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We consider the flow of a thermoviscous fluid within a vertical tube which is heated
from below, modelling a scenario where a fluid melts, flows and eventually drips due to a
temperature-dependent viscosity. To do so, we develop a two-dimensional axisymmetric
model comprising three regions, a solid granular upper region (modelled as a region of
hydrostatic pressure), a middle highly viscous ‘crust’ region which flows and a lower
cavity region within which the material can drip. New material is continuously added to
the top, yet the highly viscous middle region can slow mass transfer from the top region
to the cavity if it becomes too thick or does not drip fast enough. In the limit of a tall,
thin geometry, akin to what is often seen in industrial applications, the resulting model
comprises a moving boundary problem governed by an energy equation with a Stefan
condition, both subject to a non-local radially averaged convective term. We carry out
numerical simulations and an asymptotic analysis of the model in this tall, thin limit,
for a variety of physically relevant parameter regimes. Our results reveal a variety of
qualitatively different behaviours, and enable us to explore how various parameter regimes
influence the salient features of the flow, including the ‘crust’ thickness and the flux of
material through the lower moving boundary.

Key words: solidification/melting

1. Introduction

In order to motivate our study, we begin with a specific application. Silicon is commonly
produced in submerged arc furnaces (Valderhaug & Sletfjerding 1991; Valderhaug 1992;
Schei, Tuset & Tveit 1998; Sloman et al. 2017), where the oxidisation of quartz rock
(SiO2) by lumps of carbon is driven by the heat from electrodes (Halvorsen, Schei &
Downing 1992; Schei et al. 1998; Myrhaug, Tuset & Tveit 2004; Kadkhodabeigi, Tveit &
Johansen 2011). Raw materials are continually added to the top of the furnace to balance
the average rate at which material is consumed, with the resulting molten silicon produced
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FIGURE 1. Image of pilot furnace experiment, with (left) and without (right) epoxy injected
to take the place of the gas cavity. Note in the experiments the bottom region indicated fallen
material will contain some solids that started there. However, in industrial furnaces this will be
comprised almost entirely of fallen material.

then collecting in a pool, before eventually being drained and allowed to solidify (Benham
et al. 2016a,b; Brosa Planella, Please & Van Gorder 2019). The mix of solid and granular
material above the pool is called the furnace charge. A solid and viscous liquid blockage,
known as furnace crust, can build up at the base of the charge (Sloman et al. 2017; Sloman,
Please & Van Gorder 2018). This crust forms a ceiling-like structure above the pool,
creating a cavity containing just gas where no solids or liquids are present. This crust zone
is constantly losing material from its lower surface, due to melting and dripping caused by
radiative heating from below, but is simultaneously replenished at its upper surface as the
granular raw materials melt and stick together, behaving as a highly viscous fluid. Since
the crust can resist the raw materials from reaching the hot lower part of the furnace where
the dominant reactions occur, it can adversely influence the production of silicon, and as
a result the crust has to be broken up with machinery on an hourly basis. This breaking
up of the crust is dangerous to operators due to the pressurised hot gas in the furnace,
which can flow out uncontrollably once the crust is broken. It is worth noting that silicon
is also commonly produced with iron content as ferrosilicon, and when the iron content is
high the process does not have the same problematic crust formation (Ksiazek, Tangstad
& Ringdalen 2016), possibly due to the added weight of the iron and the lower viscosity
of the crust. We examine these hypotheses by developing a thermo-mechanical model of
furnace crust, using the simplified cylindrical geometry of experimental furnaces used by
Elkem ASA, known as ‘pilot furnaces’ (Sloman et al. 2017). Annotated images of pilot
furnace experiments are shown in figure 1. Since our model generalises the features of
furnace crust we anticipate that it will be useful for other applications where a mixture of
flow, heating, viscosity changes and material loss occur.

The charge consists of two regions: an upper region of solid particles, behaving like a
granular material, and a lower region comprising a mixture of solid and viscous liquid
materials, which are reacting with each other and a background gas. A detailed model of
both viscous and granular effects could be excessively complex so, since the highly viscous
crust is our main region of interest, it is reasonable to choose a viscous rather than granular
modelling framework. For simplicity, we model the lower region as a one-phase viscous
liquid, with viscosity dependent on temperature. Granular bridging in the upper charge
has not been observed in either industrial or pilot furnaces, likely because the friction
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Dripping of a heated viscous fluid in a thin vertical tube 905 A16-3

coefficient between the walls and the grains is small. Since the solid particles in the upper
charge fall down into the space below, we neglect any solid friction between particles and
model the granular region as a region of hydrostatic pressure with no horizontal motion
of particles. Thus, the upper charge region acts like a dead load, applying pressure to the
lower region. This simplification of granular dynamics is taken, since our motivation is to
better understand the crust behaviour. In industrial operation raw materials are continually
added to keep the top surface as flat as possible, so we assume a fixed top of our granular
region. We also ignore the influence of the background gas and any reactions that might
create or remove material within the lower charge region. A similar physical configuration
has been considered by Ceseri & Stockie (2014), where a horizontal cylinder comprises
three ordered regions of gas, liquid, and solid, respectively. In their paper heating from
the gas influences a Stefan condition at the gas–liquid interface, and a long, thin limit is
considered.

There have been a variety of studies on the flow and subsequent dripping of a viscous
fluid within a vertical tube or similarly confined geometry. A one-dimensional theory of
the unsteady extension of a viscous thread under its own weight is derived by Wilson
(1988), and this model holds when viscosity, capillarity and gravity are important but
inertia is negligible. Drop formation from a capillary tube for two-phase low Reynolds
number flows in a cylindrical geometry was later studied through simulations by Zhang &
Stone (1997). Tuck, Stokes & Schwartz (1997) model an initially rectangular viscous liquid
held fixed between two vertical walls. In the tall, thin limit the profile is parabolic, but is
parabolic squared (or quartic shaped) in the short, wide limit. The transition from slow
dripping to a jet has been considered by Clanet & Lasheras (1999), with this transition
corresponding to a critical Weber number defined in terms of Bond numbers. Stokes, Tuck
& Schwartz (2000) then consider the extensional flow of a viscous fluid forming a droplet.
They find a critical ‘crisis time’ at which break-off of a droplet occurs (when inertial
effects are neglected). Although it is common to neglect inertia in such flows, the role of
inertia in problems of viscous drop formation was considered in Stokes & Tuck (2004).

We are interested in the interactions between thermal effects and flow of the furnace
charge. The charge moves under gravity, subject to radiative heating below, from the
base of the furnace. In the present paper, we consider the flow of a solid material fed
into a vertical tube which melts and flows (as a liquid with strong viscosity dependence
on temperature) downward with increasing temperature. There are a variety of scenarios
for which this would occur. Natural applications include convection of planetary mantles
(Fowler 1985), planetary core formation (Ockendon et al. 1985), the dynamics of ice sheet
flows (Fowler 1992) and the melting of thin films (Zippelius, Halperin & Nelson 1980).
Industrial applications include the manufacture of glass and optical fibre, with related
models applied to the flow of molten glass (Stokes 1998; Griffiths & Howell 2008), the
pulling of a hollow glass tube that is being radiatively heated (Huang et al. 2007) and the
fabrication of microstructured optical fibres (Tronnolone et al. 2016; Mavroyiakoumou,
Griffiths & Howell 2019). The winterisation of biodiesel at temperatures below 273 K
involves heating of a solid back to a liquid before the biodiesel can be used, and the
temperature-dependent viscosity of biodiesel was described by Kerschbaum & Rinke
(2004). In most of these applications, there is a melting from solid to liquid phase.
Extensional flow of viscous threads was considered by Wylie & Huang (2007). Our
primary motivating example, however, will be the dynamics found within submerged arc
furnaces used in the production of silicon, and in that case the flow is driven by radiative
heating from the bottom. For such a configuration, due to continual heating, the viscosity
will decrease further until a critical value, after which the fluid drips. This results in three
regions: at the top a cool hydrostatic region (granular), then in the middle a warm, highly
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viscous liquid region (crust), and finally a hot gas-filled region into which the liquid drips
(cavity).

At the top of the crust gas condenses, causing particles to stick together, and quartz
particles begin to soften and melt. The bottom of the crust is heated from below and the
behaviour here is more complex. The mixture can become so hot that there is frequent
dripping to the pool below, gas can react with silicon carbide to form low-viscosity
silicon and viscous quartz can react with solid carbon and silicon carbide to form gas
(Schei et al. 1998; Sloman et al. 2017). The interface is not smooth, and there can be
hanging filaments of material which will drip off. Since we develop a fluid dynamics
model motivated by silicon furnaces, rather than attempting to replicate all physical
effects observed, we treat both interfaces as isotherms for simplicity. The granular-viscous
isotherm represents a condensation temperature, and the viscous-gas isotherm represents
a dripping temperature. The energy balance at the lower interface is given by a Stefan
condition, with latent heat corresponding to chemical reactions or vaporisation, such as
found in the application of liquid flowing through hot porous rock (Woods & Fitzgerald
1993; Woods 1999). We neglect the effect of surface tension, which may influence the
detailed shape of the boundary.

There is a wealth of literature concerning temperature-dependent fluid mechanics
problems. For example, Ockendon & Ockendon (1977) consider a channel of Newtonian
fluid that is instantaneously heated or cooled from the walls. A Cartesian channel is
assumed, but results are also given for an axisymmetric cylindrical channel. Pearson
(1977) also considers a channel heated from the wall with viscosity having an exponential
dependence on temperature. Bergstrøm et al. (1989) and Fitt & Howell (1998) analyse
two-phase flow with thermally dependent viscosity in furnace electrodes, which is similar
to our application of interest. The problem of a warm liquid flowing over a cold
semi-infinite solid is examined by Huppert (1989), with freezing of the liquid and melting
of the solid both possible. Further asymptotic limits of this model are studied by King
& Riley (2000). Models of a similar flavour can also be used to describe problems in
application areas such as volcanic eruptions and lava flows (Wylie & Lister 1995; Lister
& Dellar 1996; Griffiths 2000), welding (Dowden, Davis & Kapadia 1983) and fusion
reactors (Hassanein, Kulcinski & Wolfer 1984).

There are several means of modelling variations in viscosity, with the dependence of
viscosity on temperature discussed by several authors (Ockendon & Ockendon 1977;
Pearson 1977; Solomatov 1995; Wylie & Lister 1995). The dependence of viscosity
on temperature is most often considered to be either exponential (e−βT) or algebraic
(1 − βT) in nature. The exponential decrease of viscosity with temperature is alternately
referred to as Reynold’s law (Myers, Charpin & Tshehla 2006) or Nahme’s law (Becker
& McKinley 2000; Myers et al. 2006) in the literature. A variety of studies employ
such an exponential dependence of viscosity on temperature (Joseph 1964; Ockendon
& Ockendon 1977; Pearson 1977; Ockendon 1979; Costa & Macedonio 2005), and this
will be a sensible choice for our application for silicon furnaces. The situation where the
fluid carries a suspension of solid particles has also been well studied (Brinkman 1952;
Chong, Christiansen & Baer 1971; Mueller, Llewellin & Mader 2009; Mader, Llewellin
& Mueller 2013). A dense suspension limit is examined by Stickel & Powell (2005),
with Chang & Powell (1994) studying the influence of the particle size on the rheology.
In the furnace crust the solid volume fraction is sufficiently small that variations in the
size influence viscosity by orders of magnitude less than variations in temperature. This
is shown by noting that the solid particles in the crust have approximately twice the
concentration as the viscous quartz (SiO2), due to the overall furnace reaction SiO2 +
2C → Si + 2CO (Schei et al. 1998), and convert to solid silicon carbide particles through
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Dripping of a heated viscous fluid in a thin vertical tube 905 A16-5

the reaction SiO + 2C → SiC + CO (Sloman et al. 2017). Assuming molar volumes
2MC/ρC = 1.06 × 10−5,MSiC/ρSiC = 1.25 × 10−5(Sloman et al. 2017) and MSiO2/ρSiO2 =
6.01 × 10−2/2650 = 2.27−5 m3 mol−1 (Pabst & Gregorová 2013), and neglecting the small
gas fraction, the granular volume fraction ranges from φ ∼ 0.32 to φ ∼ 0.36, which is
less than the jamming density φ = 0.65 used by Stickel & Powell (2005), and means
that changes in solid volume fraction will likely have less influence than changes in
temperature on the viscosity. As pointed out by Fitt & Aitchison (1993) for the related
problem of the melting and baking of carbon paste, although such carbon paste is really a
two-phase mixture, there is strong industrial interest in treating the paste as a single phase
for tractability of models, and therefore an effective viscosity for the whole mixture is
desired. Therefore, although the crust likely exhibits non-Newtonian behaviour, we take a
similar point of view, treating this region as a homogeneous Newtonian fluid.

Aside from silicon furnaces, there are a variety of applications for the heating and
dripping of a solid into a liquid within a thin tube, with perhaps the most common
modern application related to phase-change materials. Melting of thin tubes of initially
solid phase-change materials, such as paraffin, n-eicosane or RT27 (Rubitherm GmbH),
which are heated from below, were studied experimentally and numerically in a variety
of works (Sparrow & Broadbent 1982; Jones et al. 2006; Shmueli, Ziskind & Letan 2010;
Bechiri & Mansouri 2019), with phase-change nanocomposites such as those based on
graphene also attracting attention (Das et al. 2016). The melting of both pure substances,
as well as substances with impurities, has also been considered (Sparrow, Gurtcheff &
Myrum 1986). In all of these applications, the vertical tube geometry strongly influences
the melting, compares with horizontal tubes or other configurations (Shmueli et al. 2010),
and this dependence on geometry can play a role in geometric configurations used for
thermal energy storage systems (Liu, Yao & Wu 2013; Dhaidan & Khodadadi 2015). More
detailed numerical analysis of phase-change materials melted by heating a vertical cylinder
from below suggests the emergence of a moving solid–liquid phase front, with the role of
convection also discussed (Wu & Lacroix 1995).

Regarding the dripping of thermoviscous fluids confined within cylindrical tubes, a
related application can be found within food science (White, Moggridge & Wilson 2008).
For such foodstuffs, drainage rates are important to know for maintaining the efficiency
of industrial processes. Recently, Ali et al. (2016) carried out experiments with different
sized tubes in order to determine rates of self-drainage of honey and two Marmite(TM)
varieties. In their experimental configuration, additional material was added to the top of
the cylinder, preventing air entrainment. Detailed modelling of drop formation was not
considered, but instead the net rate of material flow was calculated experimentally, as for
such applications knowing the total mass flux over time is of greater industrial relevance
than is precise knowledge of drop shape and structure. As honey and Marmite(TM) are
strongly thermoviscous Ali et al. (2016), it is theoretically possible to employ different
thermal profiles in order to enhance the rate of dripping (subject to keeping the temperature
within a range that prevents spoilage).

Despite the experimental findings and numerical simulations related to applications
involving areas as diverse as silicon furnaces, phase-change materials, and melting ice,
there is not much work in the literature related to the analysis of such configurations.
Motivated by the aforementioned applications, as well as the literature on thermoviscous
fluids, in § 2 we develop a two-dimensional axisymmetric model for the flow of a material
which melts and then drips. In § 3, we simplify this model by assuming a tall, thin
geometry, akin to what is commonly seen in real-world applications. In § 4 we consider
steady-state behaviour and perform an asymptotic analysis of the tall, thin geometry
model in a variety of physically relevant distinguished limits. We perform numerical
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z = –h

z = 0

z = –b(r, t)

z = –a(r, t)

r = Rr = 0

Solid and liquid mixture

Gas

Modelled as a
viscous liquid

Modelled as a region
of hydrostatic pressure

Modelled as a region
of constant pressure

T = Tc

T = Tk

T = Td

T = Th z → –∞

Solid granular particles

FIGURE 2. A schematic of the two-dimensional geometry, with moving interfaces at z =
−a(r, t) and z = −b(r, t), which both have initial conditions a(r, 0) = b(r, 0) = h. The
temperature of the heat source beneath the fluid is Th, the lower and upper fluid interfaces are at
isotherms Td and Tk, respectively, and the top of the domain is at the cold temperature Tc, where
Tc ≤ Tk ≤ Td ≤ Th.

simulations of the model in § 5, and in § 6 discuss our results and possible extensions to
our work.

2. Thermally driven dripping of a highly viscous fluid in a cylinder

We use an axisymmetric cylindrical geometry, with coordinate system (r, z), where r is
the radius and z is the height. We do not model the base of the cylinder so consider the
semi-infinite region z ≤ 0. We model the crust as a one-phase viscous fluid, with viscosity
dependent on temperature. The viscous crust lies above the cavity where there is constant
gas pressure and no fluid and the free boundary, at z = −a(r, t), separates these regions,
where we assume a(r, t) ≥ 0. The movement and shape of this interface will be influenced
by the viscous motion of the fluid and thermal heating, and is modelled as a dripping
isotherm. We model the granular upper region as a region of hydrostatic pressure with no
horizontal motion of particles. This acts like a dead load, applying pressure to the viscous
crust below. The granular and viscous regions are separated by the interface z = −b(r, t),
where we assume 0 ≤ b(r, t) ≤ a(r, t). This will also be determined by an isotherm,
replicating a condensation temperature. We have chosen not to track the behaviour of the
material that drips from the viscous crust, and so a(r, t) and b(r, t) can grow unboundedly.
We suppose that material is added to the top of the granular region at a rate which ensures a
flat, horizontal top at z = 0, and so only need to consider two free boundaries. A schematic
of the geometry is given in figure 2.

The viscous fluid in −a(r, t) ≤ z ≤ −b(r, t) has a Reynolds number such that the Stokes
equations hold. The fluid is taken to have a constant density, ρ, but a thermally varying
viscosity, η, so that

0 = −∇p + ∇ · (η(∇u + ∇uT))− ρgk, for − a(r, t) ≤ z ≤ −b(r, t), r ≤ R, (2.1)

∇ · u = 0, for − a(r, t) ≤ z ≤ −b(r, t), r ≤ R, (2.2)

where u denotes the velocity field and g denotes the acceleration due to gravity.
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Dripping of a heated viscous fluid in a thin vertical tube 905 A16-7

The pressure in the granular region −b(r, t) ≤ z ≤ 0 is given by

p = patm − ρgz, for − b(r, t) ≤ z ≤ 0, (2.3)

with no shear stresses and where we have assumed that the granular region has same
constant density, ρ, as the fluid region. The flow in this region is assumed to be purely
vertical and independent of height. We have continuity of velocity at the interface z =
−b(r, t), giving

u(z, r, t) = u(−b(r, t), r, t), for − b(r, t) ≤ z ≤ 0, r ≤ R. (2.4)

and also continuity of normal and tangential stresses (which we describe in detail later).
We assume that both the viscous and granular regions can be described by the

temperature, T(r, z, t), and the same constant thermal conductivity, k. Since we neglect
any heat from reactions, the governing equation is

∂T
∂t

+ u · ∇T = κ∇2T, for − a(r, t) ≤ z ≤ 0, r ≤ R, (2.5)

where we have written the convective term as u · ∇T due to incompressibility. Since the
problem is axisymmetric, we have that

T = T(r, z, t), u(r, z, t) = ur(r, z, t)er + uz(r, z, t)k, (2.6)

where er denotes the unit vector in the r (radial) direction.
We will solve the fluid problem for u in the viscous region −a(r, t) ≤ z ≤ −b(r, t), but

the thermal problem in the whole fluid domain −a(r, t) ≤ z ≤ 0.
The boundary conditions for the viscous fluid are that there is no flux or slip on the

radial walls,
ur = 0, uz = 0, at r = R, (2.7a,b)

and that velocity is bounded at r = 0,

‖u‖ bounded as r → 0. (2.8)

We further assume that the cylinder is insulated at the walls and that temperature is
bounded along the centreline, so we have

∂T
∂r

= 0 at r = R, T bounded as r → 0. (2.9)

We assume that the top is replenished with cold material,

T = Tc, at z = 0, (2.10)

and that the interface z = −b(r, t) is determined by the condensation isotherm

T = Tk, at z = −b(r, t). (2.11)

The material starts from cold, so we have the initial condition

T = Tc, at t = 0. (2.12)

The behaviour at the lower interface, z = −a(r, t), is more complex. We have not
included a heat source as part of the heat equation (2.5), but energy radiates from the base
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of the cylinder to cause the lower charge to drip down to the pool below. We thus assume
that there is a radiative heat source of constant temperature Th at z = −∞. We choose
to model the interface z = −a(r, t) as an isotherm, corresponding to the temperature at
which the fluid drops off instead of staying as a coherent mixture on the time scale of
interest. We use the boundary condition

T = Td, at z = −a(r, t), (2.13)

where Td < Th is the ‘dripping temperature’. There is a natural time scale over which
the fluid will viscously deform into drops, and for there to be a stable boundary at the
isotherm corresponding to T = Td this time scale should be much less than the time
scale over which the temperature of the fluid is changing. As we later see through
asymptotic approximations and numerical simulations, parameter values for which the
dripping isotherm remains at a fixed height result in a thermal solution which quickly tends
to steady state, and therefore heating of the fluid occurs with the slow rate of downward
motion. In this case, the time scale for drop formation is much less than the time scale on
which the temperature of a given volume element of fluid changes. In the opposite case,
where the fluid moves fast enough so that heating of a given volume element is rapid, drops
cannot form fast enough, and there is no such stable boundary. Rather, in this regime the
dripping isotherm does not occur at steady state, and the fluid is in free fall. We observe
both cases, and find that it is the balance between the Stefan and Péclet numbers which
dictates whether there is either a stable dripping isotherm or the fluid is in free fall.

To describe the motion of the interface, we use the Stefan condition for convecting
material, which is given by

ρL(Vn − u · n) = [q · n]+−, at z = −a(r, t). (2.14)

Here q is the heat flux, Vn is the normal velocity of the interface, n is the normal vector
to the boundary and L is the latent heat of vaporisation, since some of the fluid will be
vaporised instead of dripping. Terms on the left-hand side correspond to the interface
moving upwards and the fluid moving downwards. The special limit L → 0 where no
latent heat is given off is considered later in § 4.2.4.

Returning to (2.14), we note that Vn is given by (see Ockendon et al. 2003)

Vn = − 1
‖∇a‖

∂(−a)
∂t

, (2.15)

and that the outward normal to the boundary from the fluid is

n = ∇(−a)
‖∇a‖ = − 1√

1 +
(
∂a
∂r

)2

⎛⎝∂a
∂r
1

⎞⎠ . (2.16)

Taking care of the signs of the normals for the radiative and conductive fluxes on the
right-hand side of (2.16), we obtain

ρL
(

1
‖∇a‖

∂(−a)
∂t

+ u · ∇(−a)
‖∇a‖

)
= −k∇T · n − εRσ(Th

4 − T4
d )k · n, at z = −a(r, t),

(2.17)

for n given by (2.16), latent heat L [m−2s−2], emissivity εR (to avoid confusion with ε in
§ 4.2) and Stefan–Boltzmann constant σ [kg K−4 s−3]. The first term on the right-hand side
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Dripping of a heated viscous fluid in a thin vertical tube 905 A16-9

is the conductive flux lost from the surface, and the second term is the radiative flux from
the hot heat source to the surface. We can thus multiply through by ‖∇a‖, giving

ρL
(

−∂a
∂t

− ur
∂a
∂r

− uz

)
= k

(
∂T
∂r
∂a
∂r

+ ∂T
∂z

)
+ εRσ(T4

h − T4
d ), at z = −a(r, t).

(2.18)

Note that (2.17) includes a simplified radiative flux. More precisely we might account for
radiative contributions from each point of the surface of the cavity, however, to do this
consistently makes the model inaccessible to analytical progress so we assume a simple
heat source radiating at temperature Th from z = −∞.

At the z = −a(r, t) boundary, we have that the normal stress is equal to the atmospheric
pressure in the gas. In practice there may be some over-pressure in z < −a(r, t), but this
is not included in our model. We also have that the tangential component of stress is zero.
These conditions can be written

n ·Σn = −patm, at z = −a(r, t), (2.19)

t ·Σn = 0, at z = −a(r, t), (2.20)

for stress tensor, Σ , normal vector, n, and tangent vector, t. Angular terms do not
contribute, so we only give the relevant terms in the tensor

Σ =
[
Σrr Σrz

Σzr Σzz

]
=

⎡⎢⎢⎢⎣
−p + 2η

∂ur

∂r
η

(
∂ur

∂z
+ ∂uz

∂r

)
η

(
∂ur

∂z
+ ∂uz

∂r

)
−p + 2η

∂uz

∂z

⎤⎥⎥⎥⎦ . (2.21)

Since the tangent vector is given by

t = 1√
1 +

(
∂a
∂r

)2

⎛⎝ 1

−∂a
∂r

⎞⎠ , (2.22)

and noting that Σrz = Σzr, we obtain

1

1 +
(
∂a
∂r

)2

[
Σrr

(
∂a
∂r

)2

+ 2Σrz
∂a
∂r

+Σzz

]
= −patm, at z = −a(r, t), (2.23)

1

1 +
(
∂a
∂r

)2

[
−Σrr

∂a
∂r

−Σrz

(
1 −

(
∂a
∂r

)2
)

+Σzz
∂a
∂r

]
= 0, at z = −a(r, t). (2.24)

As mentioned earlier, at z = −b(r, t), we have analogous conditions arising from
continuity of normal and tangential stress. The normal stress is equal to the hydrostatic
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905 A16-10 B. M. Sloman, C. P. Please and R. A. Van Gorder

pressure in the upper region, and the tangential stress is zero. Defining nb and tb as

nb = 1√
1 +

(
∂b
∂r

)2

⎛⎝∂b
∂r
1

⎞⎠ , (2.25a)

tb = 1√
1 +

(
∂b
∂r

)2

⎛⎝ 1

−∂b
∂r

⎞⎠ , (2.25b)

respectively, we write the stress conditions as

nb ·Σnb = −patm − ρgb(r, t), at z = −b(r, t), (2.26a)

tb ·Σnb = 0, at z = −b(r, t). (2.26b)

We assume that the free surfaces start at a given height z = −h, so we have initial
conditions

a(r, 0) = h, b(r, 0) = h. (2.27)

We are aware that this introduces a singularity into the problem, since the viscous region
is non-existent initially. However, this is the case in experiments, and later in § 5 we find
that a viscous region develops naturally in numerical simulations.

To close the system, we need a constitutive relationship between viscosity and
temperature and, since an exponential function is typically used (Ockendon & Ockendon
1977; Pearson 1977), we set

η = ηs exp(−λs(T − Td)), (2.28)

for positive parameter ηs and non-negative parameter λs.
Our system is thus comprised of (2.1), (2.2), (2.5), boundary conditions (2.4),

(2.7a,b)–(2.10), (2.13), (2.23), (2.24), (2.26), initial conditions (2.12) and (2.27), interface
conditions (2.11) and (2.18) and the viscosity relationship (2.28).

3. Derivation of the tall, thin cylinder model

We now non-dimensionalise our system under the assumption that the cylinder is tall
and thin. We introduce the aspect ratio δ = R/h, giving the ratio of radial to vertical length
scales, and assume that δ is a small parameter with 0 < δ 	 1. We introduce the scalings

ur = δUūr, uz = Uūz, r = δhr̄, z = hz̄, a = hā, b = hb̄,

p = patm + Uηs

δ2h
p̄, η = ηsη̄, T = Tc + (Td − Tc)T̄, t = ρLh2

k(Td − Tc)
t̄,

⎫⎬⎭ (3.1)

where we have chosen the Stefan time scale balancing the movement of the interface with
the conductive heat flux from the fluid. For the velocity scale we have taken the average
speed for Poiseuille flow due to gravity in a cylinder of radius R for a fluid of constant
viscosity ηs, namely U = (ρg/8ηs)R2.
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Dripping of a heated viscous fluid in a thin vertical tube 905 A16-11

We find that the leading-order system, as δ → 0, will depend on the dimensionless
parameters

St = Cp(Td − Tc)

L
, Pe = Uh

κ
, γ = εRσ(T4

h − T4
d )

k(Td − Tc)/h
,

Tb = Tk − Tc

Td − Tc
, λ = λs(Td − Tc).

⎫⎪⎪⎬⎪⎪⎭ (3.2)

The Stefan number, St, measures the ratio of sensible heat to latent heat, the thermal
Péclet number, Pe, measures the ratio of the rate of thermal convection to the rate of
thermal conduction and the parameter γ is the ratio of radiative to convective thermal
fluxes; Tb represents the condensation temperature and λ the sensitivity of the viscosity to
temperature variations. As we examine the problem in the small δ limit, so that the problem
domain is a long and thin cylinder, we will treat St,Pe, γ,Tb, and λ as O(1) parameters.

Regarding the furnace application, while the latent heat of the mixture is uncertain,
for quartz rock the latent heat of vaporisation is L = 1.56 × 105 [J kg−1] and the
corresponding specific heat capacity is Cp = 1.23 × 103 [J (kg K)−1], both calculated
from values in Richet et al. (1982) at 1700 K using the molar mass MSiO2 = 6.009 ×
10−2 kg mol−1. A typical difference between the dripping temperature Td and the cold
temperature Tc at which material enters the furnace is Td − Tc ∼ 1000 K, which gives
an estimate of the Stefan number as St ∼ 8. However, this is a rough estimate, and the
Stefan number will be small, order one, or large, depending on particular parameter values,
including the temperature difference Td − Tc. We will explore these and other scalings in
§ 4.

For convenience from hereon we drop the overbar notation in (3.1), and obtain the
system

∂uz

∂z
+ 1

r
∂

∂r
(rur) = 0, (3.3a)

0 = −∂p
∂z

+ 1
r
∂

∂r

(
rη
∂uz

∂r

)
− 8 + O(δ2), (3.3b)

0 = −∂p
∂r

+ O(δ2), (3.3c)

∂T
∂t

+ Pe
St

(
ur
∂T
∂r

+ uz
∂T
∂z

)
= 1

St

(
1
δ2

1
r
∂

∂r

(
r
∂T
∂r

)
+ ∂2T
∂z2

)
, (3.3d)

η = exp(−λ(T − 1)). (3.3e)

We have the following boundary and initial conditions

T(r,−a(r, t), t) = 1, T(r, 0, t) = 0,
∂T
∂r
(1, z, t) = 0, T bounded as r → 0,

(3.3f )

T(r, z, 0) = 0, (3.3g)

ur(1, z, t) = 0, uz(1, z, t) = 0, ‖u‖ is bounded as r → 0. (3.3h)
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905 A16-12 B. M. Sloman, C. P. Please and R. A. Van Gorder

We note that the atmospheric pressure terms patm cancel in both stress conditions (2.23)
and (2.24), and hence we find(

− p
δ2

+ 2η
∂ur

∂r

)
1
δ2

(
∂a
∂r

)2

+ 2η
(
δ
∂ur

∂z
+ 1
δ

∂uz

∂r

)
1
δ

∂a
∂r

− p
δ2

+ 2η
∂uz

∂z
= 0, at z = −a(r, t), (3.3i)

−
(

− p
δ2

+ 2η
∂ur

∂r

)
1
δ

∂a
∂r

− η

(
δ
∂ur

∂z
+ 1
δ

∂uz

∂r

)(
1 − 1

δ2

(
∂a
∂r

)2
)

+
(

− p
δ2

+ 2η
∂uz

∂z

)
1
δ

∂a
∂r

= 0 at z = −a(r, t). (3.3j)

Similarly the free stress conditions (2.26) on the upper surface become(
− p
δ2

+ 2η
∂ur

∂r

)
1
δ2

(
∂b
∂r

)2

− 2η
(
δ
∂ur

∂z
+ 1
δ

∂uz

∂r

)
1
δ

∂b
∂r

− p
δ2

+ 2η
∂uz

∂z

= − 8
δ2

b(r, t)

(
1 + 1

δ2

(
∂b
∂r

)2
)
, at z = −b(r, t), (3.3k)

(
− p
δ2

+ 2η
∂ur

∂r

)
1
δ

∂b
∂r

+ η

(
δ
∂ur

∂z
+ 1
δ

∂uz

∂r

)(
1 − 1

δ2

(
∂b
∂r

)2
)

−
(

− p
δ2

+ 2η
∂uz

∂z

)
1
δ

∂b
∂r

= 0, at z = −b(r, t). (3.3l)

We also have the interface conditions

−∂a
∂t

− Pe
St

(
ur
∂a
∂r

+ uz

)
= γ + ∂T

∂z
+ 1
δ2

∂T
∂r
∂a
∂r
, at z = −a(r, t), (3.3m)

a(0, t) = 1, (3.3n)

T(−b(r, t), r, t) = Tb, (3.3o)

b(0, t) = 1. (3.3p)

3.1. Derivation of the leading-order system
Since we have taken a tall, thin limit, we expect that the lower interface is flat to leading
order. To demonstrate this, we note that the leading-order terms in (3.3i) and (3.3j) are

− p
(
∂a
∂r

)2

= 0, η
∂uz

∂r

(
∂a
∂r

)2

= 0. (3.4a,b)

If we did not take ∂a/∂r = 0, then in addition to zero pressure p = 0, we would also need
the vertical component of velocity to be radially independent at the interface. Due to the
no-flux condition on the wall, this would require zero vertical velocity across the whole
interface, and hence throughout the entire fluid region. Thus, since we want to include
convection in our model, we must have that the interface is flat to leading order.
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Dripping of a heated viscous fluid in a thin vertical tube 905 A16-13

Further, letting a = a0(t)+ δa1(r, t)+ O(δ2) we note that the next-order term in (3.3i)
is given by

− p0

(
∂a1

∂r

)2

− p0 = 0, (3.5)

for leading-order pressure p0. We thus obtain a zero pressure condition on the flat, lower
interface

p0 = 0, at z = −a0(t). (3.6)

By similar reasoning with (3.3k) and (3.3l), we also obtain a flat upper interface to leading
order, so b = b0(t)+ O(δ), and we find the pressure condition

p0 = 8b0(t), at z = −b0(t). (3.7)

We now expand the temperature, velocity, pressure and viscosity variables. Due to the
δ−2 term in the heat equation (3.3d), we consider expansions of the form

T = T0 + δ2T1 + O(δ4), (3.8a)

u = u0 + δ2u1 + O(δ4), (3.8b)

p = p0 + δ2p1 + O(δ4), (3.8c)

η = η0 + δ2η1 + O(δ4). (3.8d)

The leading-order thermal equation is

0 = 1
St

1
r
∂

∂r

(
r
∂T0

∂r

)
, (3.9)

which, combined with either the boundedness of T0 as r → 0 or the vanishing normal
derivative on the wall r = 1, gives T0 = T0(z, t) (for St = O(1) in δ, which we have
assumed). This, in turn, gives that the leading-order viscosity is also radially independent,
with

η0(z, t) = exp(−λ(T0(z, t)− 1)). (3.10)

The leading-order fluid equations are

∂uz0

∂z
+ 1

r
∂

∂r
(rur0) = 0, (3.11a)

0 = −∂p0

∂z
+ 1

r
∂

∂r

(
rη0

∂uz0

∂r

)
− 8, (3.11b)

0 = −∂p0

∂r
, (3.11c)

ur0(1, z, t) = uz0(1, z, t) = 0, (3.11d)

ur0, uz0 bounded as r → 0, (3.11e)

p0(r,−a0(t), t) = 0, p(r,−b0(t), t) = 8b0(t). (3.11f )

Since the leading-order pressure p0 is also radially independent, (3.11b) can be integrated
twice to give

uz0 = − 1
η0(z, t)

(
∂p0

∂z
+ 8

)(
1 − r2

4

)
. (3.12)
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905 A16-14 B. M. Sloman, C. P. Please and R. A. Van Gorder

Integrating the incompressibility condition (3.11a) radially gives

∫ 1

0
r
∂uz0

∂z
dr + [rur0]r=1

r=0 = 0. (3.13)

The boundary conditions on ur0, combined with (3.12), give

∂

∂z

(
1
η0

(
∂p0

∂z
+ 8

))
= 0, (3.14)

and hence uz0 is independent of height z. Substituting uz0 into the incompressibility
condition (3.11a), we find that ur0 = 0. Thus, to leading order, the fluid moves downward
with a velocity that is the same at each height, yet which varies radially and temporally.
We have that

u0 = −2f (t)(1 − r2)k, (3.15)

where f (t) can be interpreted as the average speed of the fluid, since

∣∣∣∣∣∣∣∣
2π

∫ 1

r=0
2f (t)(r2 − 1)r dr

2π

∫ 1

r=0
r dr

∣∣∣∣∣∣∣∣ = f (t). (3.16)

We can find f (t) by substituting (3.15) into (3.11b), which when rearranged gives

8f (t)η0 = 8 + ∂p0

∂z
. (3.17)

Integrating (3.17) vertically between z = −a0(t) and z = −b0(t), we have

8f (t)
∫ −b0(t)

−a0(t)
η0(z, t) dz = [p0 + 8z]z=−b0(t)

z=−a0(t) = 8b0(t)+ 8(−b0(t)+ a0(t)), (3.18)

and hence we obtain

f (t) = a0(t)∫ −b0(t)

z=−a0(t)
η0(z, t) dz

. (3.19)

Thus, f (t) is a ratio of the gravitational force in the numerator driving the fluid downwards
to the viscous force in the denominator resisting motion. Note that the weight of the whole
charge is felt, but the resistance is due only to the viscosity of the lower region. We note
that in the case of constant viscosity (λ = 0), and no granular region (Tb = 1), we have
that f (t) ≡ 1, and we recover the usual Poiseuille flow results.
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Dripping of a heated viscous fluid in a thin vertical tube 905 A16-15

We determine an equation for T0(z, t) by considering the O(1) heat equation, namely

∂T0

∂t
+ Pe

St
uz0
∂T0

∂z
= 1

St

(
1
r
∂

∂r

(
r
∂T1

∂r

)
+ ∂2T0

∂z2

)
. (3.20)

Integrating (3.20) radially, noting that T0 is independent of r, gives

1
2
∂T0

∂t
− 1

2
Pe
St

f (t) = 1
St

∫ 1

r=0

∂

∂r

(
r
∂T1

∂r

)
dr + 1

2
1
St
∂2T0

∂z2
. (3.21)

Since T1 is bounded at r → 0 and has a zero normal derivative on the wall r = 1, we are
left with

∂T0

∂t
− Pe

St
f (t)

∂T0

∂z
= 1

St
∂2T0

∂z2
, in − a0(t) ≤ z ≤ 0, (3.22)

with the corresponding initial and boundary conditions

T0(z, 0) = 0, T0(−a0(t), t) = 1, T0(0, t) = 0. (3.23)

We note that the location of the interface z = −b(t) is determined by

T0(−b0(t), t) = Tb. (3.24)

We also need to determine the leading-order Stefan condition. Considering the
leading-order terms in (3.3m) gives

− da0

dt
+ Pe

St
2f (t)(1 − r2) = γ + ∂T0

∂z
, at z = −a0(t), (3.25)

which cannot be satisfied by the leading-order solution, because a0 and T0 are independent
of r and f (t) > 0, so nothing can balance the single term with radial dependence. The
problem arises because we have shown that the lowest-order interface a0(t) is flat, and that
the lowest-order temperature T0 is radially independent. However, at higher orders, the
interface is not flat, and varies radially. We thus we must consider an inner region adjacent
to the interface where temperature could potentially vary radially. We expect this region to
be of thickness O(δ), and hence in a domain that is not tall and thin. We now consider this
boundary region to find that we should impose a radially averaged boundary condition on
the lowest-order outer problem.

3.2. Averaged velocity from inner region
We consider the small inner region at the bottom of the lower, viscous region by defining
the inner variables aI(r, t), ẑ, and TI(ẑ, r, t) as

a = a0(t)+ δaI(r, t), T = 1 + δTI(ẑ, r, t), z = −a0(t)+ δẑ, (3.26a–c)

where r, t ≥ 0 and ẑ ≥ −aI . We have assumed that the correction term lies below the
leading-order interface, i.e. aI > 0. A schematic diagram of the inner region is given in
figure 3.
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905 A16-16 B. M. Sloman, C. P. Please and R. A. Van Gorder

ẑ = –aI(r, t)

ẑ→ ∞
z = –a0(t)

z

ẑ

Inner

Outer

Matching
region

r = 0 r = 1

FIGURE 3. Schematic of the inner region near z = −a0(t).

The leading-order temperature equation in the inner region is given by

∇̂2TI = 0, ẑ ≥ −aI(r, t), (3.27)

where the hat on the Laplacian denotes derivatives with respect to r and ẑ. We have
the inner velocity profile, uI , which scales with the outer velocity and satisfies the
incompressibility condition ∇̂ · uI = 0.

The leading-order Stefan condition in the inner region is given by

− da0(t)
dt

+ Pe
St

uI · ∇̂(−aI) = γ − ∇̂TI · ∇̂(−aI), at ẑ = −aI, (3.28)

or, alternatively, by

− 1

‖∇̂(−aI)‖
da0(t)

dt
+ Pe

St
uI · nI = γ

‖∇̂(−aI)‖
− ∇̂TI · nI, at ẑ = −aI, (3.29)

where we have defined the downwards pointing inner normal nI = ∇̂(−aI)/‖∇̂(−aI)‖.
We also have that

TI = 0, at ẑ = aI,
∂TI

∂r
= 0 = uIz = uIr, at r = 1, (3.30)

and the matching conditions with the leading-order outer variables T0 and u0. Using Van
Dyke’s matching principle, noting that T0z(−a0(t)+ δẑ, t) = T0z(−a0(t), t)+ O(δ), we
have

∂TI

∂ ẑ
(∞, r, t) = ∂T0

∂z
(−a0(t), t), uI(∞, r, t) = u0(−a0(t), t). (3.31)

Integrating (3.29) along the surface ẑ = −aI(r, t), we obtain∫∫
ẑ=−aI

(
− 1

‖∇̂(−aI)‖
da0(t)

dt
+ Pe

St
uI · nI

)
dS =

∫∫
ẑ=−aI

(
γ

‖∇̂(−aI)‖
− ∇̂TI · nI

)
dS.

(3.32)
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Dripping of a heated viscous fluid in a thin vertical tube 905 A16-17

Using the divergence theorem in the region bounded by ẑ = aI, ẑ = ∞ and the cylindrical
wall r = 1, and noting that ∇̂2TI = 0, we find∫∫

ẑ=−aI

∇̂TI · nI dS = −
∫∫

ẑ=∞
∇̂TI · k dS. (3.33)

Since ∇̂TI → ∇T0(−a0(t), t) as ẑ → ∞, we obtain∫∫
ẑ=−aI

∇̂TI · nI dS = −
∫ 2π

θ=0

∫ 1

r=0
r
∂T0

∂z
(−a0(t), t) dr dθ = −π

∂T0

∂z
(−a0(t), t). (3.34)

Similarly, since uI is incompressible and there are zero flux conditions on the walls, we
can use the divergence theorem to write∫∫

ẑ=−aI

uI · nI dS = −
∫∫

ẑ=∞
uI · k dS = −

∫ 2π

θ=0

∫ 1

r=0
ruz0(−a0(t), t) dr dθ = πf (t),

(3.35)
where we have used u0 = −2f (t)(1 − r2)k from the outer problem (3.15).

Noting that ∫∫
ẑ=−aI

1

‖∇̂(−aI)‖
dS =

∫∫
ẑ=−aI

−k · nI dS = π, (3.36)

is the projected area of the surface onto the plane orthogonal to k, and that da0/dt and γ
are constant with respect to the integrals, we find

− da0(t)
dt

+ Pe
St

f (t) = γ + ∂T0

∂z
, at z = −a0(t). (3.37)

Thus our analysis of the inner problem has identified that we should impose a radially
averaged boundary condition (3.37), instead of (3.25), on the flat outer position of the
interface for the lowest-order outer variables. Equation (3.37) is an averaged Stefan
condition and closes the leading-order outer problem.

3.3. Statement of the model for a tall, thin cylinder
We simplify the notation used in the previous sections when we derived the lowest-order
behaviour by dropping the 0 subscripts, so that the problem we seek to study is given by

∂T
∂t

− f (t)Pe
St

∂T
∂z

= 1
St
∂2T
∂z2

, for − a(t) ≤ z ≤ 0, (3.38a)

−da
dt

+ f (t)Pe
St

= γ + ∂T
∂z
, at z = −a(t), (3.38b)

T(0, t) = 0, (3.38c)

T(−b(t), t) = Tb, (3.38d)

T(−a(t), t) = 1, (3.38e)

T(z, 0) = 0, (3.38f )

a(0) = 1, b(0) = 1, (3.38g)
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z = –b(t)

z = −1

z = 0

z = –a(t)

z → – ∞

T = 0

T = Tb

T = 1

Radiative heating
from below

Viscous

Granular

Initial
condition

FIGURE 4. Schematic of the problem geometry for the tall, thin cylinder model (3.38). The
viscous region (blue) is separated from the granular region (red) above by the isotherm T = Tb
at z = −b(t) and is bounded below by the isotherm T = 1 at z = −a(t). The top of the granular
region is cold, T = 0, and at a fixed height z = 0. The moving boundaries have initial conditions
a(0) = b(0) = 1.

where

f (t) = a(t)∫ −b(t)

z=−a(t)
exp(−λ(T(z, t)− 1)) dz

. (3.38h)

Upon solving this system for T(z, t), a(t), b(t) and f (t), we may determine the fluid
velocity, which is given by

u = −2f (t)(1 − r2)k, (3.39)

as well as the volumetric flow rate of material across the interface z = −a(t), which is
given by

Q(t) = −
∫ 2π

θ=0

∫ 1

r=0

(
da
dt

− u · n
)

r dr dθ

= −2π

∫ π

θ=0

∫ 1

r=0

(
da
dt

− 2f (t)(1 − r2)

)
r dr

= π

(
f (t)− da

dt

)
. (3.40)

Here we have chosen to define Q > 0 in (3.40) when material is dripping from the base of
the fluid. A schematic diagram of the tall, thin model is given in figure 4.

4. Steady-state dynamics and asymptotic analysis

In some furnace operations and experiments, the thickness of the crust appears to
become steady in time, suggesting that the dynamics of (3.38) tends toward a steady-state
solution. In this section, we first analyse the steady states of (3.38) for general parameter
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Dripping of a heated viscous fluid in a thin vertical tube 905 A16-19

values in § 4.1. Later, in § 4.2, we carry out an asymptotic analysis of (3.38) under various
distinguished asymptotic limits of the model parameters, in order to better understand the
qualitative dependence of these steady-state solutions to (3.38) on these model parameters.

4.1. Steady-state solutions
For our model, we find that steady-state solutions cannot be written in an explicit closed
form, but depend upon an implicit equation for f that arises from (3.38h), which must be
solved numerically. We find two roots to this equation, corresponding to two steady states.
We show numerical evidence suggesting that one of these steady states is stable, while the
other steady state is unstable. Subsequently, in § 5.2, we plot bifurcation diagrams of the
model behaviour in parameter space.

Suppose we look for a steady-state solution, so that a(t) = a∗, b(t) = b∗,T(z, t) = T∗(z)
and f (t) = f ∗. The system (3.38) then becomes

−f ∗Pe
dT∗

dz
= d2T∗

dz2
, in − a∗ ≤ z ≤ 0, (4.1a)

f ∗Pe
St

= γ + ∂T∗

∂z
, at z = −a∗, (4.1b)

T∗(−a∗) = 1, T∗(0) = 0, (4.1c)

T∗(−b∗) = Tb, (4.1d)

f ∗ = a∗∫ −b∗

z=−a∗
exp (−λ(T∗ − 1)) dz

. (4.1e)

The equation (4.1a) combined with the boundary conditions (4.1c) can be solved to find
the steady-state temperature profile

T∗(z) = exp(−f ∗Pe z)− 1
exp( f ∗Pe a∗)− 1

. (4.2)

We can then use the Stefan condition (4.1b) to find an equation for the position of the free
boundary, which reads

f ∗Pe
St

= γ − f ∗Pe
exp( f ∗Pe a∗)

exp( f ∗Pe a∗)− 1
. (4.3)

This can be rearranged to determine that the lower interface is at

a∗ = 1
f ∗Pe

ln

⎛⎜⎜⎝
γ

f ∗Pe
− 1

St
γ

f ∗Pe
− 1

St
− 1

⎞⎟⎟⎠ . (4.4)

We use the isotherm (4.1d) to find that the upper interface is at

b∗ = 1
f ∗Pe

ln(1 + Tb(exp( f ∗Pe a∗)− 1)). (4.5)

When Tb = 0, the upper interface is at the top of the domain (b∗ = 0). When Tb = 1, we
find that (4.5) simplifies to give b∗ = a∗, which is also expected. Note that we have not yet

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

72
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.727
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found a∗ and b∗ explicitly as functions of the parameters Pe, St, γ,Tb, and λ, since (4.4)
and (4.5) still have a dependence on f ∗. The crucial equation we have not yet used is (4.1e),
which we write as the implicit integral equation for f ∗

f ∗ = a∗∫ −b∗

z=−a∗
exp

(
−λ

(
exp (−f ∗Pe z)− 1
exp ( f ∗Pe a∗)− 1

− 1
))

dz
. (4.6)

We thus seek the solutions a∗, b∗, and f ∗ to the coupled equations (4.4)–(4.6), noting that
if we can find f ∗ we can subsequently obtain a∗ and b∗ through substitution.

To help solve the problem (4.4)–(4.6) we make the change of variable

θ = γ

f ∗Pe
− 1

St
. (4.7)

This allows us to write (4.4), (4.5) and (4.6), respectively, as

a∗ = 1
f ∗Pe

ln
(

θ

θ − 1

)
= 1
γ

(
θ + 1

St

)
ln
(

θ

θ − 1

)
, (4.8)

b∗ = 1
f ∗Pe

ln
(

1 + Tb

θ − 1

)
= 1
γ

(
θ + 1

St

)
ln
(

1 + Tb

θ − 1

)
, (4.9)

f ∗eλ
∫ −b∗

z=−a∗
exp (−λ(θ − 1) (exp (−f ∗Pe z)− 1)) dz = 1

γ

(
θ + 1

St

)
ln
(

θ

θ − 1

)
. (4.10)

We now look for the solutions a∗, b∗ and θ of the system (4.8)–(4.10).
We must take care to ensure the logarithms in (4.8)–(4.10) are well-defined. The

parameters St,Pe and γ are all positive, Tb ∈ [0, 1] and f ∗ is non-negative. The logarithm
in (4.8) and (4.10) is not well defined for θ ∈ [0, 1]. In the case that θ < 0, we have a∗ < 0
and thus a steady state at z = −a∗ which is above the top of the domain, which is evidently
not physically attainable. The logarithm in (4.9) is not defined for θ ∈ [1 − Tb, 1]. For
θ < 1 − Tb we have b∗ < 0, which is also not physically attainable. Hence, we must have
θ > 1 for physically relevant steady states to exist.

We seek to simplify (4.10), by making the substitution

w = λ(θ − 1) exp(−f ∗Pe z), (4.11)

which transforms (4.10) to

− eλθ

Pe

∫ λ(θ+Tb−1)

w=λθ

e−w

w
dw = 1

γ

(
θ + 1

St

)
ln
(

θ

θ − 1

)
. (4.12)

Using the exponential integral E1(x), given by

E1(x) =
∫ ∞

x

e−t

t
dt, (4.13)

we can rewrite (4.12) as

eλθ (E1(λ(θ − 1 + Tb))− E1(λθ)) = Pe
γ

(
θ + 1

St

)
ln
(

θ

θ − 1

)
. (4.14)

Since there is a one-to-one mapping between f ∗ and θ (defined in (4.7)), each root of
(4.14) for θ corresponds to a steady state f ∗. Note also that Pe/γ acts as one parameter
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Tb = 0.6

Tb = 0.7
Tb = 0.8

Tb = 0.9

θ = 5.64814

θ = 1.00756

–10 –5 0 5 10

2

4

6

8

10

λ

θ

FIGURE 5. Contour plots of roots of (4.15) for θ , given a value of λ and Tb, for Pe = 1, St = 2
and γ = 30. The multiple roots for Tb = 0.8 and λ = 1 are circled.

in (4.14), and so there are only four parameter groupings in (4.14), being St,Tb, λ and
Pe/γ . In exploring this parameter regime we recall we require θ > 1, which implies f ∗ <
γ/Pe(1 + 1/St).

Numerical evidence suggests the existence of at most one stable steady state for given
parameters, although we shall now show that multiple steady states are possible, with the
additional steady state seemingly unstable. We introduce the function

φ(θ) = eλθ (E1 (λ(θ − 1 + Tb))− E1 (λθ))− Pe
γ

(
θ + 1

St

)
ln
(

θ

θ − 1

)
, (4.15)

so that each zero of (4.15) corresponds to a root of (4.14). If the partial derivatives of φ
were all single-signed then it could have at most one root. This is true for the derivatives
with respect to St,Pe/γ , and Tb, but unfortunately not for λ and θ . Instead, to determine
the number of roots of (4.14), we plot contours of roots of φ for λ against θ , for different
values of the other parameters. If the contours are monotonic, then only one steady state
is possible. However, if several possible θ exist for each λ, then multiple steady states
are possible. In the parameter space explored, we find curves exhibiting the existence
of two steady states, and give an example of this in figure 5, circling the location of
two roots for Tb = 0.8 and λ = 1. We plot values of λ within the range λ ∈ [−10, 10]
for demonstrative purposes, although in practice we expect the viscosity of the fluid to
increase as temperature decreases, and hence are only interested in λ ≥ 0. We shall later
show through numerical simulations that solutions tend toward only one of these steady
state, with the other being unstable.

For each fixed value of Tb in figure 5, there are values of λ for which one root occurs for
θ close to 1, and the other for large θ . We now examine each of these limits.

For θ near 1, we note that
γ

f ∗Pe
− 1

St
∼ 1. (4.16)
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In particular, for the large Stefan number limit where there is small latent heat, we see that
this corresponds to heating and convection being in approximate balance. To analyse the
case of θ ∼ 1 more formally, we set θ = 1 + θε , where 0 < θε 	 1. From (4.7) we have

f ∗ = γ

Pe

⎛⎜⎝ 1

1 + 1
St

⎞⎟⎠+ O(θε). (4.17)

Substituting θ = 1 + θε into (4.8) and (4.9), and Taylor expanding the relevant quantities,
we find

a∗ = 1
γ

(
1 + θε + 1

St

)
ln
(

1 + θε

1 + θε − 1

)
= − 1

γ

(
1 + 1

St

)
ln θε + O (θε ln θε) ,

b∗ = 1
γ

(
1 + θε + 1

St

)
ln
(

1 + Tb

1 + θε − 1

)
= − 1

γ

(
1 + 1

St

)
ln θε + O (1) .

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(4.18)

We can find the value of θε in terms of the dimensionless parameters by expanding (4.14)
in θε , namely

eλ(E1(λTb)− E1(λ)) = Pe
γ

(
1 + 1

St

)
ln
(

1
θε

)
+ O(θε), (4.19)

to give the approximation

θε ≈ exp

⎡⎢⎢⎣−

⎛⎜⎜⎝eλ(E1(λTb)− E1(λ))

Pe
γ

(
1 + 1

St

)
⎞⎟⎟⎠
⎤⎥⎥⎦ , (4.20)

and hence the approximation (4.18) is valid if the parameter values λ,Tb, St, γ and Pe
ensure that θε 	 1.

We note from (4.18) that a∗ and b∗ can become arbitrarily large as θε ↘ 0, corresponding
to θ ↘ 1. Hence, reducing the heating, or increasing the convective term, one can lower
the steady states. If the heating is too low, however, so that θ < 1, then no steady state
exists and the interfaces fall indefinitely. We later show that numerical simulations suggest
that the root close to θ = 1 corresponds to the unstable steady state.

In figure 5 we observe there is also a root for large θ , so

γ

f ∗Pe
− 1

St
� 1. (4.21)

This corresponds physically to large heating or small convection. To find an approximation
to this root we consider 1/θ → 0, and use (4.7) to find

f ∗ = γ

Pe
1
θ

+ O
(

1
θ 2

)
. (4.22)
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We can then expand the logarithms in (4.8) and (4.9), to obtain

a∗ = 1
γ

+ O
(

1
θ

)
,

b∗ = Tb

γ
+ O

(
1
θ

)
.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4.23)

Continuing on, we expand (4.14) in 1/θ , namely

1
θ

(
eλ(1−Tb) − 1
λ

)
= Pe
γ

+ 1
θ

Pe
γ

(
1
2

+ 1
St

)
+ O

(
1
θ 2

)
, (4.24)

to find

θ ≈ γ

Pe

(
eλ(1−Tb) − 1
λ

)
−
(

1
2

+ 1
St

)
. (4.25)

From (4.23) we see that a∗ → 1/γ, b∗ → Tb/γ as θ → ∞, so we can determine how close
to the top of the domain the interfaces will be if input parameters are chosen to have very
large heating or small convection. Note also that (4.23) gives us a possible scaling for the
dimensional thickness of a∗ and b∗ as

dimensional thickness of a∗ = k(Td − Tc)

εRσ(T4
h − T4

d )
, (4.26a)

dimensional thickness of b∗ = k(Tk − Tc)

εRσ(T4
h − T4

d )
. (4.26b)

We observe that the initial dimensional height h has scaled out of the problem, which is
reassuring since this is artificially imposed. Although in practice there is a floor where
the dripped material accumulates, there is nothing in this model to prevent the interfaces
from moving below the dimensional initial condition of z = −h. We suspect that the root
corresponding to large θ corresponds to the stable steady state.

4.2. Asymptotic limits of the tall, thin model
We now consider special limits of the tall, thin model by exploiting the possible sizes of
the dimensionless parameters Tb,Pe, St, γ and λ. In each case, we assume that the aspect
ratio δ, used to derive the tall, thin model in § 3, is smaller than any other parameter
we subsequently take to be small. We list some possible dominant balances which admit
steady states in table 1, indicating which parameters we take to be small in each case.
These distinguished limits are as follows:

• Case A: the material is falling slowly, since the Péclet number is small. This could
be due to high viscosity or low density, or alternatively high thermal diffusivity.

• Case B: the radiative heating from underneath the charge is very large.
• Case C: the radiative heating is large and the Stefan number is small. This could

correspond to a small temperature difference between the top and bottom of the
charge.

• Case D: the Stefan number is large. This could be caused by very small latent heat.
• Case E: the radiative heating is large and the Péclet number is small, with the Stefan

number being extremely small, balancing the ratio of convection to heating.
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• Case F: the convective term is small and does not balance with other parameters, so
this gives a limit without convection.

We examine each of these limits in turn. The ratio (a − b)/a gives the relative thickness
of the crust to the total size of the charge, and so we start by analysing balances A and B,
as these lead to a thin crust. Then, we analyse balances C, D, E and F, as these cases give
rise to an O(1) crust thickness.

To examine cases A and B we introduce a small parameter, ε, defined by

ε = 1 − Tb, (4.27)

and consider the limit 0 < ε 	 1. Since we have already taken the aspect ratio δ to be
small, we note that we are taking the limit 0 < δ 	 ε 	 1, so that the thin crust region is
still much taller than it is wide. We find it easier to introduce the small parameter in terms
of temperature rather than height, but we assume that for O(1) time, b(t)− a(t) = O(ε),
and so we introduce the O(1) variable c(t) > 0 such that

b(t) = a(t)− εc(t). (4.28)

If we substitute Tb = 1 − ε into (4.14), and expand in terms of ε, assuming all other
parameters are O(1), we obtain

ε

θ
= Pe
γ

(
θ + 1

St

)
ln
(

θ

θ − 1

)
+ O(ε2). (4.29)

We need to find a balance for the ε term, which cannot be achieved if Pe, St, γ, θ and
ln(θ/(θ − 1)) are all O(1) parameters. We note that Pe, γ and St are all positive, and that
in previous analysis we showed that θ > 1 is required for physically realistic steady states
(i.e. a∗, b∗ ≥ 0). There are several limits in which a necessary balance can be found, and
we will examine each of these in turn.

After considering cases A and B, we will consider dominant balances for which the
relative size of the crust to the total charge is not small, but order one. These are cases C,
D, E and F.

4.2.1. Case A: small Péclet number, Pe = O(ε)
If the Péclet number is small, then thermal convection is small compared to thermal

conduction, and so the material is falling relatively slowly. We scale Pe = εP̂e, where P̂e
is an O(1) constant, and treat St, γ and λ as O(1) constants.

We seek to write the system (3.38) in terms of ε. We first consider (3.38h), use the
integral mean value theorem and assume that a(t) = O(1) to obtain

f (t) = a(t)∫ −a(t)+εc(t)

z=−a(t)
exp(−λ(T(z, t)− 1)) dz

= 1
ε

(
a(t)
c(t)

+ O(ε)
)
. (4.30)

At the upper interface, we have

T(−a(t)+ εc(t), t) = 1 − ε, (4.31)

which can be expanded to give

T(−a(t), t)+ εc(t)Tz(−a(t), t) = 1 − ε + O(ε2), (4.32)
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Case Small parameter (s) 1 − Tb Pe St γ λ f a a − b

A ε := 1 − Tb ε O(ε) O(1) O(1) O(1) O(ε−1) O(1) O(ε−1)

B ε := 1 − Tb, γ
−1 ε O(1) O(1) γ � 1 O(1) O(γ ) O(ε) O(γ−1ε)

C γ−1 O(1) O(1) O(γ−1) γ � 1 O(1) O(1) O(γ−1) O(γ−1)

D St−1 O(1) O(1) St � 1 O(1) O(1) O(1) O(1) O(1)

E Pe, γ−1 O(1) Pe 	 1 O(Pe/γ ) γ � 1 O(1) O(1) O(γ−1) O(γ−1)

F f Pe O(1) f Pe 	 1 O(1) O(1) O(1) f Pe 	 1 O(1) O(1)

TABLE 1. Table of dominant balances which give steady states in the model (3.38).
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and hence

c(t) = − 1
Tz(−a(t), t)

, (4.33)

providing Tz(−a(t), t) is negative and O(1). We thus have the leading-order system

∂T
∂t

+ Tz(−a(t), t)a(t)
P̂e
St
∂T
∂z

= 1
St
∂2T
∂z2

, for − a(t) ≤ z ≤ 0, (4.34a)

−da
dt

− ∂T
∂z
(−a(t), t)a(t)

P̂e
St

= γ + ∂T
∂z
, at z = a(t), (4.34b)

T(−a(t), t) = 1, T(0, t) = 0, (4.34c)

T(z, 0) = 0, a(0) = 0. (4.34d)

We look for steady states as before, finding

T∗(z) = exp(−T∗
z (−a∗)a∗ P̂ez)− 1

exp(Tz(−a∗)a∗2P̂e)− 1
, (4.35)

which we can differentiate to find the implicit relationship for T∗
z (a

∗)

T∗
z (−a∗) = −T∗

z (−a∗)a∗P̂e
exp(T∗

z (−a∗)a∗2P̂e)

exp(Tz(−a∗)a∗2P̂e)− 1
. (4.36)

Since T∗
z (a

∗) /= 0 by assumption, we can rearrange (4.36) to obtain

T∗
z (−a∗) = − ln(1 + a∗P̂e)

a∗2P̂e
. (4.37)

The Stefan condition (4.34b) gives

− T∗
z (−a∗)a∗ P̂e

St
= γ + T∗

z (−a∗), (4.38)

and hence we can substitute in T∗
z (a

∗) from (4.37) to obtain the implicit equation for
a∗(γ, St, P̂e), i.e.

ln(1 + a∗P̂e)

a∗P̂e
= γ

1 + a∗ P̂e
St

. (4.39)

In our tall, thin model the averaged convection comes from Pe f (t), with the downwards
motion under gravity caused by the weight of the fluid, resisted by the viscous layer. When
the viscous layer is thin, i.e. there is a thin crust, the weight of the fluid will be too strong
and the charge will undergo free fall. However, if the thermal convection is slow, due to
a small Péclet number, then the gravitational and viscous effects are in balance, Pe f (t) =
O(1), and the system is able to run to a steady state.
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4.2.2. Case B: large heating, γ � 1
Suppose instead that Pe = O(1), but that γ � 1, meaning that the radiative heating into

the fluid is very large. Again we keep λ and St as O(1) constants. We look for balances
such that the system tends to a steady state, and so examine the steady state system (4.1).
A possible balance from the Stefan condition (4.1b) is f = O(γ ). However, if f � 1, then
(4.1a) and (4.1c) cannot be satisfied unless there is a boundary layer of size O(1/f ) =
O(1/γ ). In order to allow matching with the outer solution, the boundary layer has to
be at the end near z = −a∗. In this boundary layer Tz = O(γ ), and hence all three terms
balance in the Stefan condition. We thus consider the scalings

f ∗ = γ f̂ , z = −a∗ + 1
γ

y, (4.40)

so that in the boundary layer we have

Tinner( y) = exp(−f̂ Pe y), (4.41)

where we have applied the boundary condition T(−a∗) = 1 and matched with the outer
solution Touter ≡ 0. Note that the inner solution is thus the composite solution for the whole
region, so

T(z) = exp(−f̂ Pe γ (z + a∗)). (4.42)

The Stefan condition (4.1b) thus gives

f̂γ
Pe
St

= γ − f̂ Pe γ, (4.43)

so that

f̂ = 1
Pe

St
1 + St

. (4.44)

Applying the boundary condition T(−b∗) = 1 − ε, we find

a∗ − b∗ = −
(

1 + 1
St

)
1
γ

ln(1 − ε). (4.45)

Since λ = O(1), we have that

f ∗ = γ f̂ = a∗

a∗ − b∗ , (4.46)

which is the reciprocal of the ratio of the thickness of the viscous crust to the total thickness
of the charge (including the crust), and hence, combining (4.44) and (4.45) with (4.46),
the thickness of the total charge is

a∗ = − 1
Pe

ln(1 − ε) = ε

Pe
+ O(ε2), (4.47)

while the relative thickness of the crust to the total charge is

a∗ − b∗

a∗ = 1
γ

Pe
(

1 + 1
St

)
, (4.48)

which is size O(1/γ ). Thus, we have a thin crust for all γ � 1. Notice that these results
have been derived with γ independent of ε, so hold regardless of the relative sizes of ε
and γ −1.
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4.2.3. Case C: small Stefan number, St 	 1
Suppose that the Stefan number is small, so that we have 0 < St 	 1. This could

correspond physically to very large latent heat, or to very small specific heat. We rescale
our problem onto the fast time scale t = Stt̂, and for a balance we must have large heating,
i.e. γ = γ̂ /St. With these scalings we obtain the system

∂T
∂ t̂

− f (t̂)Pe
∂T
∂z

= ∂2T
∂z2

, in − a(t̂) ≤ z ≤ 0, (4.49a)

−da
dt̂

+ f (t̂)Pe = γ̂ + St
∂T
∂z
, at z = −a(t̂), (4.49b)

T(−a(t̂), t̂) = 1, T(−b(t̂), t̂) = Tb, T(1, t̂) = 0, (4.49c)

T(z, 0) = 0, (4.49d)

f (t̂) = a(t̂)∫ −b(t̂)

z=−a(t̂)
exp

(−λ(T(z, t̂)− 1)
)

dz

, (4.49e)

a(0) = 1, b(0) = 1. (4.49f )

In the limit St → 0, we obtain the usual system, but without the conductive flux in the
Stefan condition (4.49b). Looking for a steady-state solution, we find that from (4.49b)
we must have γ̂ = Pe f ∗, and hence the heating from below and the convective term are
identically in balance. The intuition behind this statement is that if the heating is too
high, or convection too small, all the charge will be melted and the domain will shrink.
Conversely, if the heating is too small, or convection too fast, the charge will undergo free
fall.

We find the steady-state temperature

T∗(z) = exp(−f ∗Pe z)− 1
exp( f ∗Pe a∗)− 1

= exp(−γ̂ z)− 1
exp(γ̂ a∗)− 1

, (4.50)

and thus obtain the integral equation for f ∗, as follows:

a∗∫ −b∗

z=−a∗
exp(−λ(T∗(z)− 1)) dz

= γ̂

Pe
. (4.51)

Note that we cannot determine a∗ from the Stefan condition (4.49b), since the conductive
flux does not feature. Instead, we can rearrange (4.51) using algebraic steps analogous to
those used in § 4.1. Changing the variable a∗ to

Θ = exp(γ̂ a∗)
exp(γ̂ a∗)− 1

, (4.52)

we obtain

eλΘ(E1(λΘ)− E1(λ(Θ − 1 + Tb))) = Pe
γ̂

ln
(

Θ

Θ − 1

)
. (4.53)
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Upon finding a root of (4.53), we then obtain

a∗ = 1
γ̂

ln
(

Θ

Θ − 1

)
, (4.54a)

b∗ = 1
γ̂

ln
(

1 + Tb

Θ − 1

)
. (4.54b)

We remark that while this approach may appear similar to the method used to find
general steady states in § 4.1, the ordering of algebraic steps is different. This is because
we cannot define the change of variables as in (4.7), since writing θ = (1/St)(γ̂ /f ∗Pe − 1)
is not compatible with the condition γ̂ = f ∗Pe. Instead, we first take the limit St → 0, and
then subsequently make the change of variables (4.52).

4.2.4. Case D: large Stefan number, St � 1
The case of a large Stefan number, St � 1, could correspond to the limit of small latent

heat, where the fluid drips off without any vaporisation due to phase-change or chemical
reactions.

If a steady state exists, then it can be explored by taking the limit St → ∞ in (4.4) and
(4.5), giving

a∗ = 1
f ∗Pe

ln
(

γ /f ∗Pe
γ /f ∗Pe − 1

)
, (4.55a)

b∗ = 1
f ∗Pe

ln
(

1 + Tb

γ /f ∗Pe − 1

)
. (4.55b)

Here, f ∗ can be found from the root of (4.15), with St → ∞ and θ → γ /f ∗Pe.
We note from (4.55b) that we require f ∗Pe/γ < 1 for a steady state to exist. Since the

integral term f ∗ ≥ 1, no steady states exist if Pe/γ > 1. For the simplified case of λ =
0 = Tb, on the bifurcation plot in figure 10 we can see that for large St all that matters is
the value of Pe/γ . This ratio is given in terms of physical dimensional parameters as

Pe
γ

= Uh/κ
εRσ(T4

h − T4
d )h/k(Td − Tc)

= UρCp(Td − Tc)

εRσ(T4
h − T4

d )
. (4.56)

Using the Poiseuille velocity scaling U = (ρg/8ηs)R2, we can further write

Pe
γ

= ρ2gR2Cp(Td − Tc)

8ηsεRσ(T4
h − T4

d )
. (4.57)

We see that a higher density or lower viscosity will lead to a higher value of Pe/γ in (4.57),
if all other quantities remain the same. This could explain why a continuous downwards
flow is often experienced in ferro-silicon, but not silicon, production in practical furnace
operations. Of course, the other parameters will not be the same in both settings, and so
specific values should be used when comparing these processes.

4.2.5. Case E: large heating and small convection
Suppose γ � 1,Pe 	 1, St = (Pe/γ )Ŝt, with λ = O(1) and 1 − Tb = O(1). Then we

have the steady state T∗(z) = −z/a∗ and b∗ = Tba∗, and can integrate the denominator
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in f ∗ to find f ∗ = λ/(exp(λ(1 − Tb))− 1). There is no way to find a∗ from the Stefan
condition, unless a∗ = O(γ −1). We thus set a∗ = γ −1â, and from the steady-state Stefan
condition obtain â = Ŝt/(Ŝt − f ∗), and hence

a∗ = 1
γ

Ŝt

Ŝt − λ/ exp(λ(1 − Tb))
, (4.58)

with a∗ − b∗ = (1 − Tb)a∗. This corresponds physically to the case of a large latent heat,
L, and a high source temperature Th.

4.2.6. Case F: no convection
Suppose f Pe 	 1, for example if the material is very light or highly thermally

conductive. Then, for all other parameters being O(1), we recover a problem similar to
the canonical Stefan problem, without convection, but with a radiative flux, namely

∂T
∂t

= 1
St
∂2T
∂z2

, for − a(t) ≤ z ≤ 0, (4.59a)

−da
dt

= γ + ∂T
∂z
, at z = −a(t), (4.59b)

T(−a(t), t) = 1, T(−b(t), t) = Tb, T(0, t) = 0, (4.59c)

T(z, 0) = 0, (4.59d)

a(0) = 1, b(0) = 1. (4.59e)

The system (4.59) admits the steady-state solution

T∗(z) = − z
a∗ , a∗ = 1

γ
, b∗ = Tb

γ
, (4.60)

and hence the ratio of the thickness of the crust to the total charge is given by

a∗ − b∗

a∗ = 1 − Tb. (4.61)

Since convection did not enter the problem, the presence of the upper interface z = −b(t)
is artificial, since it has no influence on the system, but merely marks where we believe
the crust meets the rest of the charge.

4.2.7. Summary of behaviour in the distinguished limits
We have discussed several special limits of the model (3.38) that allow steady-state

behaviour. When the convective term is small or the top of the crust is highly viscous (case
A), or the radiative heating is very large (case B), it is possible for a thin crust to support the
weight of the granular region. In other limits, order-one relative crust thickness is required
for the existence of a steady state. These limits are a small or large Stefan number (cases
C and D), and small convective term, with or without large radiative heating (cases E and
F). We envisage that these limits discussed will be constructive for a range of applications,
not just for silicon furnace behaviour.
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5. Numerical simulation of the tall, thin cylinder model

We have developed a one-dimensional model (3.38) for temperature and the motion
of the interfaces, which depends upon five parameters, namely Pe, St, γ,Tb and λ. We
now study the dynamics of the tall, thin model (3.38). First we perform numerical
simulations by mapping the problem onto a fixed domain and using a semi-implicit finite
volume scheme. These simulations provide us with a better understanding of the transient
dynamics leading to the steady states discussed in § 4.1. In some cases there appears to be
no stable steady state, and this corresponds to the case of a free falling liquid which does
not form a viscous crust of fixed thickness. We are able to numerically find the boundary
in parameter space separating parameters leading to steady state behaviour (corresponding
to fixed crust development) and parameters leading to a fluid in free fall.

5.1. Numerical simulations in time
It is natural to use a finite volume scheme to obtain numerical solutions of our
one-dimensional problem. To account for the moving lower interface, we map the problem
from the moving domain z ∈ [−a(t), 0] onto the fixed domain x ∈ [0, 1], with the
transformation x = (z/a(t))+ 1, τ = t. In addition to the moving interfaces, potential
difficulties come from the non-local convective term f (t), and to perform the necessary
quadrature we use an in-built trapezium rule implementation in Matlab. When finding the
temperature from the discretised version of (3.38a) in the transformed coordinates, we use
a scheme that is implicit in T but explicit in the coefficients of T derivatives. Details of our
numerical scheme are provided in appendix A. We use a spatial step of Δx = 4 × 10−3

and a time step of Δt = 10−4, unless otherwise stated.
In order to demonstrate a sample dynamics, we plot the evolution of temperature and

velocity in the original domain for one set of parameters, in figure 6. For the parameter
values used, the system tends towards a steady state.

We are mostly interested in the position of the interfaces, with temperature being an
intermediate variable to this end. We thus show some example trajectories of the distances
a(t) and b(t) from the top of the domain, where we vary one parameter but keep the other
four fixed. In figure 7 we vary the dimensionless condensation temperature, Tb. Note that
for some parameter values the system tends towards a steady state, but for larger Tb both
interfaces move downwards to z = −∞. The relative crust thickness, (a − b)/a tends to
a positive value when the system runs to a stable steady state, but when the system is in
free fall it tends to zero, since a and b become unbounded. For early time Q(t) has a large
negative spike due to the initial downwards motion of the interface z = −a(t), caused
by the discontinuity between the initial condition and the lower boundary condition for
the temperature. As the temperature at the base increases, due to radiative heating from
below, the interface rises. In the case of the steady-state cases Tb = 0 and Tb = 0.1 the flux
tends to Q∗ = πf ∗, as given in (3.40). The pilot furnace experiments discussed in Sloman
et al. (2017) take 80 minutes, which roughly corresponds to the dimensionless time for the
interfaces to reach steady state in figure 7.

In figure 8 we vary the Péclet number Pe. For small values of the Péclet number,
the system tends towards a steady state, but the interfaces undergo free fall for larger
values of the Péclet number, since thermal convection is strong enough to overcome the
radiative heating. As with figure 7, we find that the relative crust thickness tends to a
positive value when the system is in steady state, but tends to zero when the system is in
free fall. Similarly, we get a positive flux Q(t) after an initial transient period, when the
system runs to steady state. In the model we have set initial conditions for the interfaces
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FIGURE 6. Heat maps of temperature profiles T (a–c) and vertical velocity component uz (d–f )
at times t = 0.01 (a,d), t = 0.1 (b,e) and t = 1 (c, f ). In the temperature heat maps we illustrate
the location of the interfaces z = −a(t) and z = −b(t) by solid and dashed lines, respectively.
Parameter values used are St = 0.1,Pe = 1.2, λ = 0.1,Tb = 0.1 and γ = 20. (a) T at t = 0.01,
(b) T at t = 0.1, (c) T at t = 1, (d) uz at t = 0.01, (e) uz at t = 0.1 and ( f ) uz at t = 1.

as a(0) = b(0) = 1. Despite the potential numerical problem from having an initially
singular viscous domain, the simulations seem to cope, with the interfaces separating in a
very fast transient period, as demonstrated in figures 7 and 8.

Our numerical simulations suggest that the steady-state solution corresponding to the
larger θ root from (4.14) is stable, while the steady state corresponding to the smaller θ
root is unstable. In figure 9 we plot trajectories starting from steady states corresponding
to the circled points shown in figure 5. In each case we set the initial temperature profile to
be T∗(z) and f (0) = f ∗. All values used were to five decimal places. The upper trajectories
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FIGURE 7. Plots showing the influence of varying the parameter Tb for (a) the position of the
interfaces z = −a(t) in solid lines and z = −b(t) in dashed lines, (b) the relative crust thickness
(a(t)− b(t))/a(t), (c) the volumetric material flux Q(t), given by (3.40), all over time. Other
parameter values used are St = 0.1,Pe = 1.2, λ = 0.1 and γ = 20.

(solid lines) return to the steady state, but the lower trajectories (dashed lines) move away
from their respective steady states, eventually undergoing free fall. This explains why at
most one steady state was found from numerical solutions of the model in § 5.1. Whenever
we have two steady states, we find from numerical simulations that it is the steady state
with larger a and b which is unstable and drops.

Numerical simulations of the model thus show that either the interfaces and temperature
tend to a steady state, or the interfaces drop indefinitely, and so the charge experiences free
fall. When there is free fall, this is not completed in finite time, but the interfaces eventually
move at an approximately constant velocity. The steady states shown in figures 6–8 appear
to be stable, in as much they can be obtained numerically for different initial conditions,
within a given region of attraction. We now turn our attention to examining how the steady
states vary with the model parameters.

5.2. Long-time steady-state dynamics
In figures 7 and 8 we showed example trajectories that tend to a stable steady state, and
others which underwent free fall. It is of interest to determine where in the parameter space
stable steady states will occur, and so here we present bifurcation diagrams illustrating
where stable steady states can be found.

We first consider the simplified case λ = 0 and Tb = 0. This corresponds to the upper
interface fixed at the top of the domain, z = 0, and the whole charge being filled with
a viscous fluid of constant viscosity. In this limit, we have f ∗ = 1, with the gravity
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FIGURE 8. Plots showing the influence of varying the parameter Pe for (a) the position of the
interfaces z = −a(t) in solid lines and z = −b(t) in dashed lines, (b) the relative crust thickness
(a(t)− b(t))/a(t), (c) the volumetric material flux Q(t), given by (3.40), all over time. Other
parameter values used are St = 0.1, λ = 0.1, γ = 20 and Tb = 0.1.
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FIGURE 9. Plot showing the evolution of trajectories from a stable steady state (solid) and
unstable steady state (dashed) for z = −a(t) (red) and z = −b(t) (blue). Parameter values used
are Pe = 1, St = 2, γ = 30,Tb = 0.8 and λ = 1. A spatial step size of Δx = 4 × 10−3 and a
time step of Δτ = 10−6 are used.
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FIGURE 10. Heat maps of the value of the steady state a∗, comparing Pe and St, for fixed
γ = 8, λ = 0 and Tb = 0.

and viscous terms in balance, and the material flux given by Q∗ = π from (3.40). For
any values of Pe, St, and γ the location of a∗ can be determined from (4.4). We plot
how a∗ depends on Pe and St for fixed γ , in figure 10. Where a steady state exists, its
value is given by the heat map provided. The region where steady states cannot exist is
labelled free fall. Note that there is a thin boundary layer where the steady state a∗ can
be arbitrarily large, although we have just plotted steady states to a value of a∗ = 2, due
to difficulties in numerical resolution. The interface between steady state and free fall in
parameter space is given by θ = 1. Using (4.7), with f ∗ = 1, we find that this corresponds
to Pe(1 + (1/St)) = γ , which asymptotes to Pe = γ as St becomes large. Thus, for large
St, if the Péclet number is sufficiently large then the charge will keep on falling under
gravity.

We also consider the general case λ > 0 and Tb > 0. To find steady-state solutions we
must first find zeros of (4.15) and then substitute the solution θ∗ into (4.8). In figure 11 we
show heat maps of a∗, the material flux Q∗, the crust thickness a∗ − b∗ and the relative
crust thickness (a∗ − b∗)/a∗. The necessary root finding was achieved using a inbuilt
solver in Matlab. We see that the steady state a∗ is greatest away from the interface between
steady state and free fall. There is a narrow region for small Pe where the flux Q∗ is very
large. Although the fluid is falling slowly, since a∗ is small the top of the granular region
has to be refilled rapidly, causing a high flux through the interface z = −a∗. Both the
crust thickness and relative crust thickness are fairly constant in the parameter regime
considered, although the crust thickness decreases as the Stefan number increases and the
relative crust thickness decreases as the Péclet number increases. As with figure 10, there
is difficulty with numerical resolution close to the boundary in parameter space between
steady state and free fall.

We can also determine where the steady states a∗ and b∗ occur for general Tb and λ, and
thus where the system undergoes free fall. We know that steady states only exist for θ > 1,
and that as θ ↘ 1 the value of a∗ becomes arbitrarily large. Since the interface is given by
θ = 1, we numerically find the root of (4.15) with a value of θ slightly greater than θ = 1,
showing us where the edge of the steady-state region is. This allows us to draw bifurcation
diagrams, demonstrating where a stable steady state or free fall will occur. We do not plot
the value of the steady state a∗, when it occurs, but it will decrease as distance from the
bifurcation interface increases. In figure 12 we show bifurcation plots of Pe against St for
different λ and for different Tb, and in figure 13 we show plots of Pe against Tb for different
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FIGURE 11. Heat maps of the steady-state values of a∗ (a), Q∗ (b), a∗ − b∗ (c) and (a∗ − b∗)/a∗
(d). Parameter values used are γ = 20, λ = 0.2 and Tb = 0.8. (a) Interface position a∗. (b)
Volumetric material flux Q∗. (c) Crust thickness a∗ − b∗. (d) Relative crust thickness (a∗ −
b∗)/a∗.

γ and for different λ. These plots have been obtained using Mathematica, with a value of
θ = 1 + 10−6, which is sufficiently close to θ = 1.

We can also consider how the thickness of the crust is influenced by the dimensionless
parameters in the model by plotting the result of parametric sweeps of the Péclet number
against γ, St,Tb, and λ in figure 14. For each curve we found the steady-state value
by determining the root of (4.15) for 100 values of Pe in the range plotted. For some
parameters steady states cease to exist when the Péclet number is above a certain value, as
shown in figures 12 and 13. In these cases we have only drawn the curve up to that value.
In each case we see that the crust thickness increases with Pe. As seen in figures 8, 10
and 11, a∗ increases with the Péclet number, since material falls at a faster rate and so the
crust will form lower down. This could explain why the crust increases in size, since b∗

would not increase by more than a∗. Conversely, as γ increases the thickness of the crust
decreases, since higher heating from beneath the liquid causes a∗ to decrease. A higher
value of the Stefan number also reduces the crust thickness, since there will be less latent
heat at the interface z = −a∗ and so the radiative heating will cause more material to be
consumed and the interface to be driven higher, narrowing the crust. We might expect that
a higher value of Tb would lead to a thinner crust, since the crust exists over a narrower
temperature range, due to condition (4.1d). However, the opposite is true, as shown in
figure 14. This is due to condition (4.1e), whereby a larger crust is required to balance the
additional weight that comes from the upper region z > −b∗. Similarly, larger λ leads to a
smaller steady-state crust, since the crust becomes more viscous and does not need to be
as thick to balance the weight from above.
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FIGURE 12. Plots showing the interface between where the solutions tend to steady states
a∗ and b∗ and where the fluid undergoes free fall, with γ = 8 in both cases. Plots
were generated in Mathematica by letting θ = 1 + 10−6. In (a) we vary λ, with values
shown λ = 10−6, 0.1, 0.2, 0.3, 0.4 and Tb = 0. In (b) we vary Tb, with values shown Tb =
10−1, 10−2, 10−3, 10−4, 10−5, 0 and λ = 0.1.
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FIGURE 13. Plots showing the interface between where the solutions tend to steady states
a∗ and b∗ and where the fluid undergoes free fall, with St = 1 in both cases. Plots were
generated in Mathematica by letting θ = 1 + 10−6. In (a) we vary γ , with values shown
γ = 10, 20, 30, 40, 50 and λ = 0.1. In (b) we vary λ, with values shown λ = 10−6, 1, 2, 3, 4, 5
and γ = 30.

6. Discussion

We have developed a mathematical model for the flow of a thermoviscous fluid within a
vertical tube which is heated from below. This model was motivated by a scenario where
a highly viscous fluid melts, flows, and eventually drips due to a temperature dependent
viscosity. We study this model in the limit of a tall, thin geometry, with this specific limit
motivated by industrial applications such as the flow of material in a silicon or ferro-silicon
furnace. To better understand the dynamics of this model, we classified the steady states,
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FIGURE 14. Plots of the crust thickness a∗ − b∗ against Pe using parameter sweeps in (a) γ , (b)
St, (c) Tb, (d) λ. When not stated in the plot, fixed parameter values are St = 1, γ = 10, λ = 1
and Tb = 0.5.

performed asymptotic analysis of the model in various distinguished limits and carried out
numerical simulations to deduce the time evolution of solutions.

Our analysis and simulations suggest the two possible long-time behaviours. Either a
steady state occurs in which the viscous crust region remains in place, or the crust is in
free fall. We find that increasing the Péclet number would move the system towards free
fall, as would decreasing St, γ and λ, and increasing Tb. Physically this means a denser,
less viscous material is less likely to exhibit steady-state solutions, potentially explaining
why crust formation is observed in silicon furnaces but not in some ferro-silicon furnaces.
The cooler the bottom heat source, or the thinner the crust region, the more likely a natural
flow of raw material to the base of the furnace will be, while in the opposite of either of
these regimes, the flow of material may become blocked. Indeed, in the case of a high
degree of heating from below, our model suggests a rising of the viscous charge region
within the tube, and this agrees with physical experiments from Elkem ASA.

Of particular interest in industrial applications are parameter regimes for which the
viscous crust region is thin, which is the scenario seen in silicon production. Unless the
Péclet number is small, the viscosity is highly temperature dependent, or the radiative
heating from below is large, the crust will not become thick enough to support the weight
of the charge. Another limit of special interest is the large Stefan number regime, which is
relevant because of the small amount of latent heat L involved in dripping from the base
of the furnace charge. In this limit, the locations of stable steady-state interfaces depend
on the ratio of the Péclet number to the radiative heating, Pe/γ . The smaller this ratio is,
the higher in the furnace steady states will form. In practice, steady states are not observed
in industrial silicon furnaces, but rather the gas cavity is seen to increase, with the cavity
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ceiling rising before it is stoked. In our model this would correspond to the early time
period when a steady state has not yet been reached, and so the time scale to reach steady
state would be slower than the stoking time scale. Similarly, in some ferro-silicon furnaces,
continual flow is observed, which could correspond to free fall in the model. Alternatively,
the model may predict a steady-state position of the lower interface, z = −a∗, which lies
beneath the initial location z = −a(r, 0) = −h, but cannot be obtained in practice since
the charge will eventually hit the floor of the furnace.

Regarding future directions, in the model (3.38) we have assumed that the heat transfer
is by conduction and convection within the viscous crust region. The main benefit of using
conduction is that the analysis is simpler. However, the results are only really relevant to
lower temperature applications because at high furnace temperatures radiation between
particles plays a strong role in the diffusive thermal mechanism. One option is to consider
the thermal conductivity to be a cubic function of the temperature, although for the high
temperature regime this functional form should likely be generalised (Kiradjiev et al.
2019).

We have made many assumptions in creating a model of the behaviour of the charge
in a silicon furnace. Many of these might be relaxed to make the model more physically
realistic but more complicated and less accessible to analysis. In this paper, the processes
of heating in the charge, gas transport and condensation of gasses has been represented in
the bulk by a thermally dependent viscosity function, η(T). However, further effects could
be included, to model how the viscosity depends on distinct phases, such as coupling the
fluid flow and temperature with a reaction model for mass transfer between different solid,
liquid, and gaseous chemical species. The local chemical concentration is known to modify
the viscosity of some chemical flows (Tan & Homsy 1986; Manickam & Homsy 1994).
In some settings involving chemical reactions, an exponential dependence of viscosity on
chemical concentrations has been employed (Hejazi et al. 2010; Hejazi & Azaiez 2012)
and this may be one way in which the assumed exponential dependence of viscosity on
temperature may be generalised to better describe viscosity changes due to changes in
phase in our model. Additionally, the bulk viscosity of the crust region may change when
carbon particles in the charge react with silicon monoxide gas to form silicon carbide, so
it may be useful to couple the heat and mass transfer model to a non-Newtonian model for
fluid–particle mixtures (Stickel & Powell 2005; Mueller et al. 2009).

Acknowledgements

This publication is based on work supported by the EPSRC Centre for Doctoral Training
in Industrially Focused Mathematical Modelling (EP/L015803/1) in collaboration with
Elkem ASA. The authors thank A. M. Valderhaug and R. G. Birkeland (both Elkem ASA)
for helpful discussions regarding this work.

Declaration of interests

The authors report no conflict of interest.

Appendix A. Numerical scheme for the tall, thin model

In this section, we summarise the numerical scheme used in the numerical simulations
shown in § 5.
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We define new variables as

x = 1 + z
a(t)

, τ = t, (A 1a,b)

for x ∈ [0, 1], τ ≥ 0, and introduce the quantity

φ(x, τ ) = a(t)T(z, t), (A 2)

to rewrite the system (3.38) in conservative form as

∂φ

∂τ
+ ∂

∂x

((
(1 − x)

a′(τ )
a(τ )

− f (τ )
a(τ )

Pe
St

)
φ − 1

St
1

a(τ )2
∂φ

∂x

)
= 0, (A 3a)

−da
dτ

+ f (τ )
Pe
St

= γ + 1
a(τ )2

∂φ

∂x
, at x = 0, (A 3b)

φ(1, τ ) = 0, (A 3c)

φ

(
1 − b(τ )

a(τ )
, τ

)
= a(τ )Tb, (A 3d)

φ(0, τ ) = a(τ ), (A 3e)

φ(x, 0) = 0, (A 3f )

a(0) = 1, b(0) = 1, (A 3g)

where

f (τ ) =
[∫ 1−(b(τ )/a(τ ))

x=0
exp

(
−λ

(
φ(x, τ )

a(τ )
− 1

))
dx

]−1

. (A 3h)

Defining

ψ(x, τ ) := (1 − x)
a′(τ )
a(τ )

− f (τ )
a(τ )

Pe
St
, (A 4)

we can write the partial differential equation (A 3a) as

∂φ

∂τ
+ ∂(ψφ)

∂x
= 1

a(τ )2
∂2φ

∂x2
. (A 5)

We use a finite volume numerical scheme in which we have cells of width Δx centred
at x = i, for i = 1, 2, . . . , n − 1. We use the cell averages at time point j, for time step Δτ ,

φ̄
j
i := 1

Δx

∫ i+1/2

x=i−1/2
φ j dx . (A 6)

We first update a by approximating (A 3b) using

a j+1 = a j + Δτ

(
f j Pe

St
− γ − 1

(a j)2

φ̄
j
1 − φ̄

j
0

Δx

)
, (A 7)

where we approximate the derivative φx(0, τ ) by with a one-sided approximation, using
φ̄1, which is the first interior cell, and φ̄0, which is the cell centred at the boundary x = 0.
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The next step is to semi-implicitly find φ̄ j+1
i from the discretised version of (A 5), which

reads
φ̄

j+1
i − φ̄

j
i

Δt
+ Fj+1

i+1/2 − Fj+1
i−1/2

Δx
= 1

St
1

(a j+1)2

φ̄
j+1
i+1 − 2φ̄ j+1

i − φ̄
j+1
i−1

Δx2
, (A 8)

where we define the flux as

Fj+1
i+1/2 :=

{
ψ

j+1
i+1/2φ̄

j+1
i , ψ

j+1
i+1/2 > 0,

ψ
j+1
i+1/2φ̄

j+1
i+1 , ψ

j+1
i+1/2 < 0.

(A 9)

Here, the coefficient ψ j+1
i+1/2 is determined by discretising (A 4) and substituting in (A 3b)

for a′(τ ), giving

ψ
j+1
i+1/2 = 1

a j+1

[
−(i + 1/2)Δx f j Pe

St
−(1 − (i + 1/2)Δx)γ + 1 − (i + 1/2)Δx

a j+1

φ̄
j
1 − φ̄

j
0

Δx

]
.

(A 10)

Note that this scheme is implicit in φ but is not fully implicit in ψ because we have not yet
calculated f j+1.

We determine b j+1 from (A 3d). Since φ̄ is only defined at cells in the numerical
simulations, we use a piecewise cubic interpolation to approximate the value of x j+1

b at
which φ̄ j+1

x j+1
b

= a j+1Tb, with x j+1
b = 1 − b j+1/a j+1.

The final step within an iteration is to calculate f j+1. We use the trapezium rule to
perform the quadrature (A 3h), remembering to multiply by the spatial step Δx . Note that
if the mesh is not very fine and only the boundary point is hotter than Tb, the necessary
quadrature cannot be performed. If this occurs we set f j+1 to be the value taken at the
previous time step, f j .

To improve stability, we run predictor corrector steps before we step forward in time
to j + 2. We first run through the algorithm as explained above to determine an initial
approximation for a j+1, φ̄ j+1, b j+1 and f j+1. We can use the notation a j+1;1 to indicate this
is the first solution found. We then refine our solution iteratively. For example, we replace
(A 7) with the following:

a j+1;2 = a j + Δτ

(
f j;1 Pe

St
− γ − 1

(a j;1)2
φ̄

j;1
1 − φ̄

j;1
0

Δx

)
, (A 11)

and analogously find φ̄ j+1;2, b j+1;2 and f j+1;2. We run through this process until the
difference between iterations is sufficiently small. In practice, we measure the error as the
relative norm of φ̄ between successive iterations. Once this falls below a certain tolerance
threshold, we then step forward in time to find solutions at time j + 2. This effectively
iteratively solves the implicit backward Euler method.
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