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1. Introduction
One key notion in the study of dynamical properties of Polish groups is amenability.
A topological group is amenable when every flow, that is, a continuous action on a compact
space, admits a Borel probability measure that is invariant under the action of the group.

In recent years, the study of non-locally compact Polish groups has exhibited several
refinements of this phenomenon. One of them is extreme amenability: a topological
group is extremely amenable when every flow admits a fixed point (see [KPT05]). Another
one is unique ergodicity: a topological group is uniquely ergodic if every minimal flow,
that is, a flow where every orbit is dense, admits a unique Borel probability measure that is
invariant under the action of the group. In this paper, all measures will be Borel probability
measures.

Of course, extreme amenability implies unique ergodicity, but the converse is not true
as, for instance, every compact group is uniquely ergodic. Beyond compactness, though, no
example is known in the locally compact Polish case and Weiss proves in [Wei12] that there
is no uniquely ergodic discrete group. In fact, it is suggested on page 5 in [AKL12] that,
in the setting of locally compact groups, compactness is the only way to achieve unique
ergodicity. However, some examples appear in the non-locally compact Polish case. The
first of these examples was S∞, the group of all permutations of N equipped with the
pointwise convergence topology (this was done by Glasner and Weiss in [GW02]). Angel,
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FIGURE 1. The three possible configurations (up to isomorphism) of two pairs of equivalent points respecting the
parity condition.

Kechris and Lyons then showed, using probabilistic combinatorial methods, that several
groups of the form Aut(F), where F is a particular kind of countable structure called a
Fraïssé limit, are also uniquely ergodic (see [AKL12]).

A Fraïssé limit is a countable first-order homogeneous structure in the sense of model
theory whose age, that is, the set of its finite substructures up to isomorphism, is a Fraïssé
class. A class F of finite structures is a Fraïssé class if it contains structures of arbitrarily
large (finite) cardinality and satisfies the following.
(HP) If A ∈ F and B is a substructure of A, then B ∈ F .
(JEP) If A, B ∈ F , then there exists C ∈ F such that A and B can be embedded in C.
(AP) If A, B, C ∈ F and f : A → B, g : A → C are embeddings, then there exist D ∈

F and h : B → D, l : C → D embeddings such that h ◦ f = l ◦ g.
Examples of Fraïssé classes include the class of finite graphs, the class of finite graphs

omitting a fixed clique and the class of finite r-uniform hypergraphs for any r ∈ N. The
unique ergodicity of the automorphism groups of the limits of these classes was proved in
[AKL12].

The Fraïssé limit of a Fraïssé class is unique up to isomorphism. By definition, Fraïssé
limits are homogeneous, that is, any isomorphism between two finite parts of the structure
can be extended in an automorphism of the structure. For more details on Fraïssé classes
see [Hod93].

In [PSar], using methods from [AKL12], Pawliuk and Sokić extended the catalogue of
uniquely ergodic automorphism groups with the automorphism groups of homogeneous
directed graphs, which were all classified by Cherlin (see [Che98]), leaving as an open
question only the case of the semigeneric directed graph.

This graph, which we denote S, is the Fraïssé limit of the class S of simple, loopless,
directed, finite graphs that verify the following conditions, where → denotes the directed
edge.
(i) The relation ⊥, defined by x ⊥ y if and only if ¬(x → y ∨ y → x), is an equiva-

lence relation.
(ii) For any x1 �= x2, y1 �= y2 such that x1 ⊥ x2 and y1 ⊥ y2, the number of (directed)

edges from {x1, x2} to {y1, y2} is even (Fig. 1).
We will refer to ⊥-equivalence classes as columns and to the second condition as the parity
condition. The ⊥-class of an element a ∈ S will be referred to as a⊥.

More details on this structure will be given in the next section.
In this paper, we prove the following theorem.
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THEOREM 1.1. The topological group Aut(S) is uniquely ergodic.

The method we use is different from the one found in [AKL12, PSar] since we do
not work with the so-called ’quantitative expansion property’, but instead we show that an
ergodic measure can only take certain values on a generating part of the Borel sets. It is also
different from the approach in [Tsa14], Theorem 7.4 which only applies when the structure
eliminates imaginaries. Our method relies on the idea that if there are equivalence classes
in a structure and the universal minimal flow is essentially the convex orderings regarding
the equivalence classes, then the ordering inside the equivalence classes and the ordering
of the equivalence classes are independent, provided that the automorphism group behaves
well enough.

2. Preliminaries
The starting point of our proof is common with that of [AKL12]: to prove that Aut(S) is
uniquely ergodic, it suffices to show that one particular action is uniquely ergodic, namely,
its universal minimal flow, Aut(S) � M(Aut(S)). This is the unique minimal Aut(S)-flow
that maps onto any minimal Aut(S)-flow (such a flow exists for any Hausdorff topological
group by a classical result of Ellis; see [Ell69]); an explicit description was made by
Jasiński, Laflamme, Nguyen Van Thé and Woodrow in [JLNW14]. It is the space of
expansions of S whose age is a certain class S∗.

Before describing this class, we give some more background on S. Observe that the
parity condition is equivalent to the fact that, for every A ∈ S and two columns P , Q in
A, we have, for all x, x′ ∈ P ,

(for all y ∈ Q, ((x → y) ⇔ (x′ → y))) or (for all y ∈ Q, ((x → y) ⇔ (y → x ′))).

This remark allows us to define the equivalence relation ∼Q on P as

x ∼Q x′ ⇔ for all y ∈ Q, (x → y ⇔ x′ → y).

Note that, as a consequence of the parity condition, we get that, in S,

for all y ∈ Q, (x → y ⇔ x′ → y) ⇔ there exists y ∈ Q, (x → y and x ′ → y).

We can now consider P 0 and P 1, the two ∼Q equivalence classes in P , and we have P =
P 0  P 1. Note that each of these class could be empty. Similarly, we have Q = Q0  Q1,
where Q0 and Q1 are ∼P -equivalence classes. Note that, at this stage, the labelling of
these classes is arbitrary, which is crucial to the construction and understanding of S∗
below. Indeed, the language of S∗ has a binary relation R whose interpretation is mainly
to give a proper labelling of these equivalence classes.

This description has an interesting consequence when we recall that there must be an
edge between any two points of P and Q. Denote P i → Qj to mean that, for all x ∈ P i

and y ∈ Qj , we have x → y. Then P i → Qj implies that Qj → P 1−i , P 1−i → Q1−j

and Q1−j → P i . In particular, this means that, for each i ∈ {0, 1}, there is a unique j ∈
{0, 1} such that P i → Qj (Fig. 2).

The class S∗ is the class of finite structures in the language L = (→, <, R), verifying
the following.

https://doi.org/10.1017/etds.2021.55 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.55


2564 C. Jahel

P i

P 1− i

Qj
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FIGURE 2. The different equivalent classes induced by two columns.

(A) S∗|→ = S.
(B) < is interpreted as a linear ordering convex with respect to the columns, that is,

the columns are intervals for the ordering. For two columns P , Q, we will therefore
write P < Q to mean that, for all x ∈ P , y ∈ Q we have x < y.

(C) For A∗ ∈ S∗, the binary relation RA∗
verifies:

(a) for all x, y ∈ A∗,

RA∗
(x, y) ⇒ ¬x ⊥ y;

(b) for all x, y, y′ ∈ A∗,

(RA∗
(x, y) & y ⊥ y′) ⇒ RA∗

(x, y′);

(c) for all x, x′, y ∈ A∗,

(x → y & y → x′ & x ⊥ x′ & x <A∗
y) ⇒ (RA∗

(x, y) ⇔ ¬RA∗
(x′, y)).

Observe that in a structure A∗ ∈ S∗, RA∗
gives us a proper labelling of the

∼Q-equivalence classes in P when P < Q. In particular, we can render the arbitrary
decomposition P = P 0  P 1, Q = Q0  Q1 canonical by setting

x ∈ P 1 ⇔ (for all y ∈ Q, RA∗
(x, y))

and

y ∈ Q1 ⇔ (for all x ∈ P , (y → x ⇔ RA∗
(x, y))).

A remarkable property of this decomposition is that the edge relation is actually entirely
defined by it. Indeed, take two columns P , Q in A∗ that we decompose as above in P =
P 0  P 1, Q = Q0  Q1. We know, by construction of R on Q, that Q1 → P 1. As we
observed before, this means that P 1 → Q0, P 0 → Q1 and Q0 → P 0.

Another point of view on this expansion is given in [JLNW14]. Take A ∈ S with
n columns P1, . . . , Pn and an expansion A∗ ∈ S∗. The expansion A∗ is interdefinable
with a structure A∗∗ in the language {→, <, Li,f }, where Li,f is a unary predicate
for all i ∈ {1, . . . , n} = [n] and f ∈ 2[n]\i . We have A∗|→,< = A∗∗|→,<. Assuming that
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P1 <A∗ · · · <A∗
Pn, we define

LA∗∗
i,f = {x ∈ Pi : for all j ∈ [n]\i, y ∈ Pj (f (j) = 1 ⇔ RA∗

(x, y))}.
Denote M ⊂ {0, 1}S2 × {0, 1}S2

, the space of expansions of S whose age is exactly S∗.
We will denote E = (<E , RE), the elements of M, by identification with the structure
that can be inferred from the expansion. The following result is shown in [JLNW14].

THEOREM 2.1. The universal minimal flow of Aut(S) is Aut(S) � M.

We are interested in showing that the Aut(S)-invariant measures on M are all equal. A
useful tool of measure theory is the following lemma (see [Gut05, Theorem 3.5]).

LEMMA 2.2. Let μ and ν be two probability measures defined on a σ -field E . If there is a
family (An)n∈N ∈ EN, stable under intersection, that generates E and is such that, for all
n ∈ N, μ(An) = ν(An), then μ = ν.

The rest of this section is devoted to describing a family P of clopen sets that generate
the Borel sets of M. The sets of our family P are of the form

U
(xi)

n
i=1,(εj

i )1≤i<j≤n
∩ V(a1

1 ,...,a1
i1

),...,(ak
1 ,...,ak

ik
) ⊂ M.

They are defined as follows.
Let (xi)

n
i=1 be in different columns. Let (ε

j
i )i<j≤n ∈ {0, 1}(n

2). An element E =
(<E , RE) ∈ M belongs to U

(xi)
n
i=1,(εj

i )1≤i<j≤n
if and only if the following conditions are

satisfied.
(A) (x⊥

1 <E · · · <E x⊥
n ).

(B) For k < l,
RE(xk , xl) ⇔ (xk → xl)

εl
k ,

where, for all x, y ∈ S and ε ∈ {0, 1}, (x → y)ε means that (x → y) if ε = 1 and
¬(x → y) otherwise.

The rest of R on those columns can be recovered from this by construction of S∗.
Indeed, observe that, for all x ∈ x⊥

k , y ∈ x⊥
l ,

RE(x, y) ⇔ ((x ∼S

x⊥
l

xk and RE(xk , xl)) or (x �
S

x⊥
l

xk and ¬RE(xk , xl))).

An important remark is that if we have a different family (x ′
1, . . . , x′

n) such that xi ⊥ x′
i ,

then there is a family (α
j
i )1≤i<j≤n such that

U
(xi)

n
i=1,(εj

i )1≤i<j≤n
= U

(x′
i )

n
i=1,(αj

i )1≤i<j≤n
.

This can be achieved by taking α
j
i = ε

j
i if xi ∼x⊥

j
x′
i and α

j
i = 1 − ε

j
i otherwise.

An additional remark that will be useful throughout the paper is that, for a given family
(x1, . . . , xn) of elements taken in different columns,

M =
⊔

σ∈Sn,(εj
i )1≤i<j≤n

U
(xσ(i))

n
i=1,(εj

i )1≤i<j≤n
.
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We also define

V(a1
1 ,...,a1

i1
),...,(ak

1 ,...,ak
ik

) = {E ∈ M : (a1
1 <E · · · <E a1

i1
) ∧ · · · ∧ (ak

1 <E · · · <E ak
ik
)},

where (a
j
i ⊥ a

j ′
i′ ) if and only if j = j ′.

This collection of sets is a generating family for the open sets of our space, so it is also
a generating family for the Borel sets.

To use Lemma 2.2, we would also need to know that this family is stable under
intersection, but unfortunately this is not the case. However, the intersection of two sets in
P is actually a disjoint union of sets in P . Therefore, if we consider P ′ to be the collection
of finite intersections of elements of P , the evaluation of a measure on an element of P ′ is
determined by the evaluation of the measure on P . By Lemma 2.2, any measure is entirely
characterized by its evaluation on elements of P ′, so it is characterized by its evaluation
on elements of P .

3. Invariant measures
From this point on, we denote G = Aut(S). Let us first define μ0, which is a G-invariant
probability measure on M. We define μ0 by

μ0
(
U

(xi)
n
i=1,(εj

i )1≤i<j≤n
∩ V(a1

1 ,...,a1
i1

),...,(ak
1 ,...,ak

ik
)

) = 1

n! 2(n
2)

1
k∏

j=1

ij !

.

We call μ0 the uniform measure. It is proved in [PSar] that this measure is well defined on
all Borel sets and that it is G-invariant. We want to show that it is actually the only invariant
measure. By Lemma 2.2, we only have to check that the invariant measures coincide on
U

(xi)
n
i=1,(εj

i )1≤i<j≤n
∩ V(a1

1 ,...,a1
i1

),...,(ak
1 ,...,ak

ik
).

Before proving Theorem 1.1, we need to prove the following preliminary results.

PROPOSITION 3.1. For all (xi)
n
i=1 such that ¬(xi ⊥ xj ) for i �= j and (ε

j
i )i<j≤n ∈ 2(n

2),

μ
(
U

(xi)
n
i=1,(εj

i )1≤i<j≤n

) = 1

n! 2(n
2)

.

PROPOSITION 3.2. For all (a1
1, . . . , a1

i1
, . . . , ak

1 , . . . , ak
ik
) such that a

j
i ⊥ a

j ′
i′ if and only

if j = j ′,

μ
(
V(a1

1 ,...,a1
i1

),...,(ak
1 ,...,ak

ik
)

) = 1
k∏

j=1

ij !

.

Similar results were proved in [PSar]. We will prove those results using different
methods. The proof of Proposition 3.2 is very similar to what we will do later on in order
to conclude the paper and it contains the key argument.

For proofs of Proposition 3.2 and Theorem 1.1, we will need an ergodic decomposition
theorem, and thus we need to define the notion of ergodicity.
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Definition 3.3. Let � be a Polish group acting continuously on a compact space X. A
�-invariant measure ν is said to be �-ergodic if, for all A measurable such that

for all g ∈ �, ν(A�g · A) = 0,

we have ν(A) ∈ {0, 1}.
We can now state the following theorem (see [Phe01, Proposition 12.4]).

THEOREM 3.4. Let � be a Polish group acting continuously on a compact space X. Let
P(X) denote the space of probability measures on X and let P�(X) = {μ ∈ P(X) : � ·
μ = μ}. Then, the extreme points of P�(X) are the �-ergodic invariant measures.

We will also need to use Neumann’s lemma (see [Cam99, Theorem 6.2]).

THEOREM 3.5. Let H be a group acting on � with no finite orbit. Let � and � be finite
subsets of �. Then there is h ∈ H such that h · � ∩ � = ∅.

The remainder of the section will be divided in three subsections: one for the proof
of Proposition 3.1, one for the proof of Proposition 3.2 and finally one for the proof of
Theorem 1.1.

3.1. Proof of Proposition 3.1. For this proof, we will need the following technical
lemma.

LEMMA 3.6. Let k < n, let P1, . . . , Pn be different columns in S and let y1 ∈
P1, . . . , yk ∈ Pk . Take a given family ε

j
i ∈ {0, 1}, where 1 ≤ i < j ≤ n and k < j . Then

there exist yk+1 ∈ Pk+1, . . . , yn ∈ Pn such that (yi → yj )
ε
j
i for all i < j and k < j .

Proof. Take xk+1 ∈ Pk+1, . . . , xn ∈ Pn. Consider the structure

A = ((yA
1 , . . . , yA

n , xA
k+1, . . . , xA

n ), →A),

where (yA
i →A yA

j ) ⇔ (yi → yj ) if i < j ≤ k, (yA
i →A yA

j ) ⇐⇒ (ε
j
i = 1) if 1 ≤ i <

j ≤ n and k < j . We also have xA
i ⊥A yA

i for i > k and (xA
i →A xA

j ⇔ xi → xj ) for
k < i < j .

We put edges between xA
i and yA

j in order for them to respect the parity condition.
Notice that there is more than one way to do this: for instance, one can ask that
when k < i < j , (xA

i →A yA
j ) ⇔ (xA

i →A xA
j ) and (xA

j →A yA
i ) ⇔ (yA

j →A yA
i ). The

remaining edges can be added arbitrarily because they concern columns with only one
vertex.

We make sure that A ∈ S. Indeed, note that, since there is one point in the first k

columns and two in the remaining ones, it suffices to check the parity condition in the
last n − k columns. Take k < j < i ≤ n. We know that the edges between xA

i and yA
j and

the edge between xA
i and xA

j go in the same direction. Similarly, the edge between xA
j and

yA
i and the edge between yA

j and yA
i also go in the same direction. Therefore the parity

condition must be respected.
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We remark that ((yA
1 , . . . , yA

k , xA
k+1, . . . , xA

n ), →A) and ((y1, . . . , yk , xk+1, . . . , xn),
→S) are isomorphic, and hence A embeds in S in a way that extends this isomorphism.
The image of (yA

k+1, . . . , yA
n ) is as required.

The fundamental observation for the proof of Proposition 3.1 is that, if we take
x1, . . . , xn ∈ S all in different columns,

Aut(S) · (<∗, R∗) =
⊔

σ∈Sn, (ε
j
i )1≤i<j≤n

U
(xσ(i))

n
i=1,(εj

i )1≤i<j≤n
.

We will show that, for any two families ε = (ε
j
i )i<j≤n, α = (α

j
i )i<j≤n and σ ∈ Sn, there

is a g ∈ G such that

U(xi)
n
i=1,ε = g · U(xσ(i))

n
i=1,α .

This means that all sets of this form have the same measure, and hence we will have the
result because there are n! 2(n

2) such sets.
First, we construct g′ ∈ G such that

g′ · U(xσ(i))
n
i=1,α = Ux1,...,xn,β

for some β = (β
j
i )1≤i<j≤n.

We want to prove that there is g′ ∈ G such that g′ · xi ∈ (xσ(i))
⊥. By Lemma 3.6, there

exists x′
1, . . . , x′

n ∈ S such that xσ(i) ⊥ x′
i and xi → xj if and only if x′

i → x′
j . Note that,

by construction, there is a partial automorphism τ that sends xσ(i) to x′
i . By homogeneity,

there is g′, an automorphism of S that extends τ . We remark that

g′ · U(xi)
n
i=1,α = U(x′

σ(i)
)n
i=1,α

and, as we observed before, U(x′
σ(i)

)n
i=1,α does not depend on x′

i , but on their columns. Thus,

there exist a family β = (β
j
i )1≤i<j≤n such that

U(x′
σ(i)

)n
i=1,α = U(xi)

n
i=1,β .

Next, we construct h ∈ G such that

U(xi)
n
i=1,ε = h · U(xi)

n
i=1,β .

Assume that there are k < l such that β
j
i = ε

j
i for all (i, j) �= (k, l) and βl

k �= εl
k . Note

that taking care of this case will be enough to prove the result. If α and β disagree in more
than one coordinate, iterating this process still allows us to modify coordinates one at a
time.

Take x′
k ⊥ xk such that, for all i ∈ [n]\{k, l}, x′

k → xi if and only if xk → xi and x′
k →

xl if and only if xl → xk . This is possible using Lemma 3.6, where {y1, . . . , yn−1} =
{x1, . . . , xn}\{xk} and Pn = x⊥

k . We define x′
l ⊥ xl similarly.

We take h ∈ G such that h(xi) = xi for all i ∈ [n]\{k, l}, h(x′
k) = xk and h(x′

l ) = xl .
By homogeneity, such a h exists: indeed, by the parity condition, we have (xk → xl) ⇔
(x′

k → x′
l ). Let us prove that h gives the result.
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Take E ∈ Ux1,...,xn,β . We will prove that

h · E ∈ U(xi)
n
i=1,ε.

For all i < j , we want to prove that

Rh·E(xi , xj ) ⇔ (xi → xj )
ε
j
i ,

and since

Rh·E(xi , xj ) ⇔ RE(h−1(xi), h−1(xj )),

we prove that

RE(h−1(xi), h−1(xj )) ⇔ (xi → xj )
ε
j
i .

If {i, j} ∩ {k, l} = ∅, the result is obvious.
If j = k and i < k,

Rh·E(xi , xk) ⇔ RE(h−1(xi), h−1(xk))

⇔ (xi → h−1(xk))
βk

i

⇔ (xi → x′
k)

βk
i

⇔ (xi → xk)
βk

i ,

and since βk
i = εk

i ,

Rh·E(xi , xk) ⇔ (xi → xk)
εk
i .

The other cases where |{i, j} ∩ {k, l}| = 1 are similar.
Finally, if (i, j) = (k, l),

Rh·E(xk , xl) ⇔ RE(h−1(xk), h−1(xl))

⇔ (xk → h−1(xl))
βl

k

⇔ (xk → x′
l )

βl
k

⇔ (xk → xl)
εl
k .

The last equivalence is a direct consequence of the definition of x ′
l and the fact that βl

k =
(1 − εl

k).

3.2. Proof of Proposition 3.2. We prove the result by induction on the number k of
columns.

By homogeneity, for any column (a
j

1 )⊥ and σ ∈ Sij , there exists g ∈ G such that

g · V
(a

j
1 ,...,aj

ij
)
= V

(a
j

σ(1)
,...,aj

σ(ij )
)
,

and thus

μ
(
V

(a
j
1 ,...,aj

ij
)

) = 1
ij !

.

This proves the initial case.
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Let us now assume that, for all (a1
1, . . . , a1

i1
, . . . , ak−1

1 , . . . , ak−1
ik−1

) such that a
j
i ⊥ a

j ′
i′

if and only if j = j ′,

μ
(
V

(a1
1 ,...,a1

i1
),...,(ak−1

1 ,...,ak−1
ik−1

)

) = 1
k−1∏
j=1

ij !

.

We consider (ak
1 , . . . , ak

ik
) all in the same column and not in any (ai

1)
⊥ for i < k. We

remark that

V(a1
1 ,...,a1

i1
),...,(ak

1 ,...,ak
ik

) = V
(a1

1 ,...,a1
i1

),...,(ak−1
1 ,...,ak−1

ik−1
)
∩ V(ak

1 ,...,ak
ik

).

We want to prove that the ordering of (ak
1)⊥ is independent of the ordering of the other

columns.
Enumerate as (V1, . . . , Vτ ) all the different sets of the form

V
(a1

σ1(1)
,...,a1

σ1(i1)
),...,(ak−1

σk−1(1)
,...,ak−1

σk−1(ik−1)
)
,

where σj is a permutation of {1, . . . , ij }. Thus τ = ∏k−1
j=1 ij ! .

For all l ∈ {1, . . . , τ }, we define

μVl
(·) = μ(· ∩ Vl)

μ(Vl)
.

This is the conditional probability of μ given Vl . We remark that

μ =
τ∑

l=1

μ(Vl)μVl
.

Denote LO((ak
1)⊥), the space of linear orderings on (ak

1)⊥. There is a restriction map
r from M to LO((ak

1)⊥). We denote by V r

(ak
1 ,...,ak

ik
)

the image of V(ak
1 ,...,ak

ik
) by r . Let ν be

the pushforward of μ on LO(a1
1
⊥) by r , and let νVl

be the pushforward of μVl
by the same

map. We have

ν =
τ∑

l=1

μ(Vl)νVl
.

Observe that the initial step of the induction implies that ν is the uniform measure on
LO((ak

1)⊥).
We denote by Stabset

(ak
1 )⊥ the setwise stabilizer of (ak

1)⊥ and Stabpw
(a1

1 ,...,a1
i1

,...,ak−1
1 ,...,ak−1

ik−1
)

the pointwise stabilizer of (a1
1 , . . . , a1

i1
, . . . , ak−1

1 , . . . , ak−1
ik−1

) and we set H =
Stabset

(ak
1 )⊥ ∩ Stabpw

(a1
1 ,...,a1

i1
,...,ak−1

1 ,...,ak−1
ik−1

)
. We remark that νVl

is H -invariant for all l ∈
{1, . . . , τ }.

Since LO(a1
1
⊥
) is compact, by Theorem 3.4, if we prove that ν is H -ergodic, then we

have the result. Indeed, then ν is an extreme point of the H -invariant measures and all the
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νVl
are equal to ν. Thus for any l,

μ
(
V(ak

1 ,...,ak
ik

) ∩ Vl

) = μVl

(
V(ak

1 ,...,a1
ik

)

)
μ(Vl)

= νVl

(
V r

(ak
1 ,...,a1

ik
)

)
μ(Vl)

= ν
(
V r

(a1
k ,...,a1

ik
)

)
μ(Vl)

= 1
ik!

1
k−1∏
j=1

ij !

and this equality finishes the induction.
It only remains to prove the ergodicity of ν. The following lemma will allow us to

conclude.

LEMMA 3.7. Let K be a group acting on a set N with no finite orbits. Denote by LO(N )

the space of linear orderings on N . Then the uniform measure λ on LO(N ) is K-ergodic.

Proof. Suppose A is a Borel subset of LO(N ) such that, for all g ∈ K , λ(A�g · A) = 0.
We want to show that λ(A) ∈ {0, 1}. Let ε > 0. There is a cylinder, that is, a set depending
only on a finite set of N , B = B(b1, . . . , bk) such that μ(B�A) ≤ ε. Using Neumann’s
lemma, we get that there exists g ∈ K such that {b1, . . . , bk} ∩ g · {b1, . . . , bk} = ∅.

Moreover, since ν is uniform, the orderings of two disjoint sets of points are indepen-
dent. Indeed, take (a1, . . . , ai) and (c1, . . . , ci′) to be two disjoint families of points.
Note that λ(V(a1,...,ai ) ∩ V(c1,...,ci′ )) is equal to the number of ways to insert (c1, . . . , ci′)
in (a1, . . . , ai) respecting both orderings times the weight of a given ordering of
(a1, . . . , ai , c1, . . . , ci′). Therefore,

λ
(
V(a1,...,ai ) ∩ V(c1,...,ci′ )

) =
(

i + i′

i

)
1

(i + i′)!

= 1
i!

1
i′!

.

This means that B and g · B are independent. We can now write

|λ(A) − λ(A)2| = |λ(A ∩ g · A) − λ(A)2|
≤ |λ(A ∩ g · A) − λ(B ∩ g · A)| + |λ(B ∩ g · A) − λ(B ∩ g · B)|

+ |λ(B ∩ g · B) − λ(B)2| + |λ(B)2 − ν(A)2|
≤ 4ε.

The last inequality comes from the inequalities

|λ(A ∩ g · A) − λ(B ∩ g · A)| ≤ λ((A�B) ∩ g · A) ≤ ε,

|λ(B ∩ g · A) − λ(B ∩ g · B)| ≤ λ(g · (A�B) ∩ B) ≤ ε,
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λ(B ∩ g · B) = λ(B)2

and

|λ(B)2 − λ(A)2| = (λ(A) + λ(B))|λ(A) − λ(B)| ≤ 2ε.

This proves that λ is K-ergodic.

We only have to prove that H has no finite orbits on (a1
1)⊥. It suffices to remark that,

for all a ∈ S, (u1, . . . , ui) ∈ S, there are infinitely many b ∈ a⊥ such that a → uj if and
only if b → uj for all 1 ≤ j ≤ i.

Indeed, take k ∈ N. Consider the structure ((a1, . . . , ak , v1, . . . , vi), →), where al ⊥
aj , al → vk if and only if a → uk and vm → vm′ if and only if um → um′ for all l, j ≤ k

and m, m′ ≤ i. It is obvious that this structure verifies the parity condition. Therefore, in
S, we can find k copies of a in its column for any k > 0.

This is enough to conclude that ν is indeed H -ergodic.

3.3. Proof of Theorem 1.1. In what follows, we will show that

μ(U ∩ V ) = μ(U)μ(V )

for all U = U
(xi)

n
i=1,(εj

i )1≤i<j≤n
and V = V(a1

1 ,...,a1
i1

),...,(ak
1 ,...,ak

ik
). It will follow that μ = μ0.

Let us take a certain set {x1, . . . , xn}, where none of the xi are in the same column.
We denote by m the number of sets U , as above, associated to this family. We consider
(Ui)

m
i=1 the disjoint sets of M corresponding to the ways of defining a relation R and an

order on the columns x⊥
1 , . . . , x⊥

n , that is, Ui = U(xσ(i))
n
i=1,ε for some σ ∈ Sn and ε ∈ 2(n

2).
Proposition 3.1 tells us that

for all i, j ∈ {1, . . . , m}, μ(Ui) = μ(Uj ).

We remark that this quantity is (1/m). We now define, for all i ∈ {1, . . . , m},

μUi
(·) = μ(· ∩ Ui)

μ(Ui)
.

This is the conditional probability of μ given Ui . Denote by H the subgroup of G that
stabilizes x⊥

i for all 1 ≤ i ≤ n and each ∼x⊥
j

-equivalence class in x⊥
i for i �= j . We remark

that H stabilizes Ui , by construction, and hence μUI
is H -invariant.

A simple but fundamental remark is that since
⊔m

i=1
Ui = M and all the Ui have the

same measure under μ,

μ = 1
m

m∑
i=1

μUi
.

Let LOp(S) denote the space of partial orders that are total on each column and do not
compare elements of different columns. There is a restriction map from M to LOp(S). We
consider λ, the pushfoward of μ on LOp(S) by this map. Similarly, we consider λUi

, the
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pushfoward of μUi
on LOp(S). We have

λ = 1
m

m∑
i=1

λUi
.

The rest of the proof is similar to the proof of Proposition 3.2: we prove that λ is
H -ergodic. Take A to be a Borel subset of LOp(S) such that, for all h ∈ H , λ(A�h ·
A) = 0. For any ε > 0, there is a cylinder B that depends only on finitely many points
(b1, . . . , bk) such that λ(A�B) ≤ ε. We now want to find an element g ∈ H such that B

and g · B are λ-independent.
Take {b1, . . . , bk} ⊂ S. We remark that there is {b′

1, . . . , b′
k} ⊂ S disjoint from

{b1, . . . , bk} such that bl ⊥ b′
l and bl ∼x⊥

j
b′
l for all 1 ≤ l ≤ k and 1 ≤ j ≤ n. Therefore

there is an element of H that sends {b1, . . . , bk} to {b1, . . . , bk}, as required.
As in the proof of Proposition 3.2,

|λ(A) − λ(A)2| = |λ(A ∩ g · A) − λ(A)2|
≤ |λ(A ∩ g · A) − λ(B ∩ g · A)| + |λ(B ∩ g · A) − λ(B ∩ g · B)|

+ |λ(B ∩ g · B) − λ(B)2| + |λ(B)2 − λ(A)2|
≤ 4ε.

Thus λ(A) ∈ {0, 1}.
Since LOp(S) is compact, we have the result: λ is an extreme point of the H -invariant

measures and all the λUi
are equal. Therefore,

μ(V ∩ Ui) = μUi
(V )μ(Ui)

= λUi
(V )μ(Ui)

= λ(V )μ(Ui)

= μ(V )μ(Ui)

for all i ∈ {1, . . . , m}, and V = V(a1
1 ,...,a1

i1
),...,(ak

1 ,...,ak
ik

). This finishes the proof of

Theorem 1.1.
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