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On the coupling between spin-up and aspect
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We consider the long-time (many revolutions) behaviour of an axisymmetric
isolated anticyclonic vortex of constant density which floats inside a large ambient
linear-stratified fluid rotating with constant Ω . We have developed a closed simple
model for the prediction of the vertical thickness to diameter aspect ratio α (and
actually the shape) and internal angular velocity ω, relative to the ambient, as
functions of time t. (In our model ω is scaled with Ω; the literature sometimes uses
the Rossby number Ro = ω/2.) This model is an extension of the model of Aubert
et al. (J. Fluid Mech., vol. 706, 2012, pp. 34–45) and Hassanzadeh et al. (J. Fluid
Mech., vol. 706, 2012, pp. 46–57), which derived the connection between α and ω,
for prescribed f = 2Ω and buoyancy frequency of the ambient N . This work adds the
balance of angular momentum and resolves the spin-up process of the vortex, which
were not accounted for in the previous model. The Ekman number E= ν/(ΩL2) now
enters into the formulation; here ν is the coefficient of kinematic viscosity and L is
the half-height of the vortex, roughly (a sharper definition is given in the paper). The
model can be applied to cases of both fixed-volume and injection-sustained vortices.

The often-cited aspect ratio α = 0.5f /N corresponds to ω ≈ −1, which is a
plausible initial condition for typical systems. We show that the continuous ‘decay’
of α from that value over many revolutions of the system is indeed governed by
the spin-up effect which reduces |ω|, but with significant differences to the classical
spin-up of a fluid in a closed solid container. The spin-up shear torque decays with
time because the thickness of the boundary shear layer increases. The layer starts
as a double Ekman layer (between two fluids) but it quite quickly expands due to
stratification effects, and later due to viscous diffusion. This prolongs the spin-up
somewhat beyond the classical E−1/2/Ω time interval. Moreover, when |ω| becomes
small, the momentum of angular inertia of the vortex increases like (1+ (1/3)|ω|−1);
this further hinders the spin-up, and prolongs the process.

Comparisons of the prediction of the model with previously published experimental
and Navier–Stokes simulation data were performed for four cases. In three cases the
agreement is good. In one case, the model predicts a much faster decay than the
observed one; we have suggested a plausible explanation for this discrepancy.
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462 M. Ungarish

1. Introduction
The dynamics of vortices (or lenses) of fluid floating inside another linearly

stratified rotating fluid has attracted much attention due to its practical importance
in geophysical and astrophysical phenomena, such as the persistent meddies in
the Atlantic ocean (Armi et al. 1988), the propagation of volcanic clouds (Baines &
Sparks 2005), and Jupiter’s anticyclonic red spots (Marcus 1993). This problem is also
of interest in fluid dynamics due to its fundamental and intriguing character (e.g. Gill
1981; Griffiths & Linden 1981; Ungarish & Huppert 2004; Grant, Sundermeyer
& Hebert 2011). A detailed outline of the previous investigation, and additional
references, is given in the recent pair of papers by Aubert et al. (2012), Hassanzadeh,
Marcus & Le Gal (2012), and we shall not repeat it here. Hereafter, these papers are
referred to as ALM12 and HML12, respectively.

In the typical problem, the ambient fluid is ‘large’ (unbounded), rotating with
constant Ω = f /2 (about the vertical axis z) and of stable density stratification
expressed by the buoyancy frequency N . Essentially, the vortex is an ellipsoidal-like
‘small’ body of fluid, separated by a clear-cut interface, inside that ambient. The vortex
floats at the neutral buoyancy level z= 0, and rotates with ω (dimensionless, scaled
with Ω) with respect to the rotating ambient frame. We shall consider only vortices
with ω < 0, called anticyclonic; the reason for this restriction will be explained later.
We assume that the flow is axisymmetric about the z axis at r= 0, and stable.

The salient property of the vortex is the ratio of maximal thickness to diameter,
α. Theoretical and experimental studies (e.g. Gill 1981; Griffiths & Linden 1981;
Hedstrom & Armi 1988; Grant et al. 2011) have demonstrated that α ∼ f /N, and
decays with time over many rotations of the system. Recently, ALM12 and HML12
have developed and demonstrated a simple yet robust model that connects the shape
of the vortex with the internal angular velocity ω. In particular, for the aspect ratio
this model gives

α
N

f
= 1

2
[−ω(2+ω)]1/2. (1.1)

Here ω is taken as the space-averaged value inside the vortex, independent of r (radius
from axis) and z. We note that ALM12 and HML12 use the Rossby number Ro=ω/2
in their notation; we emphasize that (1.1) is for the case of constant N in the ambient,
while the vortex is anticyclonic and consists of homogeneous, well-mixed fluid (i.e.
the internal stratification is zero).

The power of this model is the fact that this relationship holds for the entire long
time of existence of the vortex (except for some initial adjustment time of about one
revolution) and under the assumption that the flow is stable. In other words, we have
a sharp universal connection between α(t) and ω(t), where t is time. This provides
a clear-cut insight into the reason for decay of the aspect ratio: the embedding fluid
gradually reduces the angular speed difference ω. This is illustrated in figure 1.

This model has been convincingly demonstrated by laboratory experiments and
three-dimensional Navier–Stokes simulations performed by ALM12 and HML12.
However, it is evident that this is a descriptive rather than a predictive model. Accurate
as it is, (1.1) is only one equation for two variables, α(t) and ω(t). In general, we
do not know the value of ω(t) needed for the calculation of α. If we determine
α at some tk we can calculate ω(tk) (or vice versa). Still, the available model is
unable to predict the situation at a later given time (or estimate with confidence
what it was at an earlier given time). We emphasize that the values of ω(t) used by
ALM12 and HML12 for the verification of their model were obtained by laborious
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FIGURE 1. (Colour online) The vortex shape according to the ALM12 and HML12 model
at three times, t0 < t1 < t2, assuming ω(ti)=−1,−0.2,−0.01. R(0) is the radius at t0. The
half-thickness h is scaled with R(0) f /N .

experiments or three-dimensional Navier–Stokes simulations. In the laboratory it is
more difficult to measure ω than to determine the thickness-to-diameter aspect ratio
α. However, large-scale geophysical and astrophysical vortices may be restricted to
two-dimensional views, in which case it is possible to measure ω but not the depth
(thickness) of the vortex.

Our objective is to close this gap in our knowledge: to extend the model of ALM12
and HML12 by incorporating a prediction for the variable ω(t). To this end, we must
model the physical effect of angular acceleration of the fluid, called ‘spin-up’.

In standard circumstances (a body of homogeneous fluid of low viscosity contained
in a rigid axisymmetric container rotating with constant Ω) the flow-field during
spin-up is amenable to quite accurate analytical solutions, and is well understood;
see Greenspan (1968) or Ungarish (1993). The Ekman layer circulation (and torque)
dominate the increase of angular momentum, and hence the internal ω decays like
exp(−t/τ), where τ = E−1/2/Ω; here E = ν/(ΩH2) is the Ekman number, H is the
half-height of the container, and ν the kinematic viscosity coefficient. The attempt
to carry over this result to the present vortex problem fails. We illustrate this for
the A1 case analysed in HML12. Letting H be the half-maximum-thickness of the
vortex, we estimate E = 1.3 × 10−4, and hence τΩ/2π = 14 revolutions. However,
the simulations (figure 2a of that paper) demonstrate that the 1/e ω-decay time
of the vortex (of fixed volume) is significantly longer, about 150 revolutions. The
incompatibility is exacerbated for a vortex sustained by injection, because H changes
with time and hence the value of E is evasive.

A closer examination reveals the reasons for incompatibility between the classical
spin-up and that of the vortex. In the present case: the boundary of the spun-up fluid
(i.e. the container) changes shape during the process; the spin-up torque is applied
at an interface between two fluids (not by a solid surface); the spin-up of the vortex
is accompanied by a spin-down of the embedding ambient fluid, and therefore the
stratification in the latter is bound to suppress the Ekman layer circulation. Each of
these features has been considered before (Walin 1969; Flor, Ungarish & Bush 2002;
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464 M. Ungarish

Ungarish & Mang 2003) but their combination renders too formidable a problem for a
detailed solution of the flow-field. We shall therefore attempt a bolder approximation:
we will consider the angular acceleration of the entire body of the vortex without
solving in detail the flow inside. We also restrict the analysis to a vortex of constant
density, ρc. We shall show that this simplification yields a manageable, and insightful,
ODE for ω(t). This, combined with (1.1), closes the predictive model: using given
initial conditions, we can calculate, with insignificant computational effort, the global
behaviour of the vortex (in particular the aspect ratio and relative rotation) as a
function of time. Besides the quantitative values, the model also suggest qualitative
insights into the mechanisms that influence and prolong the process. We shall see
that the appropriate balances are strongly nonlinear and vary with time and the type
of problem (fixed-volume or injection-sustained vortex). It is therefore not possible to
capture well the spin-up process and vortex decay in terms of a constant time scale
(like τ = E−1/2/Ω in the classical case).

The structure of the paper is as follows. In § 2 we briefly derive the vortex
shape equation, h(r, t), and α(t). In particular, we point out the various underlying
assumptions, and elucidate that, to leading order, the calculation of the shape can be
decoupled from the angular momentum balance. We obtain closed algebraic formulas,
but they contain the unknown ω(t); these results are in agreement with the model
of ALM12 and HML12. In § 3 we develop the angular momentum balance and the
governing equation for the angular velocity ω(t). This is a novel contribution. We
first consider a vortex of fixed volume, then extend the analysis to a vortex sustained
by injection. In both cases, we obtain one ODE for ω(t) which can be easily solved
numerically. We show that the various terms provide useful insights into the spin-up
and decay processes of the vortex, and thus clarify why this process extends for
many more revolutions of the system than estimated by the classical spin-up time
interval. Next, in § 5 we compare the predictions of the present model with previously
published data from experiments and Navier–Stokes simulations. In § 6 we present
some concluding remarks. Appendix A discusses the estimate of ω(0).

2. The model for the shape
We use a cylindrical system r, θ, z which rotates with Ω ẑ, while gravity g acts in the
−z direction. The present work is restricted to vortices of constant density, ρc, which
are located at the level of neutral buoyancy, z = 0, in a fluid of linear stratification,
ρa(z) = ρc(1 − σ z), where σ is a positive constant. This means that z = 0 is the
plane of mirror-symmetry during the motion considered here, and that the buoyancy
frequency N > 0 is a constant (N 2 = σg). The flow is assumed axisymmetric and
stable.

The volume of the vortex under consideration is 4πV (i.e. V is the volume of the
upper half of the vortex, per radian). We shall first consider (unless stated otherwise) a
fixed, given V . At a later stage, we shall extend the analysis to V (t) due to sustained
influx (injection).

For simplicity, we hereafter use balances for the upper half and per radian, unless
stated otherwise.

The shape (thickness) h(r, t), for r ∈ [0, R(t)], of the vortex has been considered
in numerous previous papers. R(t) is the radius of the vortex. The recent papers of
ALM12 and HML12 provide a review of the available results, and also present (and
confirm) a more comprehensive formula.

We start with a short derivation of the shape. Evidently, the model which emerges
in this work is an approximation for an ‘asymptotic’ range of parameters. For
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On spin-up and the aspect ratio of vortices in rotating stratified flows 465

definiteness, we assume that f /N is of the order of unity, and again, that the flow
is axisymmetric and stable. Essential to our derivation are the following additional
restrictions/assumptions. The domain of ambient is much larger than the vortex, and
hence its basic rotation and stratification are negligibly affected by the motion of the
vortex. The density differences between the vortex and the environment are small
(Boussinesq case), and the kinematic viscosity of the ambient and the vortex fluids
is the same ν (this can be relaxed). The buoyancy force is dominated by gravity,
g�Ω2R. This implies that the pressure is hydrostatic in the z direction. The dynamic
flow is dominated by rotation (Coriolis) effects; this can be expressed as E� 1, where
the Ekman number of the vortex is

E= ν

ΩL2
, L= V 1/3

(
f

N

)2/3

. (2.1a,b)

The justification of this definition of E will emerge later. We also assume that
the interface between the vortex and the ambient is sharp, and, again, the flow is
axisymmetric and stable. These assumptions are relevant to systems in nature, and
can be reproduced in the laboratory with moderate costs.

The motion starts at t= 0, for definiteness, with some compatible initial conditions
that will be discussed later.

The main point on which we focus attention in this section is that the derivation
of the interface shape formula, z = h(r, t) for 0 6 r 6 R(t) (or rather a good
approximation), can be decoupled from the angular momentum equation of the
flow-field.

The first governing equation is volume conservation∫ R

0
h(r, t)r dr= V , (2.2)

where V is given.
The second equation is the height-averaged radial momentum balance

∂u
∂t
+ u

∂u
∂r
=−1

2
N 2 ∂h2

∂r
+Ω2rω(2+ω). (2.3)

Here u is the radial velocity (dimensional) and ω is the angular velocity (dimensionless,
scaled with Ω). This balance takes into account the hydrostatic pressure field of the
vortex and ambient fluids, as well as pressure continuity at the interface; the result is
that the pressure gradient −[∂p/(ρc∂r)] is replaced by the first term on the right-hand
side of (2.3). The underlying assumption in this equation is that the viscous shear
is negligible in both the axial and radial momentum balances; this is fulfilled when
E�1. Various derivations of this equation are available in the literature (e.g. Ungarish
2009 § 13.1 for S= 1; ALM12 and HML12), and we shall not repeat it here.

Three major simplifications are introduced next: the inertial acceleration term on
the left-hand side is negligible, z = h(r, t) is continuous, and ω is a function of t
(but not of r). These assumptions are, typically, justifiable when E� 1, and after the
formation (initial adjustment) of the vortex. The informal justification of the first two
simplifications is what can be called ‘common knowledge’ in the branches of rotating
fluids and gravity currents: Greenspan (1968) demonstrates that in axisymmetric
bodies of rotating fluid with small E, significant radial motion, O(Ωωr) can be
sustained only in thin viscous layers; and Ungarish (2009) shows that Coriolis effects
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466 M. Ungarish

stop the radial propagation of a typical intrusion after about a 1/Ω time interval
from release, and that this is accompanied by a sharp (but continuous) decrease of h
to 0 at the outer radius r= R of the vortex. The third simplification is supported by
consistency with observations.

The power of these simplifications is that (2.3) (with zero left-hand side) can be
integrated subject to the boundary condition h = 0 at the outer radius r = R. This
yields the height of the vortex

h(r, t)= f
2N

φ1/2R(t)(1− ξ 2)1/2, (2.4)

where R= R(t) is the radius of the vortex, ξ is the reduced radial coordinate,

ξ = r/R ξ ∈ [0, 1], (2.5)

and
φ = φ(t)=−ω(t) [2+ω(t)] . (2.6)

The aspect ratio is

α = α(t)= h(r= 0, t)/R(t)= f
2N

φ1/2 = f
2N
{−ω(t) [2+ω(t)]}1/2 . (2.7)

Substitution of (2.4) into (2.2) yields the radius

R= R(t)=
(

6
N

f
V

)1/3 1
φ1/6

. (2.8)

We note that (2.4)–(2.8) are exactly the model of ALM12 and HML12, for a vortex
of constant density, upon the change of notation that these papers use the Rossby
number Ro = ω/2. We prefer here the use of the variable ω because of the direct
connection with the analysis of the spin-up process. Moreover, the definition of Ro
varies in the literature, and this may be confusing. We reiterate that our ω is the
dimensionless angular velocity (scaled with Ω) with respect to the rotating frame.

We emphasize that these equations are for a general, as yet unspecified, ω(t).
Physical considerations indicate that −16ω< 0. The lower bound is counter-rotation
with respect to the ambient fluid in the rotating frame, i.e. fixed in the absolute
(laboratory) frame. The upper bound is co-rotation with the ambient fluid.

ALM12 and HML12 pointed out that in realistic circumstances |ω| decreases with t.
Typically, the initial value of ω is close to −1 (see appendix A). We therefore define
the ‘standard’ or ‘reference’ situation as

ω=−1, φ = 1, R=
(

6
N

f
V

)1/3

, α = 1
2

f
N
. (2.9a−d)

These values are the maximum of α(t) and minimum of R(t). Also, we note in
passing that the ‘standard’ case is quite robust. If we take ω=−0.7 instead of −1, φ
decreases by 9 %; therefore, α and R change by only −4.6 % and 1.6 %, respectively.

ALM12 and HML12 provide experimental and Navier–Stokes simulation evidence
that (2.7) is a reliable and accurate relationship for the aspect ratio of vortices in a
wide range of circumstances. The most convincing component of this evidence is the
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On spin-up and the aspect ratio of vortices in rotating stratified flows 467

observation that (2.7) is valid over very long periods of time (hundreds of revolutions
of the system): in each tested system, the measured ω decays significantly, and this
is accompanied by the decrease of the measured aspect ratio α in agreement with the
theoretical correlation.

However, (2.7) is a descriptive rather than a predictive model. Accurate as it is,
this is still only one equation for two variables, α(t) and ω(t). In general, we do
not know the value of ω(t) needed for the calculation of α (except for the initial
situation when ω ≈ −1). We emphasize that the values of ω(t) used by ALM12
and HML12 in their verification of (2.7) were obtained by laborious experiments or
three-dimensional Navier–Stokes simulations, not by an asymptotic model. Indeed,
(2.7) is a quasi-static result. It does not provide any information concerning the
dynamic mechanisms that affect the possible change of ω with time. With hindsight,
this is not surprising, because the derivation of (2.7), as discussed above, uses only
momentum balances in z and r directions, plus volume conservation. We did not use
any conservation law for ω. We conclude that the upgrade from the descriptive to
the predictive model requires an additional equation: the angular momentum balance.

3. Angular momentum considerations

The angular velocity ω of a contained volume of fluid can increase with time in a
process that is usually referred to as ‘spin-up’. The typical driving force is the shear
due to the fact that the domain under consideration is embedded in a rigid container
(of height 2H) which rotates with a larger angular velocity ωb. Viscous boundary
layers appear at the boundary, and sustain a torque that is proportional to ωb − ω(t)
and continuously reduces the difference to zero. During the spin-up, particles (or rather
shells) of fluid change their ω due to radial displacement and change of height (the
potential-vorticity effect). (For connection with our problem, suppose that the gravity
acts parallel with the axis of rotation and ωb = 0.)

When E is small, this process is well understood, and amenable to accurate
modelling, for a homogeneous fluid in a solid container (Greenspan 1968). The
dominant viscous effect is concentrated in Ekman boundary layers of thickness
(ν/Ω)1/2 (in dimensionless form, E1/2; E= ν/(ΩH2)). These layers form quickly (in
about one revolution of the system) and are subsequently quasi-steady; they induce
a weak ‘secondary flow’ (or circulation) inside the container that causes, roughly,
the decay of the initial ω on the time scale E−1/2/Ω . Some residual discrepancies
decay on the diffusion time scale E−1/Ω . Even this simple scenario requires some
care and adaptations in practical circumstances: the height of the container may vary
with radius; if an open boundary is present the spin-up time increases; side-wall
boundary layers also contribute. The accuracy of the spin-up solution also depends
on the accuracy of the initial condition ω(0); in practical circumstances, this may
also contain uncertainties.

Significant modifications occur when the spun-up domain is embedded in another
fluid (rather than in a solid container), and gravity buoyancy is significant. First,
at the interface between the fluids there is a double Ekman layer effect: while the
ambient shears and pumps the embedded fluid in one direction, this fluid shears
and pumps the ambient into the opposite direction; therefore, the effective Ekman
shear layer is thicker (by roughly 2). Second, the shape of the fluid domain under
consideration varies during the process; moreover, there is coupling between the shape
and ω. Third, when the embedding fluid is linearly stratified, the buoyancy hinders
the motion (circulation) of the particles activated by the the Ekman layer pumping,
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z

r

g

R(t)

FIGURE 2. (Colour online) Schematic description of the spin-up flow. The interface of
the vortex (upper half) is shown by the thick (black) curve. The domain between the thin
lines is the ‘boundary layer’ δ in which transition of ω occurs. The density is ρc (constant)
inside the vortex, and ρc(1− σ z) in the ambient fluid. N 2 = σg.

and consequently this effect may be ‘suppressed’ even before a significant reduction
of |ω| is attained. These features were analysed in the papers of Walin (1969), Flor
et al. (2002), Ungarish & Mang (2003) and the references therein.

The vortex under present investigation contains the spin-up components in their
more complicated form. The formulation and solution of the flow-field that matches
in detail all the effects involved is a formidable task; moreover, the expected outcome
will be too complicated for useful insights and quick computation. We shall therefore
not pursue this approach here. For progress, we shall attempt only an approximate
global solution for the entire vortex, as follows.

Consider the angular momentum balance of the vortex

dΓ
dt
=M, (3.1)

where Γ is the angular momentum of the volume inside the interface, and M is the
shear torque on the envelope. The system is sketched in figure 2. Again, we make the
budget for only the upper-half of the vortex, per radian.

More explicitly,

Γ = ρc

∫ R

0
Ω(1+ω)r2h(r, t)r dr= ρcΩ(1+ω)φ1/2 f

2N

×R5
∫ 1

0
(1− ξ 2)1/2ξ 3 dξ = 2

5
ρcΩV (1+ω)R2, (3.2)

where we used the assumption ω=ω(t) and the results (2.4), (2.8). Then, after some
algebra (see appendix C) and recalling that here V is constant, we obtain

dΓ
dt
= 2

5
ρcΩV R2(t)J(t)

dω
dt
, (3.3)

where

J = J(t)= 1− 2
3
(1+ω)2
ω(2+ω). (3.4)
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Since ω < 0, this term is always positive; its influence on the spin-up may be
significant, as discussed later. Equations (3.3)–(3.4) reveal the complexity of the
spin-up: the rate of change of angular momentum is distributed among several
components, and not a linear function of dω/dt.

For the torque we write

M =−ρcν

∫ R

0

Ωωr
δ

r2 dr. (3.5)

The fraction in the integral stands for the shear, while δ is the thickness of the
transition layer from the domain with ω < 0 (inside the vortex) to the unperturbed
ambient fluid where ω= 0. While ω is negative, the torque is positive, and this drives
the spin-up process. Since ω=ω(t) we rewrite (3.5) as

M =−1
4
ρcνΩωR4 1

δ̄
. (3.6)

Here δ̄ = δ̄(t) is the weighted-average thickness of the angular momentum transfer
layer, defined by

1
δ̄
= 1
δ̄(t)
= 4

∫ 1

0

ξ 3dξ
δ(ξ, t)

(3.7)

where ξ = r/R. This definition is convenient because, when δ is r-independent, it
returns δ̄ = δ.

To close the model we must specify the effective thickness of the shear layer,
δ̄(t). This is the most challenging component of our model. To our knowledge, no
direct investigation of this effect has been performed, and we must rely on pieces
of theoretical results gained for related spin-up problems (Walin 1969; Flor et al.
2002; Ungarish & Mang 2003). We consider the spin-up process over a long time
period. Evidently, the first stage is dominated by the double Ekman layer of thickness
δ1 = 2(ν/Ω)1/2.

However, the stratification of the ambient fluid tends to suppress the upper part of
the Ekman layer. The result is that on the time scale ts the thickness of the transition
layer of ambient fluid near the centre increases to δ0s, where

tsΩ = 0.52
f

N

R(0)
δ1

, δ0s = 0.26
f

N
R(0). (3.8a,b)

Subsequently, the layer at the centre thickens further by diffusion according to
[ν(t − ts)]1/2. The thicker layer prevails over half of the radius (approximately), then
decreases to δ1 at r = R. Based on analytical considerations and numerical solutions
(Walin 1969; Flor et al. 2002; Ungarish & Mang 2003), we therefore suggest that
the boundary layer of the vortex can be approximated by the functions

δ(r, t)=
{
δ0(t) (0 6 r 6 R(t)/2),
linear decrease from δ0(t) to δ1 (R(t)/2< r 6 R(t)),

(3.9)

where
δ0(t)= δ1 + (δ0s − δ1)[1− exp(−t/ts)], (3.10)
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to which we add the diffusion contribution for t > ts when relevant. To improve the
accuracy, we use the instantaneous R(t) instead of R(0) for the calculation of δ0s in
the last equation.

With (3.9) the integral in (3.7) can be calculated analytically, and we thus obtain
δ̄(t). The details are presented in appendix B.

We admit that the calculation of the shear term is a bold approximation, and that
we have neglected the curvature of the interface. We are presently unable to estimate
the approximation errors. The justifications for the use of this approximation are as
follows. (i) In the present state of the art, such a closure is necessary for progress, and
it will be quite straightforward to replace it with a better one when available. (ii) The
predictions of the resulting model seem to be qualitatively correct and quantitatively
in reasonable agreement when compared to the available data acquired by laboratory
experiments and Navier–Stokes simulations.

Finally, we substitute (3.3) and (3.6) into the angular momentum balance (3.1). It
is convenient to use the dimensionless time variable (Ωt). We thus obtain the spin-up
equation

J
dω

d(Ωt)
=−5

8
ν

Ω
ω

R2

V

1
δ̄
. (3.11)

Here V is constant. J(t) and R(t) are explicit functions of ω(t) via (2.6)–(2.8) and
(3.4), while δ̄(t) is also explicitly calculated as specified above.

We now have a closed predictive model. The background system (input parameters
Ω = f /2,N /f and ν), the volume of the vortex V (dimensional), and the initial ω(0)
are given. The solution of (3.11), combined with (2.6)–(2.8), provides ω,R, and, most
importantly, α for the subsequent motion. Theoretically, the integration of (3.11) can
be carried out ‘to infinity’, but there are indications that in real systems instabilities
become dominant when |ω|< 0.01, and hence we think that ω=−0.01 is a plausible
end point for the prediction of our model.

3.1. Some qualitative insights
We can estimate the influence of the main flow-field parameters on the spin-up (vortex
decay/spread-out) time, T (scaled with 1/Ω). For definiteness, we focus on the case
with ω(0)≈−1 and follow the process until ω≈−0.01. We distinguish between two
main stages: unhindered and hindered spin-up.

Unhindered spin-up
J is close to 1. This corresponds to ω<−0.3, roughly. Taking J=1, (3.11) provides

the order of magnitude of the decay time as

T ∼
[
ν

Ω

1
δ̄

R2

V

]−1

, (3.12)

and recall that R∼ (N/f )1/3V 1/3. Here we neglect the influence of φ−1/6 on R. We
must again distinguish between two sub-stages: when the Ekman layers are dominant,
δ̄ ∼ (ν/Ω)1/2, and when they are suppressed by the stratification, δ̄ ∼ (f /N )R.

For the case δ̄ ∼ (ν/Ω)1/2,

T1 ∼ V 1/3

(ν/Ω)1/2

(
f

N

)2/3

. (3.13)
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Note that this result can be rewritten as E−1/2 using the Ekman number defined by
(2.1a,b). Now we see the justification for this definition.

For the case δ̄∼ (f /N )R, after some algebra, (3.12) yields the typical time scale

T2 ∼ V 2/3

(ν/Ω)

(
f

N

)4/3

=T 2
1 . (3.14)

The relation between T1 and T2 is interesting, and, with hindsight, not surprising:
the first is proportional to E−1/2, the second to E−1. We conclude that, in general, the
spin-up time increases when the volume increases and when the f /N ratio increases.
The relevant parameter is the Ekman number defined with the length V 1/3(f /N )2/3,
which represents the height of the vortex.

On the face of it, this is not much progress, because the dependences are analogous
to classical spin-up and diffusion processes. The novelty is twofold. (i) We have
derived these estimates from a more rigorous model, that actually demonstrates that
the estimates T1, T2 are only qualitative time intervals of overlapping processes in
the first stage of motion. A sharper estimate of T1,T2 can be attempted with the aid
of some prefactors. However, it is not useful to pursue this, because the behaviour
of ω(t) is nonlinear and cannot be captured well by constant parameters. (ii) Most
importantly, the system (when stable) spends most of the time in the second stage,
considered next.

Hindered spin-up
In this stage, the changes of ω are affected by the dynamic influence of the variable

denoted J, which can be regarded as the effective momentum of inertia. When |ω| is
small, J increases monotonically with the progress of the spin-up process (J ≈ 1 +
(1/3)|ω|−1). In other words, it becomes ever more difficult for a given torque to spin
up the vortex. This effect also contributes to the explanation as to why a stable vortex
appears so robust for many revolutions of the system. Let us illustrate this: for ω =
−0.05, the normalized aspect ratio is αN /f = 0.16 and J= 7.5. It will therefore take
a considerably longer time than T1 to achieve ω = −0.02, and when this happens,
αN /f = 0.10.

This discussion points out the subtlety of the angular-speed determination: ω(t)
depends on an initial condition which varies with the generating mechanism; then
Ekman layer torque acts for some time to reduce ω, but this effect is suppressed
to some extent by the stratification, which is then overcome by diffusion of angular
momentum from the ambient core. On the other hand, while ω is reduced the vortex
expands, its momentum of inertia increases, and this hinders the spin-up process. All
of this works under the assumption that the flow is stable.

4. Slow sustained injection
Suppose that the vortex is produced and sustained by injection (influx) from a

source about the axis at rate q, which is active for many rotations of the system.
We assume that the injection is ‘slow’, so that our model can be used within some
small extensions. This implies that a relatively small volume is added per 1/Ω , or
qΩ � V0 = qt0, where t0 is the time at which we start using the model. The result
t0 � 1/Ω is quite trivial, and, surprisingly, independent of q. (A more stringent
criterion could involve the Ekman layer circulation speed, but the result is too
cumbersome for useful insights.)
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We therefore assume that a vortex which satisfies (2.4)–(2.8) exists for t> t0= 3/Ω ,
with initial ω(0). The volume is qt (per half-vortex per radian). We wish to predict
the subsequent ω(t) and α(t).

The extension of the model is as follows. First, we replace the constant V with the
time-dependent counterpart V (t)= qt in (2.2), (2.8) and (3.2). The results (2.4)–(2.8)
carry over.

The presence of V (t) in (3.2) contributes a significant dynamic effect on the spin-up
process via a modification of dΓ/dt for (3.1). After some algebra (see appendix C)
and arrangement, the spin-up equation reads

J
dω

d(Ωt)
=−5

8
ω
ν

Ω

R2

V (t)
1
δ̄
− 5

3
(1+ω) 1

(Ωt)
. (4.1)

Here δ̄ is calculated as before, using the appropriate R(t).
The last term on the right-hand side of (4.1) is the dynamic contribution of the

injection to the angular momentum variation. It reproduces the fact that the particles
of injected fluid that propagate to larger radii are decelerated by Coriolis effects. This
is actually a ‘spin-down’ contribution to the entire vortex, or a ‘sink’ that absorbs part
of the external torque. This spin-down effect is strong when (i) ω is close to zero, and
(ii) Ωt is not large. (We note in passing that this term essentially explains why ‘rapid
injection’ creates ω(0)≈−1: when the contribution of the first term is small, ω tends
to −1 in less than one 1/Ω .)

However, in a long spin-up process, the effect of the spin-down (last) term is not so
dramatic. The first reason is the obvious trade-off between the terms on the right-hand
side of (4.1). The spin-up (first and positive) term becomes dominant as the second
(negative) term drives ω to −1. This keeps a balance during which ω is spun up.
The second reason is the fairly rapid decay of the spin-down term like (Ωt)−1. The
R2/V (t) factor in the first term also decays with time, but more slowly, ∼(Ωt)−1/3.
The hindering effect of J is like in the fixed-volume case.

In general, it is not straightforward to compare the time-dependent behaviour of the
fixed-volume and slow-injection vortices. Both are expected to display ω≈−1 in the
initial stage (with αN/f ≈ 0.5), and both will eventually be spun up to small |ω|
(accompanied by αN/f ≈ 0.5(2|ω|)1/2). The details, however, depend on the values
of q (for the injection case) and V (of the fixed vortex). We could not find a simple
similarity rule between these systems.

Another immediate extension of the model is to the case of slow sustained injection
over a finite period of time, t > ti, after which a vortex of fixed volume exists. In
this case we integrate (4.1) as follows: with both right-hand side terms up to ti; then,
for t > ti, with the second term on the right-hand side turned off (set to zero). For
t> ti the fixed-volume vortex behaviour is recovered; however, the ‘initial conditions’
are, typically, different from the standard fixed-volume case. Technically, our model
can now imitate the vortex of fixed V created by rapid injection: take q = V Ω/n,
and turn off the source at ti = n/Ω , where n= 4 or 5. For definiteness, take ω(0)=
−0.5; tests show that an adjustment towards −1 occurs. We keep in mind, however,
that the results in this initial stage lack physical accuracy. The underlying assumptions
concerning the hydrostatic and radial-momentum balances cannot be justified during
this ti. These assumption gain validity around ti, and it is therefore justified to consider
the solution for the subsequent time.

Finally, we note that the assumption of constant-rate injection can be relaxed. For a
prescribed general smoothly increasing V (t), the only change in the previous model
will be to replace 1/(Ωt) in (4.1) with [1/(ΩV (t))](dV /dt).
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FIGURE 3. (Colour online) Comparison with fixed-volume experiment of ALM12: αN /f
as a function of t/T (number of revolutions, where T = 2π/Ω). The thick solid line
shows the model prediction, the symbols joined by the thin line are experimental data,
f = 6.8 s−1,N = 1.6 s−1. The model uses f /N = 4.25, E= 5.1× 10−5, ω(0)=−0.95.

5. Comparisons
Given the bold approximations and simplifications of our model, confirmation by

comparison with experimental and Navier–Stokes simulations is needed. Unfortunately,
most of the pertinent available data are concerned with the short time interval of
formation and adjustment (up to about 20 revolutions, say). In other cases, clear-cut
comparisons are not possible because the reported data were obtained with initial
conditions incompatible with the model, or use implicit scalings, or were contaminated
by instabilities. For example, in the experiments of Grant et al. (2011), the vortex
(lens) was created by an oscillating grid (at the middle of the tank). The volume of
the resulting vortex, and the value of the initial ω(0), which are needed in our model,
cannot be well estimated. All we can say is that the observations are consistent with
our model if we use some plausible estimates of V and ω(0).

We have therefore restricted our comparison to four cases. In these comparisons the
time is rescaled for the number of revolutions t/T , where T=2π/Ω . The experimental
data concern water, and hence for the corresponding E we use ν = 0.01 cm2 s−1.

5.1. Fixed volume
The experiment presented in ALM12 figure 2 allows a stringent comparison for a
significant time, 1453 revolutions. The experiments were performed in a rotating
container of 50 × 50 × 70 cm3 using salt water. The vortex of total volume
4πV = 300 cm3 was created by rapid injection. We estimated the initial conditions
ω(0) = −0.95. In this case f = 6.8 s−1, N = 1.6 s−1 and hence f /N = 4.25 and
E= 5.1× 10−5. The typical radius of the vortex is 4 cm.

The comparison is shown in figure 3. The agreement between the prediction of the
model and the experiment is good. Although E is very small, a significant decay of
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FIGURE 4. (Colour online) Comparison with fixed-volume Navier–Stokes simulation of
HML12: αN /f as a function of t/T . The thick solid line shows the model, the symbols
joined by the thin line are the simulation data. The model uses f /N = 5, E= 7.7× 10−5,
ω(0)=−0.40.

the aspect ratio occurs due to the spin-up mechanism elucidated above. However, this
occurs over a very large number of revolutions of the system. Moreover, we see that
the rate of decay (and spin-up) of the real vortex becomes milder with time, which
confirms the theoretical prediction that the resistance to the external torques increases
at large times.

Needless to say, there are various uncertainties in this comparison, such as
experimental errors, and the value of the initial ω(0). We shall not dwell on these
issues because there is presently insufficient data and theoretical knowledge for a
reliable evaluation of errors. We have run the model with other plausible ω(0), and
found relatively small variations about the result displayed in the figure. We have also
run the influx version of the model, imposing the condition that the final volume is
attained in ti = 4/Ω . The differences from the fixed-volume results are insignificant.

Another useful comparison was performed with the Navier–Stokes simulation
of HML12, case A1 (displayed in figure 2a of that paper). The input parameters
are f /N = 5, ω(0) = −0.4, E = 7.7 × 10−5. (The simulation results are reported in
dimensionless units, and hence the physical values of the volume of the vortex and of
ν can be omitted in this comparison.) The results are shown in figure 4. Again, the
agreement is good. We wish to emphasize that the Navier–Stokes points were obtained
with a big programming effort that produced a three-dimensional pseudo-spectral code,
followed by long/expensive computations for 2563 modes in a triply periodic domain.
The model requires a small programming effort, and insignificant run time. We
do not claim that the model is a substitute for the simulations. The Navier–Stokes
computations are of course much more accurate, produce detailed information about
the flow-field inside and outside the vortex, and can take into account more complex
initial conditions than the model (including internal stratification of the vortex). The
model is just a useful approximation in the tool kit that can be employed for the
analysis and understanding of the problem.
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FIGURE 5. (Colour online) Comparison with experiment of Hedstrom & Armi
(1988): αN /f as a function of t/T . Injection stops at t/T = 40. The thick solid
line shows the model prediction, the symbols (joined by the thin line) are the experiment;
the triangles denote an unstable domain. The model uses f /N = 1.88; E decreases with
time, from 1.3× 10−2 at t/T = 3 to 2.3× 10−4 at t/T > 40.

Compare figures 3 and 4. In the latter, αN /f starts at a significantly smaller value.
This is because the initial condition ω(0) = −0.4 is imposed in the Navier–Stokes
computation, while the rapid-injection laboratory vortex starts with ω(0) ≈ −1, as
explained above.

5.2. Sustained injection

Hedstrom & Armi (1988) performed experiments with vortices of about 1000–2000 cm3

created by slow injection in a container of diameter and height of 120 and 60 cm,
respectively, using salt water. They report the decay of the angular velocity with time,
but the presented data is in terms of a Rossby number based on the values of the
angular velocity near the centre, which in general differs from our ω(t). Therefore a
reliable comparison between the ω(t) predictions of our model and the data of that
paper is in general not feasible. However, figure 7 of that paper presents αN/f versus
t/T for which a comparison can be attempted. In this case f =1.35 s−1,N =0.72 s−1.
The value of the influx was not measured, but on account of the values reported in
table 1 of that paper we estimated that q = 5 cm3 s−1. The injection was sustained
during 0< t/T 6 40, then stopped.

Figure 5 shows the predictions of the model and the measured points. There is
fair agreement. The appearance and development of an instability was observed in the
experiment, and the last three points are certainly affected by this perturbation. It is
therefore not possible to conclude whether the discrepancies are due to simplification
errors of the model or should be attributed to the unstable flow. We note the kink in
the experimental curve at t/T = 50. This indicates that the shut-down of the injection
pump was accompanied by some strong perturbation of the shape. Up to this point the
theoretical curve is higher than the measured points, afterwards below. This may be a
result of the radial-inertia impulse of the sudden decay of the internal radial velocity.
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FIGURE 6. (Colour online) Comparison with experiment of ALM12: αN /f as a function
of t/T . Injection active all time. The thick solid line shows the model prediction, the
symbols show the experimental data. The model uses f /N = 0.70; E decreases with time,
from 3.9× 10−2 at t/T = 3 to 4.1× 10−3 at t/T = 100.

Since the experiment was not repeated, it is not possible to determine whether this is
a general feature or just some incidental occurrence.

In any case, we think that the model provides some useful quantitative and
qualitative information for the flow-field under consideration. We emphasize that the
prediction curve is obtained with insignificant computational efforts: the integration
of one first-order ODE for ω(t).

Consider next the case of ALM12 figure 3: in the experimental tank of 50× 50×
70 cm3 mentioned above, they created a vortex sustained by constant injection q =
0.17 cm3 s−1, f = 1.6 s−1,N = 2.3 s−1. The comparison is shown in figure 6. There
is evidently a very significant discrepancy between the model and the experiments. We
have no clear-cut explanation for this. The experiment shows some ‘strange’ behaviour:
an extreme lack of reaction to the expected spin-up torque. This experimental result
is in strong contrast not only to our model but also to the experiment of Hedstrom &
Armi (1988) (HeAr below) considered above. Let us compare the two experiments at
t/T = 100. Using the volume of the vortex at this time, we estimate E = 4.1× 10−3

and 2.3× 10−4 for ALM12 and HeAr, respectively. This 20 times larger E indicates
that the spin-up in the influx experiment of ALM12 is expected to be significantly
faster than in the experiment of HeAr. Figures 5 and 6 clearly show the opposite. At
an earlier time (say t/T = 50) the E ratio is even larger, yet the ALM12 experiment
shows almost no spin-up at the first point t= 77, which we think is very strange. Our
speculation is that the viscous layer was somehow peeled away from the interface of
the vortex by a local instability during the process. This conjecture is supported by
the fact that in figure 3 of ALM12 we see that (i) the measured experimental interface
is jagged, and (ii) the measured volume of the vortex is smaller than the theoretically
injected fluid. (In all our estimates we took into account the fact that in the experiment
of ALM12 there was sustained injection.) HeAr also have influx (and a stronger one)
during t/T 6 40, but this did not prevent the spin-up, and the agreement with the
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model was preserved, during this time interval. We leave this puzzling point open for
future verification and interpretations.

6. Concluding remarks

We considered the time-dependent motion of an axisymmetric anticyclonic vortex in
a large ambient stratified fluid rotating with constant Ω . We focused attention on the
long-time behaviour (many revolutions of the system) that follow the initial adjustment
(2–3 revolutions say). We developed a closed simple model for the prediction of the
aspect ratio α (and actually the shape) and internal angular velocity ω as functions of
time t. (In our model ω is scaled with Ω; the literature sometimes uses the Rossby
number Ro=ω/2.) This model is an extension of the model of ALM12 and HML12,
which derived the connection between α and ω. We added the balance of angular
momentum, and analysed the spin-up process. The solution is obtained numerically by
the integration of one ODE, with insignificant computational effort. The model can be
applied to cases of both fixed-volume and injection-sustained vortices.

The model elucidates, qualitatively and quantitatively, the salient features of the
vortex on the long-time scale. The continuous ‘decay’ of the aspect ratio of the
vortex over many revolutions of the system can be attributed to the spin-up effect.
Both the fixed-volume and injection-sustained vortices start with ω ≈ −1, typically.
The model provides useful insights into the spin-up mechanism, as follows. For the
fixed-volume vortex, the shear torque decays with time because the thickness of the
boundary layer, δ̄, increases. It starts as a double Ekman layer (between two fluids)
but it quite quickly expands due to stratification effects, and later by viscous diffusion.
This prolongs the spin-up somewhat beyond the classical E−1/2/Ω time interval. In
this case ω decays continuously towards 0, and α decreases (the vortex expands),
but the notable changes of α occur, typically, over many revolutions of the system.
Moreover, when |ω| becomes small, the momentum of angular inertia of the vortex
increases like (1 + (1/3)|ω|−1); this further hinders the spin-up, and prolongs the
process. For the sustained-injection vortex, the injected volume tends to spin down
the vortex, and counteracts the effect of the shear torque. However, after some time
interval (say 10 revolutions) the vortex is sufficiently large to render the spin-down
effect of injection marginal. Then, the spin-up is roughly like in the fixed-volume
case. In particular, the hindrance mechanism of the increasing momentum of angular
inertia like (1+ (1/3)|ω|−1) is relevant when |ω| is small.

We admit that our spin-up equation contains bold simplification. We ignored the
variation of ω with r, and the effect of the curvature of the interface on the torque.
We also discarded the fact that the spin-up of the vortex and its elongation are bound
to modify the stratification of the ambient in the vicinity of the vortex. To assess
the importance of these effects it is necessary to perform special experiments and
Navier–Stokes computations which must be left for future work. Our model assumes a
sharp interface between the vortex and the ambient; however, in realistic circumstances
the turbulence and component diffusion may blur the boundary and invalidate the
predictions.

Comparisons of the prediction of the model with experimental and Navier–Stokes
simulation data were performed for four cases. In three cases the agreement is good.
In one case, the model predicts a much faster spin-up than the observed one; we could
not find a clear-cut explanation for this discrepancy.

We think that this model is a useful contribution to the investigation of the vortex
in a rotating stratified ambient, and a valuable extension to the model of ALM12 and
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HML12. The present model is restricted to an anticyclonic vortex (ω< 0) of constant
density (i.e. the internal stratification Nc= 0). The study of ALM12 and HML12 also
considered (i) cases with internal stratification, Nc > 0, and (ii) the cyclonic vortex
with ω > 0. We are presently unable to extend the spin-up considerations to these
cases, because (i) there are indications that the spin-up circulation affects Nc, but a
mathematical approximation for this behaviour is still unavailable, to our knowledge,
and (ii) HML12 shows that ω > 0 requires Nc > 0. Extension of the model to these
important regimes must be left for future work.
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Appendix A. On ω(0) and consistency
The typical time scale of the model discussed here is the spin-up time interval,

which is many revolutions of the system. The situation after the adjustment during
the first few revolutions of the system can be considered as t= 0.

The value of ω(0) can be estimated with the help of (3.1). Suppose that the fluid
which will form the vortex has some initial angular momentum Γ0. After adjustment,
the vortex attains the ellipsoidal shape with some ω(0), R(0), and (3.2) is applicable.
We argue that during the short-time adjustment the contribution of the torque is
negligible, i.e. the total angular momentum is conserved,

2
5ρcΩV [1+ω(0)]R2(0)= Γ0, (A 1)

which gives

ω(0)=−1+ 5
2

Γ0

ρcΩV

1
R2(0)

. (A 2)

Let Γ0/(ρcΩV ) be represented by γ (1+ωi)r2
i , where γ is a constant, ri and ωi are

the initial radius and angular velocity (in the rotating frame) of the volume of fluid
under consideration. We obtain

ω(0)=−1+ 5γ
2
(1+ωi)

(
ri

R(0)

)2

. (A 3)

Typically, the fluid that makes up the vortex is released with ωi 6 0, and γ ≈ 0.5
(γ = 1/2 and 2/5 for a cylinder and a sphere, respectively). Therefore, if the initial
radius of release is significantly smaller than the radius of the vortex (say by factor 3),
then ω(0)=−1 is a good approximation. In this estimate, the standard value of R (see
(2.9)) can be used for R(0).

For example, if the initial volume is a cylinder of radius and height ri, hi then (A 3)
predicts

ω(0)=−1+ (1+ωi)
5
4

C, C=
[

ri

hi

f
3N

]2/3

. (A 4a,b)

A more rigorous calculation for the release of a cylinder co-rotating with the ambient
(ωi = 0), taking into account the potential vorticity conservation, is presented in
Ungarish (2009, § 13.1.1.1). This confirms the estimate (A 4a,b) for small C.
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We think that (A 4a,b) can serve as a general approximation for a vortex of fixed
volume, and that some estimate for ωi and C can be obtained for cases of interest.
If no specific information is available, it makes sense to assume that (1+ ωi)C� 1
and hence ω(0) ≈ −1. We also note that the determination of ω(0) from the initial
aspect ratio becomes ill-conditioned when ω(0) is close to −1, because |dα/dω| ∼
(1 + ω) (see (2.7)). Vortices created by rapid injection in the laboratory are made
of fluid released with ωi = 0 at a relatively small radius, ri� R(0), and hence also
consistent with the ω(0)≈−1 suggestion.

An essential assumption in the derivation of our model was that the inertial
acceleration terms, Du/dt, on the left-hand side of (2.3) are negligible. This is
verified as follows. We argue that u ∼ dR/dt = (dR/dω)(dω/dt) ∼ E1/2ΩR. We
conclude that the contribution of Du/Dt is O(E1/2) as compared to the right-hand
side terms of (2.3). The fact that u is so small is also a vindication of the lack of
viscous terms in (2.3), and an indirect validation of the hydrostatic pressure embedded
in this equation. We conclude that, overall, the use of the quasi-steady results for the
shape of the vortex is consistent with the spin-up time-dependent behaviour when E
is small. When injection is present, the validity analysis excludes the domain close
to the source (r < 0.1R say), but we argue that this is insignificant because of the
small volume in this domain.

Appendix B. Calculation of δ̄

Consider a fixed time, and let ξ = r/R ∈ [0, 1]. Now δ(ξ) is equal to δ0 over the
first half of the interval, then decreases linearly to a smaller δ1 at ξ = 1. The latter
domain is expressed as

δ(ξ)= a(1+ bξ), a= 2δ0 − δ1, b= 2
δ1 − δ0

a
ξ ∈ [0.5, 1]. (B 1a−c)

According to our definition,

1
δ̄
= 4

(∫ 0.5

0

ξ 3

δ0
dξ +

∫ 1

0.5

ξ 3

δ(ξ)

)
= 0.54

δ0
+ 4

a
[I(1)− I(0.5)] . (B 2)

We use

I(x)=
∫

x3

1+ bx
dx=

[
y− 1

2
y2 + 1

3
y3 − log(1+ y)

]/
b4, (B 3)

where y= bx.
In our model δ0 varies with time, and hence this calculation is performed every time

step. The physical situation implies a> 0, b< 0, and 0< x 6 1. Some care is needed
when |b| is small, because the subtraction in (B 3) is prone to cancellation errors. An
expansion for small y= bx yields

I(x)= x4

4

[
1− 4

5
y+ 2

3
y2

]
(B 4)

with relative error O(y3).
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Appendix C. On the derivation of (3.3) and (4.1)
It is convenient to use the logarithmic form of (3.2),

log Γ = log V + log(1+ω)+ 2 log R+ log C1, (C 1)

and of (2.8) and (2.6),

log R= 1
3 log V − 1

6 log φ + log C2, (C 2)

log φ = log(−ω)+ log(2+ω), (C 3)

where C1,C2 are constants, and ω, R, V are functions of t.
We take the time derivative of these equations, and denote by an upper dot the time

derivative of a variable. We obtain

Γ̇

Γ
= V̇

V
+ ω̇

1+ω + 2
Ṙ
R
, (C 4)

Ṙ
R
= 1

3
V̇

V
− 1

6
φ̇

φ
; φ̇

φ
= ω̇
ω
+ ω̇

2+ω. (C 5a,b)

Combining these equations we get

Γ̇

Γ
= ω̇ 1

1+ω
[

1− 2
3
(1+ω)2
ω(2+ω)

]
+ 5

3
V̇

V
. (C 6)

The term in the brackets is denoted J. Γ̇ is the product of (C 6) with Γ =
(2/5)ρcΩV (1 + ω)R2. The last term of (C 6) vanished for the constant volume
case, or when the injection influx is stopped; in this case, we obtain (3.3).

We can substitute the general Γ̇ result and (3.6) into (3.1), and write

2
5
ρcΩR2V (1+ω)Γ̇

Γ
=−1

4
ρcΩR4ν

1
δ̄
. (C 7)

For the constant injection case, (C 6) and (C 7) yield (4.1).
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