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Summary

This study describes the embryonic development ofMoenkhausia oligolepis in laboratory con-
ditions. After fertilization, the embryos were collected every 10min up to 2 h, then every 20min
up to 4 h, and afterwards every 30 min until hatching. The fertilized eggs ofM. oligolepismea-
sured approximately 0.85 ± 0.5 mm and had an adhesive surface. Embryonic development
lasted 14 h at 25ºC through the zygote, cleavage, blastula, gastrula, neurula, and segmentation
phases. Hatching occurred in embryos around the 30-somites stage. The present results con-
tribute only the second description of embryonic development to a species from the
Moenkhausia genus, being also the first for this species. Such data are of paramount importance
considering the current conflicting state of this genus phylogenetic classification and may help
taxonomic studies. Understanding the biology of a species that is easily managed in laboratory
conditions and has an ornamental appeal may assist studies in its reproduction to both supply
the aquarium market and help the species conservation in nature. Moreover, these data enable
the use ofM. oligolepis as a model species in biotechnological applications, such as the germ cell
transplantation approach.

Introduction

The study of embryological development is an important tool that provides knowledge on a species
life history (De Alexandre et al., 2009). This phase of development comprises fish formation events
from fertilization of the oocyte by spermatozoa to larval hatching (Solnica-Krezel, 2005). At this
phase, the animal is more vulnerable to any environmental disturbance, which can change its mor-
phology, cause deformities, or even result in death. Therefore, to investigate the effects of changes in
climatic variables on the embryonic development of teleosts, many studies have described this phase
and associated its development with abiotic factors such as temperature (Hansen and Falk-Peterson,
2001; Rodrigues-Galdino et al., 2010; Arashiro et al., 2018), water acidification (Villanueva et al.,
2011), and water dissolved oxygen content (Keckeis et al., 1996), among others.

Studies on embryonic development are also important to subsidize research on phylogeny
and taxonomy of species, revealing knowledge about evolutionary history and phylogenetic rela-
tionships (Godinho et al., 2009;Weber et al., 2012; Dos Santos et al., 2016). In addition, Godinho
and Lamas (2009) showed that the characteristics of eggs, when fertilized, help in the develop-
ment of reproductive strategies for teleosts.

In Brazil, embryological studies focus mainly on species with an established commercial
value such as Siluriformes Pseudoplatystoma coruscans (Cardoso et al., 1995; Marques et al.,
2008), the Characiformes Colossoma macropomum (Leite et al., 2013), Brycon insignis (Isaú
et al., 2011), and Brycon cephalus (Romagosa et al., 2001; De Alexandre et al., 2009), among
many other large-sized animals. However, those works do not cover the diversity of species con-
sidering the abundance of described species, especially of freshwater fish (3148 species described
until 2018; ICMBio, 2018).

The genusMoenkhausia (Eigenmann, 1903), for example, includes about 90 species of fresh-
water fish distributed across South America in Venezuela, Guyana, and Amazonia (Froese and
Pauly, 2018), and all Brazilian watersheds (Lima and Toledo-Piza, 2001). This genus belongs to
the Characiformes order, and it is currently allocated to Incertæ sedis in the Characidae family,
due to lack of detailed research about its phylogeny. Although some taxonomic studies have
already been carried out (Hojo et al., 2004; Benine et al., 2007, 2009; Carvalho et al., 2014),
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its current classification is still unclear, as most studies are limited
to the description of species of the genus.

This misclassification of the species Moenkhausia oligolepis
(Gunther, 1864) is currently under discussion due to the wide dis-
tribution ofMoenkhausia species coexisting and exhibiting similar-
ities of colours and patterns. For this reason, Costa (1994) and
Benine and colleagues (2009) proposedM. oligolepis to be a complex
of species. However, according to Domingos et al. (2014), the coex-
istence and similarity between species usually results in an incorrect
definition of their conservation status. While it is called black tail
tetra in some areas (Matos et al., 2003), this species reaches around
10 cm total length when mature (Froese and Pauly, 2018). It also
presents a reticulated body colour and reddish pigmentation on
the dorsal margin of the eye, giving it the popular name (fire-eye
tetra), and it also has a dark spot on the stalks of the caudal fin.

Therefore, this study aimed to describe the embryonic develop-
ment of M. oligolepis under laboratory conditions to contribute
knowledge on the biology and species conservation, in addition
to furthering its identification and classification. The study
describes the timing of typical stages after fertilization, based on
external morphology, in captive individuals of M. oligolepis. It
was found that the embryonic development lasted 14 h at 25ºC,
and these stages occurred similarly to that of closely related species
(e.g. Brycon gouldingi: Faustino et al., 2011; Astyanax bimaculatus:
Weber et al., 2012; Astyanax altiparanae: Dos Santos et al., 2016).

Materials and methods

Sampling of animals

Sexually mature individuals of M. oligolepis were collected from
streams in the Tocantins Basin, located in the interior of the
Amazon Forest, in the ‘Fundação Zoobotânica deMarabá’ – PA (col-
lection authorization ICMBio no. 62027-1). Nylon nets (1.10 mm,
4.75× 1mesh, 10 cm) were used to sample the fish, which were trans-
ported to the laboratory in 30-l plastic bags filled with water and
equipped with portable aerators. The species was identified in the
Laboratory of Biology and Fish Genetics at the Institute of
Biosciences of the Universidade Estadual Paulista (UNESP), in
Botucatu of the state of São Paulo, Brazil (voucher: 25622).

Fish acclimatization lasted 4 months in glass tanks (23 × 21 cm,
capacity of 13 l of water) with aeration pumps and internal bacte-
riological filter. The animals were fed three times a day with com-
mercial food (4200 kcal/kg and 28% crude protein), and the tank
water was partially exchanged daily.

Breeding preparation

Four males and three females were separated in a tank that had the
same dimensions of the acclimatization tanks, also designed with
constant circulation of water. Those animals were submitted to a
monitored photoperiod cycle of 12 h of light/dark, for 45 days.
During this period, the water parameters (dissolved ammonia,
nitrite, dissolved O2, pH, and temperature) were analyzed daily.
The same commercial food was offered throughout the day in three
rations of 0.100 g each, totalling 0.300 g of food per day.

Induction to spawning and fertilization

On the 45th day, the animals were anaesthetised with 1 ml of
Eugenol solution (20 ml of Biodynamic Eugenol in 100 ml of abso-
lute alcohol) diluted in 500 ml of water. Both males and females
were injected with carp crude pituitary extract that was macerated

and diluted in 0.9% saline solution. The solution was applied in the
coelomic cavity at the base of the pectoral fin using an insulin
syringe (1 ml) with a needle. This step was based on the protocol
of Ninhaus-Silveira et al. (2006), in which females received two
hormonal doses: the first dose was 0.5 mg/kg body weight; and
after a 12-h interval, the second dose was 5.0 mg/kg body weight.
Males received a single dose of 1.0 mg/kg body weight at the same
time as the second dose of females.

Embryo collection and analysis

Samples were collected at the following time intervals after fertili-
zation: every 10 min up to 2 h post fertilization (hpf); then every
20 min up to 4 hpf: and afterwards, every 30 min until hatching.
The collected embryos were fixed in a solution of 2.5% glutaralde-
hyde sodium phosphate buffer 0.1 M, pH 7.3, and they were
observed using a trinocular stereoscope (TNE-10TN Opton).
The images were captured using the TC Capture program and a
digital camera (Samsung A3, 2015, 8MP) and then processed using
the CorelDRAW program (version 2018).

The embryonic development of M. oligolepis was classified in
the standard phases (zygote, cleavage, blastula, gastrula, segmenta-
tion, and hatching) based on previous studies (Arashiro et al.,
2018). The temperature and parameters of the water were moni-
tored and documented during the development of the embryos.

Results and Discussion

In this study, the embryonic development of M. oligolepis, a
Characidae of disputed taxonomic position from the Amazon,
was described up to hatching. It was found that embryonic devel-
opment lasted 14 h at 25ºC with the described development stage
occurring at similar times as that of closely related species. The
ontogenetic development in fish is sensitive to changes in temper-
ature, as its metabolic activities can be accelerated or retarded and,
therefore, can alter the rhythm of the embryonic development
(Santos et al., 2006; Faustino et al., 2011). This period is variable
among species, being as short as observed in M. oligolepis, or it
may be even shorter as observed in M. sanctaefilomenae, whose
embryonic development lasted 13 h (Walter, 2011). Conversely,
Prochilodus lineatus presented embryo development time similar
to that of the present study at higher temperatures (28ºC)
(Ninhaus-Silveira et al., 2006), which made clear that each species
has its own relationship with abiotic factors, this observation
reflects the life history and evolutionary strategy of each species.

Egg sampling and morphology

The spawning occurred seminaturally about 2 h after the applica-
tion of the last hormonal doses, and the fertilized eggs measured
0.85 ± 0.5 mm (mean ± SD) in diameter. They were demersal,
spherical, and translucent after fertilization, and did not present
any oil droplets. The chorion had an adhesive surface, and the peri-
vitelline spaces measured 0.1 ± 0.02 mm (mean ± SD) (Fig. 1). The
diameter of the eggs was also directly related to the reproductive
strategy, as small eggs are usually found in migratory species with
total spawning, while the largest eggs are observed in non-migra-
tory species (Godinho et al., 2009). The diameter of M. oligolepis
eggs is similar to those observed by Sato et al. (2006) and Weber
et al. (2012) in other small Characiformes, Astyanax bimaculatus
and Tetragonopterus chalceus, respectively, and these are both
rheophilic species. Astyanax bimaculatus also reproduces in lentic
waters (Webber et al., 2012).
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It was also observed that the eggs ofM. oligolepsis showed char-
acteristics of adhesiveness. According to Kolm and Ahnesjö
(2005), adhesive eggs are a characteristic of the species with partial
spawning and parental care. Godinho and colleagues (2010) also
observed higher adhesiveness in eggs of lentic species withmultiple
spawning, whereas lotic species presented free eggs and total
spawning. Judging the characteristics of the environment in which
the matrices of this study were collected, it can be suggested thatM.
oligolepis is a species that spawns in lentic waters, however it is dif-
ferent from other species with adhesive eggs as there was no evi-
dence of parental care in this M. oligolepis.

Egg adhesion to the substrate contributes to the viability and
protection of the offspring in the natural environment but, in cap-
tivity, it may cause high mortality of the embryos, as egg and
embryo agglomeration impairs gas exchange between the develop-
ing embryo and the external environment. Moreover, egg adhesion
can contribute to proliferation of fungi and bacteria, causing death
or malformation in the embryos. Many techniques have been
developed to mitigate such damage (Siddique et al., 2014) such
as incubators equipped with a closed water recirculation system
to promote the circulation of water and embryos, therefore pre-
venting their deposit and agglomeration at the bottom of the tank
(Luz et al., 2001). In the studied species, it was observed that,
although the eggs fixed to each other or the aquarium walls
presented strong adhesiveness to forming embryo clusters, the
aerator was sufficient to keep them suspended in the water, elimi-
nating the need for more elaborate techniques.

Another important structure in the embryological staging of
fish is the chorion, as hydration of the egg causes it to expand
to form the perivitelline space (Siddique et al., 2014), and this will
aid in embryo development, protecting it from external injuries
often caused by water flow. This vulnerability makes eggs with
large perivitelline spaces characteristic of species that reproduce
in agitated waters. Conversely, smaller perivitelline spaces suggest
eggs that spawn in calmwaters, an aspect that reflects different spe-
cies adaptations to their environment (Yamagami et al., 1992; De
Alexandre et al., 2009; Ribeiro and Guimarães, 2012; Yang et al.,
2014). M. oligolepis presents pelagic eggs similar to other
Characiformes such as Acestrorhynchus spp., Hoplias lacerdae,
Prochilodus spp., and Leporinus sp. that were observed by Rizzo
et al. (2002).

Embryogenesis

Phases, stages, and time of development of M. oligolepis embryo-
genesis are listed in Table 1.

Zygote phase

An increase of the perivitelline space and formation of the blasto-
disc was observed, defining the animal and vegetal poles and evi-
dencing a great quantity of yolk (Fig. 2A).

Cleavage phase

Cleavage followed the pattern of discoidal meroblastic division,
noting the presence of 2, 4, 8, 16, 32, and 64 consecutive blasto-
meres (Fig. 2B–G). This phase took approximately 30 min.

Blastula phase

This phase was initiated at the sixth cleavage, doubling the number
of cells in the sequences of 128, 256, and 512 blastomeres, which
was achieved at 1 h 30 min after fertilization (AF). The dome phase
was reached at 1 h 40min AF, and was characterized by the organi-
zation of thousands of blastomeres in several layers at the top of the
yolk (Fig. 2H–K).

Gastrula phase

This phase began approximately 2 h AF. The blastoderm cells of
started the epiboly movement, moving toward the yolk and gradu-
ally evolving. At 2 h 40 min, a germinative ring was observed
(Fig. 2L). At 4 h AF, 90% of the yolk was surrounded by the blas-
tula, and the blastopore was observed (Fig. 2M–P).

Figure 1. Morphological characteristics ofM. oligolepis eggs. Presence of chorion (Co),
perivitelline space (EsP), and initial cleavage, blastomeres (Bl). Scale bar, 0.25 mm.

Table 1. Phases and time of embryonic development in M. oligolepis at the
temperature of 25°C

Phase Stage Time (h) Figure

Zygote 0.12 2A

Cleavage 2 cell 0.20 2B

4 cell 0.25 2C

8 cell 0.30 2D

16 cell 0.35 2E

32 cell 0.45 2F

64 cell 0.55 2G

Blastula 128 cell 1:10 2H

256 cell 1:20 2I

512 cell 1:30 2J

Dome 1:40 2K

Gastrula 50% epiboly 2:00 2L

75% epiboly 2:40 2M

90% epiboly 3:30 2N

95%/epiboly 4:00 2O

Initial neurula 4:20 2P

Neurula 100% epiboly 5:30 3A

Segmentation 5 somites 5:50 3B

8 somites 6:30 3C

17 somites 9:30 3D

27 somites 11:30 3E

Hatching 30 somites 14:00 3F
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Neurula

This stage occurred at 5 h and 30 min AF. It was characterized
mainly by 100% epiboly, whose blastoderm completely envelops
the yolk (Fig. 3A).

Segmentation

The segmentation phase is the last phase of embryonic development.
It represents the differentiation of the cephalic and caudal poles, and
it also includes the appearance of somites, vesicles, and some exter-
nal and internal organs of the embryo, extending until the moment
of hatching. Segmentation lasted about 8 h 10 min. The embryo
presented the first somite around 5 h 50 min AF, eight somites at
6 h 30 min, and at 7 h 30 min, it was possible to visualize the optical
vesicle. At 7 h 40 min AF, there were 17 somites, and 8 h 10min AF,
the appearance of the Kupffer vesicle was observed, followed by the
appearance of the otic vesicle at 9 h AF. At 11 h 30 min AF, there
were 27 somites, and after that, there were about 30 somites just
before hatching (Fig. 3B–F).

Hatching phase

The embryo presented a free tail at 12 h 30 min AF, followed by
larvae hatching at 14 h AF with about 30 somites (Fig. 3F).

Considering that this is only the second embryological study of
the genusMoenkhausia, this work brings important data about the
embryology of M. oligolepis. It is noted that although much infor-
mation has been revealed and supported, some of the data needed
more detailed and elaborate assessments. The use of such data to
clarify the incomplete picture in species and genus classification is
encouraged. As suggested by Webber et al. (2012), studies like this
one are important to support future studies on reproduction, phy-
logeny, and taxonomy.
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