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Inviscid versus viscous instability mechanism of
an air–water mixing layer
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We study how confinement affects the viscous spatiotemporal instability of a two-
phase mixing layer. We show that the absolute instability triggered by the inclusion
of finite liquid and gas thicknesses leads to a good prediction of experimental data.
In addition, this new mechanism provides a justification for the relevance of both
simplified inviscid scaling laws and more sophisticated viscous approaches.
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1. Introduction

The configuration in which a slow liquid stream is destabilized by a fast gas stream
is both a classical fluid mechanics problem and a configuration encountered in many
applications related to combustion (Lefebvre 1989). Injecting kerosene and air this way
in turbo-reactors leads, for example, to the formation of a very efficient spray, i.e. one
whose droplets are very small. This configuration has therefore been the object of
many studies, but in spite of the attention it has garnered its mechanism is still a
matter of controversy. Is it an inviscid or a viscous instability? This is the question
we wish to address in the present paper.

Raynal (1997) and Raynal et al. (1997) carried out a series of experiments on
this simple two-phase flow configuration: a slow liquid stream (velocity UL, width
10 cm, height HL= 1 cm) flowing on a solid plate is destabilized by a fast gas stream
(velocity UG, width 10 cm, height HG = 1 cm). Long-wavelength waves form, and
are rapidly convected away from injection and subsequently atomized into droplets.
These waves have a ‘long’ wavelength in the sense that it is large compared to other
lengths in the problem: the thicknesses of the gas and liquid streams, and especially
the gas and liquid vorticity thicknesses, δG and δL. Wave frequency was measured,
and experimental results confronted to a simple inviscid stability analysis generalizing
that of Rayleigh (1879). Experimental trends, and a good order of magnitude of the
frequency, can be captured with this approach (Raynal 1997; Raynal et al. 1997). The
mechanism driving the instability is then similar to the classical Kelvin–Helmholtz
one, but wavelength selection occurs through the size of the gas vorticity thickness δG.
The scaling obtained for the most unstable frequency can be recovered from a simple
energy budget for the velocity perturbation u, by writing that the perturbation is fed
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by the Reynolds stress in the gas phase:

dρLu2

dt
= ρGu2UG

δG
⇒ ω∼ ρG

ρL

UG

δG
, (1.1)

where ρG and ρL are the gas and liquid densities and UG the base flow gas velocity.
This scaling law is in good agreement with experiments (Raynal 1997; Raynal et al.
1997). The velocity associated with these waves can be predicted by a similarly simple
phenomenological argument. It is the velocity of the frame in which dynamic pressure
in the liquid is balanced by dynamic pressure in the gas (Dimotakis 1986), namely,

Uc =
√
ρLUL +√ρGUG√
ρG +√ρL

. (1.2)

Measurements indicate that the experimentally measured velocity is quite close to
the velocity given by (1.2) (Raynal 1997). In the limit of large gas velocities, these
simple scaling laws imply in particular that the wavelength will be given by (Eggers
& Villermaux 2008)

λ∼√ρL/ρG δG. (1.3)

A similar configuration has been studied by Marmottant & Villermaux (2004), for a
different geometry: a round liquid jet destabilized by an annular parallel gas stream.
This study evidences the same scaling laws seen in the planar case for the frequency
and wavelength of the axial wavy perturbations.

Though they capture the correct scaling laws, the values predicted by the inviscid
approach underpredict wave frequency. Seeking to improve the prediction of the
inviscid stability analysis, Matas, Marty & Cartellier (2011) extended it to velocity
profiles mimicking the velocity deficit observed just downstream of the injection,
where liquid velocity close to the interface is observed to be much smaller than in
the liquid bulk. This modified analysis increases predicted frequencies by about 50 %,
and therefore offers a relatively good frequency prediction. However, Matas et al.
(2011) observed that the inviscid analysis strongly underpredicts spatial growth rates,
and fails to capture the steep increase of growth rate with gas velocity.

In order to clarify the issue of the nature of the instability and of the potential effect
of viscosity, Boeck & Zaleski (2005) carried out a temporal linear stability analysis
including viscosity. They found that, when viscosity is included in the temporal
stability analysis, the most unstable mode for the conditions of the experiments of
Marmottant & Villermaux (2004) is actually a purely viscous mode. This mode
is akin to the mode evidenced by Yih (1967), and discussed by Hooper & Boyd
(1983, 1987) and Charru & Hinch (2000), whose mechanism in the limit of short
wavelengths has been discussed by Hinch (1984): it is triggered by the jump in
viscosity, and therefore in shear rate, across the interface. The order of magnitude
of the growth rate associated with this viscous mode is consistent with experiments,
but predicted frequencies largely overestimate experimental ones. The paradox that
a simplified inviscid analysis performs better than a viscous one has been partially
solved by Fuster et al. (2013) and Otto, Rossi & Boeck (2013): by carrying out a
spatiotemporal analysis including viscosity, they showed that an absolute instability
may be predicted for some of the experimental conditions of Matas et al. (2011),
and that, when this absolute instability occurs, there is a relatively good agreement
between experiments on the planar geometry and predictions. The mechanism is in
this case purely viscous. However, when the instability is predicted to be convective
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(for most of the experimental conditions of Matas et al. (2011)), frequency remains
strongly overpredicted. As for growth rates, Otto et al. (2013) noticed that the
theoretical growth rates associated with the experimentally observed frequency are
in agreement with experimental ones: in other words, if another frequency selection
mechanism were able to provide the experimental frequency, then frequency and
growth rate would agree with experiments. Comparison with the experimental data of
Marmottant & Villermaux (2004) shows a relatively good agreement, even when the
instability is convective.

There are therefore two questions we want to address in this paper:

(a) Most of the experimental data of Matas et al. (2011) remain overpredicted by the
spatiotemporal viscous approach of Otto et al. (2013), and this points to a still
missing ingredient in the viscous spatiotemporal theory.

(b) The initial inviscid approach of Raynal (1997) and Marmottant & Villermaux
(2004) seemed to capture very well experimental scaling laws. However, it is
predicted by Otto et al. (2013) via an energy budget that the most unstable mode
for the conditions of these experiments is dominated by the viscous mechanism
studied by Yih (1967) and others. Why therefore is the simple inviscid approach
so successful?

In the experiment, the liquid and gas streams are confined within lengths smaller
than the observed longitudinal wavelength. The fact that confinement can trigger
absolute instability in shear flows has been evidenced in recent years by Healey (2007,
2009), Juniper (2008) and Rees & Juniper (2010). The absolute instability observed
by Fuster et al. (2013) and Otto et al. (2013) is of a different type, occurring between
the shear instability branch and a branch located below, and is controlled by surface
tension. We investigate in the following how including in the spatiotemporal analysis
a confinement similar to the experimental one affects predictions.

2. Method

We consider Navier–Stokes equations for a base flow U = (U(y), 0, 0) and a small
perturbation u(x, y, t) (coordinate system shown in figure 1). After linearization
of this two-dimensional problem, we look for normal mode solutions of the
form ũ(k, y, ω)ei(kx−ωt) and obtain the classical Orr–Sommerfeld equation for the
cross-stream velocity component of the perturbation in Fourier space ṽ(k, y, ω) in each
fluid (Otto et al. 2013). Boundary conditions are a solid wall at y=−HL, and another
solid wall at a distance y= LG on the gas side. For the present study, we take LG to
be 10 times larger than other scales in the problem, typically LG = 30 max(HG, HL),
to ensure that no confinement occurs due to this wall. The method we use for
solving this problem is different from the method used by Fuster et al. (2013) or
Otto et al. (2013): instead of using a spectral method, we solve for the velocity
perturbation ṽ(k, y, ω) in real space, with a Runge–Kutta method. In each phase,
integration is carried out from the solid wall, where both velocity components must
be zero, to the interface, where continuity of tangential and normal velocities, as
well as continuity of tangential and normal stresses, is enforced. Surface tension and
gravity normal to the interface, which may affect prediction for large wavelength, are
included in the normal stress equation. In order to ensure that both solutions satisfying
ṽ = 0 and ∂ṽ/∂y = 0 at the solid walls remain independent during integration, we
orthonormalize the associated four-dimensional vectors at each time step within the
Runge–Kutta algorithm with the procedure described in Asmolov (1999) and Matas,
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FIGURE 1. Sketch showing the typical base flow profile, including finite liquid and gas
stream thicknesses.

Morris & Guazzelli (2009). The dispersion relation is then solved with a shooting
method (two-dimensional Newton–Raphson method). Contrary to the spectral method,
the present shooting method does not provide us with the whole set of eigenmodes:
however, it is well adapted to the present aim, which is to focus on a given set of
parameters close to experimental conditions.

We chose the same family of base flow profiles used by Otto et al. (2013), namely
a sum of error functions accounting for the wake due to the splitter plate between the
liquid and gas streams. Additional error function cutoff terms are added to account for
the finite HG and HL that we wish to include in the present study:

U(y)=



{
UG erf

(
y
δG

)
+Ui

[
1− erf

(
y
δdδL

)]}
×1

2

[
1+ erf

(
HG − y
δG

)]
for 0< y< LG,

−
{

UL erf
(

y
δL

)
+Ui

[
1+ erf

(
y
δdδL

)]}
× erf

(
y+HL

δL

)
for −HL < y< 0,

(2.1)

where Ui is the interface velocity Ui= (UGµG/δG+ULµL/δL)/(µG+µL)δdδL, with µG

and µL the dynamical viscosities of gas and liquid, and δL the liquid boundary layer.
The dimensionless parameter δd allows control of the amplitude of the velocity deficit:
for δd = 1 there is no velocity deficit (as in figure 1), while for δd� 1 the interface
velocity goes down to zero (Otto et al. 2013).

In order to facilitate comparison with experiments, we set the gas vorticity thickness
to the value measured in experiments. The experimental δG is well approximated (see
Raynal 1997; Matas et al. 2011) by δG = 6HG/

√
UGHGρG/µG. The liquid boundary

layer is set to a constant value of δL = 500 µm, close to the value measured in
the experiment for the relevant range of liquid velocities (particle image velocimetry
measurement). Note finally that the above expression is a fit of the mean velocity
profile: though experimental air and water flows are turbulent for the Reynolds
numbers of interest, fluctuations are not included in the present analysis.
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FIGURE 2. (Colour online) Pinching at positive ω0i occurs between confinement and
shear controlled branches when confinement is taken into account; UG = 27 m s−1, UL =
0.26 m s−1, δd = 1, HG = 1 cm and HL = 1 cm. Symbols correspond to ωr in the range
(80–680) s−1.

3. Results and discussion
We now confront the predictions obtained with this method to the air–water

experimental data of Matas et al. (2011). We first consider their series of data
obtained at a fixed UG = 27 m s−1: the prediction of the viscous spatiotemporal
analysis without confinement for this series overestimates the experimental data
by a factor of 2 for most liquid velocities (see figure 31d of Otto et al. 2013).
Figure 2 shows what happens for UL = 0.26 m s−1 when a confinement similar to
the experimental one is taken into account and when ωi, the imaginary part of ω,
is reduced: a confinement branch appears along the ki axis, and pinching between
this branch and the shear instability branch occurs for positive ω0i. While the shear
instability branch involved in the pinching observed by Otto et al. (2013) at large
UL is what they call the weaker mode (as in figure 25b of their paper), the branch
involved in the pinching mechanism of figure 2 is the stronger mode, which extends
to lower wavenumbers. The confinement branch involved in the pinching is of the
type described in Healey (2007): it arises because of the oscillatory nature of the
confined perturbation when k is close to the imaginary axis. The frequency predicted
without taking confinement into account would be the frequency corresponding to
the minimum of the negative growth rate (there is no pinch point on the weaker
mode for the conditions of figure 2), namely 66 Hz, while the pinching caused by
confinement occurs for a much lower frequency of 28 Hz. The latter frequency is
much closer to the experimental frequency fexp = 28.8 Hz.

For the case of an absolute instability, nonlinearity is expected to affect the
properties of the eigenmode at the pinch point, and comparison between growth rate
at the pinch point and experimental spatial growth rate is therefore not attempted. It is
however interesting to note the value of the wavenumber at the pinch point: figure 2
shows that the pinching induces a major reduction in the predicted wavenumber, from
kr ≈ 720 m−1 down to kr ≈ 140 m−1. The corresponding phase velocity ωr/kr (we
denote ωr the real part of ω) is then about 1.28 m s−1, very close to the value given
by (1.2), Uc= 1.2 m s−1. Wave velocity was not measured in the experiment of Matas
et al. (2011), but previous experiments by Raynal (1997) and Ben Rayana (2007)
had both found wave velocity in close agreement with Uc. In addition, expression
(1.2) for velocity Uc was derived by Dimotakis (1986) through a balance of dynamic
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FIGURE 3. (Colour online) Comparison at UG = 27 m s−1 between experimental data of
Matas et al. (2011) (p) and available spatiotemporal predictions: ∗, prediction by Otto
et al. (2013), for δd = 0.1; E, prediction taking into account confinement without any
velocity deficit (δd = 1);@, prediction with confinement and a velocity deficit (δd = 0.5).

pressure, and a similar expression was found by Matas et al. (2011) in the frame
of the inviscid linear theory via an asymptotic expansion in the limit of low density
ratio. This expression therefore corresponds to a perturbation driven by an inviscid
mechanism: the fact that the predicted phase velocity is close to (1.2) is a first
indication that the dominant mechanism for these ω and k is inviscid. Note that the
velocity associated with the most unstable modes in Fuster et al. (2013) or Otto et al.
(2013), which are viscous modes, is closer to Ui and significantly lower than this
estimate.

Figure 3 next shows how the predicted frequency compares to the experimental
one (filled squares) for the experimental data at UG = 27 m s−1 for each of the six
liquid velocities investigated. The asterisks show the prediction of Otto et al. (2013)
for δd = 0.1, a prediction that works well for the two higher velocities, but clearly
fails for the four lower velocities. For δd = 1 the predictions of Otto et al. (2013)
for all UL far exceed experimental data (see figure 31d of their paper), and are not
shown here. The circles show the frequency obtained at pinching when confinement
is taken into account, for δd = 1 (no velocity deficit): this frequency is in relatively
good agreement with experimental data. Note that for the four lower liquid velocities
the mode predicted by Otto et al. (2013) when δd = 1 is associated with a convective
mode, and the present absolute instability caused by confinement is therefore expected
to dominate. For δd = 1 and the two largest liquid velocities in this series, however,
the pinching occurs at negative ω0i, and the confinement mechanism is consequently
not relevant.

If a velocity deficit is included in the base flow profile, the absolute instability is
enhanced (i.e. it occurs at even larger ω0i), and the frequency slightly increases too;
these data are shown by the open squares in figure 3, for δd= 0.5. If a stronger deficit
is included (δd < 0.4), the shear instability branch is displaced and the pinch point
due to confinement disappears. Figure 4 shows the same comparison for the series of
experimental data of Matas et al. (2011) at UG = 22 m s−1, and the same agreement
is found when confinement is included. Figure 5 shows the variation of the absolute
growth rate ω0i at the pinch point: it decreases when UL is increased, and eventually
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FIGURE 4. (Colour online) Comparison at UG = 22 m s−1 between experimental data of
Matas et al. (2011) (p) and available spatiotemporal predictions: ∗, prediction by Otto
et al. (2013), for δd = 0.1; E, prediction taking into account confinement without any
velocity deficit (δd = 1).
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FIGURE 5. Variation of the absolute growth rate ω0i at the pinch point caused by the
confinement branch, as a function of liquid velocity, for fixed UG= 27 m s−1, HG= 1 cm
and HL= 1 cm:u, δd = 1;@, δd = 0.5. The growth rate decreases when liquid velocity is
increased, and increases when a velocity deficit is included.

becomes negative for UL > 0.6 m s−1. The inclusion of a moderate velocity deficit
(δd = 0.5, open squares) leads to a slight increase of ω0i.

The fact that agreement between prediction and experiments occurs for δd = 1 at
lower UL, while it occurs for smaller δd at larger UL, is consistent with the idea that
the velocity deficit will be resorbed over a longer distance when the liquid velocity
is larger. At any rate, only a global approach, in the sense introduced by Huerre &
Monkewitz (1990), may clarify how mode selection occurs in the presence of strong
spatial variations, when unstable modes predicted close to the splitter plate (where
δd� 1) differ from those farther downstream (where δd = 1).

In order to clarify the nature of the dominant mechanism for the new pinch point
caused by confinement, we carry out an energy budget similar to the one introduced
by Boomkamp & Miesen (1996) for temporal modes. The energy budget can be
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UL (m s−1) δd REYL REYG TAN DISL DISG

0.26 1 3 80 23 −0.1 −7.8
0.31 1 3.2 84.3 20 −0.1 −8.8
0.37 1 3 82 21 −0.1 −8.2
0.5 1 2.7 82 21 −0.1 −7.9
0.74 0.1 3.3 51 330 −7.7 −280
1 0.1 1.6 −24 740 −17 −600

TABLE 1. Energy budget for the data (E) and (∗) of figure 3. Values are as a
percentage of the total (positive) kinetic energy rate.

written as

dEkin

dt
= REYL + REYG + TAN +NOR+DISL +DISG. (3.1)

Here Ekin is the total kinetic energy of the eigenmode (gas + liquid); REYL
(respectively REYG) is the transfer of energy from the base flow to the perturbation
via Reynolds stresses in the liquid (respectively gas) stream; TAN is the work of
tangential stresses; NOR is the contribution of normal stresses (surface tension and
gravity in the present case); and DISL (respectively DISG) is the dissipation in the
liquid phase (respectively gas phase). The analytical expressions for each of these
terms are very similar to the expressions given in Otto et al. (2013), and are not
repeated here. The only differences here are that the wavenumber is complex, and
that the kinetic energy variation term must be generalized to include a contribution
from the spatial growth:

dEkin

dt
= ωi

∫ 0

−HL

ρL(u2 + v2)dy− ki

∫ 0

−HL

ρL(u2 + v2)U(y)dy

+ωi

∫ LG

0
ρG(u2 + v2)dy− ki

∫ LG

0
ρG(u2 + v2)U(y)dy. (3.2)

We compute the energy budget for the six data points of figure 3 showing the best
agreement with experimental results, more precisely the four data points obtained with
confinement for lower UL and δd= 1 (no velocity deficit), and the two points obtained
by Otto et al. (2013) for UL = 0.74 and 1 m s−1 (with a velocity deficit, δd = 0.1).
The energy contributions are normalized by the total positive kinetic energy rate. We
omit the contribution of NOR, which is negligible for most of the present points.
Table 1 shows that, for the four conditions for which confinement triggers the absolute
instability, the mechanism is inviscid, and that the perturbation draws its energy from
the gas side. This is consistent with phase velocity being close to Uc (1.2). For the
two data points at larger velocity, the mechanism is confirmed to be viscous, driven by
the work of interfacial tangential stresses (Otto et al. 2013). Dissipation occurs almost
exclusively in the gas phase.

The idea behind the generalized budget of (3.1) is to identify among the right-
hand contributions which are dominant and which are negligible when at the pinch
point. It might be tempting to carry out the energy budget in a more classical form,
in order to avoid the generalization to spatiotemporal modes. However, for a purely
temporal mode, the results would depend very much on how the {spatiotemporal→
temporal} transposition is made. For a purely temporal mode at the same ωr as the
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FIGURE 6. (Colour online) Impact of a variation in viscosity on spatial branches for UG=
27 m s−1, UL = 0.26 m s−1 and δd = 1: ∗, νG = 1.5× 10−5 m s−1, νL = 10−6 m s−1 and
ωi = 85 s−1;@, νG = 1.5× 10−6 m s−1, νL = 10−7 m s−1 and ωi = 65 s−1;u, νG = 1.5×
10−7 m s−1, νL= 10−8 m s−1 and ωi= 50 s−1; +, νG= 1.5× 10−7 m s−1, νL= 10−6 m s−1

and ωi= 45 s−1. The shear branch is displaced when viscosity is reduced, but the location
of the pinch point associated with confinement remains unchanged.

pinch point, for example, and conditions of the first line of table 1, the wavenumber
would become kr ≈ 380 m−1 instead of kr ≈ 170 m−1 for the spatiotemporal mode.
For these conditions, the energy budget says the temporal mode is 85 % viscous (the
same budget would be found for the spatiotemporal mode at this larger kr). If a
{spatiotemporal→ spatial} comparison is carried out for the wavenumber of the pinch
point, then the energy budget says the mode is 60 % viscous and 40 % viscous. Hence
a transposition would be extremely sensitive to which ω and k values are retained.

At any rate, the inviscid nature of the instability for the pinch point due to
confinement is confirmed by figure 6, which shows the impact of a reduction of
viscosity on spatial branches for the case UG = 27 m s−1 and UL = 0.26 m s−1

(conditions of figure 2). When viscosity is reduced, the shear branch is impacted,
but the confinement branch is unchanged, and the pinch point remains at the same
location. Frequency at the pinch point slightly decreases when viscosity is reduced,
from f = 28 Hz for νG = 1.5× 10−5 m s−1 and νL = 10−6 m s−1 down to f = 20 Hz
for νG = 1.5× 10−7 m s−1 and νL = 10−8 m s−1.

This result is satisfying, because it explains the paradox exposed in the introduction,
namely why the simplified analysis proposed by Raynal (1997) was successful, and
why the inclusion of viscosity in the analysis had degraded the quality of the
prediction. The inclusion of viscosity gives rise to a much stronger shear mode based
on the viscous mechanism (Boeck & Zaleski 2005; Otto et al. 2013), but resonance
due to confinement triggers an absolute instability for the lower-wavenumber part of
the shear branch, which is dominated by the inviscid mechanism. This occurs for
all the lower liquid velocity points of Matas et al. (2011), as in figure 3. For the
larger liquid velocity conditions, we find that the shear branch is displaced away
from the confinement branch, and the mechanism is then the one predicted by Otto
et al. (2013), an absolute instability between the shear branch controlled by viscosity
and a lower branch controlled by surface tension.

The velocity profile considered in figure 1 includes both a finite HG and a finite HL.
In order to clarify the influence of these thicknesses, we keep them equal and vary
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FIGURE 7. (Colour online) Change in the confinement branches when HG and HL are
reduced, for fixed UG = 27 m s−1, UL = 0.26 m s−1, δd = 1, ωi = 120 s−1 and ωr in the
range (60–430) s−1:u, HG =HL = 2 cm; ×, HG =HL = 1 cm;E, HG =HL = 0.5 cm.
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FIGURE 8. (Colour online) Pinching for UG = 27 m s−1, UL = 0.26 m s−1, δd = 1, ωi =
60 s−1 and ωr in the range (60–280) s−1:E, HG = 3 cm and HL = 1 cm; ∗, HG = 1 cm
and HL = 3 cm. Both thicknesses play a symmetric role.

them, while keeping δG and δL constant and equal to their values for HG=HL=H=
1 cm. Figure 7 shows that the location of the confinement branch along the ki axis
behaves as 1/H, and that the extension of the branches increases strongly with 1/H:
these branches therefore set the order of magnitude of k at the pinch point. If these
thicknesses are distinct, we observe that their role is symmetric. Figure 8 shows two
sets of branches obtained for (HG = 3 cm; HL = 1 cm) and for (HG = 1 cm; HL =
3 cm). Though experimentally a thick liquid and a thin gas stream may look quite
different from a thin liquid stream and a thick gas stream, we find that the branches
obtained in both situations are very close. They extend to the same real(k) as the
branch obtained for HG = HL = 1 cm, the smaller length, the only difference being
that the absolute growth rate ω0i is significantly smaller for HG 6=HL than for HG=HL.
The fact that a symmetric confinement can enhance the absolute instability of a shear
layer has already been pointed out in Healey (2009).
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FIGURE 9. (Colour online) Influence of liquid velocity UL, for fixed UG = 27 m s−1,
HG = HL = 1 cm, δd = 1 and ωi = 120 s−1: u, UL = 0.26 m s−1; E, UL = 0.5 m s−1; ∗,
UL= 1 m s−1. The ranges of ωr are respectively (120–370), (170–500) and (260–820) s−1.
When liquid velocity is increased, the shear branch is shifted away from the confinement
branch.
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FIGURE 10. Influence of vorticity thickness δG on ωr (circles) and ω0i (squares), for fixed
UG= 27 m s−1, UG= 0.26 m s−1, δd = 1 and HG=HL= 1 cm. Open symbols correspond
to δL = 500 µm and filled symbols to δL = δG.

As shown in figure 3, the present mechanism dominates for the largest UG/UL cases
but is absent for the largest liquid velocities investigated. Figure 9 sheds light on
this behaviour. When UL is increased, the maximum growth rate of the shear branch
decreases. If the maximum growth rate of this branch, which is controlled by the
viscous mechanism (Otto et al. 2013), is shifted above the location of the confinement
branch, then the two branches cannot collide any more when ωi is reduced.

All the above results have been obtained with δG set to its value in experiments, and
with a fixed δL. We show in figure 10 the impact of δG for fixed UG on both the real
and imaginary parts of ω. Increasing δG causes a strong reduction in the frequency
and absolute growth rate, both for δL= δG (filled symbols) and for fixed δL= 500 µm
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(open symbols). The impact of δG on the wavenumber at the pinch point is weaker:
k remains mostly constant when δG is increased, except for a slight decrease, and the
location of the pinch point remains essentially controlled by the confinement branch.

The scalings of (1.1)–(1.3), in agreement with experiments, can be derived from
the partially successful inviscid analysis. Up to now they had no justification in the
context of viscous analyses. The fact that the energy of the perturbation is fed by the
gas Reynolds stress indicates that the argument behind the simplified derivation of
(1.1) is still valid. This is a significant result, since with ω ∼ UG/δG we recover the
f ∼U3/2

G scaling observed in most experimental studies, where δG scales as U−1/2
G . The

instability predicted here is absolute, and in the experiment nonlinearity is therefore
expected to take over: the same arguments used by Dimotakis (1986) to derive (1.2)
are expected to hold. Provided this is valid for the waves generated by the present
mechanism, the scaling law (1.3) for the wavelength can then be derived from the
scalings for velocity and frequency.

Acknowledgements

This project has been supported by the FIRST (Fuel Injector Research for
Sustainable Transport) project supported by the European Commission under the
Seventh Framework Programme. The LEGI laboratory is part of the LabEx Tec 21
(Investissements d’Avenir – grant agreement no. ANR-11-LABX-0030).

REFERENCES

ASMOLOV, E. 1999 The inertial lift on a spherical particle in a plane Poiseuille flow at large channel
Reynolds number. J. Fluid Mech. 381, 63–87.

BEN RAYANA, F. 2007 Contribution à l’étude des instabilités interfaciales liquide–gaz en atomisation
assistée et tailles de gouttes. PhD thesis, INP Grenoble, France.

BOECK, T. & ZALESKI, S. 2005 Viscous versus inviscid instability of two-phase mixing layers with
continuous velocity profile. Phys. Fluids 17, 032106.

BOOMKAMP, P. & MIESEN, R. 1996 Classification of instabilities in parallel two-phase flow. Intl J.
Multiphase Flow 22, 67–88.

CHARRU, F. & HINCH, E. J. 2000 ‘Phase diagram’ of interfacial instabilities in a two-layer Couette
flow and mechanism of the long-wave instability. J. Fluid Mech. 414, 195–223.

DIMOTAKIS, P. E. 1986 Two-dimensional shear-layer entrainment. AIAA J. 24, 1791–1796.
EGGERS, J. & VILLERMAUX, E. 2008 Physics of liquid jets. Rep. Prog. Phys. 71, 036601.
FUSTER, D., MATAS, J.-P., MARTY, S., POPINET, S., HOEPFFNER, J., CARTELLIER, A. &

ZALESKI, S. 2013 Instability regimes in the primary breakup region of planar coflowing
sheets. J. Fluid Mech. 736, 150–176.

HEALEY, J. J. 2007 Enhancing the absolute instability of a boundary layer by adding a far-away
plate. J. Fluid Mech. 579, 29–61.

HEALEY, J. J. 2009 Destabilizing effects of confinement on homogeneous mixing layers. J. Fluid
Mech. 623, 241.

HINCH, E. J. 1984 A note on the mechanism of the instability at the interface between two fluids.
J. Fluid Mech. 144, 463–465.

HOOPER, A. P. & BOYD, W. G. C. 1983 Shear-flow instability at the interface between two viscous
fluids. J. Fluid Mech. 128, 507–528.

HOOPER, A. P. & BOYD, W. G. C. 1987 Shear-flow instability due to a wall and a viscosity
discontinuity at the interface. J. Fluid Mech. 179, 201–225.

HUERRE, P. & MONKEWITZ, P. A. 1990 Local and global instabilities in spatially developing flows.
Annu. Rev. Fluid Mech. 22, 473–537.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

10
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.106


Inviscid versus viscous instability mechanism of an air–water mixing layer 387

JUNIPER, M. P. 2008 The effect of confinement on the stability of non-swirling round jet/wake
flows. J. Fluid Mech. 605, 227–252.

LEFEBVRE, A. 1989 Atomization and Sprays. Hemisphere.
MARMOTTANT, P. & VILLERMAUX, E. 2004 On spray formation. J. Fluid Mech. 498, 73–111.
MATAS, J.-P., MARTY, S. & CARTELLIER, A. 2011 Experimental and analytical study of a gas–liquid

mixing layer. Phys. Fluids 23, 094112.
MATAS, J.-P., MORRIS, J. F. & GUAZZELLI, E. 2009 Lateral force on a rigid sphere in large-inertia

laminar pipe flow. J. Fluid Mech. 621, 59–67.
OTTO, T., ROSSI, M. & BOECK, T. 2013 Viscous instability of a sheared liquid–gas interface:

dependence on fluid properties and basic velocity profile. Phys. Fluids 25, 032103.
RAYLEIGH, LORD 1879 On the stability, or instability, of certain fluid motions. Proc. Lond. Math.

Soc. 11, 57–72.
RAYNAL, L. 1997 Instabilité et entraînement à l’interface d’une couche de mélange liquide–gaz. PhD

thesis, Université Joseph Fourier Grenoble I, France.
RAYNAL, L., VILLERMAUX, E., LASHERAS, J. & HOPFINGER, E. J. 1997 Primary instability in

liquid gas shear layers. In 11th Symposium on Turbulent Shear Flows, 7–10 September 1997,
Grenoble, France, Vol. 3, pp. 27.1–27.5, OCLC 40626641, INP-CNRS-UJF.

REES, S. J. & JUNIPER, M. P. 2010 The effect of confinement on the stability of viscous planar
jets and wakes. J. Fluid Mech. 656, 309–336.

YIH, C. S. 1967 Instability due to viscous stratification. J. Fluid Mech. 27, 337–352.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

10
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.106

	Inviscid versus viscous instability mechanism of an air–water mixing layer
	Introduction
	Method
	Results and discussion
	Acknowledgements
	References




