
The Journal of Symbolic Logic

Volume 84, Number 1, March 2019

RANK LOGIC IS DEAD, LONG LIVE RANK LOGIC!

ERICH GRÄDEL ANDWIED PAKUSA

Abstract. Motivated by the search for a logic for polynomial time, we study rank logic (FPR) which
extends fixed-point logic with counting (FPC) by operators that determine the rank of matrices over finite
fields. While FPR can express most of the known queries that separate FPC from Ptime, almost nothing
was known about the limitations of its expressive power.
In our first main result we show that the extensions of FPC by rank operators over different prime fields

are incomparable. This solves an open question posed by Dawar and Holm and also implies that rank
logic, in its original definition with a distinct rank operator for every field, fails to capture polynomial time.
In particular we show that the variant of rank logic FPR∗ with an operator that uniformly expresses the
matrix rank over finite fields is more expressive than FPR.
One important step in our proof is to consider solvability logic FPS which is the analogous extension

of FPC by quantifiers which express the solvability problem for linear equation systems over finite fields.
Solvability logic can easily be embedded into rank logic, but it is open whether it is a strict fragment. In
our second main result we give a partial answer to this question: in the absence of counting, rank operators
are strictly more expressive than solvability quantifiers.

§1. Introduction. “Le roi est mort, vive le roi!” has been the traditional proclama-
tion, in France and other countries, to announce not only the death of themonarch,
but also the immediate installment of his successor on the throne. The purpose of
this article is to kill the rank logic FPR, in the form in which it has been proposed
in [7], as a candidate for a logic for Ptime. The logic FPR extends fixed-point logic
by operators rkp (for every prime p) which compute the rank of definable matrices
over the prime field Fp with p elements. Although rank logic is well-motivated, as
a logic that strictly extends fixed-point logic with counting by the ability to express
important properties of linear algebra, most notably the solvability of linear equa-
tion systems over finite fields, our results show that the choice of having a separate
rank operator for every prime p leads to a significant deficiency of the logic. Indeed,
it follows fromourmain theorem that even the uniform rank problem, of computing
the rank of a given matrix over an arbitrary prime, cannot be expressed in FPR
and thus separates FPR from Ptime. This also reveals that a more general variant
of rank logic, which has already been proposed in [15,16,18] and which is based on
a rank operator that takes not only the matrix but also the prime p as part of the
input, is indeed strictly more powerful than FPR. Our result thus installs this new
rank logic, denoted FPR∗, as the rightful and distinctly more powerful successor of
FPR as a potential candidate for a logic for Ptime.

Received May 13, 2016.
2010Mathematics Subject Classification. 68Q19, 03C13.
Key words and phrases. finite model theory, descriptive complexity, logic, linear algebra.

c© 2019, Association for Symbolic Logic
0022-4812/19/8401-0003
DOI:10.1017/jsl.2018.33

54

https://doi.org/10.1017/jsl.2018.33 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.33

RANK LOGIC IS DEAD, LONG LIVE RANK LOGIC! 55

1.1. A logic for polynomial time. The question whether there is a logic that
expresses precisely the polynomial-time properties of finite structures is an impor-
tant challenge in the field of finite model theory [10, 11]. The logic of reference
for this quest is fixed-point logic with counting (FPC) which captures polyno-
mial time on many interesting classes of structures and which is strong enough
to express most of the algorithmic techniques leading to polynomial-time proce-
dures [5]. On the other hand, we know that FPC fails to capture Ptime, which
follows from a fundamental construction due to Cai, Fürer, and Immerman [4]
(today, this construction is known as the CFI-construction). It turns out that two
main sources for Ptime-problems that are hard for FPC are tractable cases of the
graph isomorphism problem and queries from the field of linear algebra. First of
all, the CFI-construction shows that FPC cannot define the isomorphism problem
on graphs with bounded degree and bounded colour class size whereas the isomor-
phism problem is known to be tractable on all classes of graphswith bounded degree
or bounded colour class size. Second, Atserias, Bulatov, and Dawar [2] proved that
FPC cannot express the solvability of linear equation systems over anyfinite Abelian
group. It follows that also other important problems from the field of linear algebra
are not definable in FPC. In particular, this holds for the CFI-query which can be
formulated by means of linear equation systems over F2 [7].

1.2. Rank logic. This latter observation motivated Dawar, Grohe, Holm, and
Laubner [7] to introduce rank logic (FPR) which is the extension of FPC by oper-
ators for the rank of definable matrices over prime fields Fp. To illustrate the idea
of rank logic, let ϕ(x, y) be a formula (of FPC, say) which defines a binary relation
ϕA ⊆ A×A in an input structureA. We identify the relation ϕA with the associated
adjacency matrix

MA
ϕ : A× A→ {0, 1}, (a, b) �→

{
1, if (a, b) ∈ ϕA,

0, if (a, b) �∈ ϕA.

In this sense, the formula ϕ defines in every structureA a matrixMA
ϕ with entries in

{0, 1} ⊆ Fp. Now, rank logic FPR contains for every prime p ∈ P a rank operator
rkp which can be used to form a rank term [rkp ϕ(x, y)] whose value in an input
structureA is the matrix rank ofMϕ over Fp (we remark that rank logic also allows
to express the rank of matrices which are indexed by tuples of elements; the precise
definition is given in Section 2).
It turns out that rank operators have quite surprising expressive power. For
example, they can define the transitive closure of symmetric relations, they can
count the number of paths in DAGs modulo p and they can express the solvability
of linear equation systems over finite fields (recall that a linear equation system
M · �x = �b is solvable if, and only if, rk(M) = rk(M |�b)) [7]. Furthermore, rank
operators can be used to define the isomorphism problem on various classes of
structures on which theWeisfeiler–Lehman method (and thus fixed-point logic with
counting) fails, such as CFI-graphs [4,7] andmultipedes [12,15]. The common idea
of these isomorphism procedures is to reduce the isomorphism problem for a pair
of structures to a suitable linear equation system over a finite field. More generally,
by a recent result from [1] (which is mainly concerned with another candidate of a
logic for polynomial time), it follows thatFPR captures polynomial time on certain

https://doi.org/10.1017/jsl.2018.33 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.33

56 ERICH GRÄDEL ANDWIED PAKUSA

classes of structures of bounded colour class size. In particular, this holds for the
class of all structures of colour class size two (to which CFI-graphs and multipedes
belong).
While these results clearly show the high potential of rank logic, almost nothing
has been known about its limitations. For instance, it has remained open whether
rank logic suffices to capture polynomial time, whether rank operators can simulate
fixed-point inductions [7] and also whether rank logic can define closely related
problems from linear algebra such as the solvability of linear equations over finite
rings rather than fields [6]. A particularly intriguing question asks whether rank
operators over different prime fields can simulate each other. In other words: is it
possible to reduce the problem of determining the rank of a matrix over Fp (within
fixed-point logic with counting) to the problem of determining the rank of a matrix
overFq (wherep, q are distinct primes)? To attack this problem,Dawar andHolm [8,
15] developed a powerful toolkit of so called partition games of which one variant
(so called matrix-equivalence games) precisely characterises the expressive power of
infinitary logic extended by rank quantifiers. By using these games, Holm [15] was
able to give a negative answer to the above question for the restricted case of rank
operators of dimension one.
In this article we propose a different method, based on exploiting symmetries
rather than game theoretic arguments, to prove new lower bounds for logics with
rank operators. In our main result (Theorem 3.3) we prove that for every prime q
there exists a class of structures Kq on which FPC fails to capture polynomial time
and on which rank operators over every prime field Fp, p �= q can be simulated in
FPC. On the other hand, rank operators over Fq can be used to canonise structures
in Kq which means that the extension of fixed-point logic by rkq-operators captures
polynomial time onKq . From this result we can easily extract the following answers
to the open questions outlined above.

(a) Rank logic (as defined in [7]) fails to capture polynomial time (Theorem 3.2).
(b) The extensions of fixed-point logic by rank operators over different prime
fields are incomparable (Theorem 3.1), cf. [8, 15,16].

We obtain these classes of structures Kq by generalising the CFI-construction. It
has been observed by many researchers that the CFI-construction can be viewed as
a clever way of encoding a linear equation system over F2 into an appropriate graph
structure (see, e.g., [2, 7, 15, 16]). Intuitively, each gadget in the CFI-construction
can be seen as an equation (or, equivalently, as a circuit gate) which counts the
number of transpositions of adjacent edges modulo two, and the CFI-query is to
decide whether the total number of such transpositions is even or odd. Knowing
this, it is very natural to ask whether this idea can be generalised to encode linear
equation systems over arbitrary finite fields or, more generally, equation systems
over arbitrary (Abelian) groups.
In [21], in order to obtain hardness results for the graph isomorphism problem,
Torán followed this idea and established a graph construction which simulates
mod k-counting gates for all k ≥ 2. Moreover, in order to separate the fragments
of rank logic by operators over different prime fields, Holm presented in [15] an
even more general kind of construction which allows the representation of linear

https://doi.org/10.1017/jsl.2018.33 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.33

RANK LOGIC IS DEAD, LONG LIVE RANK LOGIC! 57

equations over every (finite) Abelian groupG . Essentially, we obtain our classes Kq
by using Holm’s construction for the special case where G = Fq .

1.3. Solvability logic. One important step in our proof is to consider solvability
logic FPS which is the extension of FPC by quantifiers which can express the solv-
ability of linear equation systems over finite fields (so called solvability quantifiers,
see [6, 18]). Obviously the logic FPS can easily be embedded into rank logic (as
rank operators can be used to solve linear equation systems), but it remains open
whether the inclusion FPS ≤ FPR is strict. To prove our main result we show that
over certain classes of structures the logics FPS and FPR have precisely the same
expressive power.On the other handwe show in Section 4 that the extensions of first-
order logic and fixed-point logic (without counting) by solvability quantifiers are
strictly weaker than the respective extension by rank operators. Hence we separate
solvability quantifiers and rank operators in the absence of counting.
A central idea of our proofs is to exploit symmetries of definable linear equation
systems. To illustrate this letM · �x = � be a linear equation system over some prime
fieldFp whereM is an I×I -matrix overFp andwhere� is the I -characteristic vector
over Fp, i.e., �(i) = 1 for all i ∈ I . Moreover, let Γ be a group which acts on I and
which stabilisesM , i.e., for all i, j ∈ I and � ∈ Γ we haveM (i, j) =M (�(i), �(j)).
In other words, if we identify the elements � ∈ Γ with I × I -permutation matrices
Π then we have Π ·M =M ·Π. Now let �b ∈ F

I
p be a solution of the linear equation

systemM · �x = �. Then we observe that also Π · �b is a solution for � ∈ Γ since

M · (Π · �b) = (M ·Π) · �b = Π · (M · �b) = Π · � = �.

In other words, the solution space of the linear systemM · �x = � is closed under
the action of Γ. Such and similar observations will enable us to transform a given
linear equation system into a considerably simpler equivalent system.

§2. Logics with linear-algebraic operators. By FStr(�) we denote the class of all
finite, relational structures of signature �. We assume that the reader is familiar with
first-order logic (FO) and inflationary fixed-point logic (FP). For details see [9, 10].
We write P for the set of primes and denote the prime field with p elements by Fp.
We consider matrices and vectors over unordered index sets. Formally, if I and J
are nonempty sets, then an I × J -matrixM over Fp is a mappingM : I × J → Fp

and an I -vector �v over Fp is a mapping �v : I �→ Fp.
A (linear) preorder	 ⊆ A×A onA is a reflexive, transitive and total binary rela-
tion. A preorder	 induces a linear order on the classes of the associated equivalence
relation x ∼ y := (x 	 y ∧ y 	 x). We write A = C0 	 · · · 	 Cn−1 to denote the
decomposition of A into ∼-classes Ci which are ordered by 	 as indicated.
We recall the definitions of first-order logic with counting FOC and (inflationary)
fixed-point logic with countingFPCwhich are the extensions ofFO andFP by count-
ing terms. Formulas of FOC and FPC are evaluated over the two-sorted extension
of an input structure by a copy of the arithmetic. Following [7] we let A# denote
the two-sorted extension of a �-structure A = (A,R1, . . . , Rk) by the arithmetic
N = (N,+, ·, 0, 1), i.e., the two-sorted structure A# = (A,R1, . . . , Rk,N,+, ·, 0, 1)
where the universe of the first sort (also referred to as vertex sort) is A and the
universe of the second sort (also referred to as number sort or counting sort) is N.

https://doi.org/10.1017/jsl.2018.33 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.33

58 ERICH GRÄDEL ANDWIED PAKUSA

As usual for the two-sorted setting we have, for both, the vertex and the num-
ber sort, a collection of typed first-order variables. We agree to use Latin letters
x, y, z, . . . for variables which range over the vertices and Greek letters �, �, . . . for
variables ranging over the numbers. Similarly, for second-order variablesRwe allow
mixed types, i.e., a relation symbol R of type (k, �) ∈ N × N stands for a relation
R ⊆ Ak × N

� . Of course, already first-order logic over such two-sorted extensions
is undecidable. To obtain logics whose data complexity is in polynomial time we
restrict the quantification over the number sort by a numeric term t, i.e., Q� ≤ t.ϕ
where Q ∈ {∃,∀} and where t is a closed numeric term. Similarly, for fixed-point
logic FPwe bound the numeric components of fixed-point variablesR of type (k, �)
in all fixed-point definitions[

ifpRx̄�̄ ≤ t̄ . (ϕ(x̄ , �̄))
]
(x̄, �̄)

by a tuple of closed numeric terms t̄ = (t1, . . . , t�) where each ti bounds the range
of the variable �i in the tuple �̄. For the logics which we consider here the value of
such numeric terms (and thus the range of all quantifiers over the number sort) is
polynomially bounded in the size of the input structure. Together with the standard
argument that inflationary fixed-points can be evaluated in polynomial time and
the fact that the matrix rank over any field can be determined in polynomial time
(for example by the method of Gaussian elimination), this ensures that all the logics
which we introduce in the following have polynomial-time data complexity.
Let x̄�̄ be a mixed tuple of variables and let t̄ be a tuple of closed numeric terms
which bounds the range of the numeric variables in �̄. For a formula ϕ we define a
counting term s = [#x̄�̄ ≤ t̄ . ϕ] whose value sA ∈ N in a structure A corresponds
to the number of tuples (ā, n̄) ∈ Ak ×N

� such that A |= ϕ(ā, n̄) and ni ≤ tAi where
k = |x̄| and � = |�̄|.
First-order logic with counting FOC is the extension of (the above described two-
sorted variant of) FO by counting terms. Similarly, by adding counting terms to FP
we obtain (inflationary) fixed-point logic with counting FPC.

2.1. Extensions by rank operators. Next, we recall the notion of rank operators as
introduced in [7]. Let Θ(x̄�̄ ≤ t̄ , ȳ�̄ ≤ s̄) be a numeric term where t̄ and s̄ are tuples
of closed numeric termswhich bound the range of the numeric variables in the tuples
�̄ and �̄, respectively. Given a structure A we define N≤t̄ := {n̄ ∈ N

|�̄| : ni ≤ tAi }.
The set N≤s̄ ⊂ N

|�̄| is defined analogously. The term Θ defines in the structure A
for I := A|x̄|×N

≤t̄ and J := A|ȳ|×N
≤s̄ the I × J -matrixMΘ with values in N that

is given asMΘ(ān̄, b̄m̄) := ΘA(ān̄, b̄m̄).
The matrix rank operators compute the rank of the matrixMΘ over a prime field

Fp for p ∈ P. First, as in [7], we define for every prime p a matrix rank operator
rkp which allows us to construct a new numeric rank term [rkp (x̄�̄ ≤ t̄, ȳ�̄ ≤ s̄) .Θ]
whose value in the structure A is the rank of the matrix (MΘ mod p) over Fp.
Second, we consider a uniform rank operator rk∗ which gets the prime p as an
additional input. Formally, with this rank operator rk∗ we can construct a rank
term [rk∗ (x̄�̄ ≤ t̄ , ȳ�̄ ≤ s̄ , � ≤ r) .Θ] where � is an additional free numeric variable
whose range is bounded by some closed numeric term r. Given a structure A and
an assignment � �→ p for some prime p ≤ rA, the value of this rank term is the
matrix rank of (MΘ mod p) considered as a matrix over Fp. The rank operator rk

∗

https://doi.org/10.1017/jsl.2018.33 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.33

RANK LOGIC IS DEAD, LONG LIVE RANK LOGIC! 59

can be seen as a unification for the family of rank operators (rkp)p∈P and has been
introduced in [15,16,18].
We define, for every set of primes Ω ⊆ P, the extension FORΩ of FOC and
the extension FPRΩ of FPC by matrix rank operators rkp with p ∈ Ω. We set
FOR = FORP and FPR = FPRP. Similarly, we denote by FPR

∗ the extension of
FPC by the uniform rank operator rk∗. We remark that rank operators can simulate
counting terms. For example we have that

[#x . ϕ(x)] = [rkp (x, y) . (x = y ∧ ϕ(x))].

Hence, we could equivalently define the rank logics FORΩ,FPRΩ and FPR
∗ as the

extensions of (the two-sorted variants of) FO and FP, respectively.

2.2. Extensions by solvability quantifiers. It is well-known that the extensions of
FOC and FPC by matrix rank operators have surprising expressive power which,
in particular, goes beyond that of fixed-point logic with counting. For example,
it is known that rank operators can define the symmetric transitive closures of
binary relations and that they can be used to express the structure isomorphism
problem on classes on which the Weisfeiler–Lehman test fails like, for example,
classes of Cai, Fürer, and Immerman graphs [4, 7]. Interestingly, such results for
rank logic were obtained by reducing the respective queries to a solvability problem
for linear equation system over finite fields. Although the solvability problem (for
linear equation systems) can be defined in rank logic, we propose to study extensions
by quantifiers which directly express this solvability problem. One advantage of this
approach is that one can naturally define such quantifiers for linear systems over
more general classes of algebraic domains, like rings, for which no appropriate
notion of matrix rank exists, cf. [6].
Let Ω ⊆ P be a set of primes. Then the solvability logicFPSΩ extends the syntax of
FPC for every p ∈ Ωby the following formula creation rule for solvability quantifiers
slvp.

• Let ϕ(x̄�̄, ȳ�̄, z̄) ∈ FPSΩ and let t̄ and s̄ be tuples of closed numeric terms
with |t̄ | = |�̄| and |s̄ | = |�̄|. Then 	(z̄) = (slvp x̄�̄ ≤ s̄ , ȳ�̄ ≤ t̄)ϕ(x̄ �̄, ȳ�̄, z̄)
is a formula of FPSΩ.

The semantics of the formula 	(z̄) is defined similarly as for rank logic. More
precisely, let k = |x̄| and � = |ȳ|. To a pair (A, z̄ �→ c̄) ∈ FStr(
, z̄) we associate
the I × J -matrixMϕ over {0, 1} ⊆ Fp where I = Ak ×N

≤s̄ and J = A� ×N
≤t̄ and

where for ā ∈ I and b̄ ∈ J we haveMϕ(ā, b̄) = 1 if, and only if, A |= ϕ(ā, b̄, c̄).
Let � be the I -characteristic vector over Fp, i.e., �(ā) = 1 for all ā ∈ I . ThenMϕ
and � determine the linear equation systemMϕ · �x = � over Fp where �x = (xj)j∈J
is a J -vector of variables xj which range over Fp. Finally, A |= 	(c̄) if, and only if,
Mϕ · �x = � is solvable over Fp.
At first glance, the solvability quantifiers slvp seem to impose severe restrictions
on the syntactic form of definable linear equation systems. Indeed, they require that
every linear equation is of the form

∑
j∈J aj · xj = 1 with coefficients aj from the

set {0, 1} ⊆ Fp. However, this is no restriction at all, since every definable linear
equation system can be transformed into this kind of syntactic normal form via a
quantifier-free first-order reduction (see Lemma 4.1 in [6]).

https://doi.org/10.1017/jsl.2018.33 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.33

60 ERICH GRÄDEL ANDWIED PAKUSA

We write FPS to denote the logic FPSP and FPSp to denote the logic FPS{p}
for p ∈ P. Analogously to the definition of FPR∗ we also consider a solvability
quantifier slvwhich gets the prime p as an additional input andwhich can uniformly
simulate all solvability quantifiers slvp for p ∈ P. Let FPS∗ denote the extension of
FPC by this uniformversion of a solvability quantifier.Then the following inclusions
easily follow from the definitions and the fact that rank operators can be used to
define the solvability problem for linear equation systems.

FORp ≤ FPRp ≤ FPR ≤ FPR
∗ ≤ Ptime

≤ ≤ ≤ ≤

FOSp ≤ FPSp ≤ FPS ≤ FPS
∗

≤
FPC

Here, FOSp denotes the extension of first-order logic by solvability quantifiers
slvp over the field Fp but without counting. For the precise definition of FOSp see
Definition 4.1.
Finallywe remark that, analogously to [7],wedefined rankoperators and solvabil-
ity quantifiers for prime fields only. Of course, the definition can easily be generalised
to cover all finite fields, i.e., also finite fields of prime power order. However, for the
case of solvability quantifiers, Holm was able to prove in [15] that this does not alter
the expressive power of the resulting logics since solvability quantifiers over a finite
field Fq of prime power order q = pk can be simulated by solvability quantifiers over
Fp.Moreover,a similar reductioncanbeachieved for rankoperators, see [19].Hence,
it suffices to consider rank operators and solvability quantifiers over prime fields.

§3. Separation results over different prime fields. In this section we separate the
extensions of fixed-point logic with counting by solvability quantifiers and rank
operators over different prime fields. Specifically, we show that the expressive power
of the logics FPSΩ is incomparable for different sets of primes Ω. Moreover, we
generalise these results to the extensions FPRΩ by rank operators. In this way we
answer the following open question about rank logic:

It holds that FPRp �= FPRq for pairs of different primes p, q. [8, 15,16].
Another important consequence of our result is that rank logic (in the way it was
defined in [7]) does not suffice to capture polynomial time. Let us state these results
formally.

Theorem 3.1. Let Ω �= Ω′ be two distinct sets of primes. Then FPSΩ �= FPSΩ′

and FPRΩ �= FPRΩ′ .
Theorem 3.2. Rank logic fails to capture polynomial time. We have

FPR < FPR∗ ≤ Ptime.
In fact, both theorems are simple consequences of our following main result.

Theorem 3.3. For every prime q there is a class of structuresKq such that
(a) FPSΩ = FPC on Kq for every set of primes Ω with q �∈ Ω,
(b) FPRΩ = FPSΩ on Kq for all sets of primes Ω,
(c) FPC < Ptime on Kq , and
(d) FPSq = Ptime on Kq .

https://doi.org/10.1017/jsl.2018.33 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.33

RANK LOGIC IS DEAD, LONG LIVE RANK LOGIC! 61

Proof of Theorem 3.1. Let Ω and Ω′ be two distinct sets of primes. Without
loss of generality let us assume that there exists a prime q ∈ Ω \ Ω′. Then by
Theorem 3.3 there exists a classKq on which FPSΩ = FPRΩ = Ptime and on which
FPSΩ′ = FPRΩ′ = FPC < Ptime. �

Proof of Theorem 3.2. Otherwise assume that FPR = Ptime. Then, in partic-
ular, FPR = FPR∗ and there exists a formula ϕ ∈ FPR which can uniformly
determine the rank of matrices over prime fields, i.e., which can express the uniform
rank operator rk∗. As a matter of fact we have ϕ ∈ FPRΩ for a finite set of primes
Ω. By using ϕ we can uniformly express the matrix rank over each prime field Fp in
FPRΩ. Hence we have FPS ≤ FPR ≤ FPR∗ ≤ FPRΩ.
Now let q ∈ P \ Ω. By Theorem 3.3 there exists a class of structures Kq on
which FPRΩ = FPC < Ptime. However, the class Kq can be chosen such that
Ptime = FPSq ≤ FPRΩ on Kq by Theorem 3.3(d) and we obtain the desired
contradiction. �

The proof of Theorem 3.2 reveals a deficiency of the logic FPR: each formula
can only access rkp-operators for a finite set Ω of distinct primes p. In fact, the
query which we constructed to separate FPR from Ptime can be defined in FPR∗.
Altogether this suggests to generalise the notion of rank operators and to specify
the prime p as a part of the input, as we did for FPR∗, and as it was proposed in
[15,16,18].
The remainder of this section is devoted to the proof of Theorem 3.3. We fix a
prime q and proceed as follows. In a first step, we identify properties of classes of
structures Kq which guarantee that the relations claimed in (a), (b), (c), and (d)
hold. In a second step, we proceed to show that we can obtain a class of structures
Kq that satisfies all of these sufficient criteria. This together proves our theorem.

3.1. Group actions. In the course of this article, we heavily make use of group
actions. However, we only need basic notions and results which we summarise now.
For more details on group actions the reader may consult any standard textbook
on groups, such as [13]. In this article, all groups are finite permutation groups.
For a (finite) set Ω we denote by Sym(Ω) the symmetric group acting on the set Ω,
and a permutation group is a subgroup of Sym(Ω) for some (finite) set Ω. In
general, a group Γ ≤ Sym(Ω) acts on a setV if there exists a group homomorphism
h : Γ→ Sym(V). In other words, Γ acts on a set V if we can identify the elements
of Γ with permutations on V (in a structure-preserving way). In this article, we will
only encounter the following two types of group actions. Let Γ ≤ Sym(Ω). Then,
first of all, Γ naturally acts on the set V = Ωk consisting of all k-tuples over Ω,
for k ≥ 1, simply by applying permutations � ∈ Γ to tuples v̄ = (v1, . . . , vk) ∈ V
component-wise, that is �(v̄) = (�(v1), . . . , �(vk)). Second,we can extend this group
action to higher-order objects. For instance, assume that instead we consider the
set V = 2Ω

k

consisting of all k-ary relations over Ω. Then we can naturally define a
(canonical) action of Γ on V by setting �(R) = {�(r̄) : r̄ ∈ R} for R ∈ V (where
�(r̄) is defined for tuples r ∈ R as above). In a slightly more general way, we can
let Γ act on matrices which are indexed by tuples of elements from Γ, as we will see
soon.

https://doi.org/10.1017/jsl.2018.33 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.33

62 ERICH GRÄDEL ANDWIED PAKUSA

Now, let Γ be a group which acts on a set V . Given an element v ∈ V , the orbit
of v is the set Γ(v) = {�(v) : v ∈ V } ⊆ V . It turns out that the orbits of elements
v ∈ V form a partition of V . One can say much more. Let Stab(v) ≤ Γ be the
stabiliser (subgroup) of an element v ∈ V , that is the subgroup of Γ that consists of
all � ∈ Γ satisfying �(v) = v. Then the orbit-stabiliser theorem relates the index of
the subgroup Stab(v) in Γ with the size of the orbit of v ∈ V ; we have

|Γ| = |Stab(v)| · |Γ(v)|.
In particular, it follows that the size of an orbit divides the size of the group.We will
heavily make use of this fact in the following way. Recall that a group Γ is called a
p-group, for a prime p ∈ P, if |Γ| = pk , for some k ≥ 0. Then, if we assume that a
p-group Γ acts on a set V , then, by the orbit-stabiliser theorem, we know that all
orbits under this action are of size p� for some � ≥ 0. In particular, if |V | and p are
coprime, then the action must have at least one fixed point, i.e., an orbit of size one.
This fact will play a central role in our proof later on.

3.2. Reducing rank operators to solvability quantifiers. We start to establish suffi-
cient criteria for themost relevant part of Theorem 3.3 which is the statement in (a).
Assume we have a class of structures Kq = K with the following properties.
(I) The automorphism groups ΔA := Aut(A) of structures A ∈ K are Abelian
q-groups.

(II) The orbits of �-tuples in structuresA ∈ K can be ordered in FPC. Formally,
for each � ≥ 1 there is a formula ϕ�(x1, . . . , x� , y1, . . . , y�) ∈ FPC such
that for every structure A ∈ K, the formula ϕ�(x̄, ȳ) defines in A a linear
preorder 	 on A� with the property that two �-tuples ā, b̄ ∈ A� are 	-
equivalent if, and only if, they are in the same ΔA-orbit.

Lemma 3.4. If K satisfies (I) and (II), then FPSΩ = FPC over K for all Ω ⊆
P \ {q}.
The proof of this lemma is by induction on the structure of FPSΩ-formulas.
Obviously, the only interesting step is the translation of a solvability formula

	(z̄) = (slvp x̄�̄ ≤ s̄ , ȳ�̄ ≤ t̄)ϕ(x̄�̄, ȳ�̄, z̄)
into an FPC-formula ϑ(z̄) which is equivalent to 	(z̄) on the class K. Let |x̄| =
|ȳ| = � , |�̄| = |�̄| =
 and |z̄| = k. To explain our main argument, we fix a structure
A ∈ K and a k-tuple of parameters c̄ ∈ (A �N)k which is compatible with the type
of the variable tuple z̄. According to the semantics of the solvability quantifier, the
formulaϕ defines in (A, z̄ �→ c̄) an I×J -matrixM =MA

c̄ with entries in {0, 1} ⊆ Fp

where I = IAc̄ := A
� ×N

≤s̄ ⊆ A� ×N

 and J = JAc̄ := A

� ×N
≤t̄ ⊆ A� ×N

 that is
defined for ā ∈ I and b̄ ∈ J as

M (ā, b̄) =

{
1, if A |= ϕ(ā, b̄, c̄),
0, else.

By definition we have A |= 	(c̄) if, and only if, the linear equation system
M · �x = � over Fp is solvable. The key idea is to use the symmetries of the structure
A to translate the linear equation systemM · �x = � into an equivalent linear system
which is simpler in the sense that its solvability can be defined in the logic FPC.

https://doi.org/10.1017/jsl.2018.33 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.33

RANK LOGIC IS DEAD, LONG LIVE RANK LOGIC! 63

The reader should observe that each automorphism � ∈ ΔA = Aut(A) naturally
induces an automorphism of the two-sorted extension A# which point-wise fixes
every number n ∈ N. In particular we have Aut(A) = Aut(A#).
We set Γ = ΓAc̄ := Aut(A, c̄) ≤ Δ = ΔA = Aut(A). The group Γ acts on I and J
in the natural way. We identify each automorphism � ∈ Γ with the corresponding
I × I -permutation matrix ΠI and the corresponding J × J -permutation matrix ΠJ
in the usual way.More precisely, to � ∈ Γwe associate the I ×I -permutationmatrix
ΠI which is defined as

ΠI (ā, b̄) =

{
1, �(ā) = b̄,
0, otherwise.

Then Γacts on the set of I×J -matrices by leftmultiplication with I×I -permutation
matrices. Similarly, we let ΠJ denote the J × J -permutation matrix defined as

ΠJ (ā, b̄) =

{
1, �(ā) = b̄,
0, otherwise.

Then Γ also acts on the set of I × J -matrices by right multiplication with J × J -
permutation matrices. Specifically, for � ∈ Γ we have (ΠI ·M)(ā , b̄) =M (�(ā), b̄)
and (M · Π−1

J)(ā, b̄) = M (ā, �(b̄)). SinceM is defined by a formula in the struc-
ture (A, c̄) and since Γ = Aut(A, c̄) we conclude that (ΠI · M · Π−1

J)(ā, b̄) =
M (�(ā), �(b̄)) =M (ā, b̄) and thus

ΠI ·M ·Π−1
J =M,

or, stated equivalently,
ΠI ·M =M ·ΠJ .

This last identity leads to the following central observation.

Lemma 3.5. IfM · �x = � is solvable, then the system has a Γ-symmetric solution,
i.e., a solution �b ∈ F

J
p such thatΠJ · �b = �b for all � ∈ Γ.

Proof. IfM ·�b = �, then also ΠI · (M ·�b) = � and thusM · (ΠJ ·�b) = � for all
� ∈ Γ. This shows that Γ acts on the solution space of the linear equation system.
Since K satisfies property (I) we know that Γ is a q-group for a prime q �= p. Thus
each Γ-orbit has size qr for some r ≥ 0. On the other hand, the number of solutions
is a power of p. We conclude that there is at least one Γ-orbit of size one which
proves our claim. �
Let �b ∈ F

J
p be a Γ-symmetric solution. Then the entries of the solution �b on

Γ-orbits are constant: for j ∈ J and � ∈ Γ we have �b(�(j)) = (ΠJ · �b)(j) = �b(j).
We proceed to use the property (II) and show that there exists an FPC-formula
ϕ�(x̄, ȳ) which defines for all A ∈ K and c̄ ∈ (A � N)k as above a linear preorder
	 on A� which identifies Γ-orbits. Note that, in general, Γ = Aut(A, c̄) is a strict
subgroup of Δ = Aut(A). Thus we cannot directly apply (II). However, the Γ-orbits
on A� correspond to the Δ-orbits on Ak

′+� where the first k′ entries are fixed to the
elements {c1, . . . , ck} ∩ A.
The linear preorder	 naturally extends to a preorder on the sets I and J with the
sameproperties. Let uswriteJ = J0 	 J1 	 · · · 	 Jv−1 to denote the decomposition

https://doi.org/10.1017/jsl.2018.33 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.33

64 ERICH GRÄDEL ANDWIED PAKUSA

of J into the Γ-orbits Jj which are ordered by	 as indicated. Moreover, for j ∈ [v]
we let ej denote the characteristic vector on the j-th orbit Jj , i.e., the J -vector which
defined for i ∈ J as

ej(i) :=

{
1, if i ∈ Jj,
0, else.

Let E denote the J × [v]-matrix whose j-th column is the vector ej . It follows
that a Γ-symmetric solution �b can be written as E · �b∗ = �b for a unique [v]-vector
�b∗. Together with Lemma 3.5 this shows the following.

Lemma 3.6. The linear equation systemM · �x = � is solvable if, and only if, the
linear equation system (M ·E) · �x∗ = � is solvable.

Finally, we observe that the coefficient matrixM∗ := (M · E) of the equivalent
linear equation system M∗ · �x∗ = � can easily be obtained in FPC and that it is
a matrix over the ordered set of column indices [v]. It is a simple observation that
such linear equation systems can be solved in FPC: the linear order on the column
set induces (together with some fixed order on Fp) a lexicographical ordering on
the set of rows which is, up to duplicates of rows, a linear order on this set. Thus, in
general, if we have a linear order on one of the index sets of the coefficient matrix
this suffices to obtain an equivalent matrix where both index sets are ordered, see
also [18]. This finishes our proof of Lemma 3.4.
We proceed to show that the conditions (I) and (II) guarantee that rank operators
can be reduced to solvability operators over the class K. In fact, for this translation
we only require the somewhat weaker assumption that we can define in FPC on
�-tuples in structures A ∈ K a linear preorder in which every class can be linearised
in FPC by fixing a constant number of parameters. The precise requirements will
become clear from the proof of the following lemma.

Lemma 3.7. If K satisfies (I) and (II), then FPRΩ = FPSΩ over K for all sets of
primes Ω ⊆ P.

Proof. We inductively translate FPRΩ-formulas into formulas of FPSΩ which
are equivalent on the class K. The only interesting case is the transformation of
rank terms

Υ(z̄) = [rkp (x̄�̄ ≤ t̄, ȳ�̄ ≤ s̄) .Θ(x̄�̄, ȳ�̄, z̄)].
Let |x̄| = |ȳ| = � , |�̄| = |�̄| =
 and |z̄| = k. Let A ∈ K and let c̄ be a
k-tuple of parameters c̄ ∈ (A � N)k which is compatible with the type of the
variable tuple z̄. The term Θ defines in (A, z̄ �→ c̄) for IA = I := A|x̄| × N

≤t̄ and
JA = J := A|ȳ| × N

≤s̄ the I × J -matrixM over Fp which is defined as

M (ān̄, b̄m̄) := ΘA(ān̄, b̄m̄, c̄) mod p.

According to the semantics of matrix rank operators, the value ΥA(c̄) ∈ N is
the rank of the matrix M . We proceed to show that we can determine the matrix
rank ofM by a recursive application of solvability queries. To this end we make the
following key observation.

Claim. There are FPC-formulasϕ�(ȳ1�̄1, ȳ2�̄2), 	≤(v̄, ȳ1�̄1, ȳ2�̄2) such that for
every A ∈ K

https://doi.org/10.1017/jsl.2018.33 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.33

RANK LOGIC IS DEAD, LONG LIVE RANK LOGIC! 65

(a) ϕA
� is a linear preorder 	 on JA, and such that

(b) For every 	-class [j] ⊆ JA there exists a parameter tuple d̄ ∈ A|v̄| such that
	A

≤(d̄) is a linear order ≤ on [j].
Proof of claim. First of all, we let ϕ� be anFPC-formula which defines in every
structure A ∈ K a linear preorder 	 on JA such that 	-classes correspond to
ΔA-orbits. Such a formula exists by our assumption that K satisfies property (II).
Analogously, we choose anFPC-formula ϑ� which defines in every structureA ∈ K
a linear preorder 	∗ on JA × JA that induces a linear order on the ΔA-orbits.
Now let [j] ⊆ JA be a 	-class for some A ∈ K. By property (I) we know that
ΔA is an Abelian group. Thus, each automorphism � ∈ ΔA which fixes one element
in the ΔA-orbit [j] point-wise fixes every element in the class [j]. We conclude that
the restriction of 	∗ to elements in {j} × [j] corresponds to a linear order on
[j] for each j ∈ [j]. In this way we obtain an FPC-formula 	≤ with the desired
properties. �
We are now prepared to describe the recursive procedure which allows us to
determine the rank of the matrixM in FPSΩ. To this end we fix formulas ϕ� and
	≤ with the above properties. Moreover, let 	 denote the linear preorder defined
by ϕ� on J and let J = J0 	 J1 	 · · · 	 Jr−1. We use the formula 	≤ to obtain
on each class Ji a family of definable linear orderings (which depend on the choice
of different parameters). For j ∈ J we denote by �mj ∈ F

I
p the j-th column of the

matrixM . Then the rank ofM coincides with the dimension of the Fp-vector space
which is generated by the set of columns { �mj : j ∈ J} of the matrixM .
Now, for i ∈ [r] we recursively obtain the dimension di ∈ N of the Fp-vector
space generated by Vi := { �mj : j ∈ J0 ∪ J1 ∪ · · · ∪ Ji} as follows. First, we use 	≤
to fix a linear order on Ji (the following steps are independent of the specific linear
order and can thus be performed in parallel for each such order). Using this linear
order on Ji we can identify in FPSΩ a maximal setW ⊆ { �mj : j ∈ Ji} of linearly
independent columns such that 〈Vi−1〉∩〈W 〉 = {�0}. Indeed, if 〈Vi−1〉∩〈W 〉 = {�0},
then for �m ∈ { �mj : j ∈ Ji}, �m �∈ 〈W 〉we have that 〈Vi−1〉∩〈W �{ �m}〉 = {�0} if, and
only if, �m �∈ 〈Vi−1∪W 〉. Observe that the conditions �m �∈ 〈W 〉 and �m �∈ 〈Vi−1∪W 〉
correspond to the solvability of a linear equation system over Fp. We claim that
di = di−1 + |W |. Indeed, by the maximality ofW and since 〈Vi−1〉 ∩ 〈W 〉 = {�0} it
follows that 〈Vi〉 = 〈Vi−1〉 ⊕ 〈W 〉. Moreover,W consists of linearly independent
columns and is a basis for 〈W 〉.
Since the recursion described above can easily be implemented in FPSΩ, we
conclude that the rank dr−1 of the matrix M can be determined in FPSΩ which
completes our proof. �
We now focus on the parts (c) and (d) of Theorem 3.3 and establish sufficient
criteria which guarantee that FPC fails to capture Ptime on K while FPSq can
express every polynomial-time decidable property of K-structures.
(III) There exists an FPSq-definable canonisation procedure on K.
(IV) For every k ≥ 1 there exists a pair of structures A ∈ K and B ∈ K such

that A �∼= B and A ≡Ck B.

Lemma 3.8. If K satisfies (III) and (IV), then FPC < FPSq = Ptime on K.

https://doi.org/10.1017/jsl.2018.33 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.33

66 ERICH GRÄDEL ANDWIED PAKUSA

Proof. It is clear that by property (III) we have FPSq = Ptime on K. Moreover,
if we had FPC = Ptime on K then, by the embedding of FPC into C�∞� and the
fact that K-structures can be canonised in polynomial time, there exists a fixed
k ≥ 1 such that Ck∞� can identify each structure in K which, in turn, contradicts
property (IV). �

3.3. A generalised Cai–Fürer–Immerman construction. It remains to construct a
class of structures K which satisfies (I)–(IV). Our approach is a generalisation of
the construction of Cai, Fürer, and Immerman [4] for cyclic groups other than
F2. To illustrate the main differences, let us briefly recall the idea of the original
construction. Starting with an undirected and connected graph G = (V,E), we first
take two copies e0, e1 of every edge e ∈ E for the universe of the associated CFI-
graph. For every vertex v ∈ V we let vE ⊆ E denote the set of edges which are
incident with v. The crucial idea of the CFI-construction is to consider, for every
vertex v ∈ V , one of the following two constraints to restrict the symmetries of the
resulting CFI-graph: either the set of all sets {e�(e) : e ∈ vE} with � : vE → F2 and∑
e∈vE �(e) = 0 is stabilised (an even node) or the dual set of all sets {e�(e) : e ∈ vE}

with � : vE → F2 and
∑
e∈vE �(e) = 1 is stabilised (an odd node). This restricts the

symmetries of the resulting CFI-graphs (which are obtained by twisting the atoms
e0, e1 for edges e ∈ E) in a clever way.
The constraints for even and odd nodes are encoded by simple graph gadgets.
Although it seems that for the same undirected graph G we obtain exponentially
many different CFI-graphs (for each v ∈ V we can choose one out of two possible
constraints), there really are, up to isomorphism, only two such graphs which are
determined by the parity of the number of odd nodes. The reason is that if we twist
two copies e0, e1 of an edge e, then we can move the resulting twist along a path (in
the connected graph G) to iteratively balance out pairs of odd nodes.
In order to generalise this construction to Fq we take for every edge e ∈ E a
directed cycle of length q over q copies e0, e1, . . . , eq−1 of the edge e. We then add
similar constraints for sets of incident edges as above, but instead of having only
two different kinds of such constraints, we have one for each of the possible field
elements 0, 1, . . . , q − 1 ∈ Fq . Now, instead of twisting pairs of edges, we consider
cyclic shifts on the edge classes e0, e1, . . . , eq−1. Again, these shifts can be propagated
along paths in the original graph G and, with a reasoning analogous to the original
approach, it turns out that there are, up to isomorphism, only q different types of
generalised CFI-graphs over Fq . We remark that the same kind of construction has
been used, for example, in [15,21].
Formally, we start with a connected and ordered graph G = (V,≤, E) (with
symmetric edge relation). We set � := {	, C, I,R} for binary relation symbols
C, I and R. We define, for every q ∈ P, and for every sequence of gadget values
�d = (dv)v∈V ∈ [q]V , a �-structure CFIq(G, �d) which we call a CFI-structure over G.
For the following construction we implicitly assume that arithmetic is modulo q so
that we drop the operator “mod q” in statements of the form x = y mod q and
x + y mod q for better readability. In what follows, let E(v) ⊆ E denote the set
of directed edges starting in v. Since G is an undirected graph, this means that for
an undirected edge {v,w} of G we have (v,w) ∈ E(v) and (w, v) ∈ E(w). The
construction is illustrated in Figure 1.

https://doi.org/10.1017/jsl.2018.33 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.33

RANK LOGIC IS DEAD, LONG LIVE RANK LOGIC! 67

• The universe of CFIq(G, �d) consists of edge nodes and equation nodes.
– The set of edge nodes Ê is defined as Ê :=

⋃
e∈E ê where for every directed

edge e ∈ E we let the edge class ê = {e0, e1, . . . , eq−1} consist of q distinct
copies of e. In particular, for every edge e = (v,w) ∈ E and its reversed
edge e−1 := f = (w, v) ∈ E the sets ê and f̂ are disjoint. We say that the
edges e and f (or the associated edge classes ê and f̂) are related.
– The set of equation nodes V̂ is defined as V̂ :=

⋃
v∈V v̂

�d(v) where for every
vertex v ∈ V and d ∈ [q] the equation class v̂d consist of all functions
� : E(v)→ [q] which satisfy

∑
� :=

∑
e∈E(v) �(e) = d .

• The linear preorder 	 orders the edge classes according to the linear order
induced by ≤ on E. More precisely, we let ê 	 f̂ whenever e ≤ f. Similarly,
	 orders the equation classes according to the order of ≤ on V , i.e., v̂ 	 ŵ if
v ≤ w. Moreover, we let ê 	 v̂ for edge classes ê and equation classes v̂.

• The cycle relation C contains a directed cycle of length q on each of the edge
classes ê for e ∈ E, i.e., C = {(ei , ei+1) : i ∈ [q], e ∈ E}.

• The inverse relation I connects two related edge classes by pairing additive
inverses. More precisely, let e = (v,w) ∈ E and f = (w, v) ∈ E. Then I
contains all edges (ex, fy) with x + y = 0 for x, y ∈ [q].

• The gadget relation R is defined as R :=
⋃
v∈V R

�d(v)
v where for v ∈ V and

d ∈ [q] the relation Rdv is given as

Rdv := {(�, e�(e)) : � ∈ v̂d , e ∈ E(v)}.

At first glance our construction associates with every graph G (with the above
properties) and to each sequence of gadget values �d ∈ [q]V a different struc-
ture CFIq(G, �d). However, for each graph G with the above properties there really
are, up to isomorphism, only q different CFI-structures CFIq(G, �d). In fact, the
value

∑ �d :=
∑
v∈V �d (v) completely determines the isomorphism class of a

CFI-structure over G.
To obtain this characterisation, we analyse the automorphism group of CFI-
structures and, more generally, the set of isomorphisms between two structures
A = CFIq(G, �d1) and B = CFIq(G, �d2). For such structures we know that the
set Ê of edge nodes, the linear preorder 	 on Ê , the cycle relation C and the
inverse relation I do not depend on the sequence of gadget values. This means that
each possible isomorphism � which maps A toB induces an automorphism of the
common substructure C := (Ê, (� Ê), C, I) which only depends on G but not on
�d ∈ [q]V . Thus

(Iso(A,B) � Ê) ⊆ Γ := Aut(C) ≤ Sym(Ê).

Let � ∈ Γ. The linear preorder 	 on Ê and the cycle relation C enforce
that � is the composition of cyclic shifts on the individual edge classes ê, i.e.,
� ∈

∏
e∈E〈(e0e1 . . . eq−1)〉 ≤ Sym(Ê). It is convenient to identify the group∏

e∈E〈(e0e1 . . . eq−1)〉 with the vector space FEq in the obvious way.
In addition, the inverse relation I enforces that cyclic shifts for pairs of related
edge classes are inverse to each other in the following sense: let e = (v,w) ∈ E
and f = (w, v) ∈ E be a pair of related edges. Assume that we have a permutation

https://doi.org/10.1017/jsl.2018.33 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.33

68 ERICH GRÄDEL ANDWIED PAKUSA

G

v

a

b

c

ea

fa

eb fb

ec

fc

eb0

eb1
eb2

C

fb0
fb1

fb2
C

I

ea0

ea1

ea2

C

fa0

fa1

fa2

C

I

ec0

ec1

ec2

C

fc0

fc1

fc2

C

I

� = (2, 1, 0) � = (1, 1, 1)
· · ·
R

Figure 1. Generalised CFI-construction for the v-gadget where
q = 3 and �d (v) = 0.

� ∈ F
E
q such that �(e) = x and �(f) = y. We have (e0, f0) ∈ I . Hence, if � is

supposed to be an automorphism of C then we have �(I) = I and thus (ex, ey) ∈ I
which means that x + y = 0.
In conclusion, it follows that Γ ≤ F

E
q is the subgroup of F

E
q which contains all

E-vectors � ∈ F
E
q with the property that �(e) + �(f) = 0 for pairs of related edges

e, f ∈ E. Againwe remind the reader thatΓ only depends on G but not on �d ∈ [q]V .
If we want to stress this dependence, then we sometimes write Γ(G) but usually we
omit G if the graph is clear from the context.
Now, given a CFI-structure A = CFIq(G, �d), we define for each vertex v ∈ V the

v-gadget as the set gadget(v) := v̂d(v) �
⋃
e∈E(v) ê.

Lemma 3.9. Let A = CFIq(G, �d) and let � ∈ Γ. Then there is precisely one
extension �̂ of � to Ê � V̂ such that �̂(A) is a CFI-structure over G.

Proof. Let � ∈ v̂ = v̂ �d(v) for some v ∈ V . We show that under the assumption
that �̂(A) is a CFI-structure over G the action of � on Ê determines �̂(�).
We have that (�, e�(e)) ∈ R for all e ∈ E(v). Hence for a potential isomorphism
�̂ we must have that (�̂(�), �(e�(e))) ∈ R′ (for a gadget relation R′ of a CFI-
structure over G). Since we have �(e�(e)) = e�(e)+�(e), it follows by the definition of
CFI-structures that the function �̂(�) : E(v) → [q] is determined as (�̂(�))(e) =

https://doi.org/10.1017/jsl.2018.33 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.33

RANK LOGIC IS DEAD, LONG LIVE RANK LOGIC! 69

�(e) + �(e) which in turn only depends on the action of � on the edge classes ê for
e ∈ E(v). �
The preceding lemma shows that Iso(A,B) can be identified with a subset of Γ. In
fact, the set Aut(A) is a subgroup of Γ and Iso(A,B) is a coset in Γ. Specifically, we
saw that � ∈ Γ can uniquely be associated with an isomorphism of CFI-structures
over G by setting �(�) = � + � for � ∈ v̂d . As a consequence, this means that
�(v̂d) = v̂d∗ where d∗ = d +

∑
e∈E(v) �(e) and that

�(Rdv) = {(� + �, e�(e)+�(e)) : (�, e�(e)) ∈ Rdv } = Rd∗v .
In particular, � stabilises the relation Rdv if, and only if,

∑
e∈E(v) �(e) = 0.

Lemma 3.10. Γ acts on {CFIq(G, �d) : �d ∈ [q]V }. For � ∈ Γ we have

�(CFIq(G, �d)) = CFIq(G, �d∗) where �d∗(v) = (�d (v) +
∑
e∈E(v)

�(e)).

Lemma 3.11. Let �d , �d∗ ∈ [q]V be sequences of gadget values. Then CFIq(G, �d) ∼=
CFIq(G, �d∗) if, and only if,

∑ �d =
∑ �d∗.

Proof. Let � ∈ Γ such that �(CFIq(G, �d)) = CFIq(G, �d∗). By Lemma 3.10
this means that �d∗(v) = (�d (v) +

∑
e∈E(v) �(e)) for v ∈ V . Thus

∑
v∈V �d∗(v) =∑

v∈V �d (v) +
∑
v∈V

∑
e∈E(v) �(e) =

∑
v∈V �d (v) +

∑
e∈E �(e). Since for all pairs

of related edges e, f ∈ E we have �(e) + �(f) = 0 the claim follows.
For the other direction we proceed by induction on the number i of vertices v ∈ V
such that �d (v) �= �d∗(v). If no such vertex exists, then the claim is trivial. Otherwise,
because of our assumption, there exist at least two such vertices v,w ∈ V , v �= w.
Since G is connected we find a simple path

p̄ : v = v0
E−→ v1 E−→ v2 E−→ · · · E−→ vm = w

from v to w of length m ≥ 1. Consider the following E-vector � ∈ F
E
q which is

defined for z := �d∗(v)− �d (v) as

�(e) :=

⎧⎪⎨
⎪⎩
z, if e = (vi , vi+1), 0 ≤ i < m,
−z, if e = (vi+1, vi), 0 ≤ i < m,
0, else.

By the definition of � it follows that � ∈ Γ. Let �(CFIq(G, �d)) = CFIq(G, �d+). We
claim that the number of v ∈ V such that �d+(v) �= �d∗(v) is at most i − 1. From
Lemma 3.10 we know that �d+(v) = �d (v) +

∑
e∈E(v) �(e). For v ∈ V it follows

that
• if v �∈ {v0, . . . , vm}, then �d+(v) = �d (v), and
• if v = v0, then �d+(v) = �d (v) + z = �d∗(v), and
• if v = vj for 1 ≤ j < m, then

�d+(v) = �d (v) + �(vj, vj−1) + �(vj, vj+1) = �d(v)− z + z = �d (v), and

• if v = vm, then �d+(v) = �d (v)− z.
Thus the claim follows from the induction hypothesis. �

https://doi.org/10.1017/jsl.2018.33 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.33

70 ERICH GRÄDEL ANDWIED PAKUSA

The kind of isomorphism that we constructed in the proof of Lemma 3.11 plays
an important role later on. Thus, for a simple path p̄ from v0 to vm (m ≥ 1)

p̄ : v = v0
E−→ v1 E−→ v2 E−→ · · · E−→ vm = w

as above and a constant z ∈ Fq we denote this isomorphism by �[p̄, z] ∈ Γ. In
other words, if we let
z [e] ∈ Γ for e ∈ E and z ∈ Fq denote the E-vector which is
defined as

z [e](f) =

⎧⎪⎨
⎪⎩
z, if f = e,
−z, if f = e−1,
0, else,

then �[p̄, z] =
z [(v0, v1)] +
z [(v1, v2)] + · · · +
z [(vm−1, vm)]. Intuitively, the
isomorphism �[p̄, z] allows us to simultaneously increase the gadget value at v0 by
z and to decrease the gadget value at vm by z while the induced twists are moved
along the path p̄ through the gadget relations of the vertices vj , 1 ≤ j < m, whose
gadget value does not change. A very important special case arises when p̄ is a
simple cycle of length m ≥ 3

p̄ : v = v0
E−→ v1 E−→ v2 E−→ · · · E−→ vm = v.

Then for all values z ∈ Fq the isomorphism �[p̄, z] ∈ Γ is an automorphism of
CFI-structures over G. We are going to use these automorphisms to show that it is
possible to define in FPC an ordering on the orbits of �-tuples as required by prop-
erty (II). It turns out that it therefore suffices to ensure that the graphG is sufficiently
connected.
Recall that a graph G is k-connected, for k ≥ 1, if G contains more than k
vertices and if G is and stays connected if we remove any set of less than k vertices.
The connectivity con(G) of a graph G is the maximal k ≥ 1 such that G is k-
connected. Moreover, the connectivity con(G) of a class G of graphs is the function
con(G) : N → N defined by

n �→ min
G∈G,|G|=n

con(G).

We are prepared to define the class K: let G be a class of undirected, ordered graphs
such that con(G) ∈ �(1). Then we set

K = Kq := {CFIq(G, �d) : G = (V,≤, E) ∈ G, �d ∈ [q]V }.

3.4. Orbits in generalised Cai, Fürer, Immerman structures. Next we show thatK
satisfies the required properties (I)–(IV).
First of all, we saw that the automorphism group of each CFI-structure
CFIq(G, �d) is a Fq-vector space, so property (I) clearly holds for the class K.
The proof that K satisfies property (II) is more involved. Let us fix the length
� ≥ 1 of tuples on which we want to define a linear preorder which identifies ΔA-
orbits. By the choice of K it suffices to consider CFI-structures A = CFIq(G, �d)
over graphs G = (V,≤, E) with con(G) > (� + 2) since almost all structures in K
satisfy this condition. As above let Γ ≤ F

E
q denote the group that actson the set of

https://doi.org/10.1017/jsl.2018.33 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.33

RANK LOGIC IS DEAD, LONG LIVE RANK LOGIC! 71

CFI-structures over G and letA := (V̂ �Ê) denote the universe of the CFI-structure
A.
Definition 3.12. Let
 ≤ � and let ā ∈ A
.
(i) Let v ∈ V . We say that the vertex v is marked (given the parameters ā) if for
some x ∈ {a1, . . . , a
} we have x ∈ v̂ (= v̂ �d(v)).

(ii) Let e = (v,w) ∈ E. We say that the edge e ismarked (given the parameters ā)
if one of the vertices v orw is marked or if for some x ∈ {a1, . . . , a
}we have
that x ∈ ê ∪ f̂ where f = (w, v) ∈ E is the edge related with e.

Lemma 3.13. Let
 ≤ � and let ā ∈ A
.
(a) If v ∈ V is marked, then the v-gadget can be identified in C�+2∞� (using the
parameters ā), i.e., for every c ∈gadget(v) there exists a formula ϑ(x̄, y) ∈
C
�+2
∞� such that ϑA(ā) = {c}.

(b) If an edge e ∈ E is marked, then the edge classes ê and f̂ for f = e−1 are
identified inC�+2∞� (given the parameters ā), i.e., for every c ∈ ê � f̂ there exists
a formula ϑ(x̄, y) ∈ C�+2∞� such that ϑ

A(ā) = {c}.
Proof. First of all, it is straightforward (even without using the parameters) to
fix the 	-class of any element c ∈ A in C�+2∞� . Second, observe that if an element
� ∈ v̂ is fixed, then we can fix an element in each of the edge classes ê for e ∈ E(v)
since � is R-connected to precisely one vertex in each of these classes. Moreover,
if we have fixed an element x ∈ ê in some edge class ê, then we can simply use
the cycle relation C to identify each element c ∈ ê via its C -distance to a in
C
�+2
∞� . Finally, the inverse relation I yields a definable bijection between related edge
classes. �
Lemma 3.14. Let
 ≤ � , ā ∈ A
 and let v ∈ V be a vertex that is not marked. Then
for all edges e, e′ ∈ E(v), e �= e′ which are not marked there exists � ∈ Aut(A, ā)
such that �(e) = −�(e′) �= 0 and such that �(f) = 0 for all f ∈ E(v) \ {e, e′}.
Proof. Let e = (v,w) and e′ = (v,w ′) as above. Then the vertices w and w ′ are
not marked.
Consider the graph G′ that results from G by removing the vertex v and each
marked vertex y ∈ V . Let V ′ ⊆ V denote the vertex set and E ′ ⊆ E the edge
relation of the graph G′. Moreover, letM := {a1, . . . , a
} ∩ (

⋃
e∈E ê). We observe

that |V | − |V ′| ≤
− |M |+ 1.
For every x ∈M there is an edge f ∈ E such that x ∈ f̂. For each such edge f
that is also contained in the subgraphG′ wedelete one of its endpoints but neither the
vertex w nor the vertex w ′ and denote the resulting subgraph by G′′ with vertex set
V ′′ ⊆ V ′ and edge relation E ′′ ⊆ E ′. It still might happen that there is a parameter
x ∈ M such that x ∈ f̂ for f ∈ E ′′. However, this can only occur if f connects
w ′ and w. Since we removed at most (|V | − |V |′) + |M | ≤
+ 1 ≤ (� + 1) vertices
from the graph G to obtain G′′ and since con(G) > (� + 2) we know that there is a
simple path of lengthm ≥ 2 (i.e., the path does not consist of a single edge between
w and w ′) which connects w and w ′ in G′′:

p̄ : w E′′
−→ v1 E

′′
−→ v2 E

′′
−→ · · · E

′′
−→ vm−1 E

′′
−→ w ′.

https://doi.org/10.1017/jsl.2018.33 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.33

72 ERICH GRÄDEL ANDWIED PAKUSA

We extend p̄ to a simple cycle p̄c in G from v to v via the edges (v,w), (v,w ′) ∈ E:

p̄c : v
E−→ w E−→ v1 E−→ v2 E−→ · · · E−→ vm−1 E−→ w ′ E−→ v.

Let 0 �= z ∈ [q]. We claim that � := �[p̄c , z] satisfies the desired properties.
By the definition of � it holds that �(e) = z = −�(e′). Let x ∈ {a1, . . . , a
}.
Then we have x �∈

⋃m−1
i=1 v̂i ∪ ŵ ∪ ŵ ′ ∪ v̂, since none of the vertices v, w and w ′ is

marked and since we removed any other marked vertex y ∈ V from G.
Moreover, for f ∈ {(v,w), (w, v), (v,w ′), (w ′, v)} we have that x �∈ f̂ by our
assumption that e, e′ are not marked. Also for f ∈ {(w, v1), (w ′, vm−1)} we have
x �∈ f̂ since otherwise we had removed the vertices v1 and vm−1 from G′. Finally,
for f ∈

⋃m−2
i=1 {(vi , vi+1), (vi+1, vi)} we have x �∈ f̂ since otherwise we had removed

one of the endpoints of each such edge f from G′. Hence �(x) = x. Finally, since
v �∈ V ′′ we also have that �(f) = f for all f �∈ E(v) \ {e, e′}. �
Lemma 3.15. Let
 ≤ � and let ā, b̄ ∈ A
. Then (A, ā) ≡C�+2 (A, b̄) if, and only if,
there exists � ∈ Aut(A) such that �(ā) = b̄.
Proof. We proceed by induction on the maximal position 1 ≤ i ≤
 up to which
the tuples ā and b̄ agree, i.e., such that for 1 ≤ j < i we have aj = bj and such
that ai �= bi . Let a := ai and b := bi . Then we have to show that there exists an
automorphism � ∈ Aut(A, a1 . . . ai−1) such that �(a) = b. Since ā and b̄ have the
sameC�+2∞�-typewe know that a and b belong to the same	-class. We choose v ∈ V
such that a, b ∈ gadget(v).
In what follows, whenever we speak of marked vertices or marked edges then we
implicitly refer to a marking with respect to the already fixed part of parameters
{a1, . . . , ai−1}.
Without loss of generality we may assume that the vertex v is not marked (by an
element x ∈ {a1, . . . , ai−1}), because otherwise, by Lemma 3.13, every element in
gadget(v) can uniquely be identified in C�+2∞� . We distinguish between the two cases
where a and b are equation nodes and where a and b are edge nodes.
For the first case let a, b ∈ v̂. There exists a unique � ∈ F

E(v)
q such that �(a) = b

and such that
∑
e∈E(v) �(e) = 0.Moreover, this vector� can easily be defined inC

�+2
∞�

given the elements a and b. Now assume that one of the edges e = (v,w) ∈ E(v) is
markedbut that�(e) �= 0.Since the edge e ismarked, every element in ê canuniquely
be identified in C�+2∞� by Lemma 3.13. However, since a and b are R-connected to
different elements in ê (as �(e) �= 0) this contradicts the fact that ā and b̄ have the
same C�+2∞�-type. Thus, for every edge e ∈ E(v) we either have that �(e) = 0 or that
e is not marked. By induction on the number of edges e ∈ E(v) with �(e) �= 0 we
show that � can be extended to an automorphism in Aut(A, a1, . . . , ai−1). Thus let
us fix e ∈ E(v) such that �(e) �= 0. Since we have that

∑
f∈E(v) �(f) = 0 there has

to be another edge e′ ∈ E(v) with �(e′) �= 0. We apply Lemma 3.14 to obtain an
automorphism
 ∈ Aut(A, a1, . . . , ai−1) such that
(e) = �(e),
(e′) = −�(e) and

(f) = 0 for allf ∈ E(v)\{e, e′}. Now consider (�−
) ∈ F

E(v)
q . By the induction

hypothesis we can extend this vector to an automorphism�∗ ∈ Aut(A, a1, . . . , ai−1).
But then (�∗ +
) ∈ Aut(A, a1, . . . , ai−1) is an extension of �.
For the second case assume that a, b ∈ ê for some edge e ∈ E(v). As above
we conclude that the edge e is not marked. Since con(G) > (� + 2) the minimal

https://doi.org/10.1017/jsl.2018.33 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.33

RANK LOGIC IS DEAD, LONG LIVE RANK LOGIC! 73

degree of each vertex in G is at least (� + 4). Since the vertex v is not marked
there has to be another edge e′ ∈ E(v), e �= e′ which is not marked. Thus we can
apply Lemma 3.14 to obtain an automorphism � ∈ Aut(A, a1, . . . , ai−1) such that
�(a) = b and �(f) = 0 for all f ∈ E(v) \ {e, e′}. �

It is well-known that classes of C�+2∞�-equivalent tuples can be ordered in FPC,
see, e.g., [17]. Hence, it follows from our previous lemma that the class K satisfies
property (II).
Lemma 3.16. The class K satisfies the properties (I) and (II).

Let us now turn our attention to property (IV). In the next lemma we are going
to show that for each k ≥ 1 and each sufficiently connected graph G ∈ G, the logic
C
k
∞� cannot distinguish between any pair of CFI-structures over G (although there
exist nonisomorphic CFI-structures over G).
Lemma 3.17. Let k ≥ 1 and let G = (V,≤, E) ∈ G such that con(G) > k. Then
for all �d, �d∗ ∈ [q]V it holds that

CFIq(G, �d) ≡Ck CFIq(G, �d∗).
Thus, the class K satisfies property (IV).
Proof. Let A = CFIq(G, �d) and letB = CFIq(G, �d∗). Without loss of generality
we assume that A �∼= B. We show that Duplicator wins the k-pebble bijection game
on A and B. Let za :=

∑
v∈V �d (v), let zb :=

∑
v∈V �d∗(v) and let z := zb − za .

As above, for e = (v,w) ∈ E and y ∈ [q] we let
y[e] ∈ Γ = Γ(G) denote the
isomorphism which shifts the edge class ê by y, the edge class f̂ for f = (w, v) by
−y and which stabilises all remaining classes, i.e.,

y[e](f) =

⎧⎪⎨
⎪⎩
z, if f = (v,w),
−z, if f = (w, v),
0, else.

Given a position (A, a1, . . . , a� ,B, b1, . . . , b�) in the k-pebble bijection game, we say
that a pair (v, �) with v ∈ V and � ∈ Γ(G) is good if:
• the v-gadget is not marked (by the pebbled elements a1, . . . , a� in A or,
equivalently, by the pebbled elements b1, . . . , b� inB),

• �(ai) = bi for 1 ≤ i ≤ � ,
• �(A \ v̂) = B \ v̂, and
• (
z [e] + �)(A �gadget(v)) = B �gadget(v) for all e ∈ E(v).

Intuitively this means that � is nearly an isomorphism between A andB except for
the gadget associated with vertex v. Of course � itself does not induce a bijection
between the universes of the two CFI-structures (as otherwise A ∼= B). However,
for each e ∈ E(v) we can associate a bijection �̂e : A→ B to � which is defined as

�̂e(x) =

{
�(x), if x �∈ v̂,
(
z [e] + �)(x), if x ∈ v̂.

In what follows we show that Duplicator can play in such a way that after each
round such a good pair (v, �) exists. Obviously, if Duplicator can maintain this
invariant this suffices for her to win the game.

https://doi.org/10.1017/jsl.2018.33 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.33

74 ERICH GRÄDEL ANDWIED PAKUSA

Indeed we can find such a good pair (v, �) by Lemma 3.11 for the initial position
(A,B) of the game. Let us now consider one round of the game which starts from
a position (A, a1, . . . , a� ,B, b1, . . . , b�) for which a good pair (v, �) exists. First,
Spoiler chooses a pair i ≤ k of pebbles which he removes from the game board
(if the corresponding pebbles are placed at all). Duplicator then answers Spoiler’s
challenge by providing a bijection �̂e for some edge e ∈ E(v) which is not marked.
Note that such an edge e exists since con(G) > k and thus each vertex has degree
at least k + 2. Spoiler picks a new pair (a, �̂e(a)) ∈ A × B of �̂e-related elements
on which he places the i-th pair of pebbles. By the properties of � it immediately
follows that the resulting mapping ā[i �→ a] �→ b̄[i �→ b] is a partial isomorphism.
However, it might happen that Spoiler placed the i-th pair of pebbles on equation
nodes v̂ in the gadget associated with vertex v. In this case the pair (v, �) is not good
any longer. So assume that Spoiler pebbled a new pair of elements (a, �e(a)) ∈ v̂×v̂.
Since the edge e = (v,w) was not marked we know thatw is not marked. It follows
that the pair (w,
z [e] + �) is good. �
To complete our proof we establish an FPSq-definable canonisation procedure
on the class K. The idea is as follows: given a CFI-structure A = CFIq(G, �d) over
a graph G and a value z ∈ [q] we construct a linear equation system over Fq which
is solvable if, and only if,

∑ �d = z. This linear equation system is FO-definable
in the structure A which shows that FPSq can determine the isomorphism class
of a CFI-structure over G. Since the graph G is ordered it is easy to construct an
ordered representative from each isomorphism classes of CFI-structures over G
which concludes our argument.
More specifically, let G = (V,≤, E) ∈ G, let A = CFIq(G, �d) ∈ K and let z ∈ Fq .
For our linear equation system we identify each element ei ∈ Ê and each vertex
v ∈ V with a variable over Fq , i.e., we let V := Ê � V be the set of variables. The
equations of the linear system are given as follows:

ei+1 = ei + 1, for all ei ∈ Ê (E 1)

ei = −f−i , for related edges e, f ∈ E (E 2)

v =
∑
e∈E(v)

e�(e), for all v ∈ V, � ∈ v̂ (E 3)

z =
∑
v∈V
v. (E 4)

It is easy to see that this system isFO-definable inA. First of all, the equation (E 4)
can be defined as a sum over the ordered set V . Moreover, we can express the
equations of type (E 1) and (E 2) by using the cycle and inverse relation, respectively.
Finally, the equations of type (E 3) can be expressed by using the gadget relationR.

Lemma 3.18. The above defined system is solvable if, and only if,
∑ �d = z.

Proof. If
∑ �d = z then it is easy to verify that we obtain a solution �
 ∈ F

V
q of

the linear system by setting �
(ei) = i and �
(v) = �d(v). For the other direction, we
show that a solution �
 ∈ F

V
q of this system defines an isomorphism � betweenA and

B = CFIq(G, �d+) where �d+(v) := �
(v). As a preparation, we let �(e) := �
(ei)− i

https://doi.org/10.1017/jsl.2018.33 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.33

RANK LOGIC IS DEAD, LONG LIVE RANK LOGIC! 75

for e ∈ E and some ei ∈ ê. Since �
 is a solution, � ∈ F
E
q is well-defined. Now we

obtain the isomorphism � for ei ∈ Ê and � ∈ V̂ by setting
�(ei) �→ e
(ei),
�(�) �→ � + �.

Using the equations (E 1) and (E 2) one easily verifies that � respects the cycle
relation C and the inverse relation I . Moreover, let (�, e�(e)) ∈ R. Then

�(e�(e)) = e�
(e�(e)) and �
(e�(e)) = �(e) + �(e).

Thus, � also respects R. Finally, by the equations of type (E 3), for all v ∈ V and
� ∈ v̂ we have that ∑

� + � =
∑
e∈E(v)

�
(e�(e)) = �
(v).

This shows that �
(v) = d+(v) and that
∑ �d+ =

∑
v∈V �
(v) = z because of equation

(E 4). �
Lemma 3.19. The class K satisfies the property (III).
This finishes our proof of Theorem 3.3.

§4. Solvability quantifiers vs. rank operators. In the previous section we obtained
separation results for the extensions of FPC by solvability quantifiers (and rank
operators) over different sets of primes. One important step of our proof was to
construct a class of structures over which we can show that the expressive power
of FPRΩ and FPSΩ coincides. This naturally leads to the question whether, in
general, rank operators can be simulated by solvability quantifiers in the framework
of fixed-point logic with counting. In fact, as we already mentioned in Section 2,
most of the queries which are known to separate FPC from rank logic can also
be expressed in FPS. In particular, this is interesting because many other problems
from linear algebra are known to sit in between of “solving linear equation systems”
and “computing the matrix rank”, for example, deciding whether two matrices are
similar or equivalent, see [15, 16, 18]. Clearly, if solvability logic happens to be
equivalent to rank logic, then these intermediate problems would be definable in
solvability logic as well.
In this section we solve a simplified version of this question and show that, at least
in the absence of counting terms, rank operators are strictly more expressive than
solvability quantifiers. In order to state our main result formally, we first define
for every prime p the extension FOSp of first-order logic (without counting) by
solvability quantifiers over Fp. The crucial difference to the extension FORp of
first-order logic by rank operators rkp is that the logic FOSp is a one-sorted logic
which does not have access to a counting sort.

Definition 4.1. For every prime p, the logic FOSp results by extending the
syntax of FO by the following formula creation rule:
• If ϕ(x̄, ȳ, z̄) ∈ FOSp, then 	(z̄) = (slvp x̄, ȳ)ϕ(x̄, ȳ, z̄) is an FOSp-formula.
The semantics of 	(z̄) are defined as above. Let k = |x̄| and � = |ȳ|. A pair
(A, z̄ �→ c̄) with c̄ ∈ A|z̄| defines an I × J -matrix Mϕ over {0, 1} ⊆ Fp where
I = Ak and J = A� and whereMϕ(ā, b̄) = 1 if, and only if, A |= ϕ(ā, b̄, c̄).

https://doi.org/10.1017/jsl.2018.33 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.33

76 ERICH GRÄDEL ANDWIED PAKUSA

Let � be the I -characteristic vector over Fp, i.e., �(ā) = 1 for all ā ∈ I . Then
Mϕ and � determine the linear equation systemMϕ · �x = � over Fp. Now we let
A |= 	(c̄) if, and only if,Mϕ · �x = � is solvable.
Analogously to the definition of FPS in Section 2, the syntactic normal form for
linear equation systems in the definition of slvp-quantifier is no severe restriction
(again, see Lemma 4.1 in [6]).
In our main result in this section we show that for every prime p ∈ P there is a
query K ⊆ FStr(∅) over the class of sets which can be expressed in FORp but not
in FOSp. In particular, this shows that over FStr(∅) it holds that

FOSp < FORp.

In some sense this result is not surprising. By contrast to FORp, the logic FOSp
does not have access to a counting sort and thus has to express properties of
FStr(∅)-structures over pure unordered sets. However, it is not clear how one can
turn this intuition into a formal argument. In fact, the logic FOSp already has
nontrivial expressive power over sets. For instance, FOSp can determine the size
of sets modulo p [18], and consequently, modulo pk for every fixed k (recall that
n ≡ 0 mod pk if, and only if, n ≡ 0 mod p and

(
n
p

)
≡ 0 mod pk−1). By contrast,

fixed-point logic FP, for example, collapses to first-order logic over sets.
Let us briefly summarise what is known about the logic FOSp (see also [6, 18]).
First of all, it follows from [7] that for every prime p, the logic FOSp can express the
symmetric transitive closure of definable relations. Hence, FOSp subsumes the logic
STC and can express every Logspace-computable property of ordered structures.
Second, it also follows from [7] that FOS2 can distinguish between the odd and
even version of a CFI-graph, which means thatFOS2 cannot be a fragment of FPC.
More generally, by adapting the CFI-construction for other fields one can show
that FOSp �≤ FPC for all p ∈ P (see, e.g., [15]).
On the domain of ordered structures, the expressive power of FOSp can be char-
acterised in terms of a natural complexity class: in [3], Buntrock et. al. introduced
the logarithmic space modulo counting classes MODkL for integers k ≥ 2. Analo-
gously to the case of modulo counting classes for polynomial time, the idea is to
say that a problem is inMODkL if there exists a nondeterministic logspace Turing
machine which verifies its inputs by producing a number of accepting paths which
is not congruent 0 mod k. For the formal definition we refer the reader to [3]. It
turns out that, at least for primes p, the classMODpL is closed under many natural
operations, including all Boolean operations and even logspace Turing reductions
[3, 14]. Furthermore, many problems from linear algebra over Fp are complete for
MODpL. In particular this is true for the solvability problem of linear equation
systems over Fp and for computing the matrix rank over Fp [3].
Building on these insights, Dawar et. al. showed that for all primes p ∈ P, the
logic FORp capturesMODpL on the class of ordered structures. It has been noted
in [18] that their proof implies the same correspondence for the logic FOSp.

Proposition 4.2 ([7], [18]). Over ordered structures it holds that

FOSp = FORp =MODpL.

https://doi.org/10.1017/jsl.2018.33 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.33

RANK LOGIC IS DEAD, LONG LIVE RANK LOGIC! 77

Despite this precise characterisation over the class of ordered structures, the
situation over general structures remained unclear. It easily follows that FOSp ≤
FORp ≤ FPR, but, so far, it has been open whether one, or even both, of these
inclusions are strict. We give the following partial answer:

Theorem 4.3. For all primes p we have FOSp < FORp (over the class of sets
FStr(∅)).
Before we proceed, let us briefly sketch our proof strategy for Theorem 4.3. We
fix a prime q ∈ P, q �= p. We then select a class of sets K which is undefinable
in FORp, but such that a highly padded variant K′ = {([(qqr]) : ([r]) ∈ K}
becomes FORp-definable. The existence of such a class K follows from well-known
complexity-theoretic arguments (hierarchy theorems). As our main step, we then
show that this particular kind of padding (double-exponentiation with basis q)
does not extend the expressive power of FOSp, in contrast to the case of FORp. We
conclude that FORp and FOSp have different expressiveness.
In order to prove Theorem 4.3, it will be convenient to make use of the following
strong normal form for FOSp which has been established in Corollary 4.8 of [6]:

Theorem 4.4. Every formula ϑ(z̄) ∈ FOSp is equivalent to an FOSp-formula of
the form (slvp x̄1, x̄2)α(x̄1, x̄2, z̄) where α(x̄1, x̄2, z̄) is quantifier-free.

Let us remark that in order to prove our separation result (Theorem 4.3), we
only require the normal form stated in Theorem 4.4 for the case of FOSp-sentences.
Similar to our approach in Section 3, the main idea for separatingFOSp and FORp
is to exploit the symmetries of definable linear equation systems. More precisely,
we are aiming at considerably reducing the size of an input linear equation system
via an FORp-definable transformation. For the remainder of this proof, let us fix a
quantifier-free formulaα(x1, . . . , xk, y1, . . . , y�) ∈ FO(∅) and a prime p. According
to the semantics of FOSp, the formula α defines in an input structure A = ([n]) of
size n the [n]k × [n]� -coefficient matrixMn which is given for ā ∈ [n]k, b̄ ∈ [n]� as

Mn(ā, b̄) =

{
1, if A |= α(ā, b̄),
0, otherwise.

Then A |= (slvp x̄1, x̄2)α(x̄1, x̄2) if the linear equation systemMn · �x = � over Fp is
solvable. For convenience we set In = [n]k and Jn = [n]� .
Let Γ = Γn = Sym([n]). Then the group Γ acts on In and Jn in the natural
way. As in Section 3 we identify the action of � ∈ Γ with the multiplication by the
associated In × In-permutation matrix ΠI and the Jn × Jn-permutation matrix ΠJ ,
respectively. SinceMn is defined by a first-order formula over the empty signature,
we conclude that (ΠI ·Mn · Π−1

J)(ā, b̄) = Mn(�(ā), �(b̄)) = Mn(ā, b̄) and thus
ΠI ·Mn ·Π−1

J =Mn, which can equivalently be written as

ΠI ·Mn =Mn ·ΠJ .

For what follows, we fix a prime q which is distinct from p and a subgroup Δ ≤ Γ
which is a q-group, i.e., |Δ| = qm for some m ≥ 0. The overall strategy is to use the
Δ-symmetries of the matrix Mn to strongly reduce the size of the linear equation
systemMn · �x = �. More precisely we claim that forM∗

n :=
∑
�∈Δ ΠI ·Mn the linear

https://doi.org/10.1017/jsl.2018.33 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.33

78 ERICH GRÄDEL ANDWIED PAKUSA

equation systemMn · �x = � is solvable if, and only if,M∗
n · �x = � is solvable. First

of all we note that for all � ∈ Δ we have
• ΠI ·M∗

n =
∑

∈Δ ΠI ·ΛI ·Mn =

∑
�∈Δ ΠI ·Mn =M∗

n ,
• M∗

n ·ΠJ =
∑

∈Δ ΛI ·Mn ·ΠJ =

∑

∈Δ ΛI ·ΠI ·Mn =M∗

n .

To verify our original claim assume thatM∗
n · �b = �. Then we have

� =M∗
n · �b = (

∑
�∈Δ
ΠI ·Mn) · �b = (

∑
�∈Δ
Mn ·ΠJ) · �b =Mn ·

∑
�∈Δ
(ΠJ · �b).

For the other direction let Mn · �b = �. Then
∑
�∈Δ ΠI ·Mn · �b = |Δ| · �, hence

(1/|Δ|) · �b is a solution of the linear equation systemM∗
n · �x = �. Note that for this

direction we require that q and p are co-prime as we have to divide by |Δ|.
SinceM∗

n satisfies ΠI ·M∗
n =M

∗
n ·ΠJ =M∗

n for all � ∈ Δ we have

M∗
n (ā, b̄) =M

∗
n (�(ā), b̄) =M

∗
n (ā, �(b̄))

for all ā ∈ In, b̄ ∈ Jn and � ∈ Δ. In other words, the entries of the In×Jn-matrixM∗
n

are constant on the Δ-orbits of the index sets In and Jn which means that we can
independently change the indices of rows and columns (within Δ-orbits) without
affecting the entry of M∗

n . More specifically, if we let I
Δ
n and J

Δ
n denote the sets

of Δ-orbits on In and Jn, respectively, then M∗
n can be identified with the matrix

(M∗
n /Δ) which is (well-)defined as

(M∗
n /Δ) : I

Δ
n × JΔn → Fp, ([ā], [b̄]) �→M∗

n (ā, b̄).

Thematrix (M∗
n /Δ) is nothing but a more compact representation of thematrixM

∗
n

where we shrink each subblock that is indexed by Δ-orbits on I and J to a single
entry (a block of size 1 × 1). Accordingly, the matrix (M∗

n /Δ) gives rise to a new,
and more compact, linear equation system

(M∗
n /Δ) · ȳ = �

which is solvable, if and only if, the original systemMn · x̄ = � is solvable. To see
this, note that we can obtain the matrix (M∗

n /Δ) from the matrixM
∗
n by iteratively

deleting repeated rows and columns. These operations do not alter the solvability
of the linear equation system. As we said, depending on the size of the group Δ, the
sets I Δn and J

Δ
n are (much) smaller than the index sets In and Jn. More precisely, by

the orbit-stabiliser theorem (see Section 3.1), choosing a large group Δ guarantees
that we obtain a relatively small linear equation system (M∗

n /Δ) · �y = � which is
equivalent to the original one. In the following Section 4.1 we set out to construct
such “large” groups Δ. As it will become evident in our proof later, there are certain
additional requirements that Δ should meet. Besides of inducing a small number of
different orbits on In and Jn, we want that the group Δ satisfies the following:

• First of all, in order to be able to switch from the original systemMn · x̄ = � to
the reduced system (M∗

n /Δ) · ȳ = �, we require that the size |Δ| of Δ is coprime
to p. We already took care of this by choosing Δ to be a q-group (for a prime
q different from p), but a more liberal choice is possible in this respect.

• The reduction Mn �→ (M∗
n /Δ) itself should be of low complexity, that is it

should be definable in first-order logic with counting (FOC). To this end, we

https://doi.org/10.1017/jsl.2018.33 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.33

RANK LOGIC IS DEAD, LONG LIVE RANK LOGIC! 79

aim to select Δ in such a way that the structure of Δ-orbits on In and Jn is
“simple”.

As it turns out, one way to meet both requirements is to let Δ be a q-Sylow group
that acts on a pure set of size qr.

4.1. Constructing large groups. Recall that the maximal q-subgroups Δ ≤ Γ are
called the q-Sylowgroupsof Γ. It is well-known that for the case where Γ = Sym([n])
these groups can be obtained via an inductive constructionwhich wewant to explain
here for the special case of n being a power of q (the general case can be handled
similarly, see, e.g., [13]). Hence from now on, let us assume that n = qr for some
r ≥ 1.
First of all, we determine the size of q-Sylow groups of Γ. A simple induction
shows that the maximal t ≥ 1 such that qt divides n! = (qr)! is given as

t = qr−1 + qr−2 + · · ·+ q + 1 = q
r − 1
q − 1 .

In fact, we can write (qr)! as (qr)! = 1 · · · (1 · q) · · · (2 · q) · · · (qr−1 · q). Hence
t = t∗ + qr−1 where t∗ is the maximal such that qt∗ divides (qr−1)!
In particular, if we denote for n = qr a q-Sylow of Sym([n]) by Δr , then our
argument from above shows that |Δ1| = q and that

|Δr+1| = |Δr |q · q.

As it turns out, this equation already gives a hint about the algebraic structure of
Δr . Indeed, Δr+1 can be obtained as the wreath product of Δr and the cyclic group
Fq . Since Δ1 = Fq it follows that Δr is the r-fold wreath product of the cyclic group
Fq . We decided to skip the formal definition of the notion of wreath products and
rather to directly illustrate this concept for the particular case of the q-Sylow groups
of Γ = Sym([n]) = Sym([qr]).
To obtain an algebraic description of these groups, we inductively construct for
r ≥ 1 a q-Sylow subgroup Δr ≤ Sym([qr]) together with a family of trees T xi for
i = 0, . . . , r and x ∈ [qr−i] such that the following properties hold.
(I) T xi is a complete q-ary tree of height i whose leaves are labelled with
elements from [n]. More precisely, the labels of the leaves of T xi form the
set Pxi = {x · qi , . . . , (x +1) · qi − 1} (note that Pxi is the x-th block of the
natural partition of [n] into parts of size qi).

(II) For all i ≤ r the group Δr transitively acts on the set {T xi : x ∈ [qr−i]}
by applying permutations � ∈ Δr to the labels of the leaves of the tress T xi .
Moreover, for each i ≤ r, the subgroup of Δr which point-wise stabilises
the trees T xi is a normal subgroup of Δr .

(III) We have Δ1 ≤ Δ2 ≤ · · · ≤ Δr where Δi acts on the set of labels P0i of the tree
T 0i . More generally, for every block Pxi , the group Δr contains a subgroup
Δi,xr ≤ Δr which point-wise fixes the elements of all blocks Pyi for y �= x
and whose action on Pxi corresponds to the action of Δi on P0i .

The inductive construction of the trees T xi is depicted in Figure 2. It is useful
to think of elements y ∈ [n] as being given in their q-adic representation, i.e.,
y = y0 + y1 · q + · · ·+ yr−1 · qr−1. Then we have that y ∈ P0r = [n] and

https://doi.org/10.1017/jsl.2018.33 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.33

80 ERICH GRÄDEL ANDWIED PAKUSA

• y ∈ Pyr−1r−1 ,
• y ∈ Pyr−2+yr−1·qr−2 ,
• . . .
• y ∈ Py0+···+yr−1·q

r−1

0 = Py0 .
Hence, the q-adic encoding of y describes the unique path in the tree T 0r from the
root to the leaf T y0 . The trees T xi clearly satisfy the properties stated in (I).
For the inductive construction of the q-Sylow groups Δr we first fix Δ1 as the
cyclic group generated by the natural cyclic shift � = (0 1 · · · q − 1) on the set
P01 = {0, . . . , q − 1}.

i = 0 : T 00 : 0 · · · T x0 : x · · · T q
r−1
0 : qr − 1

i > 0 : T 0i :

T 0i−1
· · ·

T q−1i−1

· · · T xi :

T xqi−1
· · ·

T (x+1)q−1i−1

· · · Tq
r−i−1
i :

T q
r−i+1−q
i−1

· · ·
T q

r−i+1−1
i−1

Figure 2. Inductive definition of the trees T xi .

We proceed with the inductive step r �→ r + 1. The set [q]r+1 splits into q blocks
P0r , . . . ,P

q−1
r each of size qr . The group Δr acts on P0r and point-wise fixes the

elements from the blocks Pxr with x �= 0. Let � ∈ Sym([n]) for n = qr+1 be the
following permutation which shifts the segments P0r , . . . ,P

q−1
r in a cycle of length

q by composing the natural shifts on the sets of residues modulo qr:

� = (0 · · · (q − 1)qr)(1 · · · 1 + (q − 1)qr) · · · (qr − 1 · · · qr − 1 + (q − 1)qr).
Hence for all a ∈ [n] we have �(a) = (a + qr) mod qr+1. We set Δ0r = Δr and,
more generally, Δxr = (�

x)Δr(�x)−1 for x = 0, . . . , q − 1 to obtain q copies of
Δr which independently act on the segments Pxr for 0 ≤ x ≤ q − 1. Finally, we
define Δr+1 as the semi-direct product of (Δ0r × · · · × Δq−1r) and the cyclic group
〈�〉 of size q. This means that the group elements of Δr+1 are elements in the set
(Δ0r × · · · × Δq−1r × 〈�〉) and that the group operation is given by
(�1, . . . , �q−1, α) · (ε1, . . . , εq−1, �) = ((�1, . . . , �q−1) · α(ε1, . . . , εq−1)α−1, α · �).
Since |Δr+1| = |Δr |q · q we conclude that Δr+1 is a q-Sylow subgroup.
From our construction it immediately follows that Δr+1 satisfies the properties
stated in (III). To see that Δr+1 also satisfies the properties stated in (II) we start by
showing that, for i ≤ r, Δr+1 transitively acts on {T xi : x ∈ [qr+1−i]}. If we split
the set [qr+1−i] into q blocks P0r−i , . . . ,P

q−1
r−i of size q

r−i , then we know from the
induction hypothesis that Δ0r transitively acts on the set of trees {T xi : x ∈ P0r−i} =
{T xi : x ∈ [qr−i]}. Moreover, it is easy to verify that for all x ∈ [qr+1−i] we have
�(T xi) = T zi where z = x + qr−i mod qr+1−i . Hence (�y){T xi : x ∈ P0r−i} =

https://doi.org/10.1017/jsl.2018.33 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.33

RANK LOGIC IS DEAD, LONG LIVE RANK LOGIC! 81

{T xi : x ∈ Pyr−i} for all 0 ≤ y ≤ q − 1 which means that Δyr transitively acts on
{T xi : x ∈ Pyr−i} and thus (II) holds.
The crucial step is to understand the action of Δr on the sets In = [n]k and
Jn = [n]� (for the case where n = qr). In fact, our next aim is to develop a complete
invariant for the Δr-orbits on these index sets. Recall that the sets of Δr-orbits on
In and Jn provide index sets for the succinct linear equation systemM∗

n · �x = �. To
define this invariant, the main idea is to describe the position of a tuple ā ∈ In (or
ā ∈ Jn, respectively) in the tree T := T 0r .
Let us first define the signature sgn(a, b) of a pair (a, b) ∈ [n] × [n] as the tuple
(i, z) ∈ [r+1]× [q] such that the lowest common ancestor of a and b in T is the root
of a tree T xi and such thata is located in a subtreeT

xq+ya
i−1 forya ∈ [q] and b is located

in the subtree T xq+ybi−1 where yb = ya + z mod q. For the special case where i = 0
we have a = b and agree to set z = 0. With this preparation we define the signature
sgn(ā) of a tuple ā = (a1, . . . , a�) ∈ Jn as the list
 ∈ ([r+1]×[q])�(�−1)/2 consisting
of the individual signatures sgn(ai , aj) for all pairs ai , aj with 1 ≤ i < j ≤ � . The
signature of tuples in In is defined analogously.

Lemma 4.5. Let ā ∈ Jn. Then sgn(ā) = sgn(�ā) for all � ∈ Δr .
Proof. Immediately follows from the construction of Δr and the trees T xi . �
Lemma 4.6. Let ā, b̄ ∈ Jn. If sgn(ā) = sgn(b̄), then b̄ ∈ Δr(ā).
Proof. We proceed by induction on the maximal position 0 ≤ i ≤ � such that
aj = bj for all j = 1, . . . , i . The case i = � is clear, so assume that i < � .
Let ā = (a1, . . . , ai , ai+1, . . . , a�) and b̄ = (a1, . . . , ai , bi+1, . . . , b�). We show that
there exists a permutation � ∈ Δr which pointwise fixes a1, . . . , ai and such that
�(ai+1) = bi+1. Then the claim follows from Lemma 4.5 together with the induction
hypothesis. For i = 0 this is easy, because Δr acts transitively on [n]. If i > 0
we choose aw ∈ {a1, . . . , ai} such that sgn(aw, ai+1) = (c, d) and such that c is
minimal with this property. Obviously we have c > 0. By the choice of aw the lowest
common ancestor of aw and ai+1 is the root of a tree T xc . Moreover, aw is located
in a subtree T xq+yc−1 for some 0 ≤ y ≤ q − 1 and ai+1 is located in the subtree T xq+zc−1
where z = y + d mod q. Since sgn(ā) = sgn(b̄) also bi+1 occurs as the label of a
leaf in the subtree T xq+zc−1 . By the minimality assumption on c we know that non of
the elements {a1, . . . , ai} occurs in the tree T xq+zc−1 . Hence, by the properties of the
group Δr stated in (III) we can find an element � ∈ Δr which point-wise fixes all
elements outside the block Pxq+zc−1 (in particular, the elements a1, . . . , ai) and which
moves ai+1 to bi+1. �

4.2. Defining sizes of orbits in FOC. Following our definition from above, the
signature sgn(ā) of an element ā ∈ Jn is a tuple of length �(� − 1)/2 whose entries
are pairs (i, z) ∈ [r + 1] × [q]. We denote the set of all possible sequences of this
form by S�n = ([r + 1] × [q])�(�−1)/2. Of course, not every tuple in
 ∈ S�n can be
realised as the signature sgn(ā) =
 of an element ā ∈ Jn. Similarly, we define
the set Skn = ([r + 1] × [q])k(k−1)/2 to capture all possible signatures of elements
in In .
Since the coefficient matrixM∗

n of the equivalent linear equation systemM
∗
n · �x =

� can be defined as a matrix whose index sets are the collections of Δr-orbits on In

https://doi.org/10.1017/jsl.2018.33 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.33

82 ERICH GRÄDEL ANDWIED PAKUSA

and Jn, we can use the notion of signatures to describeM∗
n as an (S

k
n ×S�n)-matrix.

This fits with our proof plan as the index sets Skn and S
�
n of the matrixM

∗
n are much

smaller than the index sets In and Jn of the coefficient matrix Mn of the original
linear equation system. However, it still might be the case that the succinctness of
the matrixM∗

n does not help, because it is not possible to obtain its entries within
FORp.
We show that this is not the case. More precisely we show that we can define the
matrixM∗

n in FOC in a structure of size r (where we assume that r ≥ q). Therefore,
the main technical step is to show that FOC can count (modulo p) the number of
realisations of a potential signature
 ∈ Skn .
First of all, we need some further notation. A complete equality type in k + �
variables is a consistent set �(x1, . . . , xk, xk+1, . . . , xk+�) of literals xi = xj, xi �= xj
which contains for every pair i < j either the atom xi = xj or the literal xi �= xj .
Note that each quantifier-free formula α ∈ FO(∅) can be expressed as a Boolean
combination of complete equality types.
In the following main technical lemma we show that in the structureA = ([r]) we
can count (modulo p) the number of realisations of a (potential) signature
 ∈ S�n
in a subtree T xi in FOC. More generally, this is possible if we additionally fix some
entries of the tuples which should realise
 in T xi . Here we need another prerequisite:
as we want to work with elements from the set [n] = [qr] in a structure of size r we
have to agree on some sort of succinct representation. Of course the natural choice
here is to represent numbers x ∈ [n] in the structure A via their q-adic encoding: a
binary relation R ⊆ [r]2 which corresponds to a function R : [r] → [q] represents
the number x(R) ∈ [n] =

∑r−1
i=0 R(i) · qi . Note that this encoding requires a linear

order on the set [r] (which is not the case for the structure A). However, as we
are working with FOC we can just use the number sort on which a linear order is
available. Hence in the following,whenever we specifyFOC-formulas orFOC-terms
with free variables or with free relation symbols which should represent numbers,
then we implicitly assume that these variables are numeric variables and that the
relation symbols are evaluated over the number sort. The same holds for signatures

 ∈ S�n which we specify in FOC-formulas by a list of pairs (hi , di) of numeric
variables of length

(
�
2

)
.

Before we state our main technical lemma it is helpful to recall that our inductive
construction of the trees T xi fits very well with the q-adic encoding of numbers x ∈
[n]. Again, let x ∈ [n] be given by its q-adic encoding as x = (x0, . . . , xr−1) ∈ [q]r,
i.e., x =

∑r−1
i=0 xi · qi . Then the i-th node on the unique path from the root in the

tree T = T 0r to the leaf T x0 is the root of the tree T
y
r−i where y = xr−i + xr−i+1q +

· · ·+xr−1qi−1. In other words, the q-adic encoding of x precisely describes the path
in the tree T from the root to the leaf labelled with x where at level (r − i) the i
last entries xr−i , . . . , xr−1 in the q-adic encoding of x are determined (i.e., x is a
member of the block Pyr−i).

Lemma 4.7. For all � ≥ 1 and 0 ≤ s ≤ � there exist
(a) A term Θ(i, h1, d1, . . . , ht , dt) ∈ FOC({Rx,R1, . . . , Rs}) and
(b) Formulasϕe(y, z, i, h1, d1, . . . , ht, dt) ∈ FOC({Rx,R1, . . . , Rs}) for e = s+1,
. . . , � ,

https://doi.org/10.1017/jsl.2018.33 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.33

RANK LOGIC IS DEAD, LONG LIVE RANK LOGIC! 83

where t =
(
�
2

)
, such that for all r ≥ q, all i ≤ r, all
 = ((h1, d1), . . . , (ht, dt)) ∈ S�n

where n = qr, all x ∈ [qr−i] and all a1, . . . , as ∈ Pxi the following holds: let A = ([r])
and let Rx,R1, . . . , Rs be numerical relations such that Rx represents the (q-adic
encoding of the) element x ∈ [qr−i] and such that each Ri represents the (q-adic
encoding of) the element ai . Then we have that

(i) The value ΘA(q, i, h1, d1, . . . , ht, dt) of the term Θ in A is |Z| mod p where

Z = {(as+1, . . . , a�) ∈ (Pxi)�−s : sgn(a1, . . . , as , as+1, . . . , a�) =
}.

(ii) If Z �= ∅, then the formulas (ϕe)s<e≤� define the q-adic representation of
witnessing elements as+1, . . . , a� ∈ Pxi , i.e., such that (as+1, . . . , a�) ∈ Z.

Proof. First of all, by our previous observations it is easy to see that the condition
aj ∈ Pxi for j = 1, . . . , s can be defined in FOC. More generally, we can use the
q-adic encoding of the elements aj to determine sgn(a1, . . . , as) in FOC. Hence, for
the remainder of the proof we assume that sgn(a1, . . . , as) is consistent with
 and
that aj ∈ Pxi for j = 1, . . . , s .
We proceed by induction on � . For � = 1 it suffices to show thatFOC can compute
(n mod p) where n = qr in the structure A. To see this, recall that p and q are co-
prime and thus we can use Lagrange’s theorem to conclude that qr ≡ qr′ mod p if
r′ ≡ r mod (p − 1). Since p is a constant, the claim follows.
Let � ≥ 2. We distinguish between the following two cases. If s = 0, then we can
partition the set of realisations ā of
 according to first entry a1 into |Pxi | parts
of equal size. It suffices to determine the size of each of these blocks, since we can
determine |Pxi | mod p in FOC similarly as above.
Without loss of generality let us assume that a1 = x · qi . Since we have given the
q-adic encoding of x it is easy to see that we can define the q-adic encoding of xqi in
FOC. This gives us the formula ϕ1. Next, we partition the set of indices {2, . . . , �}
into classes according to the equivalence relation j1 ≈ j2 if
[1, j1] =
[1, j2]. Let
the resulting classes be Y1, . . . , Yv and let
(1, y) = (hw, dw) for all y ∈ Yw and
w = 1, . . . , v.
We observe that there exists a tuple ā with a1 = x · qi which realises
 in the tree

T xi (that is Z �= ∅) if, and only if, the following conditions are satisfied:
• For all w = 1, . . . , v we have hw ≤ i , and
• For every Yw = {yw1 , . . . , yw�w} there is a tuple ā

w of length �w which realises

(restricted to the indices from Yw) in the subtree T xq
i−hw+1+dw

hw−1 , and
• For all pairs y1 ∈ Yw1 and y2 ∈ Yw2 with w1 �= w2 we have that

(y1, y2) =

⎧⎪⎨
⎪⎩
(hw1 , dw2 − dw1 mod q) if hw1 = hw2 ,
(hw2 , dw2) if hw1 < hw2 ,
(hw1 , dw1) if hw2 < hw1 .

Since � is a constant, the number of possible partitions of {2, . . . , �} is bounded
by a constant as well. It is easy to see that for every possible such partition we can
check the first and third condition in FOC. To verify the second condition in FOC
we use the induction hypothesis. There are two aspects which have to be discussed
with more precision. First of all, we have to handle one particular case separately:
indeed, if hw = 1 for all w = 1, . . . , v, then we cannot use the induction hypothesis

https://doi.org/10.1017/jsl.2018.33 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.33

84 ERICH GRÄDEL ANDWIED PAKUSA

since all elements (including a1) have to be chosen in the same subtree of height one.
However, in this case there is only one realisation (if the third condition is satisfied)
so this does not cause any problems. The other difficulty is that we have to define
the q-adic encoding of the value zw = xqi−hw+1 + dw in FOC. We already noted
before that the q-adic representation of xqi−hw+1 can be defined in FOC and since
0 ≤ dw < q we can also define the q-adic encoding of z in FOC.
In fact, the induction hypothesis provides us with a term which counts modulo
p the number of possible realisations of
 in the subtrees T zwhw−1 restricted to the
indices in Yw together with formulas ϕe which define witnessing elements. Finally,
since the overall number of possible realisations of
 in T xi is the product of the
realisations restricted to the components Yw , the claim follows for the case where
s = 0.
For the general case let � ≥ s > 0 and let a1, . . . , as ∈ Pxi be the components
of the tuple ā that are already fixed. Recall that we can assume without loss of
generality that sgn(a1, . . . , as) is consistent with
 and that all elements a1, . . . , as
are located in the subtree T xi . Since we have fixed the element a1, we can proceed
as above except for two small changes. First of all, when applying the induction
hypothesis we have to respect the remaining fixed elements a2, . . . , as . Moreover,
when we form the partitions of {2, . . . , �} into parts Y1, . . . , Yv as above then we
have to adapt the position of elements corresponding to the index set Yw since

the element a1 is not necessarily contained in the tree T xq
i−hw+1

hw+1
. However, since

we have given the q-adic representation of a1 we can define in FOC the element

0 ≤ da < q such that a1 is located in the subtree T xq
i−hw+1+da

hw+1
. The remaining steps

can be performed as above. This finishes our proof. �
Lemma 4.8. Let �(x1, . . . , xk, y1, . . . , y�) ∈ FO(∅) be a complete equality type (in
k + � variables). Then there is an FOC-term Θ�(z̄x , z̄y) such that for all r ≥ q, all

ā ∈ Skn and
b̄ ∈ S�n , where n = qr, the value ΘA

� (
ā ,
b̄) of Θ� in A = ([r]) is

ΘA
� (
ā ,
b̄) = |{b̄ ∈ Jn : sgn(b̄) =
b̄, ([n]) |= �(ā , b̄)}| mod p

for some (or, equivalently, all) ā ∈ In with sgn(ā) =
ā .
Proof. By Lemma 4.7 we can first check in FOC that
ā and
b̄ can be realised
(otherwise the answer is trivial). Moreover, if � (restricted to x1, . . . , xk) is not
consistent with
ā or if � (restricted to y1, . . . , y�) contradicts
b̄ , then the answer is
trivial as well.
In all other cases,Lemma4.7 providesFOC-formulaswhich define in the structure

A the q-adic encoding of elements a1, . . . , ak ∈ [n] such that sgn(ā) =
ā .Moreover,
if � contains a literal xi = yj , then we can fix the entry bj as well. Hence, let us
assumewithout loss of generality that � contains the literalsxi �= yj for all 1 ≤ i ≤ k
and 1 ≤ j ≤ � .
For Y ⊆ {1, . . . , �} and a partial assignment ε : {1, . . . , �} → {a1, . . . , ak} with
dom(ε) ∩ Y = ∅ we define the set
BεY = {b̄ ∈ Jn : sgn(b̄) =
b̄ , for i ∈ dom(ε) : bi = ε(i), for i ∈ Y : bi �= a1, . . . , ak}.
In this notation our aim is to determine (|B∅

Y | mod p) for Y = [�] in FOC. The
first observation is that by Lemma 4.7 we can determine (|Bε∅| mod p) for all partial
assignments ε in FOC. The second observation is that we can construct the values

https://doi.org/10.1017/jsl.2018.33 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.33

RANK LOGIC IS DEAD, LONG LIVE RANK LOGIC! 85

(|BεY | mod p) by induction on |Y | as follows. For Y ⊆ {1, . . . , �} and a partial
assignment ε (with dom(ε) ∩ Y = ∅) we have for all j ∈ Y that

|BεY | = |BεY\{j}| −
∑

a∈{a1,...,ak}
|Bε∪{j
→a}
Y\{j} |.

In this way we recursively obtain the value (|B∅
Y | mod p) for Y = [�]. Since � is a

constant the recursion depth is bounded by a constant as well and the procedure
can be formalised in FOC. �
Lemma 4.9. There exists an FOC-term Θ(�̄, �̄) which defines for all r ≥ q in the
structure A = ([r]) the matrixM∗

n where n = q
r.

Proof. Recall that we can viewM∗
n as an (S

k
n ×S�n)-matrix over Fp. To represent

the index sets Skn and S
�
n we let �̄ and �̄ be tuples of numeric variables of lengths

|�̄| =
(
k
2

)
and |�̄| =

(
�
2

)
, respectively.

The entryM∗
n (
ā ,
b̄) ofM

∗
n for
ā ∈ Skn and
b̄ ∈ S�n is given as

M∗
n (
ā,
b̄) = |{b̄ ∈ Jn : sgn(b̄) =
b̄ ,Mn(ā, b̄) = 1}| · | Stab(b̄)| mod p,

for some (or, equivalently, all) ā ∈ In, b̄ ∈ Jn with sgn(ā) =
ā and sgn(b̄) =
b̄ . The
entry Mn(ā, b̄), in turn, is determined by the quantifier-free formula α(x̄1, x̄2) ∈
FO(∅). Lemma 4.8 shows that we can determine the value of the left-hand side
of the above equation for the case where α is a complete equality type. For the
general case, we write α as the union of complete equality types and combine the
constant number of intermediate results. Moreover, we can determine | Stab(b̄)| by
Lemma 4.7 (which shows that the size of the orbit of b̄ is definable) and by the
orbit-stabiliser theorem. �
Definition 4.10. Let K ⊆ FStr(∅) be a class of sets. The q-power Kq ⊆ FStr(∅)
of K consists of all sets A = ([qr]) such thatB = ([r]) ∈ K.
Theorem 4.11. Let K ⊆ FStr(∅) be a class of sets. If Kq is definable in FOSp,
then K is definable in FORp.
Proof. IfKq is definable inFOSp, then byTheorem 4.4we can also find a formula
ϕ = (slvp x̄1, x̄2)α(x̄1, x̄2) ∈ FOSp that defines Kq such that α is quantifier-free.
By using the above construction and Lemma 4.9, we conclude that the linear
equation system Mn · �x = � defined by α in an input structure A = ([n]) of size
n = qr can be transformed into the equivalent systemM∗

n · �x = � which is FOC-
definable inB = ([r]). Let ϕ∗ ∈ FORp be a formula which expresses the solvability
of the linear systemM∗

n · �x = � in a structureB = ([r]).
ThenB |= ϕ∗ if, and only if,A |= ϕ since the linear equation systemsMn · �x = �

andM∗
n · �x = � are equivalent. �

Theorem 4.12. For all p ∈ P we have FOSp < FORp (already over FStr(∅)).
Proof. Suppose for the sake of a contradiction that FOSp = FORp. As above
we fix some prime q �= p. Let K ⊆ FStr(∅) be a class of sets such that K �∈ FORp,
but such that (Kq)q ∈ FORp. Such a class K is well-known to exist. In fact, it
follows from the space-hierarchy theorem, see, e.g., [20], that there exists a language
L ⊆ {1n : n ∈ N} such that L ∈ Space(2cn) and L �∈ Pspace. But then for an
appropriate prime q we have that L′ = {qqn : 1n ∈ L} ∈ Logspace. Since, over

https://doi.org/10.1017/jsl.2018.33 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.33

86 ERICH GRÄDEL ANDWIED PAKUSA

sets, we have Logspace ≤ FORp ≤ Ptime ≤ Pspace, this shows that we can choose
K = {([n]) : 1n ∈ L}.
Now, since we assumed that FOSp = FORp we have (Kq)q ∈ FOSp and by
Theorem 4.11 this means that Kq ∈ FORp. Again, since FORp = FOSp, we have
Kq ∈ FOSp. A second application of Theorem 4.11 yields K ∈ FORp, which
contradicts our assumptions. �
Let us remark that the same proof also works for the extension of fixed-point
logic by solvability quantifiers (but still in the absence of counting). The simple
reason is that, in the absence of counting, fixed-point operators do not increase
the expressive power of first-order logic over the empty signature, since all definable
relations consist of constantlymany basic building blocks (and thus we can evaluate
fixed points already in first-order logic). In other words, if we denote by FPS−p
the extension of fixed-point logic by solvability quantifiers slvp over Fp (without
counting), then we have FOSp = FPS

−
p over FStr(∅).

Theorem 4.13. For all primes p, we have FPS−p < FORp over FStr(∅).
Finally, another interesting consequence is that there exists an FPC-definable
query over FStr(∅) which cannot be defined in FPS−p . This immediately follows
from our proof of Theorem 4.11, since the solvability of the linear equation system
M∗
n · �x = �matrix can also be expressed in FPC (we interpret the coefficient matrix
M∗
n over the second ordered sort). Note that, in contrast, we have no proof which
shows that FPC cannot be embedded into FORp.

§5. Discussion. We have shown that the expressive power of rank operators over
different prime fields is incomparable and we inferred that the version of rank
logic FPR with a distinct rank operator rkp for every prime p ∈ P fails to capture
polynomial time. In particular our proof shows thatFPR cannot express the uniform
version of thematrix rank problemwhere the prime p is part of the input.Moreover,
we separated rank operators and solvability quantifiers in the absence of counting.
Of course, an immediate question is whether the extension FPR∗ of FPC by the
uniform rankoperator rk∗ suffices to capture polynomial time.Wedonot believe that
this is the case. A natural candidate to separate FPR∗ from Ptime is the solvability
problem for linear equation systems over finite rings rather than fields [6]. While
linear equations systems can efficiently be solved also over rings, there is no notion
of matrix rank that seems to be helpful for this purpose. In particular, it is open,
whether FPR∗ can define the isomorphism problem for CFI-structures generalised
to Z4. A negative answer to this last question would provide a class of structures on
which FPR∗ is strictly weaker than Choiceless Polynomial Time (which captures
Ptime on this class [1]).
Another question concerns the relationship between solvability logic FPS and
rank logic FPR∗. Our proof of Lemma 3.7 shows that on every class of structures of
bounded colour class size the two logics have the same expressive power. However,
over general structures this reduction fails. We only know, by our results from
Section 4, that a simulation of rank operators by solvability quantifiers would
require counting.
Finally, we think it is worth to explore the connections between our approach
and the game-theoretic approach proposed by Dawar and Holm in [8] to see to

https://doi.org/10.1017/jsl.2018.33 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.33

RANK LOGIC IS DEAD, LONG LIVE RANK LOGIC! 87

what extent our methods can be combined. For example, what kind of properties
does a variant of their partition games have for infinitary logics with solvability
quantifiers?

REFERENCES

[1] F. Abu Zaid, E. Grädel, M. Grohe, and W. Pakusa, Choiceless polynomial time on structures
with small Abelian colour classes,Mathematical Foundations of Computer Science 2014 (E. Csuhaj-Varjù,
M. Dietzfelbinger, and Z. Ésik, editors), Lecture Notes in Computer Science, vol. 8634, Springer, Berlin,
2014, pp. 50–62.
[2] A.Atserias, A. Bulatov, and A.Dawar,Affine systems of equations and counting infinitary logic.

Theoretical Computer Science, vol. 410 (2009), pp. 1666–1683.
[3] G. Buntrock, U. Hertrampf, C. Damm, and C.Meinel, Structure and importance of logspace-

mod-classes, Symposium on Theoretical Aspects of Computer Science ’91 (C. Choffrut and M. Jantzen,
editors), Springer, Berlin, 1991, pp. 360–371.
[4] J. Cai, M. Fürer, and N. Immerman, An optimal lower bound on the number of variables for graph

identification. Combinatorica, vol. 12 (1992), no. 4, pp. 389–410.
[5] A. Dawar, The nature and power of fixed-point logic with counting. SIGLOG News, vol. 2 (2015),

pp. 8–21.
[6] A.Dawar, E.Grädel, B.Holm, E.Kopczynski, and W. Pakusa,Definability of linear equation

systems over groups and rings. Logical Methods in Computer Science, vol. 9 (2013), no. 4.
[7] A. Dawar, M. Grohe, B. Holm, and B. Laubner, Logics with rank operators, Proceedings of the

24th Annual Symposium onLogic inComputer Science, LICS2009, IEEEComputerSociety,Washington,
DC, 2009, pp. 113–122.
[8] A. Dawar and B. Holm, Pebble games with algebraic rules, Automata, Languages, and

Programming-ICALP 2012 (A. Czumaj, K. Mehlhorn, A. Pitts, and R. Wattenhofer, editors), Springer,
Berlin, 2012, pp. 251–262.
[9] H.-D. Ebbinghaus and J. Flum, Finite Model Theory, second ed., Springer-Verlag, Berlin, 1999.
[10] E. Grädel, P. Kolaitis, L. Libkin, M. Marx, J. Spencer, M Vardi, Y. Venema, and S.

Weinstein, Finite Model Theory and Its Applications, Springer, 2007.
[11]M.Grohe,The quest for a logic capturing PTIME,Proceedings of the 23rdAnnual Symposium on

Logic in Computer Science, LICS 2008, IEEE Computer Society, Washington, DC, 2008, pp. 267–271.
[12] Y. Gurevich and S. Shelah, On finite rigid structures, this Journal, vol. 61 (1996), no. 02, pp.

549–562.
[13]M. Hall, The Theory of Groups, American Mathematical Society, Providence, RI, 1976.
[14] U. Hertrampf, S. Reith, and H. Vollmer, A note on closure properties of logspace mod classes.

Information Processing Letters, vol. 75 (2000), no. 3, pp. 91–93.
[15] B. Holm,Descriptive complexity of linear algebra, Ph.D. thesis, University of Cambridge, 2010.
[16] B. Laubner, The structure of graphs and new logics for the characterization of polynomial time,

Ph.D. thesis, Humboldt-Universität Berlin, 2011.
[17]M. Otto, Bounded Variable Logics and Counting: A Study in Finite Models, Springer, Berlin,

1997.
[18]W. Pakusa, Finite model theory with operators from linear algebra, Staatsexamensarbeit, RWTH

Aachen University, 2010.
[19] , Linear equation systems and the search for a logical characterisation of polynomial time,

Ph.D. thesis, RWTH Aachen University, 2016.
[20] C. Papadimitriou, Computational Complexity, Addison-Wesley, Boston, 1995.
[21] J. Torán, On the hardness of graph isomorphism. SIAM Journal on Computing, vol. 33 (2004),

no. 5, pp. 1093–1108.

MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE
RWTH AACHENUNIVERSITY
D-52056 AACHEN, GERMANY

E-mail: graedel@logic.rwth-aachen.de
E-mail: pakusa@logic.rwth-aachen.de

https://doi.org/10.1017/jsl.2018.33 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.33

