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This work is concerned with the investigation of non-ideal (resistive) MHD effects on
the excitation of Alfvén waves by externally launched fast-mode waves, in simulated
tokamak plasmas; both continuum range, CR ({ωAlf (r)}min < ω < {ωAlf (r)}max) and
discrete range, DR, where global Alfvén eigenmodes, GAEs (ω < {ωAlf (r)}min) exist,
are considered. (Here, ωAlf (r) ≡ ωAlf [n(r), B0(r)] is an eigenfrequency of the shear
Alfvén wave.) For this, a cylindrical current carrying plasma surrounded by a heli-
cal sheet-current antenna and situated inside a perfectly conducting shell is used.
Toroidicity effects are simulated by adopting for the axial equilibrium magnetic
field component a suitable radial profile; shear and finite relative poloidal magnetic
field are properly accounted for. A dielectric tensor appropriate to the physical con-
ditions considered in this paper is derived and presented. When the resistive wave
equation is solved and the current drive by helicity injection, IHICD, is calculated,
the following illustrative results are found to hold. For CR, (i) the maximum power
absorption as well the maximum helicity injection current drive increase signifi-
cantly with decreasing resistivity (i.e. with increasing temperature); (ii) unlike the
power absorption, which is a maximum at a frequency between the lower and the
upper edge of the CR, the total current drive is a maximum at the lower edge, and
decreases strongly with increasing frequency; (iii) the behaviour of the efficiency
closely follows that of the current drive; (iv) the smaller the resistivity, the smaller
is the radial distance from the axis (x = 0) of the maximum current-drive density.
For DR, (i) the maximum power absorption in the discrete GAE case increases
with decreasing resistivity even more strongly than in the CR case; (ii) unlike the
CR case, the total helicity-injection current has, for almost all GAEs, a symmetric
frequency dependence about the line centre; its maximum value as well as the effi-
ciency increase strongly with decreasing resistivity; (iii) unlike the continuum case,
the efficiency is almost constant over the entire width of the discrete-mode range;
its value increases strongly with the GAE rank.

1. Introduction
Externally launched low-frequency waves may provide the additional, non-
inductive, steady-state current drive necessary for the operation of tokamaks in
reactor-relevant regimes. Ohkawa (1989) suggested that circularly polarized waves
carry non-zero helicity 〈A ·B〉, where A and B are respectively the vector potential
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and the magnetic field of the wave, and the brackets 〈·〉 indicate averaging over
a wave period; the current is due to the helicity injection. A full discussion of the
helicity-wave current drive (HWCD) is given in, for example, Chan et al. (1990), Kirov
et al. (1990), Tataronis and Moroz (1991), Fukuyama et al. (1993) and Elfimov et
al. (1994).

Now, the resonant excitation of shear Alfvén waves by externally launched fast
waves is considered to represent an efficient way of fusion-plasma heating (see e.g.
Tataronis and Grossman 1973; Tataronis 1975; Hasegawa and Chen 1976; Taylor
1989; Mett and Tataronis 1990; Mett and Taylor 1992; Tsypin et al. 1995; Wang et
al. 1995; Rauf and Tataronis 1996). Within ideal MHD, theoretical investigations
of HWCD generation by shear Alfvén waves (SAW), resonantly excited by an ex-
ternal antenna, in simulated tokamak plasmas have been recently carried out by
Cuperman et al. (1996) (for the continuum range – SAW-CR – and small aspect
ratio R/a = 1.3) and by Komoshvili et al. (1997) (for discrete, global Alfvén eigen-
modes – GAEs – situated in the frequency range ω < {ωAlf (r)}min, where ωAlf (r)
is an eigenfrequency of SAW-CR; ω = ωAlf (r) defines the location of the mode-
conversion layer where the spatial Alfvén resonance occurs). In both cases, sets of
the antenna’s poloidal (m) and ‘toroidal’ (n) wavenumbers leading to significant
positive (i.e. in the direction of the equilibrium current) current drive have been
formed.

Now, to obtain a better description of the physics involved, one has to consider
also dissipative effects (e.g. plasma resistivity). Two obvious reasons for this are as
follows.

(i) The normal-mode solutions in the continuum range posess logarithmic singu-
larities, which appear at positions where their eigenfrequencies match the local
Alfvén frequencies. Resistivity, even very small, would remove singularities and
render the solutions regular.

(ii) In the absence of dissipation (e.g. resistivity), the absorbed energy is not trans-
ferred to current drive and heat.

More general discussions of Alfvén-wave propagation in resistive non-uniform plas-
mas can be found, for example, in Mok and Einaudi (1985) and Einaudi and Mok
(1985).

In this paper we investigate resistivity effects on helicity-wave current drive gen-
erated by spatially resonant Alfvén waves excited in ‘simulated’ tokamak plasmas.
Thus we treat the case of a current-carrying cylindrical plasma (of radius a) with
periodic boundary conditions at the ends; the plasma is surrounded by a helical
sheet-current antenna of radius rA and by a perfectly conducting wall of a radius
rW (a < rA < rW ). Toroidicity effects are simulated by adopting for the axial mag-
netic field component a suitable radial profile; shear and finite relative poloidal field
are properly accounted for.

The paper is organized as follows. In Sec. 2 the basic equations used are presented
and the equilibrium magnetic field configuration simulating the toroidal tokamak
plasma is obtained. In Sec. 3 general explicit expressions for the components of the
dielectric tensor corresponding to this equilibrium are derived within the framework
of a two-fluid (resistive) model. The relevant wave equation based on the results of
Secs 2 and 3 is derived in Sec. 4, and the expressions for current drive and power
absorption are formulated in Sec. 5. A brief summary of the numerical algorithm
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used in the work is presented in Sec. 6. The results and their discussion are given
in Sec. 7. A summary is given in Sec. 8.

2. Configuration and model equations
2.1. Configuration

We consider a current-carrying cylindrical plasma of radius a and length 2πR, with
periodic boundary conditions at the ends, surrounded by a helical sheet-current
antenna of radius rA and a perfectly conducting wall of radius rw (a < rA < rw ).
In cylindrical coordinates, (r, θ, z) the equilibrium magnetic field is

B0(r) = B0z(ẑ + δθ̂), (1)

δ(r) ≡ B0θ(r)/B0z(r) < 1, (2)

where ẑ and θ̂ are unit vectors in the z and θ directions respectively. Obviously, this
equilibrium state implies concentric cylindrical magnetic surfaces.

The antenna current density is taken as

j = jAδD(r − rA) exp[i(mθ + kzz − ωt)], (3)

jA =
(
θ̂kz − ẑ

m

rA

)
J0. (4)

Here m and kz represent poloidal and ‘toroidal’ (axial) wavenumbers, J0 is half the
amplitude of the total current and δD(·) is the Dirac delta function.

2.2. Model equations

The two-fluid, inviscid model equations are (see e.g. Kulsrud 1983)

min
dvi
dt

= −∇pi + Zen

(
E +

vi × B
c

)
− Rei, (5)

men
dve
dt

= −∇pe − en
(

E +
ve × B
c

)
+ Rei, (6)

∇× E = −1
c

∂B
∂t
, (7)

∇× B =
4π
c

j +
1
c

∂E
∂t
. (8)

Here n = ni = ne is the particle number density; mi (me) and pi (pe) are the
ion (electron) mass, velocity and thermal pressure respectively; Rei is the rate of
transfer of momentum from ions to electrons by collisions. In what follows, we take
the ion charge Z = 1.

Using standard procedures, we obtain from (5) and (6) the following one-fluid
and generalized Ohm’s equations respectively:

min
dV
dt

= −∇p +
j× B
c

, (9)

(
νei +

d

dt

)
j =

e

me
∇pe +

ne2

me

[
E +

1
c

(
V− j

ne

)
× B

]
− (P− 1)νeij‖. (10)
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In these equations, the following notation is used:

V ≡ mivi +meve
mi +me

, j ≡ ne(vi − ve), p ≡ pi + pe. (11)

For Rei we use the expression (see e.g. Kulsrud, 1983)

Rei ≡ ne
( j‖
σ‖

+
j⊥B
σ⊥

)
, (12)

σ⊥ ≡
ne2

meνei
, σ‖ = 1.96σ⊥. (13)

Here σ⊥ and σ‖ are the electrical conductivities in the directions respectively par-
allel (‖) and perpendicular (⊥) to the equilibrium magnetic field B0; the average
electron–ion collision term is (see e.g. Braginskii 1964)

νei
−1 =

3
4(2π)1/2

m
1/2
e T

3/2
e

ne4Λ
, (14)

Λ =
{

23.4− 1.15 logn + 3.45 logTe (Te < 50 eV),
25.3− 1.15 logn + 2.3 logTe (Te > 50 eV),

(15)

where Λ is the Coulomb logarithm and Te in (15) has to be expressed in eV; the other
quantities are in Gaussian units. In (12), j‖ and j⊥B are the currents respectively
parallel and perpendicular to B0; j⊥B includes both the normal (to the magnetic
surface) component and the binormal (transversal, ⊥) component:

j⊥B = jN + j⊥. (16)

Thus, with the notation P ≡ σ⊥/σ‖ = 1/1.96, (12) can be rewritten as

Rei =
meνei
e

[j + (P− 1)j‖], (17)

where νei is the electron–ion collision frequency.
In the derivation of (9) and (10), the following reasonable approximations have

been used:

(i) neglect of electron inertia in (11) leading to V ≈ vi;

(ii) Te0 ≈ Ti0, leading to the result pi/mi − pe/me ≈ −pe/me.

Equations (9) and (10) are easily recognized as the one-fluid motion equation and
the generalized Ohm’s law respectively.

2.3. Equilibrium magnetic fields

For the case considered in this paper, namely B0 = B0 (0, B0θ, B0z) and ∂/∂θ =
∂/∂z = 0, and assuming V0 = 0, from the force–balance equation we obtain the
following equilibrium relations:

∂p0

∂r
=

1
c
j0⊥B0, (18)

0 =
1
c
j0NB0. (19)

Also, j0⊥ can be expressed as
j0⊥ = bzj0θ − bθj0z (20)

(bi(x) ≡ B0i(x)/B0(x), i = θ, z).
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The θ and z projections of the Ampère equation (8) provide

j0θ = − c

4π
∂B0z

∂r
, (21)

j0z =
c

4π
1
r

∂

∂r
(rB0θ). (22)

Substitution of the expressions for j0θ and j0z into (20) gives

j0⊥ = − c

4π

[
bz
∂B0z

∂r
+ bθ

1
r

∂

∂r
(rB0θ)

]
. (23)

Finally, by (23), we can bring (18) into the form

∂

∂r

(
p0 +

B2
0θ +B2

0z

8π

)
= −B

2
0θ

4πr
. (24)

Obviously, the actual r dependence of B0z and B0θ is determined – via Ampère’s
equation – by the equilibrium current j0. For convenience, we here assume a quite
general form for j0z(r), namely

j0z(r) = j0z(0)
[
1−

(
r

a

)2]ν
, (25)

where j0z(0) represents the current value at the plasma centre (r = 0) and ν > 1.
Now, integration of (22) provides the following expression for B0θ (x ≡ r/a):

B0θ(x) = B0θ(1) [1− (1− x2)
ν+1

]/x, (26)

where

B0θ(1) ≡ 2πa
c(ν + 1)

j0z(0). (27)

Next, integration of (24), with B0θ(x) given by (26), provides, after some algebra,
the following expression for B0z(x):

B2
0z(x) = B2

0z(0) + 8π[p0(0)− p0(x)] + 2(ν + 1)B2
0θ(1)

ν∑
n=0

(1− x2)
n+ν+1 − 1

(n + ν + 1)
. (28)

In the particular case ν = 2 considered here, (25), (26) and (27) read respectively

j0z(x) = j0z(0) (1− x2)
2
, (29)

B0θ(x) = B0θ(1)x(3− 3x2 + x4), (30)

B2
0z(x) = B2

0z(0)+8π[p0(0)−p0(x)]+0.1B2
0θ(1)[(1−x2)3(47−39x2+12x4)−47]. (31)

Finally, with the definitions

p0 ≡ n0(x)T0(x), (32)

α ≡ B0θ(1)/B0z(0), (33)

β(x) ≡ 8πp0(x)/B2
0(x), (34)

we can rewrite (30) and (31) respectively as

B0θ(x)
B0z(0)

= αx(3− 3x2 + x4), (35)
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B0z(x)
B0z(0)

]2

= 1 + β(0)− β(x) + 1
10α

2[(1− x2)
3
(47− 39x2 + 12x4)− 47]. (36)

For illustration, we choose

n0(x) = n0(0) (1− βnx2), βn = 0.99, (37)

T (x) = T (0) (1− βTx2), βT = 0.75. (38)

Then (36) reads[
B0z(x)
B0z(0)

]2

= 1 + x2β(0)[(0.99 + 0.75)− 0.99 · 0.75x2]

−α2x2(18− 27x2 + 20x4 − 7.5x6 + 1.2x8). (39)

Thus (35) and (39) represent a set of exact, consistent equations describing the
equilibrium state.

At this point, the following remarks are in order. In some earlier works devoted
to large-aspect-ratio tokamaks, B0z was considered to be r-independent (see e.g.
Appert and Václavı́k 1983; Ross et al. 1982). In Cuperman et al. (1996) the radial
profile B0z(x)/B0z(0) = (1 + εx)−1 was used, ε representing the inverse of the aspect
ratio. Here we remove this assumption by taking advantage of the consistent solu-
tion found for B0z, (39). First, noting that the equilibrium state is determined by
the parameters T (0), n(0), B(0) and α, and moreover that both T (0) and n(0) enter
the expression for β(0), it follows that the equilibrium is completely determined by
β(0) and α. Then, fixing these quanities, we define an equivalent ε value, εeq ≡ a/R
(where R is the major radius) by requiring at x = 1 the condition(

1
1 + εeq

)2

= 1 + β(0)[(βn + βT )− βn βT )]− α2(18− 27 + 20− 7.5 + 1.2),

where use of (39) has been made. This provides a close relation between εeq, β(0)
and α, namely

εeq = {1 + β(0)[(βn + βT )− βn βT )]− 4.7α2}−1/2 − 1.

3. Dielectric tensor operator
Linearization of (9) and (10) and neglect of pressure perturbations provides the
following results (we have used here the notation n = n0 + n(1),V = V(1),E =
E(1),B = B0 + B(1) and j = j0 + j(1), and in what follows, for simplicity, have omitted
the superscript (1)):

dV
dt

=
j× B0 + j0 × B

n0mic
, (40)(

1
τe

+
d

dt

)
j =

n0e
2

me

(
E +

V× B0

c
− j× B0 + j0 × B

n0ec

)
− P− 1

τe
j‖. (41)

Thus (40) and (41) describe small electromagnetic perturbations.

3.1. Coordinate systems

In the following, two orthogonal coordinate systems are used:

(i) cylindrical (C): (r, θ, z);
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(ii) local-magnetic (LM): (xN , x⊥, x‖), with

(∇× E)N =
∂E‖
∂x⊥

− ∂E⊥
∂x‖

, (42)

(∇× E)⊥ =
∂EN
∂x‖

−
∂E‖
∂xN

+
1

1 + δ2

[
r

(
δ

r

)′
E⊥ −

δ2

r
E‖

]
, (43)

(∇× E)‖ =
1
r

∂

∂xN
(rE⊥)− ∂EN

∂x⊥
− 1

1 + δ2

[
δ2

r
E⊥ −

(rδ)′

r
E‖

]
. (44)

Here the prime stands for d/dr, and δ(r) is defined by (2).
The following expressions relating components in the two systems of coordinates

hold:

EN = Er,

E⊥ = bzEθ − bθEz, Eθ = bzE⊥ + bθE‖,

E‖ = bθEθ + bzEz, Ez = −bθE⊥ + bzE‖.

Finally, the unit vectors of the local-magnetic coordinate system are

êN ≡ êr, ê⊥ ≡ ê‖ × êN , ê‖ ≡
B0

B0
. (45)

3.2. Derivation of the conductivity tensor

The calculation of the elements of the dielectric tensor requires first that of the
elements of the conductivity tensor defined by the relation

j = σ · E. (46)

To proceed, we assume that the perturbations can be described by Fourier-type
single harmonics:

V, j, E, B ∝ exp[i(kzz +mθ − ωt)]. (47)

Then (40) and (41) take the respective forms

V = − j× B0 + j0 × B
iωn0mic

, (48)

(νei − iω)j =
n0e

2

me

(
E− j× B0 + j0 × B

iωn0mic2 × B0 −
j× B0 + j0 × B

n0ec

)
− (P− 1)νeij‖.

(49)
To obtain (49), we have used (48) as well as the notation νei ≡ 1/τe.

Now, in LM coordinates, we have b ≡ B0/B0 = (0, 0, 1). Thus the following
relations hold:

(j× b)N = j⊥, (j× b)⊥ = −jN , (j× b)‖ = 0, (50)

[(j× b)× b]N = (j× b)⊥ = −jN , (51)

[(j× b)× b]⊥ = −(j× b)N = −j⊥, (52)

[(j× b)× b]‖ = 0. (53)

With these relations, and using also the notation Γ ≡ (νei − iω)/ωce, (49) can be
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written as

Γj =
n0ec

B0
E−M− (P− 1)

(
Γ +

iω

ωce

)
j‖, (54)

where

M ≡ ωci
iω

(
j0

B0
× B

)
× b +

j0

B0
× B. (55)

Projection of (54) onto the three directions of the LM coordinate system gives

ΓjN −
ωci
iω
jN + j⊥ =

n0ec

B0
EN −MN , (56)

Γj⊥ −
ωci
iω
j⊥ − jN =

n0ec

B0
E⊥ −M⊥, (57)

Γj‖ =
n0ec

B0
E‖ −M‖ − (P− 1)

(
Γ +

iω

ωce

)
j‖. (58)

Since (58) is independent of the previous two, we solve (56) and (57) for the com-
ponents jN and j⊥. With the notation

ψ ≡ Γ− ωci
iω
, ∆ ≡ 1 + ψ2, (59)

we obtain the solutions

jN =
1
∆

[
ψ

(
n0ec

B0
EN −MN

)
− n0ec

B0
E⊥ +M⊥

]
, (60)

j⊥ =
1
∆

[
ψ

(
n0ec

B0
E⊥ −M⊥

)
+
n0ec

B0
EN −MN

]
. (61)

To obtain the components of M, we first observe that the components of Faraday’s
equation can be written as

iω

c
BN = (∇× E)N = ik⊥E‖ − ik‖E⊥, (62)

iω

c
B⊥ = (∇× E)⊥ = ik‖EN − E‖′ + λE⊥ − γE‖, (63)

iω

c
B‖ = (∇× E)‖ = −ik⊥EN +

(rE⊥)′

r
− γE⊥ + µE‖. (64)

Here the following notation has been used:

λ ≡ r(δ/r)′

1 + δ2 , γ ≡ δ2/r

1 + δ2 , µ ≡ (rδ)′/r
1 + δ2 . (65)

Secondly, we note that, with the notation s ≡ j/B0, (55) reads

M =
ωci
iω

(s× B)× b + s× B. (66)

Since j0 = (0, j0⊥, j0‖), it follows that

(s× B)N = s⊥B‖ − s‖B⊥, (s× B)⊥ = s‖BN , (s× B)‖ = −s‖BN , (67)

[(s× B)× b]N = (s× B)⊥ = s‖BN , (68)

[(s× B)× b]⊥ = −(s× B)N = s‖B⊥ − s⊥B‖, (69)

[(s× B)× b]‖ = 0. (70)
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Combining (66)–(70) provides the following expressions for the components of M:

MN =
ωci
iω
s‖BN + s⊥B‖ − s‖B⊥, (71)

M⊥ =
ωci
iω

(s‖B⊥ − s⊥B‖) + s‖BN , (72)

M‖ = −s⊥BN . (73)

Finally, substituting (62)–(64) into (71)–(73), we obtain

iω

c
MN = −iksEN +

[
s⊥Ď1 − s‖

(
λ +

ωci
iω
ik‖

)]
E⊥

+
[
s⊥µ + s‖

(
Ď2 +

ωci
iω
ik⊥

)]
E‖, (74)

iω

c
M⊥ =

ωci
iω
iksEN +

[
− ωci
iω
s⊥Ď1 + s‖

(
ωci
iω
λ− ik‖

)]
E⊥

+
[
− ωci
iω
s⊥µ− s‖

(
ωci
iω
Ď2 − ik⊥

)]
E‖, (75)

iω

c
M‖ = is⊥(k‖E⊥ − k⊥E‖), (76)

where

Ď1 ≡ ∂r +
1
r
− γ, Ď2 ≡ ∂r + γ, ks ≡ ik⊥s⊥ + ik‖s‖. (77)

We are now in a position to give the RF current components, (60),(61) and (58).
After some algebra, we obtain the following results:

jN
C = (ε1 +K)EN + (ε2 −K⊥Ď1 +K‖λ− ik‖K‖Θ)E⊥

+(−µK⊥ −K‖Ď2 + ik⊥K‖Θ)E‖, (78)

j⊥
C = (−ε2 +KΘ)EN + (ε1 −K⊥ΘĎ1 +K‖λΘ + ik‖K‖)E⊥

+(−µK⊥Θ−K‖ΘĎ2 − ik⊥K‖)E‖, (79)

j‖
C = −ik‖L⊥E⊥ + (ε3 + ik⊥L⊥)E‖, (80)

with the notation

C ≡ − iω
4π

(
c

ω

)2

, K⊥,‖ ≡
Γ
∆

4π
c
s⊥,‖,

L⊥,‖ ≡
4π
c

s⊥,‖
P(Γ + iω/ωce)− iω/ωce

,

K ≡ ik⊥K⊥ + ik‖K‖, Θ ≡ 1− (ωci/iω)ψ
Γ

,


(81)

ε1 ≡
(
ω

cA

)2 1− (iω/ωci)Γ
[1− (iω/ωci)Γ]2 − (ω/ωci)2 , (82)

ε2 ≡
(
ω

cA

)2
iω/ωci

[1− (iω/ωci)Γ]2 − (ω/ωci)2 , (83)
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ε3 ≡
iωωci
c2
A

[
P
(

Γ +
iω

ωce

)
− ω

ωce

]−1

. (84)

Now, the elements of the conductivity tensor can be written as:

σNN = C(ε1 +K), (85)

σ̌N⊥ = C(ε2 −K⊥Ď1 +K‖λ− ik‖K‖Θ), (86)

σ̌N‖ = C(−µK⊥ −K‖Ď2 + ik⊥K‖Θ), (87)

σ⊥N = C(−ε2 +KΘ), (88)

σ̌⊥⊥ = C(ε1 −K⊥ΘĎ1 +K‖λΘ + ik‖K‖), (89)

σ̌⊥‖ = C(−µK⊥Θ−K‖ΘĎ2 − ik⊥K‖), (90)

σ‖N = 0, (91)

σ‖⊥ = C(−ik‖L⊥), (92)

σ‖ ‖ = C(ε3 + ik⊥L⊥). (93)

Here ‘ ˇ ’ indicates that the tensor element contains the operation ∂r.
Upon substituting (46) into Ampère’s law, we obtain

∇× B =
(

4π
c
σ− iω

c
I

)
E = − iω

c

(
I− 4π

iω
σ

)
E. (94)

Therefore
ε = I− 4π

iω
σ, (95)

where ε is the dielectric tensor and I is the unit tensor.
For convenience, we define

B =
iω

c
B. (96)

Then multiplication of (94) by iω/c leads to

∇×B = εE, (97)

where
ε ≡

(ω
c

)2
ε =

(ω
c

)2
I +

σ

C . (98)

Finally, making use of the elements of the conductivity tensor σ ((85)–(93)), we
obtain the desired, explicit elements of the dielectric tensor ε as follows:

εNN = ε1 +K +
(
ω

c

)2

, (99)

ε̌N⊥ = ε2 −K⊥Ď1 +K‖(λ− ik‖Θ), (100)

ε̌N‖ = −µK⊥ −K‖Ď2 + ik⊥K‖Θ, (101)

ε⊥N = −ε2 +KΘ, (102)

ε̌⊥⊥ = ε1 −K⊥ΘĎ1 +K‖(λΘ + ik‖) +
(
ω

c

)2

, (103)

ε̌⊥‖ = −µK⊥Θ−K‖(ΘĎ2 + ik⊥), (104)

ε‖N = 0, (105)

ε‖⊥ = −ik‖L⊥, (106)

ε‖ ‖ = ε3 + ik⊥L⊥ +
(
ω

c

)2

. (107)
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4. The wave equation
We use the LM coordinates defined in Sec. 3.1. For the case E‖ = 0 considered here,
utilizing standard procedures, from (7)–(10) and (99)–(107), after some lengthy
algebra, we obtain the following wave equations for the RF-field components E⊥
and B‖:

A d

dr

[
E⊥
B‖

]
=
[
a11 a12

a21 a22

] [
E⊥
B‖

]
, (108)

where

a11 = k⊥G−
b2
z

r
A , (109)

a12 =A + ik⊥(ik⊥ +K⊥) , (110)

a21 = G(G + iλK‖)−A[A− λ(λ−ΘK‖)] , (111)

a22 = (K⊥ + ik⊥)(iG− λK‖) +A
(

ΘK⊥ −
b2
θ

r

)
. (112)

The other field components are related to E⊥ and B‖ by the following algebraic
relations:

BN = −ik‖E⊥ , (113)

AEN = −iGE⊥ + (ik⊥ +K⊥)B‖ , (114)

AB⊥ = (λA + k‖G)E⊥ + ik‖(ik⊥ +K⊥)B‖. (115)

In (108)–(115) the following definitions have been used:

A ≡ A− k2
‖ + ik‖K‖ , (116)

A ≡
(
ω

c

)2

+ ε1 , (117)

G ≡ i[−ε2 + ik‖ΘK‖ − λ(K‖ + ik‖)]. (118)

The quantities K‖, K⊥, Θ, ε1 and ε2 are defined in Sec. 3.2.
Note that in the limit of ideal MHD (zero resistivity), the (complex) quantityA

reduces to the quantity A, which is always real and characterizes the continuum
range (A = 0) of the Alfvén wave. Thus we redefine here the continuum range by
the condition ReA = 0.

5. Current drive and power absorption
The electron current-drive (CD) density induced via helicity injection (HI), aver-
aged over magnetic surfaces of a cylindrical plasma is given by (see e.g. Elfimov et
al. 1994)

〈jHICD〉 =
B0z

4enη‖B2
0

{
B0θ

r2

∂

∂r

[
r2
(
j∗r
Eθ
iω

)]
+
B0z

r

∂

∂r

[
r

(
j∗r
Ez
iω

)]}
+ c.c. (119)

Here Eθ and Ez are respectively the θ and z components of the wave, j∗r is the
complex conjugate of the oscillatory radial plasma current, and η‖ is the electrical
resistivity defined by the relation (see e.g. Braginskii 1964)

η‖ ≡
1
σ‖

=
meνei

1.96ne2 . (120)
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Using the normalizations

ω̄ =
ω

ωci(0)
, x =

r

a
, T̄ =

T

T (0)
, n̄ =

n

n(0)
,

j̄ = j
4πa
cB(0)

, Ē = E
c

aB(0)ωci(0)
,

 (121)

we may bring (119) to the form

〈j̄HICD〉 =
CHI T̄ 3/2

ω̄n̄Λ
bz

{
bθ
x2

∂

∂x
[x2 Im(j̄∗r Ēθ)] +

bz
x

∂

∂x
[x Im(j̄∗r Ēz)]

}
, (122)

where the constant CHI is defined by

CHI ≡ 3× 1.96
8c(2π)1/2

B(0)T (0)3/2

n(0)e3(me)1/2
. (123)

The total HWCD is

IHICD = 2π
∫ a

0
〈jHICD〉r dr , (124)

or, after some algebras,

ĪHICD =
Q0

ω̄

{∫ 1

0
V1(x)

dU1(x)
dx

dx +
∫ 1

0
V2(x)

dU2(x)
dx

dx

}
, (125)

where

V1(x) ≡ T̄ 3/2

n̄Λ
bzbθ
x
, U1(x) ≡ x2 Im(j̄∗r Ēθ) ,

V2(x) ≡ T̄ 3/2

n̄Λ
b2
z, U2(x) ≡ x Im(j̄∗r Ēz) ,

Q0 ≡ 1
2caB(0)CHI , I ≡ 1

2caB(0)Ī .


(126)

Finally, integration by parts brings (125) to the form

ĪHICD =
Q0

ω̄

[
U1(1)V1(1) + U2(1)V2(1)−

∫ 1

0
U1
dV1

dx
dx−

∫ 1

0
U2
dV2

dx
dx

]
. (127)

The current density j̄∗r appearing above is obtained from (46). In Sec. 7, where the
calculation results are presented, the value ĪHICD/Q0 is implied.

For the present configuration (a cylindrical plasma surrounded by a helical sheet-
current antenna), the power per unit length absorbed by the plasma column is (see
e.g. Appert and Václavı́k, 1983):

P = − 1
4acRe(E⊥B∗‖ )r=a. (128)

With the normalizations used in this paper, (128) can be rewritten as

P = −P0 Re(Ē⊥B̄∗‖ )r=a ≡ P0P̄ , (129)

where B̄ ≡ B/B(0) and

P0 = 1
4a

2ωci(0)B2(0). (130)

6. Numerical algorithm
The solution method employed in this work is based on a fourth-order Runge–
Kutta algorithm with an adjustable grid size. In line with Villard et al. (1986) and
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Cuperman et al. (1996), we solve (108) for the rf field components E⊥ and B‖,
subject to the following boundary conditions:

(i) at r = 0, regularity of the (plasma) solution;

(ii) at r = a, the continuity of the plasma-vacuum solutions;

(iii) at r = rA, the requirement that the magnetic field components match those
due to the surface currents in the antenna;

(iv) at r = rw, an infinitely conducting metallic wall (Br(rw) = 0).

Full details are given in the references indicated above.

7. Results and discussion
For illustration, the following geometrical and physical parameters are considered
here:

xA ≡
rA
a

= 1.2, xw ≡
rw
a

= 1.5, a = 31 cm,

B0z(0) = 1.0 T, n(0)T (0) = 1016 eV cm−3,

m = −1, k̄z ≡ kza = −0.3, α = 0.2.

For convenience, we analyse separately the continuum range of Alfvén waves
(CR) (ωcL 6 ω 6 ωcR) and the discrete range (DR) with global Alfvén eigenmodes
(GAEs).

7.1. Continuum range

7.1.1. Frequency spectra. Some illustrative results of our investigations are repre-
sented in Figs 1(a–d). Thus, Figs 1(a–c) show respectively the frequency dependence
of the total power absorption P̄ (128), the total current drive ĪHICD (125) and the ef-
ficiency S ≡ ĪHICD/P̄ for electrical-resistivity values corresponding to temperatures
T1 = 80 eV, T2 = 100 eV and T3 = 120 eV. In Fig. 1(a), the labels on the curve P̄ (T2),
namely† cL, c1 and cR indicate values corresponding to the lower edge frequency
of CR, the main peak frequency and the upper edge frequency of CR respectively.
(Similar frequency values – not indicated – do exist also for the curves P̄ (T1) and
P̄ (T3).)

Inspection of Figs 1(a–c) indicates the following.

(i) The maximum power absorption, as well as the corresponding normalized fre-
quency values, increase almost linearly with the temperature (Fig. 1a).

(ii) The maximum HI current drive increases almost linearly with the temperature,
and, unlike the total power absorption, occurs at lower Alfvén frequency ωcL.
A very strong decrease with ω̄ after ω̄cL is apparent in each case (Fig. 1b).

(iii) The efficiency behaviour follows closely that of the current drive (Fig. 1c).

For completness, in Fig. 1(d) we plot the radial profile of ReA (A is the coefficient
of the derivative term in (108), see (116)). The meaning of the notation cL, c1 and

† For simplicity, we replace the notation {ωAlf}min and {ωAlf}max by cL and cR respectively.
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Figure 1. Frequency dependence of the total power absorption P̄ , (128) (a), total helicity-
injection current drive ĪHICD, (125) (b), and efficiency S = ĪHICD/P̄ (c), for three electri-
cal-resistivity values corresponding to the temperatures T1 = 80 eV, T2 = 100 eV and
T3 = 120 eV. The symbols cL, c1 and cR indicate values corresponding to the lower edge,
maximum power absorption and upper edge of the continuum Alfvén spectrum, respectively.
(d) shows the radial profile of ReA (whereA is defined by (116)) for ω̄ = ω̄cL, ω̄c1 and ω̄cR
respectively.

cR is the same as in Fig. 1(a); the dotted, solid and dashed curves correspond to
the temperatures T1, T2 and T3. As can be seen, the curves have at least one zero;
in the ω̄ = ω̄cL case the two zeros coalesce, and the radial distances of the coalesced
zeros are, within less than 10−10, the same for all three temperatures.

A more detailed analysis of Fig. 1(a) shows that, in fact, in the domain ω̄ =
ω̄cL + δω̄ (δω̄ � ω̄cL) additional resonant peaks in the power absorption do exist
(see Fig. 2a). For example, in the case labelled T2, we find a sequence of peaks at
ω̄cL < ω̄c3 < ω̄c2(< ω̄c1). For completeness, in Figs 2(b–d) we show the ω̄ dependence
of the HI current drive and efficiency corresponding to Fig. 2(a). Also, in Fig. 2(d)
we plot the function ReA versus x for the three frequency values corresponding
to the points labelled cL, c3 and c2 in Fig. 2(a).
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Figure 2. Enlargement of the frequency spectra for T2 shown in Figs 1(a–d), in the domain
ω̄ = ω̄cL + δω̄, δω̄ � ω̄cL (for ω̄ = ω̄cL, ω̄c3 and ω̄c2).

7.1.2. Radial profiles (localization) of the HI current drive. For illustration, we
present in Figs 3(a–c) the radial profiles of the HI current drive corresponding
to the frequencies ω̄cL, ω̄c3 and ω̄c2 defined in Fig. 2 (on the curve P (T2)). Also, in
Figs 4(a–c) we compare the radial profiles associated with the frequencies ω̄cL, ω̄c1
and ω̄cR corresponding to the three temperatures considered in Fig. 1. The results
can be summarized as follows (see also Table 1).

(i) For a given temperature (e.g. T2 = 100 eV), the maximum HI current drive den-
sity (jHICD)max, increases significantly with frequency; on the other hand, the
radial distance of (jHICD)max changes only slightly with ω̄. Indeed, normalizing
frequencies to ωcL, currents to [jHICH (ω̄cL)]max and radial distances to that cor-
responding to [jHICH (ω̄cL)]max one finds the relative numbers shown in Table 2.

(ii) Comparison of the results obtained for the three temperatures, T1 − T3, shows
that (a) for each one of the frequencies ¯̄ωcL, ¯̄ωc1, and ¯̄ωcR, the maximum HI
current drive density increases significantly with the temperature; and (b) the
radial localization of the maximum current, while being almost the same at ωcL
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Figure 3. Radial profile of the HI current drive density, (122), corresponding to the
frequency values ω̄cL, ω̄c3 and ω̄c2.

(which is itself almost T -independent) decreases with increasing temperature
that is clearly seen in Table 3.

7.1.3. Structure of the EM wave field components. Inspection of (119) for the HI
current-drive density indicates that, all other parameters being fixed, jHICD depends
on the electrical resistivity η‖ = η‖(T ) (120) in two ways:

(a) directly through the term multiplying the expression in the curled brackets
(∼ 1/nη‖ ∼ T 3/2/n);

(b) indirectly, through Rei (or equivalently through the quantity νei/ωce, which
affects the solutions of the wave equation).

Now, it is found that, in addition to the obvious increase with temperature due
to the multiplying quantity, the value of the expression in the curly brackets also
increases with temperature, consistent with the results in Figs 1–4. For illustration,
we present in Figs 5(a–f ) the radial profiles of the field components ReE⊥ (left) and
ImE⊥ (right) obtained as a solution of the wave equation (108) for the same three
temperature values indicated above; from top to bottom, ω̄ = ω̄cL (a, d), ω̄ = ω̄c1
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Figure 4. As Fig. 3, but for frequency values ω̄cL (a), ω̄c1 (b) and ω̄cR (c).

Table 1. Maximum helicity-injection current drive and radial distance for four relevant nor-
malized frequency values, namely ω̄cL, ω̄c3, ω̄c2 and ω̄c1 (lower edge of the continuum, closest
peak, next-to-closest peak and maximum peak of the continuum respectively.

T1 T2 T3

ω̄cL 0.055216 0.0617070 0.0675683
(j̄HICD)max 1.717× 103 2.645× 103 3.837× 103

x[(j̄HICD)max] 0.55717 0.55699 0.55693

ω̄c3 0.05521584 0.0617072 0.06756869
(j̄HICD)max 2.679× 103 4.265× 103 6.751× 103

x[(j̄HICD)max] 0.55833 0.55825 0.55854

ω̄c2 0.0552192 0.0617112 0.0675732
(j̄HICD)max 5.259× 103 8.506× 103 1.256× 104

x[(j̄HICD)max] 0.56498 0.56523 0.56549

ω̄c1 0.0632156 0.0703737 0.0769017
(j̄HICD)max 1.3319× 104 1.9563× 104 2.8277× 104

x[(j̄HICD)max] 0.82648 0.82404 0.82279
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Table 2. Relative frequency, maximum current drive and radial distance corresponding
to the relevant frequency values ω̄cL, ω̄c3 and ω̄c2 for T = 100 eV. Here ¯̄ωi = ω̄i/ω̄cL,

(¯̄j
HJ

CD)max ≡ (j̄HICD,i)max/(j̄HICD,cL)max and x̄ = xi/xcL, where i=c3, c2.

cL c3 c2

¯̄ω 1 1.001 1.002
(¯̄j
HI

CD)max 1 1.5 2.0
x̄[(j̄HICD)max] 1 1.001 1.002

Table 3. As Table 2, but for ω̄c1 (corresponding to maximum power absorption) and ω̄cR
(upper edge of the continuum).

cL c1 cR

T1 T2 T3 T1 T2 T3 T1 T2 T3

¯̄ω 0.8948 1.0 1.0949 1.0244 1.1404 1.2462 1.2189 1.3241 1.4191
(¯̄j
HI

CD)max 0.6493 1.0 1.4508 5.0352 7.6275 10.689 3.8633 6.1605 8.9071
x̄[(¯̄j

HI

CD)max] 1.0003 1.0 0.9999 1.4838 1.4794 1.4772 1.6158 1.6008 1.5883

(b, e) and ω̄ = ω̄cR (c, f ). As can be seen, the basic features mentioned above, namely
the increase in field amplitude and the shift towards smaller radial distances of its
maximum value, are clearly demonstrated.

7.1.4. Scaling relations. Finally, to explore the range of validity of the results ob-
tained so far, we have solved the problem for temperatures between 20 and 1000 eV.
The results are presented in Figs 6(a–c). As can be clearly seen, the previous con-
clusions hold here as well. More specifically, the following scaling laws hold:

P̄max = 0.001 687 T̄ 0.4378,

(ĪHICD)max = 0.1037 T̄ 0.7854,

Smax = 86.43 T̄ 0.3033,

ω̄(Smax) ≈ ω̄cL = 0.006 299 T̄ 0.4950.

7.2. Global Alfvén eigenmodes

7.2.1. Total power absorption. So far only the continuum range of the Alfvén-wave
(CAW) spectrum has been considered (see Figs 1–6 and Tables 1–3). We now con-
sider the discrete, global Alfvén eigenmodes (GAEs). A schematic representation
of the full power-absorption spectrum (CR + DR) results is given in Fig. 7, for the
three temperatures (i.e. resistivity values) used in Fig. 1 (top row, T1; middle, T2;
bottom, T3).

The following remarks hold:

(i) for the given parameters, five discrete, very narrow peaks are shown to exist,
namely, from left to right, G0 (the first radial mode) to G4 (the fifth radial
mode);

(ii) the frequencies corresponding to G0, . . . ,G4 accumulate below ωcL;

(iii) the peak-power absorbed at these frequencies decreases strongly with Gi (i =
0, 1, . . . , 4): P̄ (i) � P̄ (i + 1);
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the component E⊥. From top to bottom: ω̄ = ω̄cL, ω̄ = ω̄c1 and ω̄ = ω̄cR respectively. The
dotted, solid and dashed curves correspond respectively to the temperatures T1, T2 and T3

indicated in Fig. 1.
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Figure 6. As Figs 1(a–c), but for the following sequence of temperatures (in eV): 20 (the
first curve), 40, 60, 80, 100 (marked T2), 200, 400, 600, 800 and 1000.

(iv) however, even P̄max(4), which is the smallest in the DR range, is a factor of about
2.7 (T1) to 6 (T3) larger than the maximum power absorbed in the continuum
range;

(v) in all cases, the relative width of the peak, ∆ωi(P̄i = 0.5 P̄i,max)/ωi, is infinites-
imally small;

(vi) increasing the temperature results in a significant increase of the maximum
power absorption as well as in a shift towards higher values of the correspond-
ing frequencies.
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Table 4. Illustrative residual relative frequencies 1−ωi/ωcL, total power absorption Pi/PcL
and width ∆ωGi/ωGi for the temperatures T1 (80 eV), T1 (100 eV) and T1 (120 eV). Here, the
illustrated GAEs are i = 0, 2, 4; ωc1 is the frequency corresponding to the maximum power
absorption in the continuum; ∆ωGi the width corresponding to half of the maximum PGi
value.

T1 T2 T3

1 − ωG0/ωcL 0.1246 0.1260 0.1272
P (ωG0)/PcL 4.15× 104 6.17× 104 8.36× 104

∆ωG0/ωG0 3.93× 10−6 2.56× 10−6 1.83× 10−6

1 − ωG2/ωcL 8.41× 10−4 8.69× 10−4 8.94× 10−4

P (ωG2)/PcL 8.23× 101 5.44× 102 1.23× 103

∆ωG2/ωG2 2.50× 10−6 1.69× 10−6 1.21× 10−6

1 − ωG4/ωcL 4.45× 10−6 4.77× 10−6 4.96× 10−6

P (ωG4)/PcL 3.125 4.709 6.523
∆ωG4/ωG4 5.73× 10−6 5.61× 10−6 5.51× 10−6

1 − ωc1/ωcL −0.145 −0.140 −0.138
P (ωc1)/PcL 1.204 1.159 1.099

7.2.2. Total helicity injection current drive and efficiency. Figures 8 and 9 show re-
spectively the frequency dependences of ĪHICD and S corresponding to the GAEs
G0, . . . ,G4, for the temperatures T1, T2 and T3 (top, middle and bottom rows, re-
spectively). As can be seen (see Table 5),

(i) like the power-absorption, the total HI current drive increases strongly with
decreasing frequency value;

(ii) in all cases, the GAE current values are much larger (or larger) than the con-
tinuum ones;

(iii) the maximum GAE current values increase strongly with increasing tempera-
ture (i.e. with decreasing resistivity);

(iv) unlike the continuum case, the total HI current values are almost symmetric
functions of frequency; in the continuum case, they are very strongly decreas-
ing with increasing frequency;

(v) unlike the continuum case, the efficiency is almost constant over the entire
frequency width of each GAE peak; it increases very strongly with the GAE
rank, eventually reaching (about) the value of the maximum efficiency for the
continuum: S0 < S1 < S2 < S3 < S4

<∼ ScL.

7.2.3. Localization of the HI current-drive density, jHICD. In Figs 10(a–e), the radial
profiles jHICD(x) (119) are presented for the temperature values T1, T2 and T3 (dotted,
solid and dashed curves respectively). As can be seen,

(i) for all G0, . . . ,G4 modes, significant, mainly positive, HI current-drive density
radial profiles are found;

(ii) the values of the maximum current density increase very significantly with
temperature, thus supporting the findings for the total current shown in Fig. 8;
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Table 5. Total HI current drive ĪHICD and efficiency S = ĪHICD/P̄ for several relevant frequency
values and temperatures T1, T2 and T3. Here ω̄i = ωi/ωcL and S̄i = Si/ScL (Si ≡ Ii/PGi
and ScL ≡ IcL/PcL).

T1 T2 T3

ω̄G0 4.834× 10−2 5.393× 10−2 5.897× 10−2

I0,max/IcL 7.20× 101 8.61× 101 9.79× 101

S0,max 0.555 0.475 0.420

ω̄G2 5.517× 10−2 6.165× 10−2 6.751× 10−2

I2,max/IcL 28.34 34.51 39.69
S2,max 1.66× 101 1.43× 102 1.26× 101

ω̄G4 5.522× 10−2 6.171× 10−2 6.757× 10−2

I4,max/IcL 2.202 2.709 3.148
S4,max 225.2 195.8 173.2

ω̄cL 5.522× 10−2 6.171× 10−2 6.757× 10−2

IcL/IcL 1 1 1
ScL 319.5 340.4 358.9

ω̄c1 6.322× 10−2 7.037× 10−2 7.690× 10−2

Ic1/IcL 1.754× 10−2 1.465× 10−2 1.227× 10−2

Sc1 4.657 4.303 4.005

Table 6. Localization of the maximum HI current drive density for the modes G0, . . . ,G4.

mode

G0 G1 G2 G3 G4

x[(jHICD)max]
(T1) 0.698 878 0.609 020 0.562 471 0.561 328 0.556 450
(T2) 0.636 792 0.610 020 0.562 985 0.561 544 0.556 506
(T3) 0.697 018 0.611 435 0.563 645 0.562 017 0.556 541

(iii) the radial distance (from the axis x = 0) of the maximum current density,
x[(jHICD)max], decreases with increasing mode rank, as is found also in the
continuum-range case (see Fig. 4); this is shown in Table 6 (we recall that
in the CR case, for the same temperatures, x[(jHICD)max] ranges between 0.826
and 0.8222, i.e. it is less centred).

7.2.4. Solutions of the wave equation. For completness, in Fig. 11 we show the radial
profiles of the field component Re(E⊥) (left) and Im(E⊥) (right) as obtained from
the solution of (108), for the frequencies G0, . . . ,G4 indicated in Fig. 7; the dotted,
solid and dashed curves correspond to the temperatures T1, T2 and T3 respectively.†
Thus

(i) the number of zeros of Re(E⊥), which determines the rank of the mode Gi, is
evident;

† For clarity, in Figs 11(a–e), only the interesting parts of the profiles are shown.

https://doi.org/10.1017/S0022377897005692 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377897005692


830 C. Bruma, S. Cuperman and K. Komoshvili

20
31

.6
7

–3
00

.8
5

(a)

G0

0

30
52

.6
0

–
68

.9
0

(b)

0.5 1.0
x

jH
I

C
D

jH
I

C
D

G1

0 0.5 1.0
x

52
02

.6
0

(c)

G2

0.40

40
12

.8
0

(d)

0.55 0.70
x

jH
I

C
D

jH
I

C
D

G3

0.530 0.565 0.600
x

50
18

.5
6

–7
4.

74

(e)

jH
I

C
D

G4

0.55 0.56 0.57
x

Figure 10. Radial profiles of the HI current-drive density corresponding to the five GAEs
G0, . . . ,G4 shown in Fig. 7.

(ii) the overall behaviour of the relative maximum intensity, structure and local-
ization is such as to support the general features found for the power absorbed,
current density and total current found and described above.

(Note that, in all cases, max|ReE⊥| � max|ImE⊥|).
Finally, in Fig. 12 we show the same information as in Fig.11, for the field compo-

nent EN . Unlike the E⊥-component, here the relation max|ImEN | � max|ReEN |
holds.

8. Summary
We have carried out a systematic investigation of resistive effects on the helicity-
wave current drive generated by Alfvén waves in simulated tokamak plasmas.

For this purpose, a dielectric tensor appropriate for the physical conditions con-
sidered in this paper has been derived and presented. Both the continuum range
(CR) and the discrete range (DR-GAE) have been considered.

The results of our combined analytical and computational investigation, illus-
trated in Figs 1–11 and Tables 1–6, reveal the following.
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Figure 11. Solution of the wave equation for the real (left) and imaginary (right) parts of
the component E⊥. The radial profiles shown correspond respectively to the discrete modes
G0, . . . ,G4 belonging to the GAE spectrum. The dotted, solid and dashed curves correspond
to the temperatures T1, T2 and T3 respectively.
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Figure 12. As in Fig. 11, but for the field component EN .

Continuum range

(i) The maximum power absorption as well the maximum helicity-injection cur-
rent drive increase significantly with decreasing resistivity (i.e. with increasing
temperature).
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(ii) Unlike the power absorption, which is a maximum at a frequency between the
lower and the upper edge of the CR, the total current drive is a maximum at
the lower edge, and decreases strongly with increasing frequency.

(iii) The behaviour of the efficiency closely follows that of the current drive.

(iv) The smaller the resistivity (i.e. the larger the temperature), the smaller is the
radial distance from the axis (x = 0) of the maximum current-drive density.

Discrete range

(i) The maximum power absorption in the discrete GAE case increases with de-
creasing resistivity even more strongly than in the CR case.

(ii) Unlike the CR case, the total helicity-injection current has, for almost all GAEs,
a symmetric frequency dependence about the line centre; its maximum value
as well as the efficiency increase strongly with decreasing resistivity.

(iii) Unlike the continuum case, the efficiency is almost constant over the entire
width of the discrete mode; its value increases strongly with the GAE rank.

(iv) Concerning the radial distance of the maximum current-drive density, the same
general conclusions hold as for the CR case.

(v) However, for the parameters considered here, this radial distance is about 50%
smaller than in the CR case.

References
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Václavı́k, J. & Appert, K. 1991 Nucl. Fusion 31, 1945.
Villard, L., Appert, K., Gruber R. and Václavík, J. 1986 Comput. Phys. Rep., 4, 95.
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