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Q-FANO THREEFOLDS AND LAURENT INVERSION

LIANA HEUBERGER

Abstract. We construct families of non-toric Q-factorial terminal Fano

(Q-Fano) threefolds of codimension≥ 20 corresponding to 54 mutation classes of

rigid maximally mutable Laurent polynomials. From the point of view of mirror

symmetry, they are the highest codimension (non-toric) Q-Fano varieties for

which we can currently establish the Fano/Landau–Ginzburg correspondence.

We construct 46 additional Q-Fano threefolds with codimensions of new

examples ranging between 19 and 5. Some of these varieties are presented as

toric complete intersections, and others as Pfaffian varieties.
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§1. Introduction

In this paper, we use mirror symmetry methods to construct a number of new deformation

families of three-dimensional Fano varieties with terminal orbifold singularities. Our

main technique, Laurent inversion [15], is an inverse of the celebrated Givental/Hori-

Vafa construction that associates a Laurent polynomial mirror to a Fano toric complete

intersection. We construct our examples by applying Laurent inversion to specific class of

Laurent polynomials. The resulting deformation families of Q-Fano threefolds are complete

intersections or Pfaffians, of low codimension, in singular toric varieties. Classically, Fano

varieties conjecturally embed inside (weighted) projective spaces via their anticanonical
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2 L. HEUBERGER

ring, yet such considerations rarely lead to effective constructions of the varieties themselves.

The crux of this issue is that when codimensions are higher than 3, which is most often

the case for the anticanonical embedding, we lack structure theorems that describe the

embedded object. This paper constructs new embeddings which significantly lower this

number and thus go well beyond the reach of classical constructions. Since the new

ambient spaces are highly singular toric varieties, these examples also fall outside the

range where Laurent inversion was previously known to work. Thus this paper has several

implications:

• it systematically explores part of the landscape of possible Q-Fano threefolds that so far

has been out of reach;

• it is one of the first occasions where mirror symmetry has been used to construct previously

unknown algebraic varieties;

• it gives further evidence for a surprising phenomenon: that terminal singularities, which

arise so naturally in birational geometry, are also singled out by mirror symmetry.

Outline

Q-factorial terminal threefolds appear naturally in the minimal model program. Among

these, we can hope to classify Fano varieties, as they come in a finite number of families. For

simplicity, we only consider orbifold terminal quotient singularities, that is, cyclic quotient

singularities of the form 1
r (1,a,−a) with (a,r) = 1. Possible Hilbert series of these objects

have been inventoried in the Graded Ring Database (GRDB for short), yielding 54,610

cases in the “Fano 3-folds” list [6] (see [5], [3], [35], [34], [33] for the theorems on which it

is based and [8] for the data repository). Any polarized variety can be embedded inside a

weighted projective space, and the GRDB also predicts the number of generators of such

an embedding. The Fano index of a variety X is the largest positive index r > 0 such that

−KX = rA in the class group ClX. Throughout this paper, we refer to the codimension of

X with respect to the predicted A-embedding as its GRDB-codimension. We do not know

how many entries in the “Fano 3-folds” list correspond to existing varieties, especially since

constructions using graded ring methods have had limited success in high codimension

(i.e., ≥ 5). This paper shows that a previously inaccessible part of the database is in fact

constructible in a practical way.

The examples are situated within the more general framework of providing evidence for

the Fano/Landau–Ginzburg correspondence as formulated in [12]. This can be represented

as a conjectural bijective correspondence between the two sets:{
qG-deformation equivalence classes of

Q-Fano threefolds of class TG

}
F/LG←→

{
mutation classes of

rigid MMLPs

}
,

where MMLP stands for maximally mutable Laurent polynomial (see Section 2.1). A qG

or Q-Gorestein deformation of a Q-Gorenstein variety X is a flat family π : X → B over a

scheme B such that there exist r ∈ N and a Cartier divisor L on X with L|F =−r ·KF for

any fiber F of π and b∈B such that X � π−1(b). If X is a Fano variety, the Hilbert series is

locally constant on the fibers of such deformations (see [25] for a more detailed discussion).

Definition 1.1. Two Q-Fano varieties X andX ′ are qG-deformation equivalent if there

exists a qG deformation π : X →B with terminal fibers such that B is connected and there

exist b,b′ ∈B with X � π−1(b) and X ′ � π−1(b′).
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Q-FANO THREEFOLDS AND LAURENT INVERSION 3

The F/LG correspondence can be understood more geometrically in terms of toric

degenerations : the Newton polytope P of a rigid MMLP f spans a fan from which we

build a toric Fano variety XP . This is in general far from being terminal or Q-factorial, yet

we expect XP to qG-deform to a Q-Fano variety X. Working with toric Fano varieties is a

crucial advantage, as they can be described via lattice polytopes, of which 674,688 appear

in a list of toric canonical varieties in the GRDB [7], [24], [26]. We assume that our varieties

admit a toric degeneration, and call this property TG (from toric generization). We further

assume that such a degeneration contains a canonical toric variety in its mutation class.

We say a Q-Fano X and a Laurent polynomial f are mirror to each other (via the

F/LG correspondence) if the regularized quantum period of X and the classical period of f

coincide (see [10] for the general picture). We refer to the coefficients of the classical period

when expanded as a series as the period sequence of the Laurent polynomial.

In upcoming work, Coates, Kasprzyk, and Pitton classify period sequences of rigid

MMLPs supported on canonical polytopes. For our first result, we extract from the GRDB

the Hilbert series of the candidate Q-Fano varieties of codimension ≥ 20. We find all the

canonical polytopes for each Hilbert series and look for rigid MMLPs supported on them.

At the time of writing, there are 54 unique period sequences that can be obtained in this

way [14].

Theorem 1.2. We construct all 54 Q-Fano families with GRDB-codimension at least 20

that correspond to a period sequence as described above. They are listed in Table 2 together

with their embedding data inside a toric variety. We verify that the examples constructed

as complete intersections correspond under mirror symmetry to the Laurent polynomials in

the “Rigid MMLP” column.

In Theorem 1.2, we construct a family for every period sequence arising from a set of

rigid MMLPs, thus providing strong evidence for the Fano/LG correspondence. However,

we are not defining a set-theoretic function, in the sense that in principle there could exist

more than one such family. We have no knowledge of this phenomenon actually occurring,

neither in our work or in the literature.

Another consideration was the Fano index of the examples that we construct (see

Section 2.6 for a detailed discussion). Once we have an embedding inside an ambient space,

the adjunction theorem (see Sections 2.2.1 and 2.3.1 for the complete intersection and

the Pfaffian cases, respectively) yields a weight vector corresponding to the anticanonical

divisor. Once can then directly determine the Fano index by checking whether this vector is

divisible in the class group. Higher Fano index varieties occupy a distinct place in this paper

because some of their GRDB matching (between [6], [7]) is inaccurate—in other words: one

cannot determine exclusively from numerical considerations whether −KX will be prime.

This aspect is only clarified a posteriori when we have constructed the varieties, and an

indication that this is to be expected is found in the period sequence of the corresponding

Laurent polynomial.

There are many benefits to working in dimension three, from visualizing polytopes to

the specific form of singularities, which make it similar to the surface case. Nevertheless,

there is an increased difficulty from the point of view of deformation theory (see [27] for

a survey on the topic). In particular, we are missing two key ingredients: a concrete result

in the style of [2, Proposition 2.7], which is a recipe for determining which toric surface

singularities are smoothable, and [25, Lemma 6], a useful local-to-global glueing result
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4 L. HEUBERGER

that is central when obtaining classifications. There have been attempts at settling these

issues (e.g., [17, Conjectures A&B] provide a conjectural answer to the first question in

the Gorenstein case), yet it is apparent that they are relevant even in mildly singular

cases (see [28, Theorem 1.2] for an example where expected local-to-global glueing fails).

Fortunately, the strategy we employ in this paper bypasses most of these subtle discussions

by constructing the deformations explicitly.

We are able to obtain our constructions precisely because we shift perspective from

the high codimension embedding inside a projective space to a codimension ≤ 2 complete

intersection or a codimension 3 Pfaffian inside a higher-rank toric variety, as we explain

below.

The method we use to put this in practice is Laurent inversion: in [15], Coates, Kasprzyk,

and Prince reverse-engineer of the so-called “Przjyalkowski trick” [32]. Their algorithm is

recalled in Section 2.9: starting from a Laurent polynomial, it produces an embedded Fano

variety. In [20], Doran and Harder obtain similar constructions in the complete intersection

case, however, the present article uses the language and notation in [15]—the correspondence

between the two is discussed in [15, Section 12].

Instead of considering its entire deformation family, the authors of [15] construct a toric

embedding of a Fano toric variety XP into another toric variety Y, either as a complete

intersection or as a Pfaffian variety. Using the Cox coordinates on Y, one deforms the

equations that give XP to obtain a less singular variety X. In general, Y is not an orbifold

(neither is XP ), and moreover its non-orbifold locus need not be isolated. However, if chosen

conveniently, Y is large enough so that X completely avoids this locus and only has Q-

factorial terminal singularities. Very explicit such computations are found in Sections 3.1

and 4.2. Crucially, the codimension of X inside Y in the examples of this paper ranges from

1 to 3, dramatically decreasing the GRDB-codimension and thus allowing for more control

on our variety.

One of our aims is to see how far we are able to go with these constructions, and to

determine this we dive deeper into the GRDB. The key object in the Laurent inversion

algorithm is the shape, a smooth toric variety which encodes a decomposition of a given

Laurent polynomial into summands. Its geometry rules many of the properties of Y and

the embedding of XP inside it. The dimension of the shape can in principle range from

1 to dimXP . For all but two varieties in Table 2, this shape is two-dimensional. We

further explored the database in order to determine if the predominance of 2D shapes

is characteristic to varieties of high codimension.

Theorem 1.3. In Table 3, we construct 46 Q-Fano threefolds with GRDB-codimensions

of new examples ranging from 19 to 5, together with their singularity baskets and embedding

data. We verify that the examples presented as complete intersections correspond under

mirror symmetry to the Laurent polynomials in the “Rigid MMLP” column.

Remark 1.4. Eleven examples in Table 3 use 3D shapes in their construction, and we

discuss the most complicated case in Section 4.2.

Theorem 1.3 extracts more information on the structure of the deformation spaces

involved than Theorem 1.2, in the following sense.

Mutating a polynomial implies mutating its Newton polytope, a combinatorial operation

described in [1, Section 3]. Geometrically, this operation produces a pencil deforming a toric

Fano variety into another. This pencil was introduced in [23], was formulated in the setting
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of toric pairs in [29, Theorem 1.3], and the deformation was shown to be Q-Gorenstein in

the surface case in [25, Lemma 7].

The notion of mutation for polynomials is finer than its combinatorial counterpart, which

can be interpreted in the following geometric way from the point of view of mirror symmetry.

Mutation-equivalent polytopes determine toric varieties with the same Hilbert series. If both

toric varieties deform to Q-Fano varieties, their Hilbert series will also coincide. Note that

the converse is not true: two polytopes with the same Hilbert series are not necessarily

mutation-equivalent. An easy example are the polytopes of F1 and P1×P1, which are the

two smooth toric del Pezzo surfaces of degree 8.

A refinement of the statement above is that mutation-equivalent polynomials correspond

to Q-Fano varieties with the same Gromov–Witten invariants. Since the latter are

deformation-invariant, this is a rephrasing of the F/LG correspondence as stated above:

when we fix the mutation class of a polynomial, we are singling out a component of a

deformation space.

The Laurent inversion process starts from a Laurent polynomial f and creates an

embedding of a toric Fano variety Xf . In the case of toric complete intersections, we are

able to check that the partial smoothing of Xf to a Q-Fano inside this embedding is mirror

to f : it has the same regularised quantum period as the classical period of f.

Furthermore, if two different rigid MMLPs f and g with different period sequences are

supported on the same polytope and they deform to Q-Fano threefolds Xf and Xg, then

these two varieties are not deformation-equivalent. In other words, from the point of view

of mirror symmetry we have found different Fano varieties. Some such examples appear

in Table 3, and crucially do not occur in the surface case (see [25, Lemma 6]) nor in the

high codimension examples in Table 2. Combinatorial mutations alone cannot detect this

phenomenon.

Input of the construction.

1. Parse the list of canonical polytopes in GRDB which have the same Hilbert series as a

(conjectural) Q-Fano threefold.

2. Find rigid MMLPs on the polytopes. In particular, the highest codimension in which

these exist is 23.

3. Some of these polynomials have the same period sequence, conjecturally they deform in

the same family of Q-Fano threefolds. We treat these redundancies as follows:

(a) Given a fixed period sequence, if there is a terminal, Q-factorial toric variety

supporting one of its polynomial representatives, we skip this case as this variety

exists in the toric canonical 3-fold database. See Section 2.5 for a precise description

of what is discarded in the systematic codimension ≥ 20 case.

(b) Otherwise, we choose a single polynomial representative of this class.

Sketch of the construction.

4. For such a Laurent polynomial, use Laurent inversion to construct the Q-Fano threefold.

This is either a complete intersection in a toric variety, or a codimension 3 Pfaffian

variety.

5. Verify that the object we found has precisely the singularities that GRDB predicts for

the Q-Fano threefold. If it does not, mutate the polynomial (see Section 2.1 for the

precise definition) and retry step 4 with its mutations.
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6 L. HEUBERGER

Remark 1.5. • Steps 1–3 are the starting data of this paper, and are recorded in the

database [14]. The difficulty of the rest of the procedure is found in step 5, as we often

construct varieties that are not Q-Fano (i.e., they have worse singularities). There are

results in the literature [30], [31] which guarantee that the setup will produce an orbifold

ambient space, however they are not general enough to produce the examples of this

paper. While these restrictions make sense when aiming for smooth varieties, they are no

longer needed here and allow for a broader search.

• Another significant advantage is implicit within step 5: the access to the mutation graph

of a given polynomial is entirely automatised [13] in the computational algebra system

(or CAS ) Magma [4], and each corresponding polytope can be visualized. We record in

Tables 2 and 3 the iteration in the mutation graph (in the column MG#), denoting the

amount of times we have mutated before being successful with our construction. It ranges

between 1 and 31.

There is of course no guarantee that a given Q-Fano threefold can be realized as a

toric complete intersection or as a toric Pfaffian variety, yet it is very encouraging that

many of them are, and is certainly a good indication of which entries in GRDB correspond

to actual geometric objects. It is likely that some varieties in Table 3 are birationally

linked to one another via projections/unprojections (e.g., Q33018 and Q33019), as suggested

in the GRDB. We chose not to explore this route, as our construction embeds them in

ambient spaces which seem unrelated. Nonetheless, it is entirely conceivable to correlate

blow-ups/contractions on shapes with projections/unprojections of X inside Y.

Our constructions have been especially easy in the case of varieties whose baskets

contain only 1
2(1,1,1) singularities, which could be explored in the future as a systematic

classification. It is unclear how much such an endeavour would overlap with Takagi’s lists

in [36], because computing the Picard rank of a complete intersection inside a non-orbifold

toric variety can be subtle.

A natural direction to pursue is the automation of this process: indeed, many of the steps

involved rely heavily on a CAS. We are however far from a systematic implementation:

choosing a shape which yields a good construction of the ambient space is still very much

a matter of experience as opposed to brute computational force. Our attempts at writing

a program that generates all possible shapes (and then scaffoldings) on various iterated

mutations of a given rigid MMLP currently yield overwhelmingly many pathological cases.

Though ultimately this is our desired direction, we cannot yet propose an algorithm that

is applicable at the large scale needed to construct all varieties in the GRDB.

§2. Preliminaries

2.1 Laurent polynomials and mutations

Our starting point is a class of Laurent polynomials intrinsically linked with the concept

of mutation. For the purpose of self-containment, we reproduce the terminology below, most

of which we extract from [16], a paper entirely dedicated to these objects.

Let P be a full-dimensional polytope in a lattice N. It is a Fano polytope if 0 ∈ P \∂P
and its vertices are primitive elements in N. This implies that XP , the toric variety whose

fan is the spanning fan of P, is a (usually very singular) Fano variety. We consider Laurent

polynomials f =
∑

v∈P∩N

cvx
v with coefficients cv ∈N such that Newt(f) =P , and we say they

are supported on P. We always set c0 = 0, as two polynomials which differ by a constant
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Q-FANO THREEFOLDS AND LAURENT INVERSION 7

have the same mirror (see [15, Remark 2.9]). We remember this convention when using

Laurent inversion, where we allow the origin to be part of any strut.

Lastly, we assume, as in [16, Convention 2.3], that all Laurent polynomials (and mutation

factors) have non-negative integer coefficients and that if f ∈ C[N ] then the exponents of

monomials in f generate N.

Definition 2.1 [16, Definition 1.6.]. Let N be a lattice and let w ∈M be a primitive

vector in the dual lattice. Then w induces a grading on C[N ]. Let a ∈ C[w⊥ ∩N ] be a

Laurent polynomial in the zeroth piece of C[N ], where w⊥ ∩N = {v ∈ N |w(v) = 0}. The
pair (w,a) defines an automorphism of C(N) given by

μw,a : C(N)→ C(N), xv 	→ xvaw(v).

Let f ∈ C[N ]. We say that f is mutable with respect to (w,a) if

g := μw,a(f) ∈ C[N ],

in which case we call g a mutation of f and a a factor.

Definition 2.2 [16, Definition 2.4.]. Given a Laurent polynomial f, consider the graph

G with vertex labels that are Laurent polynomials and edge labels that are pairs L(w,a),

defined as follows. Write l(v) for the label of a vertex v ∈ V (G), and l(e) for the label of an

edge e ∈ E(G).

(i) Begin with a vertex labelled by the Laurent polynomial f.

(ii) Given a vertex v, set g := l(v). For each (w,a), dega > 0, such that g is mutable with

respect to (w,a) and either:

(a) there does not exist an edge with endpoint v and label L(w,a); or

(b) for every edge e= vv′ with l(e) = L(w,a) we have that

l(v′) /∈ μ
a,xw⊥∩N (g);

pick a representative g′ ∈ μw,axw⊥∩N (g) and add a new vertex v′ and edge vv′

labelled by g′ and L(w,a), respectively.

The mutation graph Gf of f is defined by removing the labels from the edges of G and

changing the labels of the vertices from g to the GL(N)-equivalence class of Newt(g).

Definition 2.3 [16, Definition 2.5.]. We partially order the mutation graphs of Laurent

polynomials by saying that Gf ≺Gg whenever there is a label-preserving injection Gf ↪→Gg.

A Laurent polynomial f is maximally mutable (or for short, f is an MMLP) if Newt(f) is

a Fano polytope, the constant term of f is zero, and Gf is maximal with respect to ≺.

Definition 2.4 [16, Definition 2.6.]. An MMLP f is rigid if the following holds: for all

g such that the constant term of g is zero and Newt(f) =Newt(g), if Gf = Gg then f = g.

2.2 Toric varieties, weight matrices and complete intersections

The Q-Fanos that we are interested in live inside toric ambient spaces, either as complete

intersections or as Pfaffian varieties. As in the original Laurent inversion paper [15, Section

2], the most useful description of these ambient spaces is via their GIT data: having global

coordinates and equations then enables us to compute singularities. This characterisation

is equivalent to the description via fans and cones and it is the main output of our paper.
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8 L. HEUBERGER

The Laurent inversion construction typically involves three incarnations of toric varieties:

the starting object XP is given by a fan, the shape Z appears (almost exclusively) via the

polytopes of its nef divisors, and the ambient space Y appears as a GIT quotient, all of

which are necessary when discussing examples. We present a minimal set of preliminaries,

adapted from [18, Section 3.1] to include the non-orbifold case.

Let T � C×n be an n-dimensional torus, M = Hom(T,C×) its character lattice and

N =Hom(M,Z) the lattice dual to M.

Let P be a Fano polytope with vertices in N, and Σ its spanning fan. We con-

struct the projective toric variety F := XΣ by glueing together the affine open subsets

Xσ = SpecC[M ∩σ∨], where σ ∈ Σ. Denote by ρ1, . . . ,ρm ∈ N the primitive generators of

the rays of Σ, which we assume generate N as a group. Note that F is not necessarily an

orbifold, as the fan need not be simplicial, and could have at worst klt singularities.

We have the following two dual exact sequences:

0 �� L �� Zm ρ �� N �� 0

0 L∗�� (Zm)∗
D�� M

ρT

�� 0.��

(2.1)

The lattice L∗ is in fact the T-class group of F, we call ρ the ray map (which in this paper

will always be surjective) and D the divisor homomorphism of F. If G is the torus with

character group L∗, then D is dual to a morphism G→ C×m and it is via this morphism

that F = Cm//ωG. In other words, a matrix of the morphism D is a weight matrix of the

G-action on Cm.

More precisely, let xi be the standard basis of (Zm)∗. Note that since F is projective,

the cone C ⊂ L∗
R spanned by Di = D(xi) is strictly convex. There is a wall-and-chamber

decomposition of C called the secondary fan, and we choose ω inside a (not necessarily

full-dimensional) cone of this fan. Now set Vω = V (Irr), where

Irr = (xi1 · . . . ·xik | ω ∈ RelInt〈Di1 , . . . ,Dik〉)

is the irrelevant ideal. We then write F as a quotient

F = (Cm \Vω)/G,

by the G-action given by D.

Remark 2.5 (Birational point of view).

1. The choice of ω coincides with choosing the ample cone inside the secondary fan—

every divisor in the same cone-interior as ω is ample. When working with toric Fano

varieties, we usually bypass this discussion by imposing that ω =
∑
i

D(xi) = −KF ,

and the stability cone is the smallest-dimensional cone that contains it. When working

with Fano complete intersections or codimension 3 Pfaffian varieties, we impose similar

conditions by using adjunction-type formulas (see Sections 2.2.1 and 2.3.1, respectively).

2. The rays of Σ are determined by the weight matrix and vice-versa, modulo appropriate

basis changes. The quotient Cm//ωG also depends on the chamber in which ω lies, and

two stability conditions that belong to the same chamber induce isomorphic varieties.
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Q-FANO THREEFOLDS AND LAURENT INVERSION 9

Varying ω between two adjacent chambers inside the secondary fan produces varieties

that are related either by small or divisorial contractions. In terms of the fan, choosing

ω in a maximal-dimensional chamber implies all cones in Σ are simplicial, that is, F is

an orbifold. Choosing ω on a wall may produce a non-Q-Gorenstein variety.

The choice of a stability condition determines the G-invariant open sets Vi1...ik = {xi1 �=
0, . . . ,xik �= 0} ⊂ Cm such that

F =
⋃

{(i1,...ik)|ω∈RelInt(〈Di1 ,...,Dik
〉)}

[Vi1,...,ik/G].

Since we do not restrict to the orbifold case, we do not impose that k = r, therefore,

the toric charts Vi1...ik are not necessarily quotients by finite groups. Indeed, when working

inside these charts we write [Vi1...ik/G] = [Ui1...ik/lμ.. ], where Ui1...ik = {xi1 = . . . = xik = 1}
and lμ.. is the subgroup of G which fixes Ui1...ik . More precisely, lμ.. is the group whose

character group is the cokernel of the homomorphism

Di1...ik : (Z
k)∗ → L∗.

2.2.1. Complete intersections

We consider complete intersections X ⊂ F , that is, general elements of linear systems

|L1|, . . . , |Lc| on F, where Li ∈ L∗ are G-linearized line bundles on F. The space of sections

H0(F,Li) is a vector subspace of C[x1, . . . ,xm] with basis consisting of monomials of

homogeneity type Li. Let fi ∈H0(F,Li), then V (f1, . . . ,fc) is stable under the action of G

and we consider the subvariety X = (V (f1, . . . ,fc)\Vω)/G⊂ F .

Definition 2.6.

1. Assume X ⊂ F avoids the non-Q-Gorenstein locus of F. Then X is quasi-smooth if

V (fi, . . . ,fc)\Vω ⊂ Cm \Vω.

2. Suppose X ⊂ F is quasi-smooth. We say that X is well-formed if for every toric stratum

S ⊂ F with nontrivial stabiliser, S ⊂X implies codimXD ≥ 2.

If X ⊂ F is a complete intersection as above, its canonical class is

−KX =−KF −
∑

Li.

There is a similar formula for Pfaffian varieties, which we work out in detail in Section 2.3.1.

2.3 Laurent inversion

Finally, we recall the algorithm of Laurent inversion in [15], whose purpose is to provide an

embeddingXP ↪→Y , whereXP and Y are toric varieties, constructed using a decomposition

into summands of a rigid MMLP supported on P. We then use the coordinates on this new

ambient space to smooth XP into a Q-Fano variety X.

Definition 2.7 [15, Definition 3.1.]. Fix the following data:

(i) a lattice N together with a splitting N =N ⊕NU ;

(ii) the dual lattice M := Hom(N,Z), with the dual splitting M =M ⊕MU ;

(iii) a Fano polytope P ⊂NQ;
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(iv) a projective toric variety Z given by a fan in M whose rays span the lattice M . Given

such data, a scaffolding S of P is a set of pairs (D,χ) where D is a nef divisor on Z

and χ is an element of NU , such that

P = conv(PD+χ | (D,χ) ∈ S).

We refer to Z as the shape of the scaffolding, and the elements (D,χ) ∈ S as

struts.

The algorithm in [15] directly produces the weight matrix of Y and assumes the following.

Remark 2.8 [15, Remark 3.3]. Given the N =N⊕NU splitting in Definition 2.7, there

are u= |U | struts of type (0, ei) where {ei}ui=1 is a basis of NU .

What happens when this assumption is not fulfilled appears in [30] and a detailed example

can be found in Section 3.1.2 of this paper. Many entries in the systematic Table 2 use this

modification, and it is likely that an automatization of Laurent inversion should include it.

We now state the algorithm, which appears in [15] with a sign typo at step (ii) (as

confirmed by [15], which are correct constructions). To follow along its steps in a simple

example, go to Section 3.1.1.

Algorithm 2.9 [15, Algorithm 5.1]. Let S be a scaffolding of a Fano polytope P with

shape Z. Let u = dimNU , r = |S |− u and assume Remark 2.8. Let R be the sum of |S | and
the number z of rays of Z. We determine an r × R matrix M, which is the weight matrix of

the toric variety Y, as follows. Let mi, j denote the (i, j ) entry of M. Fix an identification

of the rows of M with the r elements (Di , χi) of S which do not correspond to the basis of

NU , and an ordering Δ1, . . ., Δz of the toric divisors in Z.

(i) For 1 ≤ j ≤ r and any i, let mi, j = δi, j .

(i) For 1 ≤ j ≤ u and any i, let mi, r+j be determined by the expansion

χi =−
u∑

j=1

mi,r+jej .

(iii) For 1 ≤ j ≤ z, let mi, |S |+j be determined by the expansion

Di =
z∑

j=1

mi,|S|+jΔj .

The weight matrix M alone does not determine a unique toric variety—we also need to

choose a stability condition ω. Let Y denote the toric variety determined by this choice.

Unless otherwise stated, we take ω to be the sum of the first |S | columns in M. This

translates to the adjunction-type formulas we mentioned earlier, to ensure that the complete

intersection inside Y is a Fano variety.

Warning: This last remark does not mean all varieties in Tables 2 and 3 have stability

conditions given by the sum of the first |S| columns of the ambient weight matrix, as we

may have solved for one of those columns to eliminate an equation. When reading data

from the tables, it is safer to apply the adjunction formulas in Sections 2.2.1 or 2.3.1 to

determine ω.

https://doi.org/10.1017/nmj.2024.28 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2024.28


Q-FANO THREEFOLDS AND LAURENT INVERSION 11

The construction of the line bundles Li is described explicitly in [15, Proposition 12.2],

which connects the algorithm to the method in [20] in the case of complete intersections.

Each “level” of the tower determines a corresponding line bundle: note that by (iii) in 2.9

the last z columns ofM correspond to rays of Z. Since the rays in the fan of Z are partitioned

into the c factors of the tower, so are then the Cox coordinates in this block. The G-weight

of a line bundle will then be the same as that of div(Πxj), where xj are Cox coordinates

on Y corresponding to a factor of the partition. In [20], the embedding construction of

XP inside Y depends on the order of the Li, and implicitly on the order of the factors.

As we are looking to construct the general section of ⊕c
i=1Li (and are not particularly

concerned with a specific toric section), it is then enough to add all monomials in the

same (C×)r-eigenspace as Li for each i = 1 . . . c. In other words, as soon as we choose

Z and S, we directly determine the equations of the smoothest possible X given by this

scaffolding.

2.3.1. Pfaffians

By the Buchsbaum-Eisenbud structure theorem [9, Theorem 2.1], a codimension three

ideal inside a Gorenstein ring is given by the 2n× 2n diagonal Pfaffians of a skew

(2n+1)× (2n+1) matrix. In all such examples in this paper, n= 2.

Some entries in Tables 2 and 3 are in this format. Additionally, the codimension 4 object

in Section 4.2 is a complete intersection between a Pfaffian variety and a hyperplane, which

we eventually reduce to the Pfaffian case. We now recall the information the format encodes

in the case of weight matrices obtained by Laurent inversion.

To understand the singularities and degree of such a variety, we determine the eigen-

type of the anticanonical divisor of a variety embedded as a Pfaffian inside a toric variety;

this is the equivalent of an adjunction theorem in the case of complete intersections. We

then impose that the stability condition of the ambient space be in the same cone as the

anticanonical divisor, ensuring that the resulting variety is Fano.

We follow the reasoning in [18, Section 3.3], which treats a surface example. In our

context, X is typically embedded inside an ambient space Y with weight matrix:

U t1 t2 t3 t4 t5
Ir CU C1 C2 C3 C4 C5

where CU ,Ci ∈ Cr are vectors representing the weights of the G-action on the column

corresponding toNU (there will be only one, for dimension reasons) and the Cox coordinates

ti, respectively. Then −KY =

⎛
⎜⎝
1
...

1

⎞
⎟⎠+CU +

∑
Ci. The antisymmetric matrix we consider is

of the form

A=

⎛
⎜⎜⎜⎜⎝
0 ∗ t1+∗ t2+∗ ∗

0 ∗ t3+∗ t4+∗
−sym 0 ∗ t5+∗

0 ∗
0

⎞
⎟⎟⎟⎟⎠
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12 L. HEUBERGER

and its 4×4 Pfaffians, that is, the equations of X, are⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

t3t5+ t4 ∗+ . . .= 0

t2t5+ t1 ∗+ . . .= 0

t2t4+ t3 ∗+ . . .= 0

t1t4+ t5 ∗+ . . .= 0

t1t3+ t2 ∗+ . . .= 0

(2.2)

where the forms “∗” are such that the entries of A are of fixed weights and the Pfaffian

equations are homogeneous. We denote the line bundles whose sections are given by these

equations by Li, i = 1 . . .5, respectively. Note that this determines the weights of the

G-action on the line bundles (e.g. L1 ∼ C3+C5).

Let E = ⊕5
i=1Li. Then there exists a linearised line bundle L on Y such that X ⊂ Y is

the degeneracy locus of a general antisymmetric homomorphism s :E⊗L→E∨ defined by

the matrix A.1 The specific format of A implies that L=−
∑5

i=1Li

2
=−

∑5
i=1Ci.

Claim (The adjunction formula for Pfaffians). The weights of the G-action on −KX

are given by

−KX = (−KY +L)|X = (−KY −
∑5

i=1Li

2
)|X .

This computation requires that −KY be locally free. We denote by ωY its restriction

to the Q-factorial locus of Y. The locus which we avoid is at most of dimension one in all

examples in this paper. A posteriori, X avoids it completely (if we follow through with the

computation and X intersects it, then it is not Q-factorial and we discard the example).

We use the homomorphism A to construct a resolution O

0 �� L
Pf∨�� E⊗L

A �� E∨ Pf �� OY
�� OX

�� 0. (2.3)

We want to compute ωX =Ext3OY
(OX ,ωY ), so we use this resolution to induce a complex:

0→HomOY
(OY ,ωY )→HomOY

(E∨,ωY )→HomOY
(E⊗L,ωY )→HomOY

(L,ωY )→ 0

whose third cohomology is ωX . This is the same as the self-dual complex

0 �� L
Pf∨�� E⊗L

A �� E∨ Pf �� OY
�� 0 (2.4)

tensored by L∨ ⊗ωY . The complex (2.4) is everywhere exact except at OY , where the

cohomology is OY /Pf(E
∨) = OX (since (2.3) is a resolution), thus we conclude that

ωX = L∨⊗ωY ⊗OX . This proves the claim.

2.4 The tables

We give a few remarks on how to read the tables appearing in this paper.

Table 2 is ordered by codimension and Q-Fano ID in the Graded Ring Database, that is,

the IDs which appear in the “Fano 3-folds or big table” list. Table 3 is ordered only by the

1 the order of the Li factors in E is important: it must be compatible with the columns of A.
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latter. We also include the polytope ID (from the “Toric canonical Fano 3-folds” list) to

which we initially associate a rigid MMLP, and the expected singularities of each Q-Fano.

Notation 2.10. Since we regularly refer to objects in two different databases, to avoid

confusion we refer to GRDB IDs in the Q-Fano threefolds database using the prefix Q (e.g.,

Q38989) and the GRDB IDs in the toric canonical Fano threefolds using the prefix P (e.g.,

P519468). We sometimes directly refer to such a variety by its polytope, which uniquely

determines it.

For simplicity, we do not record the original rigid MMLP (i.e. that is supported on a

canonical toric variety), as this may not give the successful partial smoothing. Instead,

what we record is its mutation for which Laurent Inversion yields a Q-Fano threefold, in

the “Rigid MMLP” column. Its corresponding toric Fano might therefore not be canonical,

but klt.

Notation 2.11. When discussing Laurent inversion, we always denote the toric variety

which we embed as XP , the ambient space which we embed it in by Y, the shape of the

embedding by Z and the (partial) Q-Fano smoothing by X. If XP is embedded as a toric

complete intersection given by line bundles L1, . . . ,Lc, then X is a general section of these

line bundles. We use the coefficient convention for complete intersections in toric varieties:

all coefficients of monomials in any equation equal 1.

Remark 2.12. In the “Weight matrix and bundles” column we record the GIT weights

of the (C∗)k-action on the ambient space Y =Cn//(C∗)k in which X is embedded, followed

by a vertical line and the weights of the (C∗)k-linearised line bundles L1, . . . ,Lc of which

X is a general section (all of this is determined by the Laurent inversion construction). We

insist that such an X is a Fano variety and therefore impose that −KX , which is computed

by adjunction from −KY , is ample. This automatically chooses the ample cone of Y, which

becomes a posteriori well-defined as a GIT quotient.

Indeed, if a table entry is a complete intersection given by (C∗)k-linearized line bundles

L1, . . . ,Lc, the stability condition is necessarily ω=−KY −
∑

Li =
∑

div(xj)−
∑

Li, where

{xj} are the Cox coordinates on Y. We discuss how to obtain the weight matrices in this

case, as well as how to analyse the singularities of a general section of ⊕Li in 3.1. If a

table entry is a codimension 3 Pfaffian variety given by the line bundles L1, . . . ,L5, then

cf. Section 2.3.1, the stability condition is ω = −KY − 1
2

∑5
i=1Li =

∑
div(xj)− 1

2

∑5
i=1Li,

with the same notation for the xj . A Pfaffian example is discussed in Section 4.2.

The shape Z we use to produce these weight matrices using Laurent inversion is also

included in Tables 2 and 3. We mention if we use point-struts as a basis of NU , and the

difference of how we obtain the ambient space in these cases is discussed in Examples 3.1.1

and 3.1.2.

Remark 2.13. As a sanity check after producing a weight matrix, we verify that the

period sequence of the general element in the complete intersection (i.e., that obtained

from its regularied quantum period) is the same as the period sequence of the Laurent

polynomial (obtained by computing its classical period). The theory for computing the

former exists only in the context of orbifold ambient spaces, however since we ultimately

check that X ⊂ Y completely avoids the non-orbifold locus, we can assume Y is an orbifold

by taking a partial crepant resolution if necessary. For the theory, we require an equivalent
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of [11, Corollary D.5] in the orbifold case. This result is a combination of Givental’s mirror

theorem [11, Theorem C.1] and the Quantum Lefschetz Theorem [11, Theorem D.1], the

appropriate generalisations of which can be found in [12, Theorem 31] and [37, Theorem 1.1]

respectively. We verify that the first 10 terms of both period sequences coincide using

Magma, and we include the results in Tables 2 and 3.

Remark 2.14. A formula for computing the regularised quantum period of a codimen-

sion 3 Pfaffian variety is not yet known. We however compute the anticanonical degree and

singularities in each case (an example of this is discussed in detail in Section 4.2.3), which,

along with [15, Theorem 5.5], we consider as sufficient evidence of having constructed the

correct objects.

2.5 How Table 2 is constructed

We now sketch how the number 54 is obtained in Theorem 1.2. Assume we have followed

Steps 1–3 in the “Input of the construction” in the introduction, but only starting from

polytopes P such that there exists a candidate Q-Fano threefold of GRDB— codimension

≥ 20 with the same Hilbert series as XP . In the “Fano 3-folds” list, no Fano index > 1

varieties have GRDB-codimension ≥ 20, and we look to translate this into a condition on

the polynomials we obtain after Steps 1–3.

In order to extract the correct period sequences we use the criterion below. This is not

proved in general, but we can verify it by hand in our situation - there is a handful of cases

to examine, and they are either trivial2 or included in Table 1.

Table 1. High Fano index varieties.

Polytope ID Weight matrix & bundles Fano index Q-Fano ID

1 P543951
1 0 0 0 0 1 0
0 3 1 5 2 3 6

2 Q40971 codim 9

2 P534760
1 −3 −5 −1 −2 2 −6
0 3 5 1 2 −1 6

2 Q40948 codim 9

3 P473887
1 0 0 1 −1 −1 0 0
0 1 0 0 0 0 1 0
0 0 1 −1 3 2 1 2

2 Q40993 codim 6

4 P413267
1 0 1 −1 1 2 2
0 1 1 2 −1 1 2

2 Q40988 codim 6

5 P402202
1 0 2 −1 −1 4 2
0 1 −1 1 1 −2 0

3 Q41251 codim 5

6 P547328
1 0 2 2 1 3 1 3 4
0 1 −1 1 −1 −1 1 0 0

3 Q41200∗ codim 4

7 P544064
1 0 3 0 1 −1 2 3 0
0 1 −1 1 1 1 −1 0 2

3 Q41218∗ codim 4

8 P543852
1 0 −1 1 1 1 −1 0 2
0 1 4 0 1 −1 3 4 0

4 Q41334∗ codim 4

2 High Fano index varieties tend to have low GRDB-codimension. For these examples, the embedding into
weighted projective space is enough to establish the F/LG correspondence.
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Criterion 2.15. Assume a rigid MMLP f is mirror to a Q-Fano threefold X and let

(pn)n≥0 be their common period sequence. Then X is of Fano index r iff pk = 0 for all

k �≡ 0(mod r).

In other words, periodic zeroes in the period sequence of such an f suggests that a

corresponding Q-Fano built via Laurent inverting f does not belong to Table 2. After

discarding high Fano index cases (which we construct and find their GRDB-codimension

is strictly below 20; we nevertheless store these examples in Table 1), we finally obtain 54

period sequences which can be found in Table 2. Note that some of these appear to have a

periodicity of zeroes, however the periodic zeroes stop if we compute more than 10 terms

of its period sequence.

2.6 High Fano index entries in Table 3

We discuss one of the non-trivial examples illustrating Criterion 2.15. The other cases

are similar and can be found in Table 1.

The polynomial

f =
x6

y4z5
+

2x3

y2z2
+

2x2

y3z2
+x+y+z+

1

y
+

2z

xy
+

z

x2y2

deceptively appears as an output of Steps 1-3 after the restriction to codimension ≥ 20. It

is the unique rigid MMLP supported on a mutation of the canonical polytope P543951. Its

period sequence suggests a higher Fano index:

[1,0,2,0,6,0,20,0,3430,0,75852, . . .].

When Laurent inverting f we obtain a hypersurface X in the toric variety with weight

matrix

1 0 0 0 0 1

0 3 1 5 2 3
,

where X is given by a general section of degree (0,6) and as −KX = (2,4), indeed the

variety is of Fano index 2.

We now need to find the correct GRDB ID of the Q-Fano threefold we have built,

which we deduce will appear polarized by A = −KX/2. Keeping in mind that −KX =

−KXf
=−KXP543951 =168/5, we search by the Fano index and the degree of the polarization

A2 =1/4(−KX)2 =21/5 and find Q40971 as the only candidate.3 For this reason, the object

we build from P543951 appears as variety 39 in Table 3 and does not belong in Table 2 of

high codimension objects.

There are a total of five new Laurent inversion constructions in this situation among the

ones in our classification, and three varieties (marked with an asterisk) that had previously

appeared in [19], albeit in a different format (in fact, Brown and Suzuki already suggest

Q41200 can be constructed in [34]). All of these entries are now part of Table 3.

3 If more precision is necessary, we may also search by a subsequence – in this case, every second term
– of the Hilbert series associated to A: [1,∗,19,∗,87,∗,239,∗,509, . . .] which we deduce from the Hilbert
series of Xf .
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Table 2. Systematic constructions of high codimension examples.

Q-Fano

ID

Polytope

ID

Singula-

rities MG # Rigid MMLP Weight Matrix and Bundles Period Sequence Shape

Codim 23

1 Q38950 P519483 1
4
(1,1,3),
1
5
(1,2,3)

2 xy8z5+2xy6z4+xy4z3+
x+3y4z3+4y2z2+y+z+
3z/x+2/(xy2)+1/(x2y4z)

1 0 2 −2 1 1 2
0 1 −1 3 1 −1 0

[1,0, 0, 0, 24, 0,
0, 0, 2520, 7560,
0]

F1 + 0-st.

2 Q38985 P519424 1
2
(1,1,1),
1
3
(1,1,2),

1
5
(1,2,3)

7 x+y+z+1/y+z/(xy)+
1/(xy5z2)+3/(x2y5z)+
3/(x3y5)+ z/(x4y5)

0 1 0 1 1 0 1
1 2 2 1 −3 3 3

[1, 0, 2, 0, 6, 0, 20,
0, 70, 7560, 252]

P1×P1 +
0-st.

3 Q38989 P519468 2× 1
2
(1,1,1),

1
3
(1,1,2),

1
4
(1,1,3)

2 x+y+z+y/(x4z3)+
2/(x4z2)+1/(x4yz)+
y/(x5z4)+3/(x5z3)+
3/(x5yz2)+1/(x5y2z)

1 1 1 −1 1 1 2
0 2 −2 3 1 −1 0

[1, 0, 0, 0, 0, 0, 0,
420, 0, 7560, 0]

F1 + 0-st.

4 Q39260 P516023 1
5
(1,2,3) 9 x+y+z+y2/(x2z3)+

2y2/(x2z4)+y2/(x2z5)+
y/(x2z2)+4y/(x2z3)+
3y/(x2z4)+2/(x2z2)+
3/(x2z3)+1/(x2yz2)

1 0 1 −1 1 1 2

0 1 −1 3 2 −2 0

[1, 0, 0, 0, 0, 60, 360,

0, 0, 0, 18900]

F1 + 0-st.

5 Q39266 P541268 2× 1
3
(1,1,2) 2 xyz2+x+y2z+y+2/(xz)+

1/(x2y2z3)
0 1 0 1 1 −1 0
1 −4 2 −2 −1 5 4

[1, 0, 0, 0, 0, 120, 0,
420, 0, 0, 88200]

F2 + 0-st.

6 P541702 2× 1
3
(1,1,2) 2 xyz3+x+2yz+y+1/y+

y/(xz)

1 0 2 −2 3 1 4

0 1 0 1 0 0 0

[1, 0, 2, 0, 6, 120,

20, 1680, 70,
15120, 88452 ]

F2 + 0-st.

7 Q39329 P429996 1
2
(1,1,1),
1
3
(1,1,2)

3 xy3z2+x+2yz+y+z+
1/(xy)+2/(xy2)+
1/(x2y4z)

1 0 1 −1 1 −1 0
0 1 −1 2 −1 3 2

[1, 0, 0, 6, 24, 0, 90,
1680, 2520, 1680,
75600]

P1×P1 +
0-st.

8 P516841 1 x+y+z+1/(y2z3)+
1/(xyz3)+1/(xy2z2)+

1/(xy2z3)

1 0 0 0 0 1 1
0 1 1 2 3 −5 1

[1, 0, 0, 0, 0, 0, 360,
420, 0, 0, 0]

P3

Codim 22

9 Q38746 P517792 1
4
(1,1,3),
1
5
(1,1,4)

11 xy4z5+xy3z4+x+3y3z3+

2y2z2+y+1/y+3y2z/x+
y/x+y/(x2z)

1 0 −1 −2 2 −1 −1 −2
0 0 0 −2 3 −1 1 0
0 1 1 2 −2 1 1 2

[1, 0, 2, 6, 6, 60,

110, 420, 5110,
4200, 94752]

F1 + 0-st.

(Continued)
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Table 2. Continued

Q-Fano
ID

Polytope
ID

Singula-
rities MG # Rigid MMLP Weight Matrix and Bundles Period Sequence Shape

10 P518340 1 xy4z5+xy3z4+x+2yz2+

y+z+1/y+1/(xy2z)

1 0 0 3 −3 1 2 3
0 1 1 0 0 0 0 0
0 0 1 −1 2 1 −1 0

[1, 0, 2, 0, 6, 60, 20,

840, 3430, 7560,
94752]

F1 + 0-st.

Q38775 P519409 1
2
(1,1,1),
1
3
(1,1,2),

1
5
(1,1,4)

3 xyz2+x+2x/(yz)+
x/(y2z3)+x/(y3z4)+y+
2z/y+1/(y2z)+
2/(y3z2)+1/(xy3)

1 3 −3 0 1 2 3
0 −4 5 1 −1 −3 −3

[1, 0, 0, 0, 0, 60, 0,
0, 3360, 0, 18900] Z1

12 Q38791 P519951 2× 1
3
(1,1,2),

1
4
(1,1,3)

1 x+y+z+1/(xz)+

1/(x2y2z3)+1/(x3y2z2)

1 0 0 2 1 1 2
0 1 2 5 3 3 6

[1, 0, 0, 6, 0, 0, 90,

0, 3360, 1680, 0]

F1 (no

0-st.)

13 Q38946 P427943 1
3
(1,1,2),
1
5
(1,1,4)

1 x+y3z+y+z+y3z2/x+
1/x+1/(xyz)

0 0 1 1 0 0 1 1
1 0 −3 −1 1 1 −2 −1
0 1 −8 −3 3 2 −4 −2

[1, 0, 2, 0, 30, 0,
380, 0, 5950,
7560, 101052]

F1 + 0-st

14 Q38948 P428047 1
2
(1,1,1),
1
3
(1,1,2),

1
4
(1,1,3)

1 x+xz3/y2+y2/z+y+
y/(xz)+y/(xz2)+
y3/(x2z3)

1 0 1 1 −1 1 1 2
0 1 −1 −1 1 −1 0 −1
0 0 −2 −1 2 −3 2 −1

[1, 0, 0, 0, 24, 0, 0,
420, 2520, 7560, 0]

F1 + 0-st

15 Q39259 P505841 1
2
(1,1,1),
1
3
(1,1,2)

2 x3y/z2+2xy/z+x+y+z+

1/y+y/x

1 0 0 2 −2 1 3 4
0 1 0 1 −1 0 2 2
0 0 1 0 1 0 0 0

[1, 0, 2, 6, 6, 180,

110, 2100, 8470,
19320, 258552]

F2 + 0-st.

16 P507415 2 x2yz3+xyz2+x+y+2z+
1/x+1/(x2yz)

1 0 2 −2 1 1 2
0 1 0 1 0 1 1

[1, 0, 2, 0, 6, 120,
20, 2100, 70,
22680, 88452]

F1 + 0-st.

17 Q39277 P520149 3× 1
2
(1,1,1) 1 xyz2+x+yz+y+z/x+

1/(xyz)
0 −2 0 1 1 −1 0
1 3 1 −1 −1 3 2

[1, 0, 0, 6, 0, 120,
90, 0, 6720, 1680,

88200]

F1 + 0-st.

18 Q39321 P255545 1
3
(1,1,2) 2 xy3/z+xy2/z+x+y+y/z+

z+1/(xy)

1 0 0 0 −2 1 1 0
0 1 0 0 1 0 0 1
0 0 1 1 1 −1 1 1

[1, 0, 0, 6, 24, 60,
90, 1680, 5880,

16800, 94500]

P2 + 0-st.

(Continued)
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Table 2. Continued

Q-Fano
ID

Polytope
ID

Singula-
rities MG # Rigid MMLP Weight Matrix and Bundles Period Sequence Shape

19 Q39328 P254809 2× 1
2
(1,1,1) 1 x2z3/y2+x2z4/y3+xz+x+

xz2/y+xz3/y2+y+y/z+
y/(xz2)

1 0 0 −1 1 2 −1 1
0 0 1 0 1 1 0 1
0 1 1 1 −1 0 1 1

[1, 0, 2, 6, 30, 60,
470, 2100, 7630,
42000, 195552]

P1×P1 +
0-st.

Codim 21

20 Q38745 P515798 2× 1
4
(1,1,3) 2 x+y+z+1/y+1/(xy)+

1/(xy2z)+2/(x2y3z2)+
1/(x3y5z4)

1 0 0 2 −2 −1 3 2
0 1 1 0 0 0 0 0
0 0 1 −1 2 1 −1 0

[1, 0, 2, 6, 6, 120,
110, 1260, 8470,
11760, 189252]

F1 + 0-st.

21 Q38764 P429611 2× 1
2
(1,1,1),

1
5
(1,1,4)

2 xy4z5+2xy3z4+xy2z3+x+
2yz2+y+2z+1/(xy2z)

1 0 0 1 −3 2 0
0 1 1 1 2 −1 2

[1, 0, 0, 0, 0, 120, 0,
0, 3360, 0, 88200]

P2 + 0-st.

22 Q38772 P428621 1
2
(1,1,1),
1
3
(1,1,2),

1
4
(1,1,3)

2 xy3z4+x+2yz2+y+z+
1/(xy)+1/(xy2z)

1 0 2 −2 −1 3 2
0 1 −1 2 1 −1 0

[1, 0, 0, 6, 0, 60, 90,
0, 6720, 1680,
18900]

F1 + 0-st.

23 Q38917 P512391 1
3
(1,1,2),
1
4
(1,1,3)

2 x3y4z+x2y4z+2xy2z+x+
y+z+2y/x+2/(x2y)+
1/(x4y2z)

1 −3 −1 3 2 −2 2
0 2 1 −1 −1 2 0

[1, 0, 0, 0, 24, 120,
0, 0, 2520, 37800,
88200]

F1 (no
0-st.)

24 Q38945 P399587 1
2
(1,1,1),

2× 1
3
(1,1,2)

1 x3z4/y3+x2z+x+xz3/y2+
xz2/y2+y+y/z+y/(xz2)

1 0 1 −3 −1 −2 −2

0 1 1 1 1 1 2
[1, 0, 0, 12, 0, 0,

540, 420, 0,
33600, 75600]

F1 (no
0-st.)

25 Q39250 P428844 1
3
(1,1,2) 1 x2z2/y+2xz+x+xz3/y2+

y+y/z+1/z+y/(xz2)
1 0 1 −1 1 1 2
0 1 −1 2 1 −1 0

[1, 0, 0, 6, 48, 0, 90,
2520, 11760, 1680,
100800]

F1 + 0-st.

26 P430410 1 xyz2+xyz+x+y+z/x+
1/x+1/(xyz)

1 2 1 1 1 −1 2
0 1 1 1 0 1 2

[1, 0, 4, 0, 36, 120,
400, 4200, 4900,

105840, 151704]

P1×P1 (no
0-st.)

27 Q39258 P401207 2× 1
2
(1,1,1) 3 x+y+z+1/y+1/(xy)+

2/(xy2z)+1/(xy3z2)
1 0 1 −1 −1 2 1
0 1 0 1 1 0 1

[1, 0, 2, 6, 6, 180,
110, 2520, 8470,
26880, 283752]

F1 + 0-st.

(Continued)
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Table 2. Continued

Q-Fano
ID

Polytope
ID

Singula-
rities MG # Rigid MMLP Weight Matrix and Bundles Period Sequence Shape

28 Q39320 P430098 1
2
(1,1,1) 1 x3yz+x2yz+x+y+z+

1/(x2z)+1/(x2y)
1 0 1 2 3 1 4
0 1 0 0 1 0 1

[1, 0, 0, 0, 48, 60, 0,
0, 11760, 30240,
18900]

P1×P1 (no
0-st.)

Codim 20

29 Q37923 P544136 1
2
(1,1,1),
1
4
(1,1,3),

1
5
(1,1,4)

5 x+y+z+1/(yz2)+
1/(xz2)+1/(xy2z3)+
3/(x2yz3)+3/(x3z3)+
y/(x4z3)

1 2 1 −1 3 1 4
0 −3 −2 3 −5 −1 −6

[1, 0, 0, 0, 24, 0, 0,
2100, 2520, 0, 0]

F2 (no 0-st)

30 Q37992 P519452 1
2
(1,1,1),
1
4
(1,1,3),

1
5
(1,1,4)

2 x+x/(yz)+y+z+z/(xy2)+
2/(xy3)+1/(xy4z)+
z3/(x2y)+4z2/(x2y2)+
3z/(x2y3)+2z4/(x3y)+
3z3/(x3y2)+ z5/(x4y)

1 0 2 −1 1 1 2
0 1 −1 3 1 −1 0

[1, 0, 0, 0, 0, 60, 0,
1680, 0, 7560,
18900]

F1 + 0-st.

31 P544275 4 x3yz5+2xyz2+x+y+2z2+
y/(xz)+2/(x2z)+

1/(x3yz)

0 3 4 1 3 2 6
1 0 1 0 1 −1 0

[1, 0, 0, 0, 0, 0, 0,
2100, 0, 15120, 0]

P2 (no
0-st.)

32 Q38005 P544272 2× 1
2
(1,1,1),

2× 1
4
(1,1,3)

2 xz2+2xz+x+y+z2/y+
1/x+z2/(x3y3)+
2/(x4y2)+1/(x5yz2)

0 3 4 2 3 1 6
1 0 0 0 1 0 0

[1, 0, 2, 0, 6, 0, 20,
2100, 70, 37800,
252]

F1 (no
0-st.)

33 Q38329 P480334 1
2
(1,1,1),
1
3
(1,1,2),

1
5
(1,1,4)

4 xyz2+x+x/(yz3)+y+
2/(yz2)+2/(y3z5)+
1/(xyz)+1/(xyz2)+
2/(xy3z4)+1/(xy5z7)

0 0 3 5 1 −1 2 6
1 0 2 4 0 −1 1 4
0 1 −3 −5 −1 2 −2 −6

[1, 0, 2, 0, 6, 60,
380, 1260, 10150,
15120, 170352]

F1 (no
0-st.)

34 P480338 5 x4y7z2+2x3y4z+2x2y4z+
x2y3z+x2y+2xy+x+
y+z+1/z+1/(xy3z2)

0 0 3 1 5 −1 2 6
1 0 −3 −1 −5 2 −2 −6
0 1 0 −1 1 0 0 0

[1, 0, 2, 0, 6, 0, 380,
420, 10150, 15120,
151452]

F1 (no
0-st.)

35 Q38517 P518018 2× 1
4
(1,1,3) 3 x+y+y/z+z+1/z+2/z2+

1/(yz3)+2y/x2+
2/(x2z)+yz/x4

0 0 −2 1 −1 0 1 0
1 0 2 −1 1 1 −1 0
0 1 4 0 2 1 −1 2

[1, 0, 2, 6, 30, 60,
470, 2940, 7630,
64680, 271152]

F1 + 0-st.

(Continued)
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Table 2. Continued

Q-Fano
ID

Polytope
ID

Singula-
rities MG # Rigid MMLP Weight Matrix and Bundles

Period
Sequence Shape

36 Q38737 P511389 1
3
(1,1,2),
1
4
(1,1,3)

31 x3yz4+3x3z3+3x3z2/y+
x3z/y2+x2yz3+4x2z2+
5x2z/y+2x2/y2+xz+x+
2x/y+x/(y2z)+y+1/x

1 0 0 −1 1 1 −1 −2 −1 0 −1 −2 −1 0
0 1 0 0 2 3 1 −1 −1 3 2 0 1 2
0 0 1 1 −1 −1 1 2 1 0 1 2 1 0

[1, 0, 2, 12, 6, 180,
560, 1680, 20230,
46200, 359352]

dP7 + 0-st

37 P429716 3 xy3z4+xy2z3+x+2yz2+
y+2z+1/y+1/(xy)+
1/(xy2z)

1 0 −1 1 −1 0 2 2
0 1 0 −1 1 −2 1 −1
0 0 1 0 1 2 −2 0

[1, 0, 2, 6, 6, 180,
110, 2100, 11830,
19320, 334152]

F1 + 0-st.

38 Q38763 P254789 2×
1
2
(1,1,1),

1
4
(1,1,3)

1 x+y+z+1/(xz)+
1/(xyz2)+1/(x2yz)+
1/(x2y2z3)+1/(x3y2z2)

1 0 −1 1 −2 2 0
0 1 1 1 2 −1 2

[1, 0, 0, 6, 0, 120,
90, 0, 10080,
1680, 88200]

F1 (no
0-st.)

39 P519989 3 x+xz2/y+y+z+2/y2+

1/(xyz)+1/(xy3z2)

1 −3 2 −2 −1 −1 −2
0 2 0 1 1 1 2

[1, 0, 0, 6, 24, 0, 90,

2520, 2520, 1680,
151200]

F1 + 0-st.

40 Q38769 P429717 1
2
(1,1,1),
2×
1
3
(1,1,2)

24 x+y+z+y4/(xz3)+
3y3/(xz2)+3y2/(xz)+
y/x+2y2/(x2z2)+
5y/(x2z)+4/x2+
z/(x2y)+1/(x3z)+
2/(x3y)+ z/(x3y2)

1 0 1 1 −1 −1 1 2 0 0 1 2 1
0 1 2 1 2 1 1 1 2 3 2 2 3

[1, 0, 0, 12, 0, 60,
540, 0, 10080,
33600, 18900]

dP7 + 0-st.
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Table 2. Continued

Q-Fano
ID

Polytope
ID

Singula-
rities MG # Rigid MMLP Weight Matrix and Bundles Period Sequence Shape

41 Q38916 P246021 2× 1
3
(1,1,2) 2 xy3z2+x+y3z+yz+y+z+

y/x+1/x+1/(xyz)

1 0 0 −1 1 1 −1 0
0 1 0 0 1 0 0 0
0 0 1 2 −1 −1 3 2

[1, 0, 2, 6, 30, 120,
470, 2940, 10990,
72240, 290052]

F1 + 0-st.

42 P387779 2 x+x/(y2z)+yz2+y+z+
y2z2/x+2yz/x+y2z/x2

1 0 2 −1 3 1 4
0 1 −1 1 −2 1 −1

[1, 0, 0, 18, 0, 0,
1350, 420, 0,
141120, 100800]

F1 (no
0-st.)

43 P411025 2 x2y3z+xy3z+xy2z+x+
2yz+y+z+2y/x+1/x+
z/(xy)+2/(x2y)+

1/(x3yz)

1 0 0 2 −1 2 −1 0
0 1 0 1 0 0 1 1
0 0 1 0 1 −1 2 2

[1, 0, 2, 0, 30, 120,
380, 2100, 5950,
60480, 189252]

F1 (no
0-st.)

44 Q38909 P412951 1
2
(1,1,1),
1
4
(1,1,3)

3 x4y3z4+2x3y2z3+
2x2y2z2+x2yz2+x2yz+

2xyz+x+x/z+y+z+
1/(xy)

1 0 0 2 −1 2 −1 0
0 1 0 1 −1 1 0 0
0 0 1 0 1 −1 2 2

[1, 0, 0, 6, 24, 120,
90, 1680, 9240,

39480, 163800]

F1 (no
0-st.)

45 Q38936 P220424 2× 1
2
(1,1,1),

1
3
(1,1,2)

2 xy3z2+x+y2z+yz+y+z+

1/x+1/(xz)+1/(xy)

0 0 1 1 0 0 1 1
1 0 1 2 −1 1 −1 1
0 1 0 0 1 1 −1 1

[1, 0, 2, 12, 6, 180,

560, 2100, 16870,
53760, 359352]

P1×P1 +

0-st.

46 P231730 2 x2yz+x2z+x+x/y+y+

z+z/y+y/(xz)

1 0 4 −3 3 −2 −1 1
0 0 1 0 1 0 0 1
0 1 −1 1 −2 1 1 0

[1, 0, 0, 12, 24, 0,

540, 2940, 2520,
33600, 327600]

P2×P1

47 Q39052 P336592 1
2
(1,1,1),
1
3
(1,1,2)

6 x3z/y2+x+2x/y+y+z+

1/z+1/(xz)

1 0 −1 2 −2 1 3 4
0 1 0 1 −1 0 2 2
0 0 1 0 1 0 0 0

[1, 0, 2, 6, 54, 60,

830, 2940, 20230,
64680, 523152]

F2 + 0-st.

48 P336593 2 x+y+z+2y2z2/x+y2z/x+
2yz/x+y/x+1/x+
1/(xyz)+y4z3/x2+
2y3z2/x2+y2z/x2

0 0 0 −1 1 −1 0 1 0
1 0 0 0 0 1 0 0 1
0 1 0 1 −1 1 1 −1 0
0 0 1 1 0 2 −1 1 2

[1, 0, 2, 0, 54, 60,
740, 1260, 18550,
45360, 422352]

F1 + 0-st.

(Continued)
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Table 2. Continued

Q-Fano
ID

Polytope
ID

Singula-
rities MG # Rigid MMLP Weight Matrix and Bundles Period Sequence Shape

49 Q39159 P255193 1
3
(1,1,2) 2 x+y+z+y/(xz)+

2y/(xz2)+y/(xz3)+
2/(xz)+2/(xz2)+1/(xyz)

1 0 0 −1 1 1 1 0 2
0 1 1 2 0 1 −1 2 0

[1, 0, 0, 12, 48, 0,
540, 5040, 11760,
33600, 504000]

F1 + 0-st.

50 Q39168 P515512 2× 1
2
(1,1,1) 2 x+x/(yz)+x/(y2z)+y+

z+2/(yz)+1/(xz)
1 0 1 −1 1 2 3
0 1 0 1 1 −1 0

[1, 0, 0, 18, 0, 60,
1350, 0, 10080,
141120, 18900]

F2 + 0-st.

51 P516400 2 x+y+z+1/z+1/(yz)+
2/(xz)+y/(x2z)

1 0 1 1 1 2 3
0 1 −1 −1 −1 −2 −3

[1, 0, 2, 18, 6, 180,
1370, 1260, 25270,
148680, 283752]

F1 (no
0-st.)

52 Q39249 P254856 1
2
(1,1,1) 5 x+y+z+1/(xy)+1/(xyz)+

z/(x2y)+2/(x2y)+

1/(x2yz)

0 0 1 0 0 1 1
1 1 −1 2 1 −1 1

[1, 0, 0, 6, 48, 60,
90, 2520, 15120,

31920, 119700]

F1 + 0-st.

53 P255732 2 x2y/z+x+x/z+y+z+
1/y+1/x

1 0 −1 1 −1 1 0
0 1 1 0 1 1 2

[1, 0, 4, 6, 36, 240,
490, 6300, 14980,
142800, 592704]

P1×P1 (no
0-st.)

54 P255860 1 xy/z+x+x/z+x/y+yz+
y+z+1/x

1 0 0 1 −1 −1 2 1
0 1 0 0 0 −1 1 0
0 0 1 0 1 1 0 1

[1, 0, 2, 12, 6, 240,
560, 2940, 23590,
61320, 554652]

P1×P1 +
0-st.
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Table 3. Exploring the GRDB.

Q-Fano
ID

Polytope
ID

Codimand
Singula-
rities MG # Rigid MMLP Weight Matrix and Bundles

Period
Sequence Shape

1 Q29792 P542987 codim. 13;
1
2
(1,1,1),

2×
1
3
(1,1,2),

1
5
(1,1,4)

28 x2y3z4+xy3z4+

2xy2z2+x+
y2z3+2y2z2+y+
z+2yz/x+y/x+
z/x+3/(xyz)+
1/(x2z)+
1/(x2y)+
2/(x2yz)+
1/(x2y2z3)+
2/(x3y2z2)+

1/(x3y2z3)+
1/(x4y3z4)

1 0 0 1 1 −3 2 2 2 1
0 1 0 1 1 1 1 −1 2 1
0 0 1 0 0 1 0 0 0 1

[1, 0, 0, 0, 576,

2820, 4320,
2100, 2540160,
26490240,
110508300]

P2×P1

2 Q29911 P542990 codim. 13; 3×
1
3
(1,1,2),

1
4
(1,1,3)

5 xy/z2+xy/z3+xz+
x/z2+x/z3+
xz/y+yz+y/z2+
y/z3+3z+z/y+
yz/x+z/x

0 0 0 3 −2 1 −1 1 1
1 0 0 −1 1 1 0 0 1
0 1 0 −1 1 0 1 0 1
0 0 1 −1 1 0 0 1 1

[1, 0, 0, 54, 576,
0, 14850,
408660,
2540160,
5821200,

268077600]

P2×P1

3 Q31617 P543084 codim. 11; 2×
1
2
(1,1,1),

1
5
(1,2,3)

19 x2z+x2z/y+xyz+
2xz+xz/y+yz+
y/z+y/z2+z+
1/z+2/z2+

1/(yz2)+y/(xz)+
y/(xz2)+1/(xz)+
2/(xz2)+1/(xyz2)

0 0 2 −1 1 0 −1 1 1 0
1 0 −1 1 0 1 1 1 1 2

0 1 −1 1 −1 2 2 0 1 2

[1, 0, 8, 72, 264,
6900, 44360,
552720,
7081480,

63161280,
887727708]

F1×P1

4 Q33018 P31470 codim. 10; 2×
1
2
(1,1,1),

1
3
(1,1,2)

4 xy2+xy2/z+2xy+
4xy/z+xy/z2+

x+4x/z+2x/z2+
x/(yz)+x/(yz2)+
y2/z+2y/z+z+
1/z+2/y+
1/(yz)+1/(y2z)+
1/x+1/(xy)

1 0 0 1 0 −1 3 2 −1 2 3 2 1 0
0 1 0 0 1 1 0 0 1 1 1 1 1 2
0 0 1 −1 1 2 −1 −1 1 1 −1 0 1 1

[1, 0, 8, 108, 720,
8760, 111500,

1218000,
15156400,
193520880,
2416466808]

Z2

(Continued)
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Table 3. Continued

Q-Fano
ID

Polytope
ID

Codimand
Singula-
rities MG # Rigid MMLP Weight Matrix and Bundles

Period
Sequence Shape

5 Q33019 P542859 codim. 11;
1
2
(1,1,1),

1
5
(1,2,3)

6 x3y/z3+x2y2/z3+
x2y/z2+x+
2x/z+y+2y/z+

z+y2/(xz)+
y/x+z2/(xy)+
z/(xy)+ z/x2

1 0 0 1 1 −2 2 1 1 2

0 1 0 0 1 1 0 0 1 1
0 0 1 −1 0 1 1 1 1 1

[1, 0, 0, 72, 432,
1020, 33840,
406140,

2222640,
28113120,
412416900]

Z3

6 Q33189 P543701 codim. 11; 3×
1
2
(1,1,1),

1
3
(1,1,2)

6 xy/z2+xz+x+
x/z2+xz/y+

x/y+y/z2+2z+
2z/y+z/y2+
z/x+z/(xy)

1 0 2 −2 1 1 0 1 2 1
0 0 0 1 1 0 1 0 1 1
0 1 −1 1 0 −1 2 1 1 1

[1, 0, 0, 72, 192,
120, 32760,

176400,
342720,
21354480,
171397800]

Z3

7 Q33470 P518676 codim. 13; 3×
1
2
(1,1,1),

1
4
(1,1,3)

3 xyz2+x/z+yz2+

y/z+z+3/z+
1/(yz)+y/(xz)+
2/(xz)+1/(xyz)

1 0 0 −2 1 0 1 −1 1 0
0 1 0 1 1 0 0 0 1 0
0 0 1 1 0 1 1 1 1 2

[1, 0, 6, 54, 90,

2880, 16710,
119700,
1679370,
10402560,
115479756]

P1×P1 + 0-st.

8 Q34466 P515086 codim. 12; 3×
1
2
(1,1,1),

1
3
(1,1,2)

5 xyz3+xyz2+xz3+
xz+x+xz/y+

yz3+yz+y+2z+
1/z+1/(yz)+
yz/x+1/(xz)

1 0 0 0 −2 1 1 0 −1 0 1 0 0 0 1
0 1 0 0 −1 1 1 0 −1 0 1 0 0 0 1
0 0 1 0 1 1 0 0 1 1 1 1 1 2 1
0 0 0 1 1 0 1 1 1 0 1 2 1 1 1

[1, 0, 8, 42,
264,3360,

21590, 245280,
2202760,
20993280,
218056608]

dP7 + 0-st

9 codim. 12; 3×
1
2
(1,1,1),

1
3
(1,1,2)

2 x+x/z+x/(yz)+
y+y/z+y/z3+
z+3/z+z/y+
y2/(xz3)+

2y/(xz)+ z/x

1 0 0 0 −2 1 −1 0 1 0 1
0 1 0 0 −1 1 −1 0 1 0 1
0 0 1 0 1 0 0 0 1 0 1
0 0 0 1 1 1 1 1 0 2 1

[1, 0, 10, 54,
342,4680,
31150, 371700,
3524710,

34957440,
383835060]

P1×P1 + 0-st
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Table 3. Continued

Q-Fano
ID

Polytope
ID

Codimand
Singula-
rities MG # Rigid MMLP Weight Matrix and Bundles

Period
Sequence Shape

10 Q35361 P516572 codim. 12; 2×
1
2
(1,1,1),

1
3
(1,1,2)

9 x+x/(y2z)+y+z+
1/y+3/(yz)+
1/(yz2)+yz/x+
y/x+1/x+

2/(xz)+1/(xz2)

1 0 −1 1 −1 2 1 −2 1 −1
0 1 −1 1 0 1 2 −1 1 1

0 0 1 0 1 0 0 1 1 1

[1, 0, 4, 60, 204,
2040, 24340,
160440,
1547980,

16366560,
139003704]

F1×P1

11 Q35364 P516506 codim. 13; 2×
1
2
(1,1,1),

1
4
(1,1,3)

7 xy/z2+xy/z3+xz+
x+x/z2+xz/y+
yz+y+y/z2+3z+

z/y+yz/x+z/x

1 0 0 −2 1 1 2 1 1 2

0 1 0 1 1 −1 1 1 1 2
0 0 1 1 0 0 0 0 1 0

[1, 0, 0, 54, 168,
120, 14850,
100380,

239400,
6063120,
61021800]

Z4

12 Q35470 P519948 codim. 19; 2×
1
4
(1,1,3),

1
6
(1,1,5)

10 x+y3z4+2y2z2+
y+y2z3/x3+
3yz2/x3+
2yz/x3+3z/x3+
6/x3+1/(x3z)+

1/(x3y)+
6/(x3yz)+
3/(x3yz2)+
2/(x3y2z2)+
3/(x3y2z3)+
1/(x3y3z4)

1 0 2 −2 1 1 2
0 1 1 2 1 1 2

[1, 0, 0, 0, 24,
120, 0, 0, 2520,
75600, 88200]

P1×P1 + 0-st

13 Q35496 P518648 codim. 13; 3×
1
2
(1,1,1),

1
3
(1,1,2)

6 xyz3+xyz2+xz3+
xz+x+xz/y+
yz3+yz+y+3z+
1/(yz)+yz/x+
1/(xz)

0 0 2 −1 2 −1 1 1 1 2
1 0 −1 1 1 0 1 1 1 2
0 1 −1 1 0 1 0 0 1 0

[1, 0, 4, 54, 36,
1800, 15250,
44100, 992740,
6773760,
40547304]

F1×P1

14 Q36639 P254485 codim. 15;
6× 1

2
(1,1,1)

1 xy2z3+xy2z2+
xyz2+2xyz+xy+

x+x/z+y+1/y+
1/(xyz)

1 0 0 0 1 −1 1 −1
0 1 0 0 −1 1 −1 1
0 0 1 0 1 0 0 1

0 0 0 1 0 1 1 0

[1, 0, 6, 0, 114,
120, 3300,

7560, 114450,
393120,
4461156]

P1×P1 + 0-st.
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Table 3. Continued

Q-Fano
ID

Polytope
ID

Codimand
Singula-
rities MG # Rigid MMLP Weight Matrix and Bundles

Period
Sequence Shape

15 codim. 15;
6× 1

2
(1,1,1)

1 xy2z3+xy2z2+
xyz2+3xyz+xy+
x+x/z+y+1/y+
1/(xyz)

1 0 0 0 −1 1 1 −2
0 1 0 0 1 −1 −1 2

0 0 1 0 1 0 1 1
0 0 0 1 0 1 0 0

[1, 0, 8, 0, 168,
120, 5120,
9240, 190120,
559440,
7976808]

F1 + 0-st.

16 Q37383 P516493 codim. 13;
1
3
(1,1,2)

4 xy/z+xz+yz+y+
y/z+2z+1/z+
z/y+yz/x+y/x+
2z/x+1/x+
z/(xy)

1 0 1 −1 0 1 1 1 1 2
0 0 0 1 1 0 1 −1 1 0
0 1 −1 1 0 1 0 0 1 0

[1, 0, 8, 18, 264,
1200, 12950,
82320, 778120,
5856480,
52669008]

Z3

17 37832 P220586 codim. 13;
1
2
(1,1,1)

2 x+x/(y2z)+y+z+
1/y+1/(yz)+
2/(y2z)+y/x+
2/x+1/(xy)+
1/(xyz)+1/(xy2z)

1 0 0 0 1 0 1 2
0 1 0 0 0 1 −1 0
0 0 1 1 −1 2 −1 0

[1, 0, 6, 18, 186,
1200, 9330,
69720, 553770,
4450320,
36502956]

F1 + 0− st

18 Q37847 P515113 codim. 15;
1
2
(1,1,1),

1
3
(1,1,2)

3 x+x/(yz)+y+z+
z/y+2yz/x+
2z/x+2y2z/x2+
yz/x2+y2z2/x3+
y3z2/x4

1 0 0 0 0 1 2 1 −1 2 2 1 1 0
0 1 0 1 0 0 1 1 1 1 1 2 1 1
0 0 1 1 1 1 0 0 1 1 1 1 1 2

[1, 0, 6, 18, 90,
960, 3210,
39900, 197610,
1668240,
12109356]

dP7 + 0-st

19 codim. 15;
1
2
(1,1,1),

1
3
(1,1,2)

3 x+x/(yz)+y+z+
z/y+3yz/x+
2z/x+2y2z/x2+
yz/x2+y2z2/x3+
y3z2/x4

1 0 0 0 2 0 −1 1 2 0
0 1 0 1 1 0 0 0 1 0
0 0 1 1 0 1 1 1 1 2

[1, 0, 4, 18, 60,
780, 2470,
27720, 151900,
1063440,
8348004]

P1×P1 + 0-st

20 P516442 codim. 15
1
2
(1,1,1),

1
3
(1,1,2)

6 x2z/y+x2z/y2+
xy+x+3xz/y+
xz/y2+y+z+
2z/y+y/(xz)+z/x

1 0 0 0 2 −1 1 1 1 2
0 1 0 1 1 0 0 1 1 1
0 0 1 1 0 1 1 0 1 1

[1, 0, 4, 18, 60,
720, 2470,
25200, 141820,
972720,
7447104]

F1 + 0-st.
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Table 3. Continued

Q-Fano
ID

Polytope
ID

Codimand
Singula-
rities MG # Rigid MMLP Weight Matrix and Bundles

Period
Sequence Shape

21 P516475 codim. 15;
1
2
(1,1,1),

1
3
(1,1,2)

11 xy3z2+2xy2z2+
xyz2+x+2y2z+
4yz+y+3z+
z/y+y/x+2/x+
1/(xz)+1/(xy)

1 0 0 0 0 1 1 0 −1 1 1 0 0 0
0 1 0 1 1 0 0 1 2 1 1 2 2 2
0 0 1 1 2 1 0 0 1 2 1 1 2 2

[1, 0, 4, 24, 60,
780, 4000,
24360, 209020,
1228920,
9356004]

dP7+0-st.

22 Q37859 P424999 codim. 16;
2× 1

3
(1,1,2)

15 x+x/(yz)+y+z+
2/z+1/(yz)+
y2/(xz)+
3y/(xz)+1/(xz)+
2y3/(x2z)+
2y2/(x2z)+

y4/(x3z)

1 0 0 0 −1 1 2 1 −1 1 2 1 0 0
0 1 0 1 0 0 1 1 0 1 1 1 1 0
0 0 1 1 2 1 0 0 1 2 1 1 2 2

[1, 0, 4, 12, 60,
480, 1660,
17220, 74620,
610680,
3641904]

dP7 + 0-st.

23 Q37894 P425006 codim. 16; 2×
1
2
(1,1,1),

1
3
(1,1,2)

14 x+y+z+y/(xz)+
2/x+z/(xy)+
1/(xy)+ z/(xy2)+
1/(x2z)+

1/(x2y)+
1/(x2yz)+
2/(x2y2)+
z/(x2y3)

1 0 0 0 2 1 −1 −1 1 1 0 0 1 2

0 1 0 1 1 0 0 1 1 1 1 1 2 1
0 0 1 1 0 1 1 1 0 1 2 1 1 1

[1, 0, 4, 6, 60,
360, 1210,
14280, 41020,
505680,

1966104]

dP7 + 0-st.

24 codim. 16; 2×
1
2
(1,1,1),

1
3
(1,1,2)

1 x3/(yz2)+x2/(yz)+
x+2x/(yz)+y+
z+3/y+z/(xy)+
1/(xy)+ z/(x2y)

1 0 0 0 2 −1 −1 1 1 0
0 1 0 1 1 0 0 0 1 0
0 0 1 1 0 1 1 1 1 2

[1, 0, 6, 6, 90,
420, 1950,
19740, 63210,
810600,
2968056]

P1×P1 + 0-st.

25 Q37905 P515878 codim. 17;
1
2
(1,1,1),2×

1
3
(1,1,1)

2 x+xz2/y+y+z+
z/y+2/x+
2/(x2z)+
y/(x3z2)+
y/(x4z3)

1 0 0 2 −2 −1 3 2
0 1 0 1 0 0 1 1
0 0 1 0 1 1 0 1

[1, 0, 4, 0, 60,
120, 1120,
6300, 24220,
249480,
655704]

F1 + 0-st
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Table 3. Continued

Q-Fano
ID

Polytope
ID

Codimand
Singula-
rities MG # Rigid MMLP Weight Matrix and Bundles

Period
Sequence Shape

26 codim. 17;
1
2
(1,1,1),2×

1
3
(1,1,1)

2 x+xz2/y+y+z+
z/y+3/x+
2/(x2z)+
y/(x3z2)+

y/(x4z3)

1 0 0 2 −2 −1 1 0
0 1 0 1 0 0 0 0

0 0 1 0 1 1 1 2

[1, 0, 6, 0, 90,
120, 1860,
7980, 44730,
378000,

1260756]

P1×P1 + 0-st.

27 Q38250 P254482 codim. 16;
3× 1

2
(1,1,1)

1 x2z3/y2+x2z4/y3+
xz+x+2xz2/y+
xz3/y2+y+z+
y/(xz)+y/(xz2)

1 0 0 0 1 −1 0 0 0

0 1 0 0 −1 1 1 −1 0
0 0 1 0 1 0 1 0 1
0 0 0 1 0 1 0 1 1

[1, 0, 4, 6, 84,
300, 2290,
11760, 80500,
483000,
3182004]

P1×P1 + 0-st.

28 codim. 16;
3× 1

2
(1,1,1)

1 x2z3/y2+x2z4/y3+
xz+x+3xz2/y+
xz3/y2+y+z+

y/(xz)+y/(xz2)

1 0 0 0 0 0 1 −1 0
0 1 0 0 −1 1 −2 1 −1
0 0 1 0 1 0 1 1 2
0 0 0 1 0 1 0 0 0

[1, 0, 6, 6, 114,
360, 3390,
16800, 126210,

765240,
5368356]

F1 + 0-st

29 Q38484 P515100 codim. 15;
1
2
(1,1,1)

14 x+y+z+z/y+y/x+
y/(xz)+2/x+

1/(xz)+ z/(xy)+
2/(xy)+ z/(xy2)

1 0 0 0 0 1 1 1 0 1 2 1 1 1
0 1 0 1 0 0 1 1 1 1 1 2 1 1
0 0 1 1 1 1 0 0 1 1 1 1 1 2

[1, 0, 4, 24, 84,
780, 4360,

29400, 214900,
1433040,
10540404]

dP7 + 0-st.

30 codim. 15;
1
2
(1,1,1)

4 x+y+z+z/y+y/x+
y/(xz)+3/x+

1/(xz)+ z/(xy)+
2/(xy)+ z/(xy2)

1 0 0 0 1 0 0 1 1 1
0 1 0 1 1 0 0 0 1 0
0 0 1 1 0 1 1 1 1 2

[1, 0, 6, 24, 114,
1020, 5460,

42000, 299250,
2100840,
16160256]

P1×P1 + 0-st

(Continued)
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Table 3. Continued

Q-Fano
ID

Polytope
ID

Codimand
Singula-
rities MG # Rigid MMLP Weight Matrix and Bundles

Period
Sequence Shape

31 Q38496 P427129 codim. 16;
2× 1

2
(1,1,1)

1 x+y+z+y/x+
y/(xz)+2/x+
1/(xz)+ z/(xy)+
2/(xy)+ z/(xy2)

1 0 0 1 −1 1 1 2
0 1 0 1 0 1 0 1
0 0 1 0 1 0 1 1

[1, 0, 4, 18, 60,
600, 2470,
18900, 118300,
723240,
5242104]

F1 + 0-st

32 codim. 16;
2× 1

2
(1,1,1)

1 x+y+z+y/x+
y/(xz)+3/x+
1/(xz)+ z/(xy)+
2/(xy)+ z/(xy2)

1 0 0 1 −1 0 1 1
0 1 0 1 0 0 0 0
0 0 1 0 1 1 1 2

[1, 0, 6, 18, 90,
780, 3210,
28560, 164010,
1146600,
8247456]

P1×P1 + 0-st

33 Q38895 P425118 codim. 17;
1
2
(1,1,1)

1 x2z3/y2+xz+x+
3xz2/y+xz3/y2+
y+y/z+2z+
z2/y+y/(xz2)

1 0 0 0 1 0 −1 1 1 0
0 1 0 1 1 0 0 0 1 0
0 0 1 1 0 1 1 1 1 2

[1, 0, 6, 12, 90,
540, 2400,
20160, 95130,
751800,
4291056]

P1×P1 + 0-st

34 codim. 17;
1
2
(1,1,1)

4 x+yz+y+z+y/x+
y/(xz)+ z/x+
2/x+1/(xz)+
z/(xy)+1/(xy)

1 0 0 0 1 0 0 1 1 1
0 1 0 1 1 0 1 0 1 1
0 0 1 1 0 1 0 1 1 1

[1, 0, 4, 12, 60,
420, 1660,
13440, 64540,
451920,
2665404]

P1×P1 + 0-st

35 Q38906 P516432 codim. 18;
2× 1

2
(1,1,1)

2 x+xz2/y+y+z+
2z/y+2/x+
1/(xy)+y/(x2z)+
1/(x2z)

1 0 0 1 −1 1 0 1
0 1 0 1 0 0 1 1
0 0 1 0 1 1 0 1

[1, 0, 4, 6, 60,
240, 1210,
7980, 34300,
256200,
1172304]

F1 + 0-st

36 codim. 18;
2× 1

2
(1,1,1)

2 x+xz2/y+y+z+
2z/y+3/x+
1/(xy)+y/(x2z)+
1/(x2z)

1 0 0 1 −1 −1 1 0
0 1 0 1 0 0 0 0
0 0 1 0 1 1 1 2

[1, 0, 6, 6, 90,
300, 1950,
11760, 56490,
432600,
2023056]

P1×P1 + 0-st

(Continued)
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Table 3. Continued

Q-Fano
ID

Polytope
ID

Codimand
Singula-
rities MG # Rigid MMLP Weight Matrix and Bundles

Period
Sequence Shape

37 Q38935 P424987 codim. 19;
3× 1

2
(1,1,1)

1 x2z3/y2+
2x2z4/y3+
x2z5/y4+xz+x+
2xz2/y+xz/y+

xz3/y2+y+
y/(xz2)

1 0 0 −1 1 2 −1 1

0 1 0 1 0 0 0 0
0 0 1 0 1 1 1 2

[1, 0, 4, 0, 60, 60,
1120, 2520,
24220, 90720,
586404]

P1×P1 + 0-st.

38 codim. 19;
3× 1

2
(1,1,1)

1 x2z3/y2+
2x2z4/y3+

x2z5/y4+xz+x+
3xz2/y+xz/y+
xz3/y2+y+
y/(xz2)

1 0 0 −1 1 −1 1 0
0 1 0 1 0 0 1 1
0 0 1 0 1 1 0 1

[1, 0, 6, 0, 90, 60,
1860, 3360,

44730, 143640,
1191456]

F1 + 0-st.

39
Q40948

P534760 codim 9;
2× 1

5
(1,2,4)

5 xy3z5+x+2y2z5+
2yz2+y+yz5/x+
2z2/x+1/x+
1/(xyz)

1 −3 −5 −1 −2 2 −6
0 3 5 1 2 −1 6

[1, 0, 2, 0, 6, 0,
380, 0, 10150,
0, 151452]

F1 (no 0-st.)

40
Q40971

P543951 codim 9;
2× 1

5
(2,2,3)

2 x6/(y4z5)+
2x3/(y2z2)+
2x2/(y3z2)+x+
y+z+1/y+
2z/(xy)+ z/(x2y2)

1 0 0 0 0 1 0
0 3 1 5 2 3 6

[1, 0, 2, 0, 6, 0,
20, 0, 3430, 0,
75852]

F1 (no 0-st.)

41
Q40988

P413267 codim 6;
1
5
(1,2,4)

1 x+y+z+1/(yz2)+
1/(y2z3)+
1/(xz2)+

1/(xyz)+
1/(xyz3)+
1/(xy2z2)

1 0 1 −1 1 2 2
0 1 1 2 −1 1 2

[1, 0, 0, 0, 48, 0,
360, 0, 11760,
0, 226800]

P2 (no 0-st)

42
Q40993

P473887 codim 6;

3× 1
3
(1,2,2)

2 x+xz/y3+y+z+

2z/y2+1/x+
z/(xy)+2/(xy2)+
2/(x2y)+1/(x3yz)

1 0 0 1 −1 −1 0 0
0 1 0 0 0 0 1 0
0 0 1 −1 3 2 1 2

[1, 0, 2, 0, 54, 0,

740, 0, 18550,
0, 403452]

F1 + 0-st.
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Table 3. Continued

Q-Fano
ID

Polytope
ID

Codimand
Singula-
rities MG # Rigid MMLP Weight Matrix and Bundles

Period
Sequence Shape

43
Q41200

P547328 codim. 4; 2×
1
2
(1,1,1),

1
5
(1,3,4)

6 xyz2+x+xz/y+
x/(y2z)+y+z+
2/(yz)+2/(xz)+
1/(xyz3)+
1/(x2z3)

2 1 3 1 2 1 0 3 4
1 −1 −1 1 −1 0 1 0 0

[1, 0, 0, 72, 0, 0,
32760, 0, 0,
21067200, 0]

F1 (no 0-st.)

44
Q41218

P544064 codim. 4; 3×
1
2
(1,1,1),

1
4
(1,1,3)

3 x+x/(y2z)+y+z+
1/(yz)+3yz/x+

2y2z/x2+
y4z3/x3+y5z3/x4

1 0 3 0 1 −1 2 3 0
0 1 −1 1 1 1 −1 0 2

[1, 0, 0, 54, 0, 0,
14850, 0, 0,

5821200, 0]

P1×P1 (no 0-st.)

45
Q41251

P402202 codim 5; 2×
1
2
(1,1,1),

1
4
(1,3,3)

5 xyz2+x+y+z+
z2/y+1/(xz)+
1/(xy)

1 0 2 −1 −1 4 2
0 1 −1 1 1 −2 0

[1, 0, 0, 12, 0, 0,
900, 0, 0,
86520, 0]

P2 (no 0-st.)

46
Q41334

P543852 codim. 4; 3×
1
3
(1,1,2),

1
5
(1,4,4)

3 x2/(y3z2)+x+
x/(y2z2)+y+z+
3yz/x+2y2z/x2+

y5z4/x4+y6z4/x5

1 0 −1 1 1 1 −1 0 2
0 1 4 0 1 −1 3 4 0

[1, 0, 0, 0, 576, 0,
0, 0, 2540160,
0, 0]

P1×P1 (no 0-st.)
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32 L. HEUBERGER

§3. A systematic approach in high codimension

In Table 2, we provide a complete list of non-toric Fano varieties of codimensions between

20 and 23, which are mirror to rigid maximally-mutable Laurent polynomials, modulo the

considerations in Section 2.5.

3.1 Typical examples

Recall Algorithm 2.9 directly produces the weight matrix of the ambient space Y,

provided that one assumes Remark 2.8. Throughout [15], the point-struts considered in

Remark 2.8 are referred to as “‘uneliminated variables” In [30, Section 3] Prince proves

the embedding theorem without requiring the condition in Remark 2.8. We discuss how to

adjust the construction, as well as a basic incarnation of Algorithm 2.9, each on an example

from Table 2.

3.1.1. Laurent inversion with point-struts at the basis of NU .

As a warm-up, we demonstrate the construction in detail for threefold #4 in Table 2. In

other words, we start with a polynomial supported on the toric canonical Fano polytope

P519468 and construct the Q-Fano threefold Q38989. The target variety has four isolated

singular points: 2× 1
2(1,1,1),

1
3(1,1,2) and

1
4(1,1,3).

The only rigid MMLP supported on P519468 is:

f = x+
xz3

y2
+

y2

z
+y+

y

xz2
+

y3

x2z3
.

We use Magma to show that f is mutation-equivalent (via 9 mutation steps) to:

g =
xy

z
+

x

y2z2
+

x

y3z2
+

y

z
+z+

2

y2z2
+

3

y3z2
+

1

xy2z2
+

3

xy3z2
+

1

x2y3z2
,

which is supported on the polytope in Figure 1.

Despite the existence of various lattice points inside this polytope, the only non-vanishing

coefficients of g are along its edges, suggesting the use of two-dimensional struts. Moreover,

Figure 1.

The Newton Polytope of g.
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Figure 2.

A scaffolding of f9.

the shape F1 is a pertinent option given the quadrilateral face in the (z = −2)–plane.

We scaffold the polytope as in Figure 2, using (0,0,1) as the 0-strut at a basis of NU cf.

Remark 2.8. We include the projection to the lattice N for convenience. The divisors in the

shape Z = F1 are ordered as in M in Figure 2.

We now follow Algorithm 2.9 to produce a weight matrix. We have z = 4, u = 1,

r = s− u = 2, and NU = 〈(0,0,1)〉. We have one 0-strut, that is, (D0,χ0) = (0,(0,0,1)),

and two other struts corresponding to (D1,χ1) = (Δ1 −Δ2 +Δ3 +Δ4,−(0,0,1)) and

(D2,χ2) = (−2Δ1 + 3Δ2 +Δ3 −Δ4,−2(0,0,1)). The weight matrix will then be of size

r× (s+ z) = 2× 7. If the first row corresponds to D1 and the second to D2, the column

corresponding to U is (1,2) and we obtain:

U Δ1 Δ2 Δ3 Δ4 L1 L2

1 0 1 1 −1 1 1 0 2

0 1 2 −2 3 1 −1 1 0

with stability condition ω =−K−L1−L2 = (4,4)− (0,1)− (2,0) = (2,3). The line bundles

are given by homogenising primitive relations in the fan of Z, in particular we have that

Δ1Δ2 is a section of L1 and Δ3Δ4 is a section of L2. Notice the homogeneity type of

the second column of the weight matrix is the same as L1. This means a general section

of L1 is linear in this coordinate, thus we can solve for it and eliminate this equation

altogether. We obtain an embedding of X as a hypersurface in the rank two toric variety Y

given by:

x1 x2 x3 x4 x5 x6 L

1 1 1 −1 1 1 2

0 2 −2 3 1 −1 0

with the same stability condition as before. The singular charts on Y are U12, U14, U23,

U26, U45, and U46, where Uij = {xi,xj �=0}. The ambient Y is also singular along two curves

C1 = {x1 = x2 = x3 = 0} and C2 = {x4 = x5 = x6 = 0}.
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The situation is quite tame, as Y is an orbifold—this is the case for many of the ambient

spaces in Table 2, yet for very few in Table 3. The main issue is that C1 or C2 could be in

the base locus of L: once we establish that a general section of L has isolated singularities,

they typically coincide with the singularities predicted by the GRDB [5].

A general section s ∈H0(Y,L) is

x1x3x4x6+x2
3x4x5+x4

3x
3
4x6+x4x

3
6+x2x3+x2

1+x5x6+x1x
3
3x

2
4+x6

3x
4
4+x2

3x
2
4x

2
6.

This is a partial smoothing obtained by adding monomials in OY (2,0) to the toric equation

x2
1+x5x6 = 0. Thus X = V (s) is quasi-smooth: it is enough to check this using the Jacobian

criterion, making sure its potential singularities all lie in the unstable locus.

The curve C1 belongs to the chart U46, which is of type 1
2(1,1,1,0)1235. We see that the

1
2(1,1,1)-action propagates along the x5-axis, that is, C1 in this chart (so that C1 is a curve

of 1
2(1,1,1) singularities). If X intersects it transversely, it acquires that precise type of

singularity.

When restricting s to C1 we obtain x4x
3
6+x5x6 = 0, thus X contains the origin of U45

with multiplicity one (this is a 1
4(1,1,3) point), and any other singularity belongs to U46,

the only other chart containing C1. On U46, the equation becomes 1+x5 =0, whose solution

is an isolated point, and (when comparing Jacobian matrices) it is clear that X and C1

intersect transversely here.

Similarly, the curve C2 belongs to the charts U12 and U23. When restricting s to C2 we

are left with x2x3+x2
1 = 0, that is, a point solving x3+1 = 0 in the chart U12. This chart

is U12 =
1
2(0,1,1,1)x3x4x5x6 so we find another singularity of type 1

2(1,1,1).

According to the GRDB prediction, we should obtain another 1
3(1,1,2) point, which we

find while examining the singular 0-strata of Y : there are only two such points disjoint from

C1∪C2: P1 = {x1 = x3 = x4 = x5 = 0} and P2 = {x2 = x3 = x5 = x6 = 0}. The equation of

s vanishes at P1, which is the origin of the chart U26 (a point of type 1
3(1,1,2)), and does

not vanish at P2.

Remark 3.1. When analyzing the singularity on C1, we make a point of examining

it in the chart U46, where we clearly see that the 1
2(1,1,1) singularity propagates. The

origin of U45 is a more singular point with a μ4-action, and in this chart the matter of

determining which singularity C1 acquires is more subtle. In general it may occur that both

charts containing a curve such as C1 have such points at the origin, though this is never

true for the examples in this paper.

3.1.2. Laurent inversion without point-struts at the basis of NU

We explain how to build the weight matrix of Y without the assumption in Remark 2.8.

The key fact is that the lattice of its fan is precisely DivTM
(Z)⊕NU (see discussion following

[15, Remark 5.4]). In order to determine the weight matrix we need to specify the rays of

this fan and write the sequences (2.1) for Y.

Suppose S = {(Di,χi)}si=1 is a scaffolding of P with shape Z. Recall from Definition 2.7

that this fixes a splitting of the ambient lattice of P as N = N ⊕NU , where N is the

character lattice of Z. Denote by u = dim(NU ), M = Hom(N,Z) and recall that the toric

divisors Δ1, . . . ,Δz on Z are a Z-basis of its divisor group DivTM
(Z).
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Theorem 3.2 [15]. The fan of Y has ambient lattice DivTM
(Z)⊕NU �

z⊕
i=1

ZΔi⊕Zu.

It has the following r+s rays:

• (Δi,0), with i= 1, . . . , z and

• (−Di,χi), since Di ∈
z⊕

i=1

ZΔi by construction.

It is inconvenient to think of high-dimensional toric varieties in terms of fans and cones

as opposed to GIT quotients, which is why we usually avoid this description. The rows of

the weight matrix output of Algorithm 2.9 span the kernel of the ray matrix ρ appearing in

the dual exact sequences (2.1) written for Y. This kernel can be computed directly because

the ray matrix contains an r×r identity block if we have u 0-struts at the basis of NU . This

is ultimately the same as imposing that the weight matrix begin with the identity block in

the algorithm.

We illustrate this by computing the weight matrix in the example in Section 3.1.1 using

its ray map. Recall z=4, u=1, r= s−u=2, and NU = 〈(0,0,1)〉. There is one 0-strut at the
origin of NU , i.e. (D0,χ0) = (0,(0,0,1)), and two other struts corresponding to (D1,χ1) =

(Δ1−Δ2+Δ3+Δ4,−(0,0,1)) and (D2,χ2) = (−2Δ1+3Δ2+Δ3−Δ4,−2(0,0,1)), therefore

in the basis {(Δ1,0), . . . ,(Δz,0),(0,(0,0,1))} the rays are:

Δ1 Δ2 Δ3 Δ4 −D0 −D1 −D2

1 0 0 0 0 −1 2

0 1 0 0 0 1 −3

0 0 1 0 0 −1 −1

0 0 0 1 0 −1 1

0 0 0 0 1 −1 −2.

Modulo a reordering of the rays, we obtain that its kernel is spanned precisely by the weight

matrix in Example 3.1.1. It is easy to see that the 0-strut condition is not necessary in order

to have an identity block. We illustrate this in the example below.

Consider variety #21 in Table 2, which is a codimension 21 Q−Fano threefold with

two singular points, of type 1
3(1,1,2) and 1

4(1,1,3), respectively. We construct this as a

deformation of the toric canonical P512391 to the Q-Fano Q38917. The polytope of P512391

supports a single rigid MMLP:

f = x+y+z+
1

xyz
+

2

xyz2
+

1

xy3z4
+

1

x2y3z3
+

1

x2y3z4

whose 1-step mutation (modulo a change of basis)

h=
xz2

y
+

x

z
+

1

z
+

y

z3
+

2y

xz3
+

y

x2z3
+

2y2

xz3
+

2y2

x2z3
+

y3

x2z3

is supported on the Newton polytope P in Figure 3.

Notice the bottom triangle suggests the shape Z is a variety admitting a contraction to

P2 (the polytope of one of its nef divisors is this triangle, and Z is a tower of projective

bundles). As in the previous case, the coefficients of h suggest a two-dimensional shape as
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Figure 3.

Newton polytope of h.

h is entirely supported on the edges of P. We aim for a complete intersection, therefore the

two options are Z = P2 and Z = F1.

Remark 3.3. The key issue here is that no single point proves to be a good candidate

as the basis of NU : the best option is (1,−1,2), however, N does not decompose as N⊕NU ,

where N is the two-dimensional ambient lattice of the bottom triangle, and NU the lattice

spanned by (1,−1,2) (since N⊕NU is of index two inside N ). The cases of NU = 〈(0,0,−1)〉
and NU = 〈(1,0,−1)〉 are unsuccessful — here the lattice decomposes as needed but when

analyzing the weight matrix obtained as in Section 3.1.1 we obtain that XP does not deform

to an orbifold. It is in general desirable to use a minimal amount of struts, and this is exactly

why the example below works.

Consider the scaffolding in Figure 4, with shape F1 (so z = 4 just as before) and three

struts Si. Decompose N = N ⊕NU with NU = 〈(0,0,1)〉 and follow the above method for

producing the ray map of Y : the ambient space is of dimension z+u = 5 and its fan is

given by z+ s = 4+3 = 7 rays in the lattice
⊕

iZΔi⊕NU . Proceeding exactly as in the

previous case, we obtain:

Δ1 Δ2 Δ3 Δ4 −D1 −D2 −D3

1 0 0 0 1 0 −3

0 1 0 0 −1 0 1

0 0 1 0 1 0 −2

0 0 0 1 0 −1 −1

0 0 0 0 −2 1 3

and the weight matrix is simply the two-dimensional kernel of the ray map.

The homogeneity type of the two line bundles which give XP are again given by the

relations in the fan of Z, written in terms of the Cox coordinates. One obtains the following,

modulo a reordering of the rays:
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Figure 4.

A scaffolding of f2.

x1 x2 x3 x4 x5 x6 x7 L1 L2

1 0 −3 3 −1 2 −2 2 0

0 1 2 −1 1 −1 2 0 1

with the stability condition ω = (−2,3). We can eliminate L2 by solving for x2 and the

rest of the verification is almost identical to the case in Section 3.1.1, down to the fact

that the ambient space is an orbifold which is singular along two curves (in this case,

C1 = {x4 =x5 =x6 =0} and C2 = {x1 =x3 =x6 =0}). We leave the details of this calculation

to the reader.

§4. Exploring the database to diversify examples

Constructing varieties using Laurent inversion appears to work best for varieties in higher

GRDB-codimension, at least given the set of shapes we have considered so far. In this

section, we explore examples in GRDB-codimensions ranging between 19 and 5, as well as

three examples in codimension 4 which have been constructed previously in [19], albeit in

a different format.

In some cases, several three-dimensional shapes appear, with arguably the most difficult

example we obtain being discussed at length in Section 4.2, a P1-bundle over a Pfaffian.

The remaining cases are are all towers of projective bundles.

4.1 Interesting 3D shapes

The shape Z can be any smooth toric variety, and so far surfaces have been sufficient

in the construction of all but two of the examples of Table 2: variety 8 was scaffolded

with shape P3 and variety 11 was scaffolded with shape Z1, which we introduce below. We

also list the 3D polarising polytopes of the toric varieties Zi which occur as shapes for the

constructions in Table 3.
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Other 3D shapes that occur come from products: P2×P1 and F1×P1. We also encounter

many of the 2D shapes in Table 2.

4.2 The 3D Pfaffian: Q33018

Consider the rigid MMLP

f = xy2z3+xy2z2+xyz2+2xyz+x+3yz2+2yz+y+4z

+
1

y
+3

z

x
+

3

x
+

1

xz
+

4

xy
+

1

xy2z
+

1

x2y
+

3

x2yz
+

1

x2y2z
+

1

x3y2z2

supported on the polytope P31470. Our attempts of applying Laurent inversion to f (and

P31470) itself did not yield sufficiently non-singular Fano threefolds, therefore, in order to

construct its mirror we consider its mutations. We find that f is mutation-equivalent (via

4 one-step mutations) to the Laurent polynomial:

g =
x

yz
+

x

yz2
+yz+2z+

z

y
+

1

y
+

1

yz
+

2

yz2
+

1

yz3
+

yz2

x

+
2yz

x
+

y

x
+

z2

x
+

4z

x
+

4

x
+

1

xz
+

z

xy
+

2

xy
+

1

xyz

with Newton polytope:

4.2.1. The weight matrix and the Pfaffian format

Figure 6 contains a scaffolding compatible with the polynomial g : two 2-dimensional

quadrilateral struts and one full-dimensional strut. Note that we cannot choose the

3-dimensional strut itself to be the polarizing polytope of the shape Z, as it has a

non-Q-factorial singularity (coming from the 4-valent vertex of the strut). To obtain the
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Figure 5.

Newton polytope of g.

correct object we make a small resolution and we recover Z2 below, described by its ample

polytope. Indeed, this shape is a P1-bundle over dP7, whose torus-invariant divisors are

labeled as in the picture

The variety we obtain is of codimension 4, albeit in a special configuration because of the

P1-bundle structure, which corresponds to the vertical directions Δ1 and Δ2 on the shape.

The weight matrix and line bundles are:

Δ1 Δ2 Δ3 Δ4 Δ5 Δ6 Δ7 H L1 L2 L3 L4 L5

1 0 0 1 0 −1 1 3 2 −1 1 2 0 3 1 2

0 1 0 0 1 1 1 0 0 1 1 1 2 1 1 1

0 0 1 −1 1 2 0 −1 −1 1 0 0 1 −1 1 1

x1 x2 x3 x4 x5 x6 y x7 x8 x9

where H corresponds to a hypersurface on Y which intersects a Pfaffian variety given by the

Li. The chosen ample class is ω = (1,1,1) =−KX =−KY +L, as discussed in Section 2.3.1
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Figure 6.

a scaffolding of f4.

(here U = ∅). Despite the fact that the chosen Z2 is not a tower of projective bundles,

we obtain XP as a toric Pfaffian complete intersection (TPCI). More precisely, in these

coordinates XP is given by the following six equations:

x4x5 = x1x2 and (4.1)

x7x9 = x2x3x8, yx9 = x2
2x3, yx8 = x2x7, x6x8 = x1x3x4x9, and x6x7 = x1x2x

2
3x4.

(4.2)

We briefly mention that we have obtained (4.1) and (4.2) from the 6 primitive relations

(in the sense of Batyrev) between the Δi in the fan of Z, which we rewrote in terms of

x4, . . . ,x9 and homogenized using x1,x2 and x3. The equation (4.2) corresponds to sections

of L1, L2, L3, L4, and L5, respectively, and fit into the format:⎛
⎜⎜⎜⎜⎝
0 x1x3x4 x6 y x2

0 0 x7 x8

-sym 0 x2x3 x9

0 0

0

⎞
⎟⎟⎟⎟⎠ ,

that is, they are the 4× 4 Pfaffians of this 5× 5 antisymmetric matrix. The format is a

tool for deforming this toric variety, however, before we proceed we simplify the situation:

since the first deformed equation is linear in y, we can solve for this coordinate, eliminate

equation (4.1) and obtain the weight matrix and line bundles appearing in Table 2:

x1 x2 x3 x4 x5 x6 x7 x8 x9 L1 L2 L3 L4 L5

1 0 0 1 0 −1 3 2 −1 2 0 3 1 2

0 1 0 0 1 1 0 0 1 1 2 1 1 1

0 0 1 −1 1 2 −1 −1 1 0 1 −1 1 1

where this is now a bona fide toric Pfaffian variety. In what follows, we slightly abuse

notation by still referring to the ambient space given by the new matrix as Y and to the

toric variety inside it as XP .
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XP is given by 5 binomial equations, obtained by substituting y in (4.2). To aid in

determining the deformation, we record the weights above each monomial and obtain the

following for XP :

AP =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

200 -112 110 010

0 x1x3x4 x6 x4x5+ . . . x2

101 30-1 20-1

0 0 x7 x8

011 -111

-sym 0 x2x3 x9

11-1

0 0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The weights of the matrix entries remain fixed when moving from XP to X. We

deform these equations by adding all monomials of each homogeneity type in the splitting

(maintaining the coefficient convention throughout). In other words, deforming a Pfaffian

variety is done not by adding all monomials in H0(Y,Li) until we obtain general sections,

as is the case for complete intersections, but by only including monomials which respect

the splitting as below:

A=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

200 -112 110 010

0

x2
1 + x3x8 +

x1x3x4 +

x2
3x

2
4

x6+x3x9

x1x2 + x4x5 +

x8x9+x2
4x6x1x4x9+

x2x3x4+x3x
2
4x9

x2+x4x9

101 30-1 20-1

0 x1x3+x2
3x4

x7 + x1x8 + x2
1x4 +

x2
3x

3
4 + x3x4x8 +

x1x3x
2
4

x8+x1x4+

x3x
2
4

011 -111

-sym 0
x2x3 + x5 + x4x6 +

x1x9+x3x4x9
x9

11-1

0 x2x4+x2
4x9

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The five equations of X are the Pfaffians of this matrix, which we omit writing down as

all the required information can be determined directly from the more compact form of A.

4.2.2. Singularities

GRDB suggests that we should find three singular points: 2× 1
2(1,1,1) and 1× 1

3(1,1,2).

The ambient space Y is not an orbifold, its non-Q-factorial locus consisting of both

curves and points. Given the stability condition is ω = (1,1,1) following the discussion in

Section 2.3.1, Y is covered by three non-orbifold charts: U15, U19, U68 and 17 orbifold charts:
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U123,U126,U146,U234,U237,U238, U267,U345,U346,U349,U357,U358, U379, U389,U467,U567, and

U679. We recall the notation Ui1...ik := {xi1 = . . .= xik = 1}.
We first discuss the six singular curves:

• C1 = {x2 = x3 = x4 = x6 = x7 = x8 = 0}. Note that this is a non-Q-factorial curve,

belonging to the charts U15 and U19 (notice in particular that x1 never vanishes here).

We restrict the equations of X to C1, which become the Pfaffians of

A|C1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

200 -112 110 010

0 x2
1 0 0 0

101 30-1 20-1

0 0 0 0

011 -111

-sym 0
x5+

x1x9
x9

11-1

0 0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

that is, all but two equations disappear and we obtain the system{
x9x

2
1 = 0

x2
1(x5+x1x9) = 0

This system has no solutions, as x5 = x9 = 0 does not belong to either chart containing

the curve C1.

• C2 = {x1 = x2 = x4 = x5 = x7 = 0}. This belongs to U68 and U389, therefore x8 �= 0. The

matrix A becomes:

A|C2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

200 -112 110 010

0 x3x8
x6+

x3x9
x8x9 0

101 30-1 20-1

0 0 0 x8

011 -111

-sym 0 0 x9

11-1

0 0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and we have the three surviving equations⎧⎨
⎩
x8(x6+x3x9)−x3x8x9 = 0

x2
8x9 = 0

x8x
2
9 = 0

This time the contradiction is x6 = x9 = 0.
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• C3 = {x1 = x2 = x4 = x5 = x8 = 0} belongs to U379 and U679, therefore both x7 and x9

do not vanish here. The matrix is

A|C3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

200 -112 110 010

0 0 x6+x3x9 0 0

101 30-1 20-1

0 0 x7 0

011 -111

-sym 0 0 x9

11-1

0 0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and among the equations notice x7x9 = 0, which is impossible in the above charts.

• C4 = {x1 = x4 = x6 = x7 = x9 = 0} belongs to U238 and U358 and

A|C4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

200 -112 110 010

0 x3x8 0 0 x2

101 30-1 20-1

0 0 0 x8

011 -111

-sym 0 x5+x2x3 0

11-1

0 0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

There are three remaining equations:⎧⎨
⎩
x8(x5+x2x3) = 0

x2(x5+x2x3) = 0

x3x8(x5+x2x3) = 0

whose only solution is x5+x3x2 = 04. This is one point belonging to both charts but

which is not the origin of either. Since U238 =
1
2(1,1,0,1,1,1)145679, and C4 is given by

the x5-axis which X intersects transversally, the point is of type 1
2(1,1,1).

• C5 = {x1 = x4 = x6 = x8 = x9 = 0} is almost identical to C4, except that we find a single
1
3(1,1,2) point.

• C6 = {x1 = x2 = x3 = x8 = x9 = 0} is similar to C3, and X does not intersect it.

The remaining singular points of Y which are not contained in C1, . . . ,C6 are P1 =

{x1 = x3 = x4 = x5 = x8 = x9 = 0}, P2 = {x1 = x2 = x3 = x4 = x5 = x7 = x9 = 0},

4 This binomial appears in all three equations, with arbitrary but fixed coefficients — sometimes
expressions look the same because of the coefficient convention, but may lead to a contradiction. That
is not the case in this example.
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and P3 = {x3 = x4 = x5 = x7 = x8 = x9 = 0}, that is, the origins of U267, U68, and U126,

respectively. The latter is the only point belonging to X, as all 4×4 Pfaffians of the matrix

A|P2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

200 -112 110 010

0 x2
1 x6 x1x2 x2

101 30-1 20-1

0 0 0 0

011 -111

-sym 0 0 0

11-1

0 0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

vanish. It is the second expected point of type 1
2(1,1,1).

4.2.3. Anticanonical degree

Since the shape Z is neither a tower of projective bundles [20, Theorem 2.21] [15, Section

8] nor a product of projective spaces [30, Proposition 5.1], existing theoretical results5 do

not determine the equations of XP in Y. As a cross-check that we have constructed the

correct variety X (i.e., a deformation of XP ), we therefore compute the anticanonical degree

of X and verify that it coincides with the prediction from GRDB, that is, 47/3.

We compute this degree inside an orbifold Ỹ quasi-isomorphic to Y, which is an obtained

by slightly changing the stability condition from ω= (1,1,1) to (for example) ω̃= (1+ε,1+
ε
2 ,1+

ε
3), where ε is small, which is now contained in a maximal-dimensional chamber of

the secondary fan. Since X avoids the non-orbifold locus of Y, it is isomorphic to X̃ ⊂ Ỹ

given by the same equations and in particular it has the same degree.

Write the Chow ring of Ỹ in terms of its generators M = (1,0,0), N = (0,1,0), and

P = (0,0,1). The relations are given by writing the components of the irrelevant ideal in

terms of M,N and P. In our case

Iω̃ =(x1,x3,x6) · (x2,x4,x5,x8,x9) · (x2,x5,x6,x9) · (x3,x5,x6,x9)·
(x1,x3,x7) · (x1,x4,x7,x8) · (x2,x4,x7,x8),

resulting in the relations:

MP (−M +N +2P ) = 0

N(M −P )(N +P )(2M −P )(−M +N +P ) = 0

N(N +P )(−M +N +2P )(−M +N +P ) = 0

P (N +P )(−M +N +2P )(−M +N +P ) = 0

MP (3M −P ) = 0

M(M −P )(3M −P )(2M −P ) = 0

N(M −P )(3M −P )(2M −P ) = 0.

5 Note that there are already some examples of successful Pfaffian and TCPI constructions. However, the
shapes involved are simpler: either 2D [15] [18] or a product [31].
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A key ingredient in finding (−K
˜X)3 is computing the fundamental class of the determinantal

variety X̃ by using the squaring principle [22, Proposition 9] and the corresponding Porteous

formula [22, Theorem 10], for which the set-up is as follows:

Theorem 4.1 (Porteous formula, [22]). Let E be a rank 5 homogeneous vector bundle

and L a line bundle on the simplicial toric variety Ỹ . If s : E⊗L→ E∨ is a general skew-

symmetric map, and X̃ the degeneracy locus inside Ỹ where s drops rank by 2, then the

cohomology class of X̃ is:

1
˜X =

c2 c3
1 c1

where ci = ci(E
∨⊗

√
L
∨
).

The squaring principle guarantees that we are allowed to perform computations involving√
L, as there exists a variety σ : Ŷ → Ỹ on which

√
L is a line bundle and the induced map

σ∗ :H∗(Ỹ ,Z)→H∗(Ŷ ,Z) is injective.

Recall that the matrix A represents a map

s : E⊗L=

5⊕
i=1

Li⊗L→ E∨ =

5⊕
i=1

L∨
i

and the variety X̃ is the degeneracy locus of the antisymmetric homomorphism of vector

bundles s on Ỹ . As all vector bundles involved are split, the Chern classes ci are easy to

determine in terms of M,N, and P.

From Section 2.3.1, we have L = −
∑5

i=1Li

2
= O(−4,−3,−1), so that E ⊗ L =

O(−2,−2,−1) ⊕ O(−4,−1,0) ⊕ O(−1,−2,−2) ⊕ O(−3,−2,0) ⊕ O(−2,−2,0). Using the

adjunction formula −K
˜X = −K

˜Y +L = O
˜Y (1,1,1) = M +N +P , we compute the degree

as follows (using Macaulay2 [21] for the very last equality):

(−K
˜X)3 = (M +P +N)3 ·1

˜X = (M +P +N)3 · (c1c2− c3) =

= (M +P +N)3(
∑
i

L̂i ·
∑
i<j

L̂iL̂j −
∑

i<j<k

L̂iL̂jL̂k) =
564

2213
N6,

where

L̂1 = L∨
1 ⊗

√
L∨ = (−2M −N)+

1

2
(4M +3N +P ) =

1

2
(N +P ),

L̂2 = L∨
2 ⊗

√
L∨ =

1

2
(4M −N −P )

L̂3 = L∨
3 ⊗

√
L∨ =

1

2
(−2M +N +3P )

L̂4 = L∨
4 ⊗

√
L∨ =

1

2
(2M +N −P )

L̂5 = L∨
5 ⊗

√
L∨ =

1

2
(N −P ).

Finally, we look at any chart, for example U678, and determine that
∏

i/∈{6,7,8}
Di =

36

2213
N6.

Since
∏

i/∈{6,7,8}
Di = 1 (the chart is smooth), we have that (−KX)3 = 564

36 = 47
3 .
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