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Abstract

Background: Pre-mature birth impacts left ventricular development, predisposing this popula-
tion to long-term cardiovascular risk. The aims of this study were to investigate maturational
changes in rotational properties from the neonatal period through 1 year of age and to discern
the impact of cardiopulmonary complications of pre-maturity on these measures. Methods:
Pre-term infants (<29 weeks at birth, n= 117) were prospectively enrolled and followed to
1-year corrected age. Left ventricular basal and apical rotation, twist, and torsionweremeasured
by two-dimensional speckle-tracking echocardiography and analysed at 32 and 36 weeks post-
menstrual age and 1-year corrected age. Amixed random effects model with repeated measures
analysis was used to compare rotational mechanics over time. Torsion was compared in infants
with and without complications of cardiopulmonary diseases of pre-maturity, specifically bron-
chopulmonary dysplasia, pulmonary hypertension, and patent ductus arteriosus. Results:
Torsion decreased from 32 weeks post-menstrual age to 1-year corrected age in all pre-term
infants (p< 0.001). The decline from 32 to 36 weeks post-menstrual age was more pronounced
in infants with cardiopulmonary complications, but was similar to healthy pre-term infants
from 36 weeks post-menstrual age to 1-year corrected age. The decline was due to directional
and magnitude changes in apical rotation over time (p< 0.05). Conclusion: This study tracks
maturational patterns of rotational mechanics in pre-term infants and reveals torsion declines
from the neonatal period through 1 year. Cardiopulmonary diseases of pre-maturity may neg-
atively impact rotational mechanics during the neonatal period, but the myocardium recovers
by 1-year corrected age.

Pre-term birth before 32 weeks of gestation is a risk factor for heart failure in childhood and
young adulthood.1,2 This may have its origin in developmental alterations in cardiac function
and morphometry associated with pre-maturity and its effects on the developmental program-
ming of the heart.3–5 The terminal differentiation of myocytes that occurs in late foetal life, spe-
cifically during the third trimester, dictates cardiomyocyte endowment for life as the heart loses
the proliferative capacity (hyperplasia) soon after birth.6 Pre-mature birth may limit the cell
population available to support myocardial growth trajectory and therefore affect ventricular
function in pre-term born infants.7

Normal ventricular function requires coordinated electrical activation and mechanical con-
traction. Myocardial deformation analysis has emerged as a quantitative echocardiographic
technique to characterise global and regional ventricular function in neonates.8 Since the left
ventricle consists of longitudinal fibres in the endocardial and epicardial layers, and circumfer-
ential fibres in the mid-wall layer, left ventricular deformation can be described in terms of nor-
mal strain (longitudinal, circumferential, and radial thickening) and shear strain in the
circumferential–longitudinal plane (rotational mechanics).9 Collectively, the regional inhomo-
geneity and helical arrangement of these myocardial fibres facilitate the mechanical shortening
and lengthening sequences of the left ventricle walls, resulting in highly efficient global function
of the normal heart.10

Torsion describes the twisting or wringing motion that occurs during the rotation of the apex
and base of the left ventricle during systole and diastole. This rotational twist of myofibres
orchestrates mechanical shortening and serves as an important determinant of left ventricular
performance by improving ejection of blood during systole, early diastole, with the recoil
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produced by untwisting generating a suction force to facilitate dia-
stolic filling. Torsion has been described from infancy to adulthood
in patients born at term,11 but there is a paucity of studies establish-
ing longitudinal patterns of rotational mechanics in pre-mature
infants.12–14 The reported differences in rotational shear strain
between pre-mature infants and term neonates are likely due to
both the haemodynamic changes after birth, inherent myocardial
structural anisotropy, and subsequent ventricular remodelling
with adaptation of the pre-mature myocardium,12,13,15 but these
mechanisms remain incompletely characterised in pre-term born
infants.

Our group has demonstrated that maturational patterns of
global and regional left ventricular longitudinal deformation pat-
terns in extremely pre-term infants were preserved throughout the
neonatal period and were not affected by the presence of common
neonatal morbidities, for example, bronchopulmonary dysplasia
and/or pulmonary hypertension.16 Accordingly, we hypothesised
that rotation mechanics would similarly be preserved in pre-term
infants, but pre-maturity-associated cardiopulmonary conditions
may influence the rotational physiology differently. The primary
objectives of this study were to determine thematurational changes
of left ventricular rotational mechanics and to establish patterns for
rotation, twist and torsion in pre-term infants. Our secondary aim
was to evaluate the effect of pre-maturity-associated complications
on the maturational process of the rotational mechanics in pre-
term infants over the first year of age.

Material and methods

Study population

In this prospective longitudinal study, 137 extremely pre-term
infants (born between 23 0/7 and 28 6/7 weeks gestation) were
recruited at birth and longitudinally followed until 1-year cor-
rected age between August 2011 and November 2013 at the
Washington University in St. Louis/St. Louis Children’s Hospital
neonatal ICU. The infants were recruited from the Premature
and Respiratory Outcomes Program (ClinicalTrials.gov identifier
NCT01435187).17 Infants with any suspected congenital anomalies
of the airways, lungs or chest wall, CHD (except for haemodynami-
cally insignificant ventricular or atrial septal defects), chromoso-
mal anomalies, and neuromuscular disorders were excluded
from the study. Reference values andmaturational patterns of right
ventricle fractional area of change,18,19 deformation (strain),16,20–22

and pulmonary artery acceleration time23,24 from this cohort have
been published, but complete rotational measures over the first
year of age have not been detailed for the cohort. The institutional
review board of Washington University School of Medicine
approved the protocol. Written informed consent was obtained
from the parents or guardians of participants.

Patient characteristics, definitions, identification of an
“uncomplicated” cohort

Demographic characteristics of infants were collected at 32 weeks
post-menstrual age, 36 weeks post-menstrual age, and 1-year cor-
rected age. Physiologic and clinical biomarkers were obtained at
these time points and included heart rate, blood pressure, respira-
tory rate, level of supplemental oxygen, and respiratory support.
The infants’ antenatal, delivery, and demographic characteristic
were obtained. We used a previously published approach to define
a cohort of uncomplicated pre-term infants.16,19,24 Infants with
“cardiorespiratory healthiness” were identified and defined to be

a part of an “uncomplicated” cohort of infants.16,19,24 This cohort
did not have (1) bronchopulmonary dysplasia, defined as the need
for persistent supplemental oxygen support at 36 weeks post-
menstrual age,25 (2) patent ductus arteriosus at 32 or 36 weeks
post-menstrual age, or (3) echocardiographic signs of late-onset
pulmonary hypertension beyond 32 weeks post-menstrual age,
defined as having estimated right ventricular systolic pressure
more than 40 mmHg, a ratio of right ventricular systolic pressure
to systemic systolic blood pressure >0.5, any cardiac shunt with
bidirectional or right to left flow, unusual degree of right ventricu-
lar hypertrophy or dilatation, or ventricular septal wall flattening.16

This protocol followed the same exclusion criteria for the presence
of a haemodynamically significant patent ductus arteriosus as the
original study.16 The assessment of “cardiorespiratory healthiness”
was used as a confounder to adjust for clinically significant physio-
logic factors in our statistical model. The study flow diagram is pre-
sented in Fig 1.

Echocardiography

Transthoracic echocardiograms were performed at 32 weeks post-
menstrual age, 36 weeks post-menstrual age, and 1-year corrected
age using a commercially available ultrasound imaging system
(Vivid 7 and 9; General Electric Medical Systems, Milwaukee,
Wisconsin). One designated paediatric cardiac sonographer
(T.S.) experienced in acquiring images for conventional and
two-dimensional speckle-tracking echocardiography analysis
obtained all the echocardiographic images according to the
American Society of Echocardiography guidelines.26 We also uti-
lised a validated neonatal protocol to acquire the images from the
decubitus position during restful period without changing the
position of the infant or disturbing the haemodynamic condition
to minimise heart rate and respiratory variation during the image
acquisition.16,20 The timings of the echocardiograms at 32 weeks
and 36 weeks post-menstrual age were selected to avoid the early
postnatal period of clinical and cardiopulmonary instability and
early mortality associated with extreme pre-term birth.19

Rotational mechanics

Left ventricular global and segmental circumferential and radial
strain were measured from the parasternal short-axis views using
three beat clips at three levels, namely apical (distal to papillary
muscles), mid (level of the papillary muscles), and basal (level
of the mitral valve leaflets) levels of the left ventricle according
to a previously validated image acquisition and data analysis
protocols.12,13 In addition, we used a specific research protocol that
individually obtained the images at the basal, mid-ventricular, and
apical levels to ensure that the left ventricular cross section was as
circular as possible. The clips were acquired sequentially to mini-
mise the effect of the beat-to-beat variation. The heart rate ranged
within five beats per minute between each clip. Sequential clips
with heart rates greater than five beats per minute were not ana-
lysed. A frame rate to heart rate ratio between 0.7 and 0.9
frames/sec per beats per minute was utilised to optimise myocar-
dial speckle-tracking and mechanical event timing.27 Vendor cus-
tomised software (EchoPAC; General Electric Medical Systems,
Waukesha, WI, USA, version 210.0.x) was used to perform offline
measurements of left ventricular basal and apical rotation, twist,
and torsion. Rotation was defined as the circumferential clockwise
or counterclockwise movement (in degrees) of the apex and base
along the long axis of the left ventricle occurring during systole.
Viewed from the apex, clockwise rotation was depicted as negative
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and counterclockwise rotation as positive. Basal and apical rota-
tions were plotted against time during one cardiac cycle (Fig 2).
Twist was defined as the difference between peak apical and peak
basal rotation using the formula twist (°) = apical rotation – basal
rotation. Torsion (°/cm) was derived by indexing twist (°) to left
ventricular end-diastolic length using the formula: torsion
(°/cm) = twist (°)/ left ventricular length (cm). Left ventricular
length, the distance between the midpoint of themitral valve annu-
lus and the apex, was measured in the apical four-chamber view in
diastole with the mitral valve closed. This was computed using the
average of three measurements. Indexing twist to left ventricular
length enables comparison of twist across different left ventricular
lengths.12

Feasibility and reproducibility

Intra- and interobserver variability for all rotational measures were
assessed in 50% of the infants by two investigators, both of whom
were blinded to the clinical and demographic data. Each observer
used the same measurement protocol12 and was blinded to the
other’s results. Equal distributions of studies were chosen at each
time point, and coefficient of variation and intraclass correlation
coefficient were used to assess the reproducibility.

Statistical analysis

Baseline demographic and clinical characteristics of patients were
described as mean ± standard deviations or as percentages.
Continuous variables of strain imaging were tested for normality
using the Kolmogorov–Smirnov test and a histogram of the data.
All outcome variables with non-normal distributions were ana-
lysed in simple comparisons using Wilcoxon rank sum tests or
Kruskal–Wallis one-way analysis of variance for tests with more
than two independent groups. A random effects model for
repeated measures, controlling for gestational age and “cardiopul-
monary health”, was used to compare rotational strain values from
32 weeks post-menstrual age, 36 weeks post-menstrual age, and

1-year corrected age. A subgroup analysis was performed by strati-
fying the cohort into an “uncomplicated” and “complicated”
cohort. A random effects model for repeated measures, controlling
for gestational age, was then run for each cohort. To further analyse
the change in torsion from 32 to 36 weeks post-menstrual age
between the “uncomplicated” and “complicated” cohort, a two-
way repeated measures analysis of variance was performed.
Univariate analysis was used to determine the best predictors to
enter in themodel, and then backward stepwise regression was per-
formed to assess the independent effect of gestational age, gender,
total oxygen days, length of stay, and common neonatal morbid-
ities (necrotising enterocolitis, intraventricular haemorrhage, and
retinopathy of pre-maturity), while adjusting for weight at exami-
nation.24 Because of the lack of data regarding the relationship
between rotational mechanics and pulmonary hypertension and
the observational nature of this study, we used data from previous
literature that investigated rotational mechanics in pre-term
infants and data from our deformation studies to estimate the sam-
ple size, assuming an alpha of 0.05, where 40 subjects per group
would provide 99% power to detect 20% differences in echocardio-
graphic measures between groups.12,13,16 Statistical analyses were
performed using SAS version 9.4 (SAS Institute Inc. Cary, NC)
and SPSS version 25 (SPSS Chicago, IL).

Results

Study population

The maternal and infant clinical and demographic data have been
previously described for this cohort,16,19,24 with the relevant infant
data for rotational analysis characterised in Table 1. Systolic blood
pressure, diastolic blood pressure, and mean arterial blood pres-
sure increased from 32 weeks post-menstrual age to 1-year cor-
rected age and heart rate decreased, as expected. Of the 137
eligible pre-term infants born <29 weeks of gestational age
enrolled at birth, 13 died within the first month of life (sepsis n= 3;
necrotising enterocolitis n= 4; severe cardiopulmonary

Eligible pre-term infants
(< 29 weeks GA) enrolled at birth

n = 137

* Diagnosed with:

BPD = 69
PH = 13
PDA = 25 @ 32 weeks PMA
           14 @ 36 weeks PMA

Alive at 32 weeks PMA
n = 117

Alive at 36 weeks PMA
n = 117

Healthy, uncomplicated
pre-term infants

n = 42 (36%)

Timing of
echocardiograms

Total # infants** 117

114

40

117

117

42

80

65

20

Feasible images

Uncomplicated
pre-term infants

32 weeks
PMA

36 weeks
PMA

1-year
CA

Died, n = 13
Transferred, n = 5
Withdrew, n = 2

Figure 1. Study flow diagram of pre-term infants.
Gestational age (GA). Post-menstrual age (PMA). Corrected
age (CA). Bronchopulmonary dysplasia (BPD). Pulmonary
hypertension (PH). Patent ductus arteriosus (PDA).

1240 Gloria C. Lehmann et al.

https://doi.org/10.1017/S1047951120001912 Published online by Cambridge University Press

https://doi.org/10.1017/S1047951120001912


insufficiency n= 6), five infants were transferred prior to 32 weeks
post-menstrual age, and two infants withdrew from the study.
There were 117 infants alive at 32 weeks post-menstrual age that
received echocardiograms, of which 114 had feasible images to
perform rotational analysis. At 36 weeks post-menstrual age,
117 infants had feasible images and of these infants, 80 returned
for follow-up at 1-year corrected age and underwent an
echocardiogram. Sixty-five infants had sufficient imaging quality
necessary to obtain rotational strain measurements via two-
dimensional speckle-tracking echocardiography (Fig 2).

Bronchopulmonary dysplasia was diagnosed in 69 infants
(59%) at 36 weeks post-menstrual age. There were 25 infants
(21.4%) with a patent ductus arteriosus at 32 weeks post-menstrual
age, 14 infants (12.0%) with a patent ductus arteriosus at 36 weeks
post-menstrual age and none at 1-year corrected age. Seventeen
infants (14.5%) had echocardiographic evidence of pulmonary
hypertension at 32 and 36 weeks post-menstrual age. Additional
clinical data and presence of bronchopulmonary dysplasia, patent
ductus arteriosus, and/or pulmonary hypertension are presented in
Supplemental Table 3.

Patterns of rotational strain in all pre-term infants

Longitudinal patterns of rotational strainmeasures of entire cohort
pre-term infants are listed in Table 2. Left ventricular torsion

significantly decreased (p < 0.001) from 32 weeks post-menstrual
age (6.13 ± 2.72) to 36 weeks post-menstrual age (5.13 ± 2.04) and
to 1-year corrected age (4.08 ± 2.02) after controlling for gesta-
tional age, bronchopulmonary dysplasia, patent ductus arteriosus,
and pulmonary hypertension. Basal rotation was characterised by
an initial counterclockwise rotation that increased over time
(p= 0.0024) but had a predominantly clockwise component with
an overall increase in magnitude (p = 0.0021). Apical rotation was
characterised by an initial clockwise rotation that increased over
time (p= 0.029), but had a predominant counterclockwise compo-
nent that decreased in magnitude (p= 0.207).

Confounding cardiopulmonary factors

Comparisons were made between healthy uncomplicated pre-term
infants and infants classified with cardiorespiratory disease, the
“complicated” group. We also accounted for the effect of antenatal
and postnatal administration of steroids, caffeine, and diuretic use.
Rotational strain measurements for each cohort mirrored the
trends as those seen in the entire cohort (Table 2). In both cohorts,
the initial counterclockwise followed by clockwise basal rotation
increased in magnitude by 1-year corrected age. For left ventricular
apical rotation, the initial clockwise rotation increased in magni-
tude by 1-year corrected age. At 1-year corrected age, apical
counterclockwise rotation in uncomplicated infants increased in

Figure 2. Rotational Strain Analysis at the (a) basal and (b) apical levels of parasternal short-axis view. Region of interest tracings of the left ventricular endocardial border are
shown. (c) Basal and apical rotation are plotted against time during one cardiac cycle and determine the net twist. C, clockwise; CC, clockwise. AVC, aortic valve closure.
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magnitude (p = 0.007), while the counterclockwise rotation in the
complicated cohort decreased in magnitude (p= 0.368).

Torsion decreased from 32 weeks post-menstrual age to 1-year
corrected age in both groups (Fig 3). A subgroup analysis that com-
pared torsion over time revealed that the decrease in torsion from
32 to 36weeks post-menstrual age differed significantly (p = 0.019)
between the “uncomplicated” (5.37 ± 2.35 °/cm to 5.32 ± 2.14°/cm,
p< 0.001) and “complicated” infants (6.62 ± 2.85 °/cm to
5.07± 2.02 °/cm, p< 0.001) (Fig 3). There was no significant differ-
ence in the change in torsion over time from 36 weeks post-
menstrual age to 1-year corrected age when comparing the
“uncomplicated” (5.32 ± 2.14 °/cm to 4.13 ± 1.99 °/cm,
p< 0.001) to “complicated” (5.07 ± 2.02°/cm to 4.12 ± 2.04°/cm,
p< 0.001) pre-term infants. Torsion for both of these cohorts
was relatively the same (4.13°/cm versus 4.12°/cm) at 1-year cor-
rected age.

Feasibility and reproducibility

At 32 and 36 weeks post-menstrual age, the measurements were
feasible in 95% of the obtained images. At 1-year corrected age,
the measurements were feasible in 81% of the obtained images.
At all times points with the acquired images, there was high degree
of intraobserver agreement for all measurement (coefficient of
variation= 5.3%, intraclass correlation coefficient= 0.93 [95%
CI, 0.92–0.99]) and interobserver agreement (coefficient of varia-
tion = 4.9%, intraclass correlation coefficient= 0.92 [95% CI,
0.88–0.98]).

Discussion

In this prospective longitudinal study of extremely pre-mature
infants, normative patterns of rotational strain and the impact
of common cardiopulmonary disease were assessed using two-
dimensional speckle-tracking echocardiography from 32 weeks
post-menstrual age to 1-year corrected age. This study reveals that
left ventricular torsion decreases over the first year of age in all pre-
term infants, even after controlling for gestational age (p< 0.0001).
Interestingly, neonates with pre-maturity-related cardiorespira-
tory complications demonstrated a more prominent decrease in
torsion from 32 to 36 weeks post-menstrual age with recovery
by 1-year corrected age. The developmental rotational patterns
suggest that the pre-term myocardium in healthy uncomplicated
infants physiologically adapts due to the balanced relationship
of the basal and apical fibre contribution to torsion. Pre-term
infants with cardiopulmonary disease exhibit differences in apical

counterclockwise rotation, but overall demonstrate adaptive
changes to different haemodynamic loading conditions during
the late neonatal period with recovery by 1-year corrected age.

Rotational strain patterns in pre-term infants

Rotational mechanics are complex in the neonatal heart with pre-
vious works delineating maturational patterns of rotational
mechanics from birth to 36 weeks post-menstrual age and account-
ing for the impact of some of the pre-maturity-related confounding
factors.12–14 Breatnach et al.13 found that at 36 weeks post-
menstrual age, pre-term infants with bronchopulmonary dysplasia
had higher left ventricular torsion compared to infants without
bronchopulmonary dysplasia, secondary to a higher apical rota-
tion. This observation was also seen in our cohort at 32 weeks
post-menstrual age but not exhibited at 36 weeks post-menstrual
age or 1-year corrected age. James at al.12 demonstrated no
differences in left ventricular torsion between infants with haemo-
dynamics significant patent ductus arteriosus over the first week of
age. While a significant patent ductus arteriosus will increase pul-
monary venous return to the left atrium and could affect maximal
torsion, previous studies in pre-term infants, children, and adults
have found almost no consequences of increased preload on rota-
tional mechanics.28,29

Unlike other studies, this study not only accounted for the pres-
ence of bronchopulmonary dysplasia and patent ductus arteriosus
but also assessed the impact of pulmonary hypertension on left
ventricular mechanics. Compared with well-documented changes
in right ventricular strain mechanics16 and measures of pulmonary
haemodynamics24 in pre-term infants with echocardiographic evi-
dence of pulmonary hypertension, previous literature reports rel-
atively no change in left ventricular longitudinal strain between
asymptomatic pre-term infants and those with pulmonary hyper-
tension.16 Similarly, it has been well documented that left ventricu-
lar longitudinal strain remains relatively preserved through 1-year
corrected age in asymptomatic pre-term infants and pre-term
infants with bronchopulmonary dysplasia.21,22,30–35 In contrast,
we found that left ventricular torsion was higher at 32 and 36 weeks
post-menstrual age, and the rate of decline was more pronounced
in pre-term infants with bronchopulmonary dysplasia, patent duc-
tus arteriosus, and/or pulmonary hypertension compared to
asymptomatic pre-term infants, although there was a recovery
by 1-year corrected age. This observed difference may reflect that
left ventricular longitudinal strain contributes less to overall left
ventricular function andmay not pick up subtle changes to haemo-
dynamic alterations. Circumferential–longitudinal shear strain

Table 1. Demographic and clinical characteristics of pre-mature infants at 32 weeks post-menstrual age, 36 weeks post-menstrual age,
and 1-year corrected age.

32 weeks PMA (n= 114) 36 weeks PMA (n= 117) 1-year CA (n= 65) ANOVA p

Gestational age at birth (weeks) 27 ± 2 27 ± 2 26 ± 2 1.00

Birth weight (grams) 907 ± 200 906 ± 207 898 ± 198 1.00

Gender (n, % male) 52 (45%) 55 (47%) 30 (46%) 1.00

Heart rate (bpm) 159 ± 18 163 ± 14 133 ± 19 <.01

Systolic blood pressure (mmHg) 68 ± 9 71 ±8 83 ± 10 <.01

Diastolic blood pressure (mmHg) 42 ± 9 42 ± 9 62 ± 9 <.01

Mean arterial pressure (mmHg) 48 ± 12 50 ± 12 59 ± 14 <.01

Data expressed as mean ± standard deviation or as number (percentage). p-value significance determined by ANOVA with p< 0.05 or Chi-square statistic
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patterns (rotational strain) appear to be more sensitive to effects of
disease compared to left ventricular longitudinal strain, due to its
larger contribution to cardiac output. The left ventricular circum-
ferential fibres occupy approximately 60% of the ventricular wall
thickness, compared to 20% by the left ventricular longitudinal
fibres, and provide the main driving force of the left ventricle by
reducing ventricular diameter.36–38

We observed a significant difference in the change in torsion
from 32 to 36 weeks post-menstrual age in “complicated” infants

(Fig 3), when compared to their “uncomplicated” counterparts.
However, beyond 36 weeks post-menstrual age, the myocardium
of these “complicated” pre-term infants appears to normalise to
their “uncomplicated” pre-term counterparts. These data may
reflect myocardial adaptation specific to a transient postnatal insult
on the pre-term myocardium that has the potential to persist or
repair.3 Further studies are needed to discern whether this is truly
a recovery of rotational strain and torsion that persists into adult-
hood or whether future insults to their myocardium may unmask

Table 2. Patterns of rotational mechanics in pre-mature infants over the first year of age.

32 weeks PMA n= 114 36 weeks PMA n= 117 1-year CA n= 65 ANOVA p

Entire cohort of pre-term infants

Basal rotation

Initial counterclockwise (þ) 2.21 ± 1.74 2.35 ± 1.62 3.93 ± 3.72 0.0024

Clockwise (−) −7.35 ± 4.08 −7.19 ± 3.75 −9.51 ± 4.76 0.0021

Apical rotation

Initial clockwise (−) −0.95 ± 1.80 −1.49 ± 1.47 −1.48 ± 2.28 0.029

Counterclockwise (þ) 9.06 ± 5.01 9.80 ± 3.96 8.82 ± 5.15 0.207

Twist 14.1 ± 6.13 14.6 ± 5.58 15.7 ± 7.80 0.34

Twist trough −0.67 ± 0.98 −0.83 ± 1.08 −3.32 ± 3.48 <0.0001

Length 2.31 ± 0.24 2.85 ± 0.27 3.86 ± 0.23 <0.0001

Torsion 6.13 ± 2.72 5.13 ± 2.04 4.08 ± 2.02 <0.0001

Uncomplicated pre-term infants n= 40 n= 42 n= 20

Basal rotation

Initial counterclockwise (þ) 2.19 ± 1.70 2.29 ± 1.91 4.19 ± 3.83 0.085

Clockwise (−) −7.35 ± 3.55 −7.86 ± 3.89 −9.54 ± 4.95 0.234

Apical rotation

Initial clockwise (−) −1.36 ± 2.32 −1.57 ± 1.41 −1.69 ± 2.43 0.841

Counterclockwise (þ) 6.92 ± 4.16 9.89 ± 4.17 8.46 ± 5.06 0.007

Twist 12.32 ± 5.43 14.86 ± 5.88 15.72 ± 7.52 0.064

Twist trough −0.75 ± 1.04 −0.85 ± 0.90 −4.18 ± 4.34 0.003

Length 2.30 ± 0.21 2.81 ± 0.28 3.82 ± 0.23 <0.0001

Torsion 5.37 ± 2.35 5.32 ± 2.14 4.13 ± 1.99 0.059

Complicated pre-term infants n= 74 n= 75 n= 45

Basal rotation

Initial counterclockwise (þ) 2.21 ± 1.80 2.40 ± 1.45 3.90 ± 3.81 0.029

Clockwise (−) −7.27 ± 4.42 −6.70 ± 3.64 −9.56 ± 4.87 0.005

Apical rotation

Initial clockwise (−) −0.63 ± 1.26 −1.37 ± 1.44 −1.25 ± 2.16 0.004

Counterclockwise (þ) 10.42 ± 5.05 9.94 ± 3.76 8.98 ± 5.29 0.368

Twist 15.15 ± 6.32 14.52 ± 5.51 15.91 ± 8.00 0.575

Twist trough −0.57 ± 0.88 −0.82 ± 1.19 −2.99 ± 3.06 <0.0001

Length 2.31 ± 0.25 2.88 ± 0.27 3.86 ± 0.23 <0.0001

Torsion 6.62 ± 2.85 5.07 ± 2.02 4.12 ± 2.04 <0.0001

Data expressed as mean ± standard deviation
ANOVA, analysis of variance; PMA = post-menstrual age, CA = corrected age
There is no difference in LV length between the uncomplicated and complicated groups at 32 weeks PMA, 36 weeks PMA, or 1-year CA
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maladaptive differences secondary to their exposure to pre-
maturity-related complications.36

As the first study to explore rotational values at 1-year corrected
age in pre-term infants, we report a median value of 4.08 ± 2.02 in
asymptomatic pre-term infants at 1-year corrected age. In term
infants at 1 year of age, torsion varies widely from 1 to 6.11,37–39

In term infants, apical twist increases over the first year of age
and is the major contributor to torsion.37 In pre-term infants, there
is an increasing predominance of basal clockwise rotation, while
the apical myofibres had a decreasing predominance of counter-
clockwise rotation (Table 2). This difference can likely be explained
by the recognition that torsional mechanism of left ventricular
deformation is greatest towards the apex, as the right-handed helix
in the subendocardium and the left-handed helix in the subepicar-
dium converge towards the apex and by the observations that elec-
trical excitation of cardiac motion begins in the base and travels to
the apex.40

We suspect that pre-term birth and adaptations to postnatal
insults may explain the decreasing torsion over the first year of
age in the pre-term population. Left ventricular torsion likely
decreases in pre-term infants in response to increased systemic
afterload,41 a phenomenon that was observed in this study and
others.12,13 Diminished cardiomyocyte endowment, early loss of
myocyte proliferative capacity from pre-mature birth,4 and
decreased myocyte to extracellular matrix ratio5 in the myocar-
dium of pre-mature infants may also explain the decline in torsion
in the face of increased afterload over time. Several researchers
hypothesise that the pre-mature myocardium adapts to significant
haemodynamic changes and undergoes ventricular remodelling
and accelerated subendocardial fibrosis with alteration of rota-
tional strain measures, even mimicking that of the elderly
population8,12,15,38 Further research is needed to explore whether

the pre-termmyocardium, with its unique myoarchitecture, exhib-
its increased stiffness despite adaptive compensatory mechanisms.

Clinical implications

These findings may have important clinical consequences in young
adults, children, and infants born pre-term. Identifying keymecha-
nistic underpinnings of altered cardiac performance in pre-term-
born offspring is an important area of investigation in perinatal
origins of adult disease.42 Adults born prematurely have been
found to have significantly reduced rotational mechanics, includ-
ing apical and basal peak systolic rotation rate, and net twist, via
cardiac MRI.43 Recent evidence has now shown that maladaptive
pre-term cardiac performance seen in childhood and early adoles-
cence may be first present during a critical window of postnatal
development from birth to the first year of age.3,23,24 Extremely
pre-term infants, particularly those who must adapt to significant
cardiopulmonary stressors, may have a unique cardiac phenotype
that predisposes them to major cardiovascular comorbidities.5

Future studies are needed to longitudinally describe changes in
rotational mechanics into adulthood and to ultimately optimise
long-term cardiovascular risk reduction in pre-term-born
offspring.

Limitations

The strengths of this study need to be interpreted within the frame-
work of its limitations. Although this study is the first prospective
longitudinal study to track rotational mechanics beyond the neo-
natal period in pre-term infants, it lacked a comparison term con-
trol population to properly characterise the differences and make
strong associations. Future studies are needed to compare term and
pre-term cohorts to assess long-term effects of pre-maturity on left
ventricular rotational mechanics. There is potential selection bias
given that 80 of the 117 enrolled infants alive at 32 weeks post-
menstrual age returned for follow-up at 1-year corrected age
and only 65 of those infants had feasible two-dimensional
speckle-tracking echocardiographic images. The studied numbers
were small for each group, which precluded us from determining
reference values for each gestational age. We chose to compare the
asymptomatic group to infants with bronchopulmonary dysplasia,
pulmonary hypertension, and/or patent ductus arteriosus because
of sample size limitations to provide a sufficiently powered com-
parison of torsion of neonates with and without patent ductus arte-
riosus or pulmonary hypertension alone. However, similar to
previous power calculations for determining reference values for
longitudinal strain16,44–46 and pulmonary artery acceleration time
in pre-term infants from birth to 1-year corrected age,24 we were
able to generate normal maturational patterns and compare trends
between uncomplicated infants and infants with bronchopulmo-
nary dysplasia, pulmonary hypertension, and/or patent ductus
arteriosus. Although the gold standard modalities for evaluation
of left ventricular twist and torsion are three-dimensional
speckle-tracking echocardiography or cardiac MRI, the use of
two-dimensional speckle-tracking echocardiography, a relatively
angle-independent and widely available tool at the bedside, has
been validated and demonstrated to be both feasible and
reproducible.9

Figure 3. Left ventricular (LV) torsion from 32 weeks post-menstrual age (PMA), 36
weeks PMA, and at 1-year corrected age (CA) in “uncomplicated” versus “complicated”
pre-term infants. Uncomplicated infants neither have bronchopulmonary dysplasia, a
patent ductus arteriosus, nor echocardiographic signs of late pulmonary hypertension
at 32 or 36 PMA. * p< 0.01 between groups. A subgroup analysis revealed that the
decrease in LV torsion from 32 to 36 weeks PMA differed significantly (p= 0.019)
between the “uncomplicated” (5.37 ± 2.35 °/cm to 5.32 ± 2.14°/cm, p< 0.001) and “com-
plicated” infants (6.62 ± 2.85 °/cm to 5.07 ± 2.02 °/cm, p< 0.001). There was no signifi-
cant difference in the change in torsion over time from 36 weeks PMA to 1 year CA when
comparing the “uncomplicated” (5.32 ± 2.14 °/cm to 4.13 ± 1.99 °/cm, p< 0.001) to
“complicated” (5.07 ± 2.02°/cm to 4.12± 2.04 °/cm, p< 0.001) pre-term infants. At 1-year
CA, there is no difference in torsion between groups.
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Conclusion

This prospective study establishes reference patterns for rotational
mechanics in pre-term infants and tracks their maturational
changes over the first year of age. Torsion decreases from 32 weeks
post-menstrual age to 1-year corrected age. Pre-term infants that
face significant cardiopulmonary stressors have a more pro-
nounced decrease in torsion from 32 to 36 weeks post-menstrual
age, but by 1-year corrected age exhibit the same left ventricular
torsion as healthy pre-term infants. Rotational strain analysis
may aid in characterising myocardial adaptive responses in cardiac
function in this population.
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