Given A and p ∈ Pgp, there is a q ≤ p with A ⊆ R(q) \ {u(q)}. Let
q ∈ G be such a condition, and let w, h be the dimensions of R(q). Let L = L(q)
be the lattice wZ× hZ. By the (w, h) periodicity of xG off of u(q) + L, this L and
u = u(q) work.

(i) Given any vertical or horizontal line � inZ2, the set ofp ∈ Pgp with � ∩ (u(p) +
L(p)) = ∅ is dense. This implies that xG � � has a period nk for some k. �

As an application of grid periodicity forcing we now have the following structure
theorem for Borel complete sections of F (2Z

2
).

Theorem 7.4. Let B ⊆ F (2Z
2
) be a Borel complete section. Then there is an

x ∈ F (2Z
2
) and a lattice L = k + {(iw, jh) : (i, j) ∈ Z2} such that L · x ⊆ B .

Proof. Let xG be a generic real for Pgp. We claim that B ∩ [xG ] contains a
lattice as required. Since B ∩ [xG ] �= ∅, we may fix k ∈ Z2 and q ∈ G such that
q � (k · ẋG ∈ B). For any (i, j) ∈ Z2, let �i,j be the translation defined by �i,j(g) =
g + (iw(q), jh(q)). Then �i,j induces an automorphism of Pgp and

�i,j(q) � (�i,j(k) · ẋG ∈ B).

Note that �i,j(k) · ẋG = (k + (iw(p), jh(p))) · ẋG . It suffices therefore to show that
G contains the condition �i,j(q). By density, there is a p ≤ q in G with R(p) ⊇
R(q) ∪R(�i,j(q)). It is clear, however, from the definition of the extension relation
that p ≤ �i,j(q). Thus, �i,j(q) ∈ G as well. �
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Alternate proof of Theorem 7.4. We will make use of Fact 2.6. Consider
the natural action of Z2 on the inverse limit X = lim←−Z2/(3nZ)2. Fix a Borel complete
section B. As

⋃
�∈Z2 � · B = X , we must have that B is non-meager. So B is comeager in

some non-empty basic open set U. Since U is basic open, there is k ∈ N with � ·U = U
for all � ∈ (3kZ)2. Hence, setting L = (3kZ)2, we have that there are comeager many
x ∈ U with L · x ⊆ B .

We mention that while Marks was visiting the authors, he used forcing methods
to generalize the above theorem to all countable residually finite groups Γ [13].

The proof of Theorem 7.4 also gives the following variation of Theorem 7.4.

Theorem 7.5. Let f : F (2Z
2
) → N be Borel. Then there is an x ∈ F (2Z

2
) and a

lattice L ⊆ Z2 such that the map s �→ f(s · x) is constant on L.

Considering the characteristic function of the Borel set B gives:

Corollary 7.6. If B ⊆ F (2Z
2
) is Borel, then there is an x ∈ F (2Z

2
) such that

either {s : s · x ∈ B} or {s : s · x ∈ 2Z
2 \ B} contains a lattice L in Z2.
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