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SUMMARY
The effect of axial forces on the dynamic properties is
formulated and investigated for a 3-PRR planar parallel
manipulator with three flexible intermediate links. A
dynamic model of the manipulator system is developed
based on the assumed mode method with the consideration
of the effect of longitudinal forces on lateral stiffness
is included. The flexible intermediate links are modeled
as Euler–Bernoulli beams with pinned-pinned boundary
conditions, which are verified by experimental modal tests.
Natural frequencies of bending vibration of the intermediate
links are derived as the functions of axial force and
rigid-body motion of the manipulator. Dynamic behavior
including the effect of axial forces on lateral deformation
is investigated, and configuration-dependant frequencies are
analyzed. Numerical simulations of configuration-dependent
frequency properties and axial forces are performed to
illustrate the effect of axial forces on the dynamic behaviors
of the flexible parallel manipulator. Simulation results of
mode amplitudes, deformations, axial forces, inertial, and
coupling forces are presented, and further validate the
theoretical derivations. These analyses and results provide
a new and valuable insight to the design and control of the
parallel manipulators with flexible intermediate links.

KEYWORDS: Flexible manipulators; Parallel manipulators;
Assumed mode method; Dynamic stiffening; Axial force.

1. Introduction
Compared with serial link manipulators with open-loop
kinematic chain structure, parallel link manipulators provide
higher strength to weight and stiffness to weight ratios, and
higher accuracy.1 Application of parallel link manipulators
has increased in various manufacturing industries, i.e.,
precision optics, nanomanipulation, and medical surgery.
Higher productivity demands that manipulators operate with
high speed and carry large payloads, while maintaining good
positional accuracy. To meet the high-speed requirement, it
is desirable to design manipulators with lightweight links
in order to decrease the inertia. However, the lightweight
links may deflect when the manipulator moves at high
speed. The practical solution to this problem is to design
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and construct lightweight manipulators which are capable of
rapid motion, but allow links to deform under high-speed
and high-acceleration motions. Then, utilizing dynamic
models developed for control system design, undesirable link
vibrations may be compensated.40 Given the advantages of
parallel manipulators and lightweight manipulators, a 3-PRR
planar parallel manipulator with lightweight intermediate
links2 was developed to provide an alternative high-speed
pick-and-place positioning mechanism to serial architecture
manipulators, such as X–Y tables or gantry robots. The
parallel manipulator presented in this research is shown in
Fig. 1. It is categorized as a 3-PRR type because it has three
symmetric closed-loop chains, and each of which consists
of one prismatic joint (P) and two consecutive revolute
joints (R).

Lightweight links are more likely to exhibit structural
defection and vibrate due to the inertial forces from high-
speed motion, and external forces from actuators. Structural
flexibility effects are much more pronounced at high
operational speeds and accelerations of the end-effector.
Therefore, to provide a direction for the development of
an effective vibration control methodology that suppresses
these undesired structural vibrations and joint motion control
strategies that tracks desired joint trajectories, we must
develop a detailed dynamic model to describe the modal
characteristics of these structural vibrations as accurately as
possible with consideration of the influence of link flexibility
of manipulators or mechanisms.

Modeling of multibody dynamics with flexible links is a
challenging task and considerable effort has been devoted to
the investigation of the dynamic modeling of manipulators
and mechanisms with flexible links since the 1970s. Early
investigations mainly involved the modeling of flexible
serial manipulators and four-bar mechanisms, with detailed
reviews by Lowen and Chassapis3 and Shabana,4 and recently
by Dwivedy and Eberhard.5 Recently with consideration of
link flexibility, Giovagnoni6 presented a general approach
for the dynamic analysis of closed-chain manipulators using
the principle of virtual work. Lee and Geng7 developed a
dynamic model of a flexible Stewart platform using Lagrange
equations. Fattah et al.8 formulated the dynamic model of
a 3-DOF spatial parallel manipulator with flexible links.
Zhou et al.9 established dynamic equations of flexible 3PRS
manipulator for vibration analysis using FEM. Based on
the assumed mode method, Kang and Mills10 presented a
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Fig. 1. Architecture and coordinate system of the proposed manipulator.

dynamic model of a 3-PRR planar parallel manipulator with
flexible links modeled with pinned-free boundary conditions.
Further work11 including experimental mode verification
tests showed that mode properties of the links match pinned-
pinned boundary conditions.

Manipulators and mechanisms with link flexibility may be
modeled with nonlinear partial differential equations, leading
to infinite dimensional models. However, such dynamic
equations are cumbersome for both simulation and controller
design. Therefore, dynamic modeling formulation of flexible
link manipulators and mechanisms has been carried out
based on various discretization approaches of flexible links,
for example, the finite element method (FEM)12–17 and
the assumed mode method.18–21 With these discretization
approaches, Hamilton’s principle or Lagrange equations
may be used to develop dynamic equations of flexible
manipulators and mechanisms. To model link flexibility, a
number of research works employ Euler–Bernoulli beam
models assuming that shearing and rotary inertia effects

are negligible.13 Other work has adopted Timoshenko beam
models including the effect of shearing and rotary inertia.22

Dynamic analysis of mechanical systems with link flexibility
requires that both gross body motion and concurrent small
elastic deformation of flexible links be accounted for, but also
includes important coupling effects which exists between
rigid body an flexible mode behavior. An important coupling
effect, termed geometrical non-linearity, results from the
variations in flexible body stiffness induced by inertial
forces, internal constraint forces, and external loads. This
phenomenon arises under the action of large external loads or
during high-speed motion. Typical examples of this behavior
are dynamic stiffening (also called stress, geometric, and
rotational stiffening). In particular, dynamic stiffening has
been investigated for beams undergoing large rotational
motion. Kane et al.23 investigated the geometric stiffening
of a rotating beam using nonlinear beam theory. Yoo et al.24

established dynamic equations of a beam undergoing overall
motions incorporating geometric stiffening. Piedboeuf and

https://doi.org/10.1017/S0263574709990282 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574709990282


Investigation of axial forces on dynamic properties of a flexible 3-PRR planar parallel manipulator 609

Moore25 presented six methods of modeling a flexible
rotating beam, including geometric stiffening, by taking
into account foreshortening in the beam model. Behzad
and Bastami26 studied the effect of axial forces produced
by the Poisson effect on the natural frequency of a shaft
rotating its longitudinal axis. Liu and Hong27 put forward
a criterion for inclusion of a geometric stiffening term in
the motion of a flexible beam using an influence ratio.
Since external loading and inertial forces may induce axial
forces in beams, several works include the effect of the
dynamic stiffening term in modeling lateral deformation of
flexible links of manipulators17 and four-bar mechanisms.13

Bokaian28 investigated the relative critical buckling load
of a single-span beam with different combinations of
free, pinned, clamped, and sliding boundary conditions at
both ends of the beam. Several articles on this subject
have been published for four-bar mechanisms.29 However,
little work on this subject has been reported for parallel
manipulators due to the complicated dynamics. To obtain
accurate dynamic equations of manipulators or mechanisms
with link flexibility, another important issue is to determine
appropriate boundary conditions, and then select the proper
sets of modes for problems of elastic beams that undergo
large rigid-body displacements. Bellezza et al.30 presented
a mathematical model for a flexible slewing beam with a
comparison of clamped and pinned boundary conditions at
the root end. Low31 developed an experimental investigation
of the boundary condition of slewing beams using a high-
speed camera system, and experimental results suggested
that exact natural frequencies are intermediate between
the clamped and pinned cases. Shabana32 demonstrated
that different sets of mode shapes and natural frequencies
associated with different sets of boundary conditions can be
used to obtain the same solution provided that the coordinate
system is properly selected.

Part of this work, briefly summarized in this paper for
continuity of the presentation, was published in ref. [33].
Our preliminary11 work addressed the dynamic simulation
of a 3-PRR parallel manipulator with three flexible links.
Note that longitudinal forces on lateral stiffness is not
included and investigated in ref. [11]. This paper is
mainly concerned with the effect of axial forces on the
dynamic properties, providing a thorough investigation of
dynamic modeling of a 3-PRR parallel manipulator with
three flexible intermediate links. The dynamic equations of
the flexible parallel manipulator are developed based the
assumed mode method. The flexibility of the manipulator
is mainly concentrated in three intermediate links, as the
other structural elements are very stiff. The vibration
behavior is excited mainly by the driving forces from the
motors, the inertial forces, and the reaction forces due
to the payload on the moving platform. The intermediate
links are modeled as Euler–Bernoulli beams with pinned-
pinned boundary conditions. The effect of longitudinal
loads on lateral stiffness is investigated considering the
high-speed motion of the manipulator. Natural frequencies
of bending vibration of intermediate links are derived as
the functions of axial force and rigid-body motion of the
manipulator. The effect of axial forces on lateral stiffness
is investigated and configuration-dependant frequencies are

analyzed. Simulation results further verify the theoretical
derivations and analysis. These results provide insight to
control or optimize the motion of parallel manipulators
to increase the stiffness of flexible intermediate links and
decrease undesired vibration. For example, for the prescribed
end-effector motion, the configurations of a manipulator can
be optimized so that the axial forces in the flexible links are
in extension to increase the stiffness.

2. Modeling of an Individual Intermediate Flexible Link

2.1. Architecture and coordinate system of the parallel
manipulator system
The parallel manipulator presented in this research is
categorized as a 3-PRR type, as shown in Fig. 1. It is
comprised of three symmetric closed-loop chains, each of
which consists of a prismatic joint (P), and two consecutive
revolute joints (R). The moving platform, i.e., the end-
effector, is of a regular triangle shape (C1C2C3). Each active
prismatic joint is driven at Ai, i = 1, 2, 3 by an Aerotech
BM200 DC brushless servo motor with peak torque 3.5 N·m
and a ball screw and linear guide mechanism. The ball screw
converts the rotation of motors into translational motion
of the slider along the linear guide using the ball screw.
Revolute joints collocated with the sliders, at Bi, i = 1, 2, 3,
connect the slider with the intermediate links. The other
ends of the links, Ci, i = 1, 2, 3 connect the links with the
moving platform, which constrains the motion of the links.
The coordinate system for the parallel robot is defined with
undeformed links, as shown in Fig. 1. The origin of the
fixed frame is selected at the center point o of the moving
platform when αi =βi . Parameter αi is the angle at Ai

between the X-axis of the fixed frame and the ith linear
guide, and α = [α1 α2 α3 ] = [ 150◦ 270◦ 30◦ ]. The origin of
ρi, i = 1, 2, 3 is selected at the center of each linear guide.
Angle βi is defined as the angle at Bi between the X-axis
of the fixed frame and the ith intermediate link. Fai is the
driving force acting on the ith slider.

2.2. Bending vibration modeling of individual link with the
assumed mode method
In this work, the structural flexibility of intermediate links is
modeled using the assumed mode method. Each intermediate
link is treated as an Euler–Bernoulli beam, as the length of
each link is much longer than its thickness, and has two rotary
joints at the two ends connecting to the platform and a slider.
The platform and sliders are designed and built to be much
stiffer than the links, and hence are assumed to be rigid. In the
assumed mode method, the deflected intermediate links, as
shown in Fig. 1 with dotted lines, are modeled by an infinite
number of separable harmonic modes. Since the first few
modes dominate the dynamics, the modes are truncated to a
finite modal series in terms of spatial mode eigen-functions
ψij(x) and time-varying mode amplitudes ηij(t). Note that
the proposed parallel manipulator is planar, and therefore
the flexural deformations of all three intermediate links
are assumed to be transverse in-plane bending. Transverse
shear deformations and rotary inertia of each intermediate
link are neglected to simplify the dynamic model with the
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Fig. 2. Location of an accelerometer along the flexible link.

consideration of the fact that that the width is much smaller
than the height for each intermediate link. Discussion on
the effect of cross-section on the mode shapes can be found
in the work by Naguleswaran.38 The intermediate links are
treated as rigid in the longitudinal direction since the axial
stiffness of the intermediate links is much higher than the
lateral stiffness. The pinned-pinned boundary condition is
adopted for the intermediate links based on the modal test
results (discussed in Section 2.3), which showed that modal
characteristics of the intermediate link match the pinned-
pinned boundary condition. Further, we assume that there is
no coupling among the modes. The mode coupling issue39

is not discussed in this work, since the dynamic model is
linearized based on the assumed mode method. Therefore,
spatial mode shape functions (dependent on x) ψij(ξ ) are
selected as in ref. [34]:

ψij(x)=sin(jπx/li)=sin(jπξ ) = ψij(ξ ) j =1, 2, . . . , r,

(1)
where ξ = x/li , r is the number of selected assumed modes,
and x is the distance from an arbitrary point on the ith
intermediate link to Bi . According to the formulation of
the assumed mode method, bending deformation of the ith
intermediate link may be expressed as

wi(x, t) =
r∑

j=1

ηij(t)ψij(x) i = 1, 2, 3, (2)

Flexible generalized coordinates are defined as

η̄ = [η11 · · · η1r η21 · · · η2r η31 · · · η3r ]T (3)

where ηij is the jth mode coordinate of the ith intermediate
link, i = 1, 2, 3, and j = 1, 2, . . . , r .

2.3. Experimental modal test validation
To validate the pinned-pinned boundary conditions,
experimental modal tests are performed using an impact
hammer and an accelerometer to identify the mode shapes
of the flexible intermediate links. Detailed modal test results
and analyses were provided in our preliminary work found

Fig. 3. First mode shape.

in refs. [2, 11]. During these tests, the three drive motors are
locked at their home positions, with the moving platform at
the center of the workspace. An impact hammer is used to
impact link 1 at point 1, and an accelerometer is fixed to
the link sequentially, from points 1–9, as shown in Fig. 2.
Using an HP 35670A dynamic response analyzer, with
inputs from the hammer and accelerometer, the frequency
response function (FRF) at each test location is measured
and recorded. At each accelerometer location the average of
15 tests is found. Note that no vibration is measured at both
points 1 and 9, as these are the locations of joints B1 and
C1. Note also that the vibration at the midpoint position
5 due to the second mode is almost zero. These results
coincide with the assumption of pinned-pinned boundary
conditions used in the model presented this paper. To further
validate the assumed mode shapes in this paper, the measured
FRFs are analyzed using experimental modal analysis.35

The first two mode shapes are derived using the global
rational fraction polynomial method, a standard frequency
domain modal analysis approach. The first two mode shapes,
shown in Figs. 3 and 4, illustrate that the mode shapes from
experimental modal tests match very well the mode shapes
using in the modeling presented this paper.
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Fig. 4. Second mode shape.

3. Dynamic Equations of Motion for the Manipulator
System
In this section, with the consideration of the effect of longit-
udinal forces on lateral stiffness, the structural dynamic equa-
tions of motion of the 3-PRR parallel manipulator with three
flexible intermediate links are derived, using the general form
of Lagrange’s equations. The detailed formulation is below.

3.1. Kinetic energy
The total kinetic energy of the manipulator system includes
the kinetic energies of the sliders, intermediate links, and the
platform. The kinetic energy of the three sliders is given as

TS =
3∑

i=1

1

2
msiρ̇

2
i , (4)

where msi is mass of the ith slider, and ρ̇i is the linear velocity
of the ith slider.

The kinetic energy of the three intermediate links is
expressed as

TL =
3∑

i=1

1

2

∫
ρAi

[
ρ̇2

i + (xβ̇i + ẇi)
2

+ 2ρ̇i(xβ̇i + ẇi) sin(αi − βi)
]

dx, (5)

where ρAi is mass per unit length of the ith link, ẇi is the time
rate of change of bending deformation of the ith intermediate
link, αi , βiare defined in Section 2.1, and β̇i is the angular
velocity of the ith intermediate link.

In Eq. (5), the nonlinear terms caused by the coupling
effect between rigid body motion and elastic deformation
are neglected to simplify the model, namely, the model
is linearized by noting that the amplitude of the lateral
vibrations is small compared to the length of the beam.
Therefore, the total motion of the arbitrary point on the
flexible intermediate links is the linear superposition of its
rigid-body motion and its elastic motion. The kinetic energy
of the platform is expressed as

Tp = 1

2
mp

(
ẋ2

p + ẏ2
p

) + 1

2
Ipϕ̇2

p, (6)

where Ip is mass moment of inertia of the platform around
the center point P , mp is the mass of the platform, ẋp and ẏp

are the linear velocities along X-axis and Y-axis direction,
respectively, and ϕ̇p is the angular velocity of platform.

Therefore, summing the kinetic energies given in Eqs. (4)–
(6), the total kinetic energy of the system is:

T =
3∑

i=1

1

2
misρ̇

2
i +

3∑
i=1

1

2

∫
ρAi

[
ρ̇2

i + (xβ̇i + ẇi)
2

+ 2ρ̇i(xβ̇i + ẇi) sin(αi − βi)
]

dx

+ 1

2
mp

(
ẋ2

p + ẏ2
p

) + 1

2
Ipϕ̇2

p. (7)

3.2. Potential energy
The potential energy of the flexible manipulator system arises
from two sources: the elastic deformation of flexible links and
gravity. However, since gravitational force is applied along
the Z-direction, perpendicular to the X-Y plane, the potential
energy due to gravity is not included here.

This work investigates geometric stiffening of intermediate
links, specifically, how the longitudinal loads acting on
the intermediate links affects the lateral stiffness of the
links. Hence, the total potential energy includes the first
term: the flexural strain energy, and the second term: the
potential energy due to longitudinal loads along the flexible
intermediate links undergoing bending deformation. The
total potential energy of the system is given as

V = 1

2

3∑
i=1

∫
EiIi(w

′′
i )2dx+ 1

2

3∑
i=1

∫
Pxi(x)(w′

i)
2dx =V1+V2,

(8)
where Ei elastic modulus of the ith link, Ii second area
moment of the ith link, load Pxi longitudinal loads of the ith
link, wi

′ = ∂wi (x,t)
∂x

, and w′′
i = ∂2wi (x,t)

∂x2 .
The flexural strain energy can be rewritten as

V1 = 1

2

3∑
i=1

∫
EiIi

(
∂2wi(x)

∂x2

)2

dx

= 1

2

3∑
i=1

Ei

l3
i

1∫
0

Ii(ξ )
3∑

j=1

η2
ij(t)(ψ

′′
ij (ξ ))2dξ, (9)

where ρAi is mass per unit length of the ith link, x = lξ ,
Hz., 0 ≤ ξ ≤ 1 ψ(x) =ψ(ξ ), ∂ψ(x)

∂x
= ∂ψ(ξ )

∂(lξ ) = 1
l

∂ψ(ξ )
∂ξ

, and
∂2ψ(x)

∂x2 = (
1
l

)2 ∂2ψ(ξ )
∂ξ 2 . Variable Pxi is positive when the

longitudinal load is in tension, and Pxi is negative when
the longitudinal load is in compression.32

To derive the potential energy V2, the longitudinal force
Pxi in the ith link must be determined. The ith intermediate
link and slider are separated from the manipulator system
as shown in Fig. 5. The left diagram represents the force
analysis of the ith slider, and the right diagram corresponds
to the force analysis of the ith intermediate link. Fai is the
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Fig. 5. Force analysis of the ith slider and intermediate link.

driving force applied on the slider ith link, and PBi is the
force applied at the point Bi of the ith link by ith the slider.

The force balance equations of the ith slide and
intermediate link can be written as

Fai + PBi = msiρ̈i (10)

Pxi = PBi cos(βi − αi) + ρAi

[
ρ̈icos(βi − αi)x − β̇2

i

2
x2

]
(11)

Then, the axial load applied on the ith intermediate link at
the position x is written as

Pxi = (msiρ̈i−Fai) cos(βi −αi)+ρAi

[
ρ̈i cos(βi −αi)x− β̇2

i

2
x2

]
(12)

Note that the longitudinal deformations are neglected
and the transverse deformations are assumed small in this
work. Hence, the effect of the shortening of the intermediate
links due to lateral deformation on the dynamic behavior is
neither derived nor discussed, to simplify the dynamic model,
common to much of the literature which addresses structural
vibration.2 Detailed discussions on the effect of shortening
projection due to lateral deformation are present in ref. [37].

Equation (9) illustrates that the axial force on the ith
intermediate link change with the configuration of the
manipulator. This force may be compressive at some
configurations, and extensive at others. The analysis of
dynamic stiffening will be further discussed in Section 4.

Therefore, the potential energy V2 in Eq. (8), is given as

V2 = 1

2

3∑
i=1

li∫
0

[
(msiρ̈i − Fai) cos(βi − αi)

+ ρAiρ̈i cos(βi − αi)x − ρAi

β̇2

2
x2

] (
∂wi(x)

∂x

)2

dx

= 1

2

3∑
i=1

1

li
(msiρ̈i−Fai) cos(βi−αi)

1∫
0

r∑
j=1

η2
ij(t)(ψ

′
ij(ξ ))2 dξ

+ 1

2

3∑
i=1

ρAiρ̈i cos(βi − αi)

1∫
0

ξ

r∑
j=1

η2
ij(t)(ψ

′
ij(ξ ))2 dξ

− 1

4

3∑
i=1

ρAili β̇
2

1∫
0

ξ 2
r∑

j=1

η2
ij(t)(ψ

′
ij(ξ ))2 dξ. (13)

Equation (9) shows that the flexural stain energy V1

depends on geometric parameters and material properties
of intermediate links, but is not configuration-dependant.
In contrast, Eq. (13) illustrates that the potential energyV2

not only depends on geometric parameters and the material
properties of intermediate links, but is also configuration-
dependent. Substituting Eqs. (9) and (13) into Eq. (8), the
total potential energy of the parallel manipulator with flexible
intermediate links may be calculated. Combining the kinetic
energy derived in Section 3.1 and the potential energy, the
dynamic equations of the flexible parallel manipulator system
may be derived using Lagrange’s equation.

3.3. Lagrange’s equation
The generalized coordinates for the manipulator with flexible
intermediate links include rigid-body motion generalized
coordinates and flexible generalized coordinates. However,
this paper focuses on the effect of dynamic stiffening on
the vibration characteristics of the manipulator system, and
hence the rigid-motion dynamics of the manipulators system
is neither derived nor discussed here. It is assumed that
the small amplitude, high-frequency structural vibrations
of the manipulator have a negligible effect on its rigid-
body motion, i.e., we adopt the kineto-elasto-dynamics
(KED) assumptions, common to much of the literature which
addresses structural vibration.2 Therefore, the influence
of the elastic deformation on the rigid-body motion is
neglected, and the equations of motion are solved using the
prescribed rigid-body motion. Thus, Lagrange’s equations
are not formulated for rigid-motion generalized coordinates,
only for flexible generalized coordinates of the manipulator
system. Therefore, the formulation of Lagrange’s equations
for the flexible generalized coordinates is provided in detail
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below,

d

dt

(
∂(T − V )

∂η̇ij

)
− ∂(T − V )

∂ηij
= 0

i = 1, 2, 3 j = 1, 2, . . . , r. (14)

Substituting Eqs. (7) and (8) into Eq. (14), we have

(
mi

1∫
0

ψ2
ijdξ

)
η̈ij +

(
E

l3
i

1∫
0

(ψ ′′
ij )

2Ii(ξ )dξ

)
ηij +

(
1

li
(msiρ̈i

− Fai) cos(βi − αi)

1∫
0

(ψ ′
ij)

2dξ + ρAiρ̈i cos(βi − αi)

×
1∫

0

ξ (ψ ′
ij)

2dξ − 1

2
ρAili β̇

2

1∫
0

ξ 2(ψ ′
ij)

2dξ

)
ηij

= −miρ̈i sin(αi−βi)

1∫
0

ψijdξ−mili β̈i

1∫
0

ψijξdξ + miρ̇i β̇i

cos(αi − βi)

1∫
0

ψijdξ i = 1, 2, 3 j = 1, 2, . . . , r.

(15)
Equation (15) can be rewritten in matrix form as

M ¨̄η + (Kf + Kp)η̄ = −Mρ ¨̄ρ − Mβ
¨̄β + Ffg, (16)

where M is the modal mass matrix of the parallel manipulator
system, Kf is the conventional modal stiffness matrix, Kp

is the modal stiffness matrix due to the effect of axial forces
on lateral stiffness, −Mρ ¨̄ρ − Mβ

¨̄β is the modal force vector
caused by the effect of rigid-body motion on elastic vibration
of the flexible links, Ffg is the modal force vector from
the coupling between rigid-body motion and elastic motion,
and mi = ρAili is the mass of the ith intermediate link.
Detailed expressions for M, Mρ, Mβ , and Ffg are given in
the Appendix.

4. Configuration-Dependent Stiffness of
Intermediate Links
The axial forces on intermediate links of parallel
manipulators become significant due to high-speed motion
and high payload. Therefore, the effect of axial forces
on lateral stiffness is not negligible. In this section, the
analysis of dynamic stiffening of intermediate links is based
on properties of the natural frequencies of the parallel
manipulator.

4.1. Link mode vibration frequency
From Eq. (16), it is clear that the solution to flexible modal
coordinates η̄ includes two parts: free vibration and forced
vibration. The generalized force, i.e., the right-hand side of
Eq. (16), has no impact on the modal properties of the elastic
deformation of the manipulator, and only affects the vibration
amplitude. Therefore, evaluation of the modal characteristics

only involves the homogeneous part of Eq. (16), given as

M ¨̄η + (Kf + Kp)η̄ = 0, (17)

where M, Kf , and Kp are diagonal matrices. The equation
of motion of the jth mode for the ith intermediate link can be
written as

mij ¨̄ηij + (
k

f
ij + k

p
ij

)
η̄ij = 0, (18)

where

mij = ρAili

∫
ψ2

ij dξ, (19)

k
f
ij = Ei

l3
i

∫
Ii(ξ )ψ ′′

ij
2 dξ, (20)

k
p
ij = 1

li
(msiρ̈i − Fai)ci

∫
ψ

′2
ij dξ + ρAiρ̈ici

∫
ψ

′2
ij ξ dξ

− 1

2
miβ̇

2
∫

ξ 2ψ
′2
ij dξ =

li∫
0

Pxiψ
′2
ij (x) dx. (21)

Then, the natural frequency of the jth mode for the ith
intermediate link, fij, is given as,

fij = 1

2π

√√√√k
f
ij + k

p
ij

mij
. (22)

4.2. Configuration-dependent stiffness
The conventional formulation for the natural frequency of
the jth mode for the ith intermediate link, f 0

ij , is given by
neglecting the effect of longitudinal loads acting on the links,
and assuming the cross-section of the ith intermediate link is
constant, hence we have

f 0
ij = 1

2π

√√√√ k
f
ij

mij
= π

2

(
j

li

)2
√

EiIi

ρAi

. (23)

Equation (23) shows that the conventional natural
frequency f 0

ij is a function of geometric parameters li
and Ii , and material parameters Ei and ρAi . Hence, the
natural frequency is independent the rigid-body motion of
the manipulator system, and therefore doesn’t change with
the configuration of the manipulator system. The effect
of geometric stiffening is clearly shown in Eq. (22) as a
result of the potential due to longitudinal loads along the
flexible intermediate links undergoing bending deformation.
Equations (21) and (22) reveal that the frequency, fij, is not
only a function of li , Ii Ei , and ρAi , but also a function
of rigid-body motion, ρi ,βi , and driving forces acting on
the sliders, Fai , and axial loads acting on intermediate
flexible links, Pxi . Therefore, the actual frequency, fij, is
configuration-dependent due to inclusion of the effect of
longitudinal forces. From Eq. (22), we also find that the
effect of longitudinal forces on fij increases with the speed
and acceleration of the rigid-body motion of the manipulator
system. Variable fij increases (stiffness increases) and leads
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Fig. 6. Deformation of intermediate links when f = 10 Hz.

to stiffening when Pxi is positive, and decreases (stiffness
decreases) and may cause buckling when Pxi is negative. The
axial forces of intermediate links changes with configuration.
They may be in tension at some configurations, and in
compression at other configurations. This phenomenon is
different than the case of serial manipulators with open-loop
structures in which the axial forces are always in extension.

This result provides a mechanism to optimize or control
the motion of the manipulator to increase the stiffness of
intermediate links and decrease undesired vibration. For
example, for the end-effector motion, the configurations
of the manipulator may be optimized so that the axial
forces in the flexible links are in extension to increase the
stiffness. It can be concluded that in the modeling and
control of the manipulator with flexible links, the effect
of longitudinal loads on lateral stiffness should be included
when the manipulator moves with high speed or moves large
payloads.

5. Numerical Simulations
Numerical simulations for the 3-PRR parallel manipulator
with three flexible intermediate links are presented. In
these simulations, a circular motion is used as a desired
trajectory for the mass center of the moving platform with
constant orientation ϕρ . The equations for the trajectory are
xp = 50 cos 2πf t − 50(mm), yp = 50 sin 2πf t(mm), and
ϕρ = 45◦ constant. Here, f is defined as the frequency
of the mass center moving along the described circular
trajectory. The intermediate links are modeled as aluminum
alloy with Young’s modulus and the mass density E = 7.1 ×
1010 N/m2, ρ = 2.77 × 103 kg/m3, respectively. The three
intermediate links have identical geometric parameters. The
length of each link is 200 mm, cross-section width 2 mm,
and the height of cross-section 30 mm. The distance between

adjacent joints on the moving Platform CiCj is 100 mm.
Linear guides permit a travel range of 400 mm for each slider.

This paper focuses on the study of dynamic stiffening by
including the effect of longitudinal loads on lateral vibration
frequency properties of the intermediate links. It is assumed
that the small amplitude, high-frequency structural vibrations
of the manipulator have a negligible effect on the robot
rigid-body motion, i.e., we adopt the KED assumptions
common to much of the literature which addresses structural
vibration. Therefore, the influence of the elastic deformation
on the rigid-body motion is neglected to simplify our
analysis. Flexible generalized coordinates η̄ are obtained by
solving Eq. (16) using the prescribed rigid-body motion. In
the numerical simulations performed, the order of modes
retained in the model is selected so that the vibration response
of the flexible links from the first order mode is for example,
two or three orders of magnitude larger than that of the modes
omitted from the reduced order model. We assume that the
modes of much higher frequency, omitted from the reduced
order model, have little effect on the dynamic behavior of
the manipulator system, as they contain little energy. In these
simulations, the first three modes are selected to model the
structural flexibility of the intermediate links, namely r = 3
in Eq. (1). Therefore, flexible generalized coordinates in
Eq. (16) are η̄ = [η11 η12 η13 η21 η22 η23 η31 η32 η33]T .
The rigid-body motion of sliders and intermediate links is
derived from the given motion of the moving platform by
solving the inverse kinematics of the parallel manipulator.
Substituting the rigid-body motion into equation (16), the
equations become ordinary differential equations (ODEs).
With the initial conditions η̄ = 09×1, η̄ = 09×1, Eq. (16) is
solved by MATLAB ODEs solver ode113 based on a variable
order Adams–Bashforth–Moulton method.36

Figures 6 and 7 show the bending deformation at
the midpoints of intermediate links with f = 10 Hz and
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Fig. 7. Deformation of intermediate links when f = 20 Hz.

Fig. 8. The first three mode amplitudes when f = 20 Hz.

20 Hz, respectively. The effect of axial forces on bending
deformation is illustrated in these figures. The effect is not
pronounced when f = 10 Hz. However, when f increases to
20 Hz, the effect is significant.

Figure 8 reveals that the amplitude of the first mode
vibration of the first intermediate link is two magnitudes
larger than the amplitude of the second mode vibration. It can

be seen that the first mode is sufficiently accurate to describe
the vibration of the flexible intermediate link. Therefore, it is
reasonable to reduce the number of vibration mode to small
finite number. From Fig. 8, it can also be seen that the effect
of axial forces on bending deformation decreases with the
increase of the number of modes modeled. Figure 10 shows
the driving force acting on the first slider required, illustrating
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Fig. 9. The inertial and coupling forces when f = 20 Hz.

Fig. 10. The driving forces required when f = 20 Hz.

the effect of intermediate link flexibility and also the effect
of neglecting intermediate link flexibility, respectively. This
result illustrates that the driving force corresponding to the
two cases is almost the same. The difference is less than
2% as shown in Fig. 11. It is seen that the intermediate link
flexibility has little effect on the rigid-body motion of the
manipulator system. Therefore, the KED simplification for
simulation in this work is justified.

The solution to Eq. (16) includes two parts: free
vibration and forced vibration. Without including the effect
of longitudinal forces, the jth mode frequency of free
vibration for the ith intermediate link can be written

as f 0
ij = π

2

(
j

li

)2 √
EiIi

ρAi
. Therefore, the first three natural

frequencies are calculated to be 116.4 Hz, 465.6 Hz,
and 1047.5 Hz. The amplitudes and frequencies of forced

Fig. 11. The difference of driving forces when f = 20 Hz.

vibration for the intermediate links are determined by inertial
and coupling forces F1 = −Mρ, F2 =−Mβ, and F3 = Ffg .
These inertial and coupling forces are given in Fig. 9
corresponding to the first mode of the first intermediate link
with f = 20 Hz.

To investigate the dynamic stiffening, Eq. (22) is used
to calculate the natural lateral vibration frequencies of
the intermediate links. Figures 12–14 compare the first
three mode frequencies with the axial force in the first
intermediate link. These three figures illustrate clearly the
effect of the longitudinal forces on the natural lateral
vibration frequencies of the intermediate links. The natural
lateral vibration frequencies of the intermediate links exhibit
configuration dependency. When the link is in tension,
the lateral stiffness increases, and therefore the frequency
increases. When the axial force is in compression, the lateral
stiffness decreases, and therefore the vibration frequency
decreases.

These results provide insight to the control of the motion
of the manipulator to increase the stiffness of intermediate
links and decrease undesired vibration. For example, for
the described end-effector motion, the configurations of the
manipulator can be optimized so that the axial forces in the
flexible links are in extension to increase the stiffness.

The effect of longitudinal forces on natural frequencies of
the first intermediate links is further summarized in Table I.
It can be seen that longitudinal forces have a larger effect
on flexural vibration for the lower mode frequencies than
for the higher mode frequencies. These results are consistent
with the theoretical formulation of modal characteristics in
Section 4.

The effect of longitudinal forces on natural vibration
frequencies of intermediate links becomes paramount with

Table I. The effect of longitudinal force on natural frequencies of the first intermediate link.

With the effect of longitudinal force

Without the effect of longitudinal force Minimum Maximum The change of amplitude

The first mode frequency 116.4 Hz 90.2 Hz 141.3 Hz 44%
The second mode frequency 465.6 Hz 441.7 Hz 492.4 Hz 11%
The third mode frequency 1047.5 Hz 1024 Hz 1075 Hz 5%
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Fig. 12. Axial forces and the first modal frequency when f = 20 Hz.

Fig. 13. Axial forces and the second modal frequency when
f = 20 Hz.

Fig. 14. Axial forces and the third modal frequency when
f = 20 Hz.

the increase of the speed of rigid-body motion. This is
further verified by Fig. 16, which shows the first natural
mode frequency change for the first intermediate link
corresponding to f = 10 Hz, 20 Hz, and 30 Hz The results
clearly illustrate that the link natural vibration frequency
changes with the configuration of the parallel manipulator,

Fig. 15. Axial forces for different f.

Fig. 16. First mode frequencies change for different f.

and the vibration frequency change increases with the speed
of the moving platform. The reason for this dynamic behavior
is that the axial forces increase with the speed of the
manipulator, which is shown in Fig. 15.

To summarize, the effect of longitudinal forces on lateral
stiffness should be considered in the design and dynamic
simulation when the parallel manipulator moves with high
speed. The natural frequencies of flexural vibration for the
intermediate links are configuration-dependent and increase
with axial forces when axial forces are positive, and decrease
when axial forces are negative. Axial forces have a more
significant influence on the lower order modal characteristics
than on the higher order modal characteristics. The influence
increases with increasing speed of rigid-body motion of the
manipulator system.

6. Conclusions
In this paper, the effect of longitudinal forces on
lateral vibration modal characteristics of a 3-PRR parallel
manipulator with three flexible intermediate links has been
presented. First, a procedure for the generation of dynamic
equations for the parallel manipulator is presented, based on
the assumed mode method. The mode shape functions are
selected by modeling intermediate links as Euler–Bernoulli
beams with pinned-pinned boundary conditions verified
by modal experimental tests. The effect of longitudinal
forces on lateral stiffness is included in this dynamic
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model. Then, the natural frequencies of flexural vibration
of intermediate links are derived as the functions of axial
force and rigid-body motion during high-speed motion.
The mode frequencies indicate both stiffening and buckling
by analyzing the effect of longitudinal forces on lateral
stiffness and configuration-dependent frequency property.
Finally, numerical simulations validate the theoretical
analysis and derivation on the modal characteristics and
the dynamic stiffening and buckling of intermediate
links.

Theoretical derivation and simulation results provide
a valuable insight to the design and control of parallel
manipulator with flexible intermediate links. It can be
concluded that in the modeling and control of parallel

manipulators with flexible intermediate links, the effect of
longitudinal loads on lateral stiffness should be included
when the manipulator moves with high speed or experiences
large payloads. The motion of parallel manipulators can
be optimized and controlled to increase the stiffness of
intermediate links and decrease undesired vibration. For
example, for the end-effector motion examined in this work,
the configuration of the manipulator may be optimized so
that the axial forces in the flexible links are in extension to
increase the stiffness. Geometric parameters of intermediate
links, payload, and motion velocity and acceleration should
be determined according to buckling conditions in the design
and dynamic modeling of the parallel manipulator with
flexible intermediate links.

Appendix

M =

⎡
⎢⎣M̂1 0 0
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where si = sin(αi − βi) and ci = cos(αi − βi).
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