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Time-dependent force acting on a particle
moving arbitrarily in a rotating flow, at small

Reynolds and Taylor numbers

FABIEN CANDELIER
GEPEA – UMR UMR 6144, Ecole des Mines de Nantes – La Chantrerie, 4 rue Alfred Kastler,

BP 20722, 44 307 Nantes, France

(Received 19 November 2007 and in revised form 24 April 2008)

The arbitrary motion of a solid sphere released in a solid-body rotating fluid is
investigated theoretically in the limit of small Reynolds and Taylor numbers. The
angular velocity of the fluid is assumed to be constant and under the premise that
T a1/2 � Re, the simplicity of the unperturbed flow enables us to calculate analytically
the force acting on a particle moving with a harmonic slip velocity (by means
of matched asymptotic expansions), when both inertia and unsteady effects are
taken into account. Subsequently, these single-frequency results are used in order to
determine the temporal expression of the force acting on an arbitrarily moving sphere,
since the problem under study is linear. This force is first determined in a co-rotating
reference frame and takes the form of two convolution products involving the particle
acceleration and the particle velocity. For convenience, the corresponding expression
of this force is also derived in the laboratory reference frame, and the particle motion
equation obtained is thereafter illustrated by dealing with two practical situations,
where unsteady and inertia effects must be taken into account to predict the particle
dynamics accurately.

1. Introduction
This paper considers the motion of a spherical particle moving in a rigidly rotating

fluid. The determination of the force experienced by a particle in such a case has
been a challenge for several decades. This problem has many fundamental aspects
with obvious applications (i.e. centrifuges). For later convenience, we should specify
now that in a rotating reference frame, with an angular velocity of ω0e3, the particle
motion equation can be written as

mp

dvp

dt
= mp g − mpω2

0e3 × (e3 × xp) − 2mpω0e3 × vp + F (1.1)

where mp is the particle mass, xp and vp are, respectively, the particle position
and velocity (relative to the rotating reference frame) and F corresponds to the
hydrodynamic force experienced by the particle. Note that such a reference frame is
not Galilean, therefore a centrifugal force and a Coriolis force, respectively given by
the second and third terms on the right-hand side of (1.1), must be taken into account
in the particle motion equation. Following the classical approach, the hydrodynamic
force is generally split in two parts: F = F0 + F1, where F0 is the force due to the
unperturbed flow, and F1 is the force corresponding to the induced (perturbation)
flow. In the particular case of a rigidly rotating fluid, the unperturbed velocity is null

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

08
00

21
52

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112008002152


320 F. Candelier

if it is expressed in a co-rotating reference frame, and therefore F0 comes only from
the unperturbed pressure field. By using the gradient theorem, we can check that

F0 =

∫
V

−∇P 0 dV = −mf

(
g − ω2

0e3 × (e3 × xp)
)
, (1.2)

where V is the particle volume, and mf is the fluid mass within the particle, and the
particle motion equation can be recast in the form:

mp

dvp

dt
= (mp − mf )

(
g − ω2

0e3 × (e3 × xp)
)

− 2mpω0e3 × vp + F1(t). (1.3)

Obviously, the main difficulty lies in the determination of F1, the analytical expression
of which has been derived only in a few particular situations.

In this connection, we should first mention the seminal article of Childress (1964),
who addressed the problem of a sphere moving steadily along the rotation axis. He
was one of the first to use matched asymptotic expansions in order to determine the
fluid inertia contribution to the drag acting on a particle immersed in a non-uniform
flow. In the limit of 1 � T a1/2 � Re, where T a = a2ω0/ν is the Taylor number (a is
the radius of the sphere and ν is the fluid kinematical viscosity) and Re = a|vp|/ν is
the particle Reynolds number, he found that

F1 = −6πμa
(
1 + 4

7
T a1/2

)
vp, (1.4)

which was carefully checked experimentally by Maxworthy (1965).
Childress’ result was generalized by Herron, Davis & Bretherton (1975) to a more

complex case, corresponding to the three-dimensional motion of a particle within a
vertical centrifuge (i.e. co-aligned with gravity). Note that in the problems addressed
by Childress (1964), and by Herron et al. (1975), it turns out that the induced-flow
equations, which are written in a co-rotating reference frame linked to the particle’s
centre, degenerate into quasi-steady equations, owing to the velocity naturally adopted
by the particle. Moreover, convective effects are rendered negligible owing to the order
of the Taylor and the Reynolds numbers, so that the near field is dominated by Stokes
flow, while the far field is perturbed by a viscously modified Taylor column, owing to
Coriolis acceleration (see again Herron et al. 1975). This far field induces modifications
in the near field, and the classical force obtained in the creeping flow limit must be
corrected accordingly. This force reads

F1 = −6πμa

⎛
⎜⎝1 +

√
T a

⎛
⎜⎝

M11 −M12 0

M12 M11 0

0 0 M33

⎞
⎟⎠

⎞
⎟⎠ · vp, (1.5)

where M11 = 5/7, M12 = 3/5 and M33 = 4/7, and these results were checked
experimentally by Candelier, Angilella & Souhar (2005) for solid and gaseous
inclusions.

Another result to note corresponds to the case of a particle held fixed in the
laboratory reference frame with the conditions 1 � T a1/2 � Re still fulfilled. In such a
case, the induced-flow equations are now steady, if they are written in a fixed reference
frame linked to the particle centre, but the far field is perturbed by convective effects,
which have to be taken into account in order to predict accurately the force acting
on the sphere. The corresponding force was first derived by Gotoh (1990), and its
analytical expression reads almost like (1.5), except that coefficients M11 and M12 must
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Time-dependent force acting on a particle in a rotating flow 321

be replaced by

M11 =
3
√

2

280
(19 + 9

√
3), M12 =

3
√

2

280
(19 − 9

√
3), (1.6)

and vp must be replaced by the particle’s slip velocity relative to the laboratory
reference frame. (Note that these coefficients were derived for ω0 > 0, and we can
check that if the rotation direction is reverse, then the sign of M12 changes accordingly.)
Gotoh’s results show that the lift force acting on the sphere is centripetal (see for
instance the experiments of van Nierop et al. 2007), in contrast to the lift force that
would be obtained by using an empirical force based on Saffman’s (1965) results. His
results therefore invalidate the systematic use of an additive Saffman lift force when
the flow under study is not a pure shear flow.

Let us insist on the fact that so far, all the results presented were derived after
assuming that the induced-flow equations were steady, according to the reference
frame used. When the induced-flow equations are also unsteady, the difficulty in
obtaining the force acting on the particle increases significantly since both unsteady
and inertia effects contribute to the particle drag and lift forces in a complex and non-
additive manner (see for instance the analytical investigation of Candelier & Angilella
2006). This is the reason why analytical determinations of the force experienced by a
particle moving unsteadily in a non-uniform flow are still scarce, and results on this
topic are generally quite recent. For instance, we can refer to the pioneering work of
Miyazaki et al. (1995), or a few years later, to that of Asmolov & McLaughlin (1999)
(see also Candelier & Souhar 2007) who addressed the problem of a sphere moving
with a harmonic slip velocity in a shear flow. Concerning rotating flow, Miyazaki
(1995) has also solved the problem of a sphere moving with a harmonic velocity (i.e.
vp = v exp(−iωt)), relative to the co-rotating reference frame. In the limit of weak
unsteadiness (a2ω/ν � 1) where ω is the angular frequency of the particle velocity,
Miyazaki obtained

F1 = −6πμa

⎛
⎜⎝1 +

√
T a

⎛
⎜⎝

f (Ω) −g(Ω) 0

g(Ω) f (Ω) 0

0 0 h(Ω)

⎞
⎟⎠

⎞
⎟⎠ · vp, (1.7)

where

f = (1/140)(
√

−i(2 + Ω)3(25 − 3Ω + Ω2) +
√

i(2 − Ω)3(25 + 3Ω + Ω2)), (1.8)

g = −(i/20)(
√

−i(2 + Ω)3(−3 + Ω) +
√

i(2 − Ω)3(3 + Ω)), (1.9)

h = (1/70)(
√

−i(2 + Ω)3(10 + 3Ω − Ω2) +
√

i(2 − Ω)3(10 − 3Ω − Ω2)). (1.10)

and where Ω = ω/ω0 is the normalized angular frequency. His results are in agreement
with those of Herron et al. (1975) in the steady case limit (Ω → 0), but unfortunately,
and if we are not mistaken, we do not recover f (Ω) ∼ h(Ω) ∼

√
−iΩ and g(Ω) → 0,

when Ω � 1, in contrast to Miyazaki’s statements. (This is probably due to a minor
typographic error.)

The present study seeks to gather together all the results mentioned in this
introduction, by carrying out the analytical expression of the force acting on a
particle in the limit of

1 � T a1/2 � Re, (1.11)

regardless of the particle’s velocity. Such a result could therefore be used in many
practical situations where the motion of a particle is inherently unsteady. For instance,
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322 F. Candelier

this is the case if a particle moves in a horizontal rotating flow (see for example the
experiments of van Nierop et al. 2007).

Note that because the single-frequency results published by Miyazaki (1995) seem
to be incorrect when Ω � 1, and because they are involved in the calculation of the
force acting on an arbitrarily moving particle, we will first be led, in what follows, to
re-establish such results. This will be done, however, by using a different formalism.

2. Force F1 for the oscillating motion of a particle
In order to derive the force acting on a particle immersed in such a flow, it is

convenient to work in a reference frame which also rotates at the same angular
velocity as the fluid, but which is now moving with the particle, so that the fluid
velocity w(x, t) is therefore measured relative to the bulk flow and the velocity of the
particle. In such a reference frame, the fluid motion equations are

∇ · w = 0, (2.1)

ρ

(
∂w

∂t
+ w · ∇w + 2ω0e3 × w + ω2

0e3 × (e3 × x)

)

= −∇P + μ�w + ρ
(

g − dvp

dt
− 2ω0e3 × vp − ω2

0e3 × (e3 × xp)
)
, (2.2)

w = ωp × x, |x| = a, w → −vp, |x| → ∞, (2.3)

where the particle’s rotation ωp , position xp and velocity vp are relative to the co-
rotating reference frame of the bulk fluid (i.e. where the unperturbed velocity field
is null). By introducing the classical decomposition (w0, P 0) + (w1, P 1) (unperturbed
and perturbation fields), and since in the present reference frame w0 = −vp we can
check that the non-dimensional equations for w1(x, t) are

∇ · w1 = 0, (2.4)

T a
∂w1

∂t
+ T a2e3 × w1 + Re(−vp · ∇w1 + w1 · ∇w1) = −∇P 1 + �w1, (2.5)

w1 = vp + ωp × x, |x| = 1, w1 → 0, |x| → ∞. (2.6)

(Note that (2.4)–(2.6) have been normalized by using a for length, |vp| for velocities,
1/ω0 for the time derivative, and μ|vp|/a for pressure, but for the sake of simplicity,
the notation has not changed.)

Keeping in mind that in the present investigation, both the Taylor and the Reynolds
numbers are assumed to be small compared to unity, we can see (if the order of the
unsteady term is not too large) that the near field of w1 should be dominated by a
steady creeping flow. Following the classical approach, we can therefore point out,
by using the analytical expression of a Stokes flow, that the Coriolis term (second
term of the left-hand side of (2.5)), balances the viscous term at a distance from the
particle given by a/T a1/2 (the Ekman length), whereas the convective terms balance
the viscous term at a distance given by a/Re (the Oseen length). Under the premise
T a1/2 � Re, Coriolis inertia effects therefore dominate convective inertia effects.

Let us now discuss the flow induced by the particle’s rotation. In the creeping-flow
limit the angular velocity of the particle is expected to match closely that of the
bulk fluid, since no external torques act on the particle (see for instance Childress
1964). In the present analysis, the deviation of the particle’s rotation from the angular
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Time-dependent force acting on a particle in a rotating flow 323

velocity of the bulk fluid is expected to scale with some power of T a (or Re), and
can therefore only contributes to the force acting on the particle at a level smaller
than that being evaluated here.

Note that in this type of investigation concerning small-Reynolds-number flows, it
is generally assumed that the particle’s rotation plays no role in the determination of
the leading order of the induced force. (For instance, in the famous problem addressed
by Saffman 1965, the particle obviously experiences a hydrodynamic torque, but the
particle’s rotation is not taken into account when the lift force is carried out.)

Finally, if (2.5) and (2.6) are re-written, by keeping only the terms that are expected
to play a role in the calculation of the induced force, we are led to

T a

(
∂w1

∂t
+ 2e3 × w1

)
= −∇P 1 + �w1, (2.7)

w1 → 0, |x| → ∞, w1 = vp(t), |x| = 1. (2.8)

We now introduce the temporal inverse Fourier transform

F−1
t

(
vΩ

p

)
=

1

2π

∫
�

vΩ
p exp(−iΩt) dΩ = vp(t), (2.9)

keeping in mind that Ω = ω/ω0. If FΩ exp(−iΩt) is the force acting on a particle
which is moving with the following velocity

vp(t) = vΩ
p exp(−iΩt), (2.10)

then the force acting on a particle moving arbitrarily is given by

F1(t) =
1

2π

∫
�

FΩ exp(−iΩt) dΩ, (2.11)

since the problem under study is linear. Deriving the force acting on a particle which
is oscillating is therefore of fundamental interest in the present investigation. In
what follows, this force (i.e. FΩ ) will be obtained by means of matched asymptotic
expansions. Rigorously speaking, this method can be applied only if the solution of
(2.7) corresponds, near the particle and at leading order, to a steady creeping flow,
since the particle will be replaced by a point force, the strength of which corresponds
to a steady Stokes drag. According to (2.10), the order of the unsteady term involved
in (2.7) is given by T aΩ , so that this term is required to be small and we first assume
that this condition is fulfilled. However, for later convenience, let us specify that since
we also have T a � 1, Ω can nevertheless be much greater than unity.

In the present investigation, it turns out that the induced force acting on a particle
moving along the fluid rotation axis is totally decoupled from the force acting on a
particle which is moving perpendicularly. This property is useful since it allows us to
consider each case separately. Accordingly, let us first deal with the condition:

vp = wΩ
p exp(−iΩt)e3. (2.12)

As said before, and following the classical approach, it is assumed that in the vicinity
of the particle (inner problem), the induced flow corresponds to a steady Stokes flow
plus a corrective term that scales as T a1/2. This inner flow must match the solution
of the outer problem:

∂w1

∂t
+ 2e3 × w1 = −∇P 1 + �w1 + 6πwΩ

p exp(−iΩt)δ(x)e3, (2.13)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

08
00

21
52

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112008002152


324 F. Candelier

where the particle is replaced by the classical Dirac source term. (Note that in the
classical matched asymptotic expansions method, this equation is usually written
using stretched coordinates, but for the sake of simplicity, we have not changed the
notations.) Equation (2.13) is usually solved by making use of the spatial Fourier
transform defined as

w̃(k, t) =
1

8π3

∫
�3

w1(x, t) exp(−ik · x) d3x, (2.14)

and we are led to

∂w̃

∂t
+ 2e3 × w̃ = −ikP̃ − k2w̃ +

3wΩ
p

4π2
exp(−iΩt)e3. (2.15)

Because the solution is periodic, and because it also depends linearly on the value of
wΩ

p , it is convenient to seek the solution of (2.15) in the form

w̃ = w̃ΩwΩ
p exp(−iΩt), P̃ = P̃ ΩwΩ

p exp(−iΩt), (2.16)

which yields

−iΩw̃Ω + 2e3 × w̃Ω = −ikP̃ Ω − k2w̃Ω +
3

4π2
e3. (2.17)

By injecting w̃Ω = ũΩ e1 + ṽΩ e2 + w̃Ω e3 into (2.17), and using the continuity equation
(i.e. k · w̃Ω = 0), we obtain an algebraic system with four unknowns (ũΩ , ṽΩ , w̃Ω ,
P̃ Ω ) which is solved analytically. In this matched asymptotic expansion approach, the
non-dimensional force correction that must be added to the Stokes’ drag and that we
shall note Fc, is given (see for instance Saffman 1965) by

Fc = 6π
√

T awΩ
p exp(−iΩt)e3

∫
�3

(
w̃Ω − w̃Ω

s

)
d3k, (2.18)

where w̃Ω
s corresponds to the solution of (2.17) with the left-hand side set to 0 (Stokes

problem). Note that in order to use the same notation as Miyazaki, we also write

−h(Ω) =

∫
�3

(
w̃Ω − w̃Ω

s

)
d3k. (2.19)

The calculation of this integral is tedious, and intermediary results are not very
interesting, so we specify here only how the final result is obtained. First, we introduce
cylindrical coordinates in the Fourier space, following for example Gotoh (1990),
k1 = −k̂ sin(η) and k2 = k̂ cos(η):

−h(Ω) =

∫ ∞

−∞

∫ ∞

0

∫ 2π

0

(
w̃Ω − w̃Ω

s

)
k̂ dη dk̂ dk3, (2.20)

and we perform the intermediate integration:

I (Ω) =

∫ 2π

0

(
w̃Ω − w̃Ω

s

)
dη. (2.21)

Secondly, we set k3 = k′ sin(φ) and k̂ = k′ cos(φ). This yields

−h(Ω) =

∫ ∞

0

∫ π/2

−π/2

I (Ω)k′2 cos(φ) dφ dk′, (2.22)
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Time-dependent force acting on a particle in a rotating flow 325

and this last integral can be calculated analytically. We are led to

h(Ω) =
i

70

(
− Ω4

√
−i(Ω − 2)

+
Ω4

√
−i(Ω + 2)

+
Ω3

√
−i(Ω − 2)

+
Ω3

√
−i(Ω + 2)

+
18Ω2

√
−i(Ω − 2)

− 18Ω2

√
−i(Ω + 2)

− 52Ω√
−i(Ω − 2)

− 52Ω√
−i(Ω + 2)

+
40√

−i(Ω − 2)
− 40√

−i(Ω + 2)

)
. (2.23)

We now consider the case of a particle oscillating along e1 (i.e. perpendicularly to the
rotation axis):

vp = uΩ
p exp(−iΩt)e1. (2.24)

The outer problem is now

∂w1

∂t
+ 2e3 × w1 = −∇P 1 + �w1 + 6πuΩ

p exp(−iΩt)δ(x)e1, (2.25)

and following the same approach as that described previously, the force correction
acting on the particle is now given by

Fc = 6π
√

T auΩ
p exp(−iΩt) (−f (Ω)e1 − g(Ω)e2) , (2.26)

where once again we have written

−f (Ω) =

∫
�3

(ũΩ − ũΩ
s ) d3k, −g(Ω) =

∫
�3

(ṽΩ − ṽΩ
s ) d3k. (2.27)

The calculation of these integrals can be performed in the same way as before, and
this time we are led to

f (Ω) = − i

140

(
− Ω4

√
−i(Ω − 2)

+
Ω4

√
−i(Ω + 2)

+
Ω3

√
−i(Ω − 2)

+
Ω3

√
−i(Ω + 2)

− 17Ω2

√
−i(Ω − 2)

+
17Ω2

√
−i(Ω + 2)

+
88Ω√

−i(Ω − 2)
+

88Ω√
−i(Ω + 2)

− 100√
−i(Ω − 2)

+
100√

−i(Ω + 2)

)
(2.28)

and

g(Ω) =
i

20

(
(Ω − 2)

|Ω − 2|
Ω3

√
i(Ω − 2)

− (2 + Ω)

|2 + Ω |
Ω3

√
i(Ω + 2)

− (Ω − 2)

|Ω − 2|
Ω2

√
i(Ω − 2)

− (2 + Ω)

|2 + Ω |
Ω2

√
i(Ω + 2)

− (Ω − 2)

|Ω − 2|
8Ω√

i(Ω − 2)
+

(2 + Ω)

|2 + Ω |
8Ω√

i(Ω + 2)

+
(Ω − 2)

|Ω − 2|
12√

i(Ω − 2)
+

(2 + Ω)

|2 + Ω |
12√

i(Ω + 2)

)
. (2.29)

Note that by using the symmetrical properties of the problem, we can check that if
the particle were oscillating along e2, instead of e1, the corresponding force would be
given by

Fc = 6π
√

T avΩ
p exp(−iΩt) (g(Ω)e1 − f (Ω)e2) , (2.30)

so we need not deal explicitly with that case. If the velocity of the particle is given
by (2.10), then the force acting on it can be drawn by superimposing these previous
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results and is

FΩ = −6π(I +
√

T aM(Ω) + O(T a)) · vΩ
p , (2.31)

where M(Ω) is the tensor given by (1.7), but where f (Ω), g(Ω) and h(Ω) are now
given by (2.23), (2.28) and (2.29). In spite of their complex analytical expressions, we
can check that these three functions are continuous, even for Ω = ±2. In particular,
when |Ω | � 2, we can check that these functions can be factorized and written under
the same form as (1.8), (1.9) and (1.10). (However, this factorized form is no longer
valid when |Ω | > 2 and it is likely that Miyazaki obtained the same results as those
derived here, but published them only in this factorized form.)

Note that so far, (2.23), (2.28) and (2.29) are valid only in the limit of weak
unsteadiness, T aΩ = a2ω/ν � 1, as required by the method used. Fortunately, this
problem can be readily overpassed. On one hand, when a2ω/ν � 1, (2.7) degenerates
into the unsteady creeping-flow equation, since the unsteady term dominates the
Coriolis term. The corresponding force is therefore given by the well-known
Boussinesq–Basset–Oseen (BBO) force which can be written (see for example Landau
& Lifchitz 1989):

FΩ = −6πμa

(
1 +

√
T a

√
2

2
(1 − i)

√
Ω +

T a

9
(−iΩ)

)
vΩ

p . (2.32)

On the other hand, when Ω � 1, we can check that

lim
Ω�1

f (Ω) = lim
Ω�1

h(Ω) =

√
2

2
(1−i)

√
Ω+O

(
Ω−3/2

)
, lim

Ω�1
g(Ω) = O

(
Ω−1/2

)
, (2.33)

so that the O(T a1/2) terms of (2.31) match those of (2.32). This allows us to conclude
that (2.31) is valid, whatever the value of Ω , without any restrictions. (This point is
required to perform the calculations in the following section.)

3. Force F1 for the arbitrary motion of a particle
We now derive the force in the time domain, performing the calculation of F−1

t (FΩ )
given by (2.11). To achieve this calculation, we first establish the following intermediary
results (see Appendix):

F−1
t

(
1√

−i(Ω + 2)

)
=

exp(2it)√
πt

, F−1
t

(
1√

−i(Ω − 2)

)
=

exp(−2it)√
πt

, (3.1a, b)

F−1
t

(
(2 + Ω)/|2 + Ω |√

i(Ω + 2)

)
= − i exp(2it)√

πt
, F−1

t

(
(Ω − 2)/|Ω − 2|√

i(Ω − 2)

)
= − i exp(−2it)√

πt
.

(3.2a, b)

Secondly, we also use the following properties

F−1
t

(
(−iΩ)ma(Ω)vΩ

p

)
=

dm−1F−1
t (a(Ω))

dtm−1
∗ dvp(t)

dt
(3.3)

and

F−1
t

(
a(Ω)vΩ

p

)
= F−1

t (a(Ω)) ∗ vp(t), (3.4)

which are valid for any non-zero integer m, and for any functions involved in (3.1)
or (3.2) (written a(Ω), for the sake of simplicity). Note that the symbol * stands for
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the temporal convolution product. According to the results obtained in the previous
section, the force acting on a particle moving arbitrarily is

F1(t) = −6π

(
vp(t) +

√
T a

(∫ t

0

K1(t − τ ) · dvp(τ )

dτ
dτ

+

∫ t

0

K2(t − τ ) · vp(τ ) dτ

)
+ O(T a)

)
, (3.5)

where K1(t) is a tensor

K1(t) =

⎛
⎜⎝

f1(t) −g1(t) 0

g1(t) f1(t) 0

0 0 h1(t)

⎞
⎟⎠ (3.6)

and

f1(t) =
1

112

(
80 cos(2t)t3 + 20 sin(2t)t2 + 6 cos(2t)t − 3 sin(2t))

t3
√

πt

)
, (3.7)

g1(t) = − 3

40

(
8 sin(2t)t2 − 2 cos(2t)t + sin(2t)

t2
√

πt

)
, (3.8)

h1(t) =
1

56

(
32 cos(2t)t3 + 8 sin(2t)t2 − 6 cos(2t)t + 3 sin(2t))

t3
√

πt

)
, (3.9)

and where

K2(t) =

⎛
⎜⎝

f2(t) −g2(t) 0

g2(t) f2(t) 0

0 0 h2(t)

⎞
⎟⎠, (3.10)

f2(t) =
10

7

sin(2t)√
πt

, g2(t) =
6

5

cos(2t)√
πt

, h2(t) =
8

7

sin(2t)√
πt

. (3.11)

In order to ensure the validity of (3.5), we now test it by recovering some of the
results presented in § 1. We first analyse the behaviour of the force corresponding to
a sudden motion of the particle, that is dvp(t)/dt = δ(t) or equivalently vp(t) = H (t)
(H (t) is the Heaviside function) where (3.5) is expected to tend towards the results
of Herron et al. (1975). Figure 1(a) shows the response of the induced force in such
a case. At short times (t � 1), we recognize the behaviour of the classical BBO force
since

f1(t) ∼ h1(t) ∼ 1√
πt

, g1(t) ∼ −7

5

√
t√
π

, (3.12)∫ t

0

f2(t) dt ∼ 40

21

t3/2

√
π

,

∫ t

0

g2(t) dt ∼ 12

5

√
t√
π

,

∫ t

0

h2(t) dt ∼ 32

21

t3/2

√
π

. (3.13)

Figure 1(b) is an enlargement of figure 1(a) around the asymptotical values reached
by three functions plotted in figure 1(a). At long times, Herron’s results are well
retrieved, and we obtain

f1(t) ∼ g1(t) ∼ h1(t) ∼ O(1/
√

t), (3.14)∫ t

0

f2(t) dt ∼ 5
7
,

∫ t

0

g2(t) dt ∼ 3
5
,

∫ t

0

h2(t) dt ∼ 4
7
. (3.15)
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Figure 1. (a) Temporal evolution of the force correction in response to a sudden start
motion. (b) Enlargement of the same three functions around their asymptotic (steady) values.

—, f1(t) +
∫ t

0 f2(τ ) dτ ; - - -, g1(t) +
∫ t

0 g2(τ ) dτ ; – · –, h1(t) +
∫ t

0 h2(τ ) dτ .

We can also observe that the typical (dimensional) time taken by the force to reach its
steady value scales as 1/ω0. This is physically sound, since this time scale corresponds
to the time taken by the vorticity (created by the change of velocity), to diffuse to
the distance a/

√
T a, were the Coriolis term, involved in the induced-flow equations,

balances the viscous term.
Figure 1(b) also shows that the force reaches its steady value after a decayed

oscillating regime. (Note that similar behaviour had already been observed by
Wakaba & Balachandar 2005, who performed numerical simulation involving a
particle immersed in a shear flow and at moderate Reynolds numbers).

Another situation that can be used corresponds to the case of a particle kept fixed in
the laboratory reference frame. Its velocity is therefore given by vp = cos(t)e1−sin(t)e2

in the co-rotating reference frame and the horizontal components of the tensor M can
be carried out by using simply the results (2.28) and (2.29), since we can write

M · vp = Re[M(Ω = 1) · exp(−it)e1] + Im[M(Ω = 1) · exp(−it)e2], (3.16)

where Re( ) and Im( ) denote the real and imaginary parts, respectively. Gotoh’s
results, given in (1.6), are recovered as expected.

4. Force acting on a particle in the laboratory reference frame
In the previous section, we derived the induced force acting on a particle in the

co-rotating reference frame, and this force should be inserted into (1.3) in order to
predict the particle’s dynamics. However, it may be useful, sometimes, to deal with a
motion equation written in the laboratory reference frame instead of in the co-rotating
reference frame. In what follows, we derive the expression of the induced force (3.5)
in the laboratory (absolute) reference frame. Note that this transformation must be
done cautiously since (3.5) involves convolution products, and therefore both the
history of the time dependence of the particle velocity and of the particle acceleration
in the co-rotating frame must be taken into account explicitly during the translation
to the laboratory reference frame, as pointed out by Miyazaki (1995). Following his
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approach, if xp denotes the particle position in the co-rotating reference frame, and
xa

p denotes the particle position in the absolute reference frame (in the following, the
superscript a indicates that the vector is written in the laboratory (absolute) reference
frame), we have the relations

xa
p(t) = P(t) · xp(t) where P =

⎛
⎜⎝

cos t −sint 0

sin t cos t 0

0 0 1

⎞
⎟⎠, (4.1)

if the vector is written in the laboratory reference frame, or

xp(t) = Pt (t) · xa
p(t), (4.2)

if the vector is written in the co-rotating reference frame. (Note that the superscript
t stands for the transposition.) Let us now introduce the following tensor

Ω =

⎛
⎝0 −1 0

1 0 0
0 0 0

⎞
⎠, (4.3)

which satisfies the relation: Ω · xp = e3 × xp . We can readily check that

dPt

dt
= −Ω · Pt , (4.4)

and using this result allows us to write

dxp

dt
= vp = Pt ·

(
dxa

p

dt
− Ω · xa

p

)
= Pt · va

s (4.5)

where va
s is the particle’s slip velocity, relative to the laboratory reference frame.

(Note that Pt and Ω are both antisymmetric so that they can commute.) Similarly,
we obtain, for the particle acceleration:

dvp

dt
= Pt

(
dva

s

dt
− Ω · va

s

)
, (4.6)

and the two integrals in (3.5) can be re-written as follows:∫ t

0

K1(t − τ ) · dvp(τ )

dτ
dτ =

∫ t

0

K1(t − τ ) ·
(

Pt (τ ) · dva
s (τ )

dτ
− Pt (τ ) · Ω · va

s (τ )

)
dτ, (4.7)∫ t

0

K2(t − τ ) · vp(τ ) dτ =

∫ t

0

K2(t − τ ) ·
(
Pt (τ ) · va

s (τ )
)
dτ. (4.8)

Note that so far, these terms are written in the co-rotating reference frame, even
if they involves the particle slip velocity and the particle acceleration written in
the laboratory reference frame. However, the transformation back to the laboratory
reference frame is now straightforward since

F1a = P(t) · F1. (4.9)

By using again the commutativity of the tensors, and since

P(t) · Pt (τ ) = P(t − τ ), (4.10)

we are led to

F1a = −6π

(
va

s (t) +
√

T a

(∫ t

0

Ka
1(t − τ ) · dva

s

dt
dτ +

∫ t

0

Ka
2(t − τ ) · va

s (τ ) dτ

))
(4.11)
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where

Ka
1 = K1 · P, Ka

2 = (K2 − K1 · Ω) · P. (4.12)

In the laboratory reference frame, the particle motion equation is therefore given by

mp

dva
p

dt
= (mp − mf )ga + mf ω2

0e3 ×
(
e3 × xa

p

)
+ F1a(t), (4.13)

where the second term of the right-hand side now corresponds to the classical pressure
gradient of the unperturbed flow (i.e. mf Dva/Dt), in the particular case of a solid-
body rotating fluid. In what follows, (4.13) will be illustrated in practical situations.

5. Applications
In this section, we deal with two physical situations where both unsteady and inertia

effects modify the force acting on the particle so that the motion equation (4.13)
(together with (4.11)) must be used in order to predict the particle dynamics correctly.
In addition, we compare results obtained by solving (numerically) this last-mentioned
equation (4.13) to those obtained by using two other theories that could have been
used in the present state of our knowledge, even if these other theories are incorrect
in the situations addressed, since the comparison is interesting. These other theories
involve, respectively, the Basset–Boussinesq–Oseen (BBO) force

F1a = −mf

2

dva
s

dt
− 6πμa

(
va

s +

(
a2

ν

)1/2 ∫ t

0

1√
π(t − τ )

dva
s (τ )

dτ
dτ

)
(5.1)

and the Herron’s force (translated here to the laboratory reference frame):

F1a = −6πμa
(
1 + T a1/2M

)
va

s , (5.2)

where M is given by (1.5). Note that the BBO force is obtained by neglecting all
inertia effects, if the induced fluid motion equations are written in a fixed reference
frame linked to the particle, whereas the second one is obtained by neglecting all
unsteady effects, if the induced-flow equations are written in a co-rotating reference
frame.

5.1. The unsteady problem of Childress

We now focus our attention on the time taken by a particle to reach its steady
terminal velocity, in the problem initially addressed by Childress (1964). We therefore
consider the case of a light particle released along the axis of rotation which is,
in this example, co-aligned with gravity (i.e. ga = −gae3). It is assumed that the
particle is released at t = 0 and za

p = 0 (za
p is the vertical coordinates of the particle),

with no initial velocity. The physical parameters chosen are a = 1.5mm, ω0 = 15 rad
s−1, mp/mf = 0.1, ν = 2 × 10−4 m2 s−1. This corresponds to T a1/2 � 0.4 and Re = 0.12
(Reynolds number is based on the terminal velocity).

The motion equations involving forces (5.1) and (5.2) can be readily solved
analytically (for instance, by making use of the Laplace transform for the BBO
equation, as is done in Candelier, Angilella and Souhar 2004), but the corresponding
analytical solutions are not given explicitly in the present paper since they are not
original or very interesting. Figure 2 shows the corresponding velocities, together
with the velocity obtained by solving (numerically) the motion equation involving
the force (4.11). (The numerical solution has been obtained by using a third-order
Adams–Bashforth numerical scheme, and the methodology used in order to deal with
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1.2

t

a
p

Figure 2. Particle velocity normalized by the theoretical terminal velocity predicted by
Childress (1964). (Parameters: a = 1.5 mm, ω0 = 15 rad s−1, mp/mf = 0.1, ν = 2.10−4 m2 s−1.

This corresponds to T a1/2 � 0.4 and Re =0.12). – – –, force (5.1) (BBO); – · –, force (5.2)
(Childress), ——, force (4.11).

the integral term has been previously validated by solving the motion equation with
BBO force, where the analytical solution is available.)

At short time, the particle’s velocity predicted by using BBO force or by using
(4.11) are almost indistinguishable, since at the beginning of the motion, the vorticity
generated by the particle’s velocity has not yet reached the distance where Coriolis
effects start to modify the unsteady creeping flow. In contrast, we can see that the
velocity predicted by using the steady force (5.2) is strongly incorrect, since in this
case, the particle reaches its terminal velocity almost instantaneously. (Obviously, at
short time, the unsteadiness of the induced fluid motion cannot be neglected.)

After a (dimensional) time of the order of 1/ω0, the velocity predicted by the force
(4.11) starts to differ from that predicted by using the BBO equation. It therefore tends
to the terminal velocity predicted by Childress, whereas the other one tends to the
theoretical terminal velocity obtained in the creeping-flow limit and which is strongly
overestimated, since no inertia effects are taken into account. Note that inertia effects
are not only responsible for a drag increase, but also for a faster relaxation of the
kernels of the Basset-like force, in comparison with the classical kernel of BBO force.
Therefore, we can check that the particle velocity cannot be predicted by using an
empirical motion equation where a steady drag predicted by Childress is added to a
BBO force.

5.2. The motion of a light particle in a horizontal rotating fluid

In this section, we analyse the motion of a light particle in a horizontal rotating
flow. Gravity is now taken perpendicular to the rotation axis (we have set arbitrarily
ga = −gae2) and the physical parameters used are the same as in the previous section.
We consider, at t = 0, that the slip velocity of the particle is null (va

s = 0) and therefore,
the particle trajectory takes place in a plane perpendicular to the rotation axis.

The motion equations involving the forces (5.1) or (5.2) can still be solved
analytically, even if the resolution is somewhat more complex when compared to
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Figure 3. (a) Temporal evolution of the particle’s radial coordinates (distance to the rotation
axis) corresponding to various theories for the induced force expression. (b) Corresponding
trajectories within the plane. Physical parameters used are the same as those of figure 2. The
particle’s coordinates are normalized by the initial distance to the rotation axis, which has
been set arbitrarily to 0.04 cm (dimension of the experimental apparatus of Candelier et al.
2005). ——, force (4.11); · · ·, force (5.1) (BBO); – · – force (5.2) (Herron).

the previous (vertical) analysis. We can check that the analytical solution, obtained
by using Laplace transform, detailed in Candelier et al. (2004) (see also Candelier
et al. 2005) can be generalized to the case where the gravity is taken into account
in the particle’s motion equations. (Once again, analytical solutions corresponding to
the motion equations involving the forces (5.1) or (5.2) will not be given explicitly
here.)

Figure 3(a) shows the evolution of the radial coordinates of the particle (i.e. its
distance to the rotation axis), and figure 3(b) shows the corresponding trajectories
observed in the laboratory reference frame, obtained by using the three theories
mentioned previously. We observe, at least far from the equilibrium position, that
the three theories lead to very close trajectories. Note that a similar phenomenon
has been observed by Candelier et al. (2005), but for the motion of the particle in a
vertical rotating fluid. However, in Candelier & Angilella (2006), it has been pointed
out that this similarity was due more to a coincidence than to a physical reason. In
contrast, in the present situation, it seems that the similarity may be explained by
physical arguments and in particular, by the periodicity of the problem addressed
here.

In order to analyse this point, we should mention that according to the particle’s
location in the plane, the buoyancy force alternatively acts in the same direction
as the drag exerted by the fluid on the particle, and in the opposite direction. As
a consequence, the particle experiences alternatively accelerations and decelerations.
Figure 4 illustrates this phenomena by showing, respectively, the temporal evolutions
of the distance to the rotation axis (figure 4a), the radial velocity of the particle
(figure 4b), and the angular rate coordinate (figure 4c) (i.e. θ̇ a

p ), for t lying between 8π
and 12π (figure 3(b) shows the respective particle locations at t = 8π and at t = 12π).
We can check that during an acceleration phase, discrepancies between the three
theories do occur, but they are almost totally compensated by what happens during
the following deceleration phase. Therefore, differences between these trajectories do
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p

1.1
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8 π 10 π 12 π
t

Figure 4. (a) Enlargement of the temporal evolution of the radial coordinates plotted in
figure 3(a). (b) Temporal evolution of the radial velocity of the particle. (c) Temporal evolution
of the rotation rate of the particle. Same physical parameters as those of figure 2. ——, force
(4.11); · · ·, force (5.1) (BBO); – · –, force (5.2) (Herron).
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force (5.2) (Gotoh)
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Figure 5. Trajectories of the particle in the vicinity of its equilibrium position, involving the
force given by (4.11) together with that involving (a) the BBO force and (b) the Gotoh force.
The physical parameters are the same as for figure 2. (The terminal Reynolds number obtained
when the particle has reached its equilibrium position is Re = 0.11.)

not increase since no accumulation occurs. Note that in each case, the time-averaged
(over one turn) of the angular rate is almost equal to unity regardless of the theories
used (it is slightly greater than unity), and the time-averaged values for the particle
distance and for the radial velocity of the particle are also very close.

A scrupulous analysis of these figures also shows that while the particle is far from
its equilibrium position, the trajectory predicted by using Herron’s results is closer
to that predicted by the force (4.11) than is the trajectory predicted by the BBO
force. Actually, this may be explained by using, a posteriori the results concerning the
particle velocity in these simulations, and we can check that the Coriolis terms of
(2.5) dominate the unsteady term (in a rotating reference frame).

That is no longer true when the particle has almost reached its equilibrium position
(Note that the theoretical equilibrium position can be drawn by using Gotoh’s result).
In order to illustrate the dynamics of the particle in the vicinity of this location, we
now compare trajectories obtained by using again the force (4.11), BBO force and
the force given by (5.2), but where the coefficients of M have now been replaced by
Gotoh’s results. Figure 5 shows these trajectories, which are quite different for each
case. Clearly, the equilibrium position obtained by using the BBO force is not correct
since this position is modified by inertia effects.

6. Conclusion
To conclude the present investigation, let us discuss the form of the generalized

force (3.5) or equivalently (4.11). Apart from the Stokes drag, this force is composed
of two convolution products, one involving the particle acceleration, and the other
involving the particle slip velocity.

The term involving the particle acceleration seems quite natural in such an unsteady
problem since the force acting on the particle is linked to the vorticity generated by
the change of velocity, and therefore, by the particle acceleration. Also, we recover
the fact that at short times, this kernel behaves like the BBO kernel (i.e. 1/

√
t),

since the main process for the vorticity diffusion is due to viscosity, and differs at
long times, when inertia effects start to manifest themselves. Note that we are very
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familiar with this notion in uniform flow where the BBO kernel is often replaced by
another semi-empirical kernel in order to account for inertia effects.

In contrast, we have not discussed the other convolution product involving the
particle slip velocity. To explain this term, it may be useful to keep in mind that
in a steady problem of a particle immersed in a non-uniform flow, inertia effects
on the drag acting on the particle depend only on the slip velocity of the particle.
Clearly, inertia-induced forces cannot be generalized to an unsteady case with a term
involving the particle acceleration, otherwise it would vanish if the particle reached
a steady velocity. In the particular case of the present investigation, we can check
that when the unsteadiness of the particle’s velocity vanishes, the steady components
of the inertia-induced force indeed come from this second integral term. Note that
in a paper concerning the unsteady lift force acting on a particle in a linear shear
flow (see Candelier & Souhar 2007) it has been also assumed that the result of
Asmolov & McLaughlin (1999) could be written under an empirical convolution
product involving the slip velocity of the particle.

By playing with words, it may be said that the first integral (involving the particle
acceleration) can be seen as an unsteady force perturbed by an inertia effect, whereas
the second one is an inertia-induced force, perturbed by unsteady effects.

Appendix
In this Appendix, (3.1) and (3.2) are derived. Because the way to derive each of the

four equations is identical, we specify here only how we obtain the first result:

F−1
t

(
1√

−i(Ω + 2)

)
=

1

2π

∫
�

exp(−iΩt)√
−i(Ω + 2)

dΩ. (A 1)

By setting Ω ′ = Ω + 2, we are led to

F−1
t

(
1√

−i(Ω + 2)

)
=

exp(2it)

2π

∫
�

exp(−iΩ ′t)√
−i(Ω ′)

dΩ ′, (A 2)

and this integral can be split in two parts∫
�

exp(−iΩ ′t)√
−i(Ω ′)

dΩ ′ =

∫ 0

−∞

exp(−iΩ ′t)√
−i(Ω ′)

dΩ ′ +

∫ ∞

0

exp(−iΩ ′t)√
−i(Ω ′)

dΩ ′.

For the negative Ω ′, we can write∫ 0

−∞

exp(−iΩ ′t)√
−i(Ω ′)

dΩ ′ =

∫ ∞

0

(√
2

2
− i

√
2

2

)
cos(Ω ′t) + i sin(Ω ′t)√

Ω ′
dΩ ′,

whereas for the positive Ω ′, we have∫ ∞

0

exp(−iΩ ′t)√
−i(Ω ′)

dΩ ′ =

∫ ∞

0

(√
2

2
+ i

√
2

2

)
cos(Ω ′t) − i sin(Ω ′t)√

Ω ′
dΩ ′.

Finally, ∫
�

exp(−iΩ ′t)√
−i(Ω ′)

dΩ ′ =

∫ ∞

0

√
2

(
cos(Ω ′t) + sin(Ω ′t)√

Ω ′

)
dΩ ′ =

2
√

π√
t

,

and substituting this last expression into (A 2) provides of (3.1a).
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