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SUMMARY

Classical and reverse genetics remain invaluable tools for the scientific investigation of model organisms. Genetic analysis
of endoparasites is generally difficult because the sexual adults required for crossing and other manipulations are usually
hidden within their host. Strongyloides spp. and Parastrongyloides spp. are notable exceptions to this and their free-living
adults offer unique opportunities to manipulate these parasites experimentally. Here I review the modes of inheritance in
the two generations of Strongyloides/Parastrongyloides and I discuss the opportunities and the limitations of the currently
available methodology for the genetic analysis of these two genera.
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INTRODUCTION

The term ‘Genetics’ in biology is used for at least
two related fields. First it is the science of inheritance
and as such investigates the rules and mechanisms of
how individuals pass on heritable information to the
next generation. Second, genetics denotes a particu-
lar approach to studying the functions of genes in an
organism. This is the approach of creating or collect-
ing individuals with altered genetic information
(mutation or addition of genetic information) and
then analysing the differences between the carriers
of the new version (mutants) and the unaltered,
wild-type individuals. In this paper, I shall discuss
both these aspects of ‘genetics’ for Strongyloides
and the closely related sister genusParastrongyloides.
A further type of genetics, population genetics,
which is concerned with natural genetic variation
within a species, is not a subject of this review. In
this paper, I refer to the genetic properties of the
nuclear genomeonly andnot the ones of themitochon-
drialgenome.Forageneral introduction, includingthe
life cycle, I refer the reader to the introductory chapter
by M. Viney in this special issue.

METHODS EMPLOYED TO STUDY THE

INHERITANCE AND GENE FUNCTION IN

STRONGYLOIDES SPP .

Most of the classical analyses about the modes of re-
production in Strongyloides spp. were based on cyto-
logical observations (see, for examples, Nigon and
Roman, 1952; Zaffagnini, 1973; Triantaphyllou and
Moncol, 1977; Albertson et al. 1979; Hammond
and Robinson, 1994). Owing to the methodology

available at the time, these studies were done on
fixed specimens, which make elucidating the dynam-
ics of the processes difficult.
Studying certain traits (e.g. the ratios between

male and female progeny or between homogonic
and heterogonic development) over time and
varying culture regimes provided hints about the
modes of inheritance. Prominent among these are
very extensive studies by Graham, for which
he maintained Strongyloides ratti for many genera-
tions exclusively through the homogonic or the het-
erogonic cycle, even as successive single worm
infections (Graham, 1936, 1938, 1939a, b, 1940a, b).
In agreement with Sandground (1926), who had
done similar but less extensive studies on Strongy-
loides papillosus and S. ratti, Graham (1939b)
noticed a ‘remarkable constancy of characteristics’
when Strongyloides spp. reproduced through the
homogonic cycle while variability arose in cultures
derived from the heterogonic cycle. This indicated
that in the progeny of the free-living generation
but not the parasitic generation new genetic combi-
nations are created through recombination asso-
ciated with sexual reproduction.
Later, with the emergence of PCR and relatively

inexpensive sequencing, molecular markers includ-
ing first micorsatellites and later single copy loci
provided tools to study the passage of genetic infor-
mation in mass matings of males and females of
different strains or in single male – female crosses
(examples of this type of study are Viney et al.
1993; Viney, 1994; Harvey and Viney, 2001; Grant
et al. 2006; Eberhardt et al. 2007; Nemetschke
et al. 2010b).
Unfortunately, as far as studying gene function in

Strongyloides is concerned, minimal success can be
reported at this time. DNA and RNA sequencing
efforts have provided probably close to complete
gene lists for multiple species of Strongyloides
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(Hunt et al. 2016) and a number of microarray ana-
lyses (Evans et al. 2008; Thompson et al. 2008, 2009;
O’Meara et al. 2010; Ramanathan et al. 2011) and
quantitative RNA sequencing experiments
(Yoshida et al. 2011; Marcilla et al. 2012; Ahmed
et al. 2013; Nagayasu et al. 2013) using RNA
extracted from different developmental stages and
proteome analyses (Marcilla et al. 2010; Soblik
et al. 2011; Younis et al. 2011) provided a compara-
tive overview of gene expression patterns and
protein secretion. However, I would argue that so
far such omics approaches have provided and can
provide only very limited information about the
functions of individual genes (see also Viney, 2014).
The possible functions of selected genes, normally

selected because of the presence of homologous
genes with known functions in other systems, were
approached through detailed molecular characteriza-
tion of the genes and their products including their
temporal expression and localization (Tazir et al.
2009; Peeters et al. 2011; Younis et al. 2011;
Biewener et al. 2012). Thanks to the recent addition
of transgenic techniques to the available tool kit for
Strongyloides spp. research (Lok, 2013), these
approaches have been complemented with the use
of reporter constructs (e.g. Yuan et al. 2014a, b).
In order to study gene function in model organ-

isms, mutations in genes obtained either by random
mutagenesis followed by screening for phenotypes of
interest (forward genetics) or by targeted knock out
of molecularly known genes (reverse genetics) have
been and still are tremendously useful tools for
the investigation of gene function (Hodgkin, 2005;
Kutscher and Shaham, 2014). However, as yet
attempts at both forward and reverse genetics in
Strongyloides spp. have been unsuccessful.
Isolating mutations for genetic analysis of endo-

parasitic organisms is usually difficult because the
adults, which are required for mutagenesis and later
crossing, are located within the host. Strongyloides/
Parastrongyloides with the free-living adult genera-
tions is an exception to this and appears much more
suitable for this kind of approach; nevertheless, no
success can be reported at this time. The only two
reports of successful mutagenesis in Strongyloides
spp. come from S. ratti, demonstrating that muta-
genesis and screening for phenotypes of interest
is possible (Viney et al. 2002; Guo et al. 2015).
However, the main problem that has not yet been
solved is the isolation of the molecular mutation
causing this phenotype and with it the identification
of the corresponding gene. In the model nematode
Caenorhabditis elegansmutated genes have tradition-
ally been identified by a process called positional
cloning (Hodgkin, 1999; Fay, 2006). For this strat-
egy one needs a dense, high-quality genetic map
for precise genetic mapping and a reliable physical
map (ideally a full genome sequence) that is highly
interlinked with the genetic map. In addition,

transgenic technology is normally employed for
gene verification after tentative identification.
Positional cloning has so far been used successfully
only in two nematodes other than C. elegans,
namely in Caenorhabditis briggsae (Koboldt et al.
2010) and in Pristionchus pacificus (Zheng et al.
2005; Dieterich et al. 2006). Although a genetic
map for S. ratti (Nemetschke et al. 2010b), a high-
quality genome sequence (Hunt et al. 2016) and
transgenic technology (Shao et al. 2012) have been
established recently, positional cloning will probably
not be the method of choice for identifying muta-
tions in Strongyloides spp. in the future.
More likely this will rely on modern sequencing
approaches (see conclusions and outlook).
Given the lack of success using forward or reverse

genetic approaches for obtaining mutations in
known genes in Strongyloides spp., attempts have
been made to inactivate genes at least temporarily
in order to study their functions. Double-stranded
RNA interference (Fire et al. 1998), which was
employed with great success in a number of organ-
isms, unfortunately appears not to work for
Strongyloides spp., as is the case for many other
animal parasitic nematodes (Viney and Thompson,
2008). So far, two approaches to manipulate the
function of genes were employed successfully in
Stronglyoides spp. The first one is modulating the ac-
tivity of proteins and pathways pharmacologically
through the addition of certain chemicals whose ac-
tivities had been characterized in other systems
(Ogawa et al. 2009; Wang et al. 2009, 2015;
Stoltzfus et al. 2012a, 2014). Second, the recently
established methods for transgenesis (Shao et al.
2012) allowed the expression of mutant proteins
with expected properties, like mimicking or prevent-
ing phosphorylation or acting as dominant negatives
(Castelletto et al. 2009). Inherently, both these
approaches are limited to highly conserved proteins
such that it can be assumed that the effects of the
chemical compounds are the same in Strongyloides
as they are in the organisms in which they had
been previously analysed.
An approach that is occasionally used to character-

ize genes of parasitic nematodes, among them
Strongyloides spp. is to test if the parasite gene can
rescue the corresponding mutation in the heterol-
ogous system C. elegans (Massey et al. 2006; Crook
et al. 2010; Hu et al. 2010). Normally only the
coding region is taken from the parasite because
the promoters do not function properly across
species. Although useful, great caution must be exer-
cised in order not to over interpret such experiments.
If a protein derived from Strongyloides spp. can
replace the endogenous one in C. elegans this only
means that the biochemical properties of this protein
are similar enough that the Strongyloides protein can
perform the task of the C. elegans protein in
C. elegans. However, this finding is completely
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uninformative about the function of this gene in
Strongyloides spp.

MODES OF INHERITANCE IN THE PARASITIC AND

THE FREE-LIVING GENERATIONS

Although in the literature various modes of repro-
duction had been postulated for the parasitic genera-
tions of Strongyloides sp. (Streit, 2008) there is now
wide agreement that at least in the relatively well-
studied species of Strongyloides, reproduction is by
mitotic parthenogenesis such that the progeny of a
parasitic female are genetically identical with the
mother. Ignoring new mutations, the only exception
to this is the elimination of one copy of the X-
chromosome or of the X-derived portion of a
chromosome, in order to make males (see below).
The arguments for this are summarized below and
are reviewed in more detail in Streit (2008).
With the exception of two reports from the 1930s

(Kreis, 1932; Faust, 1933) describing the same iso-
lates of Strongyloides spp. originally from various
primates and dogs (presumably Strongyloides
stercoralis and/or S. fuellebornei) all authors agree
that no parasitic males exist in any species of
Strongyloides analysed so far. Indeed, the presence
of parasitic males was one of the decisive criteria
for installing the new genus Parastrongyloides
(Mackerras, 1959). In S. ratti, at least, individual in-
fective larvae (L3i) frequently lead to productive
infections clearly demonstrating that males are not
required for reproduction (Graham, 1936, 1938;
Viney et al. 1992; Viney, 1994). After Sandground
(1926) proposed self-fertilization as a mode of repro-
duction, numerous authors working on multiple
species of Strongyloides argued for mitotic partheno-
genesis based on (i) cytological observations
(Chitwood and Graham, 1940; Nigon and Roman,
1952; Zaffagnini, 1973; Triantaphyllou and Moncol,
1977); (ii) the observation that heritable traits remain
rather stable through rounds of homogonic reproduc-
tion (Graham, 1939b), and (iii) molecular genetic
observations (Viney, 1994; Nemetschke et al. 2010a).
Interestingly, contrary to Strongyloides sp.,
Parastrongyloides trichosuri parasitic adults do repro-
duce sexually (Mackerras, 1959; Grant et al. 2006;
Kulkarni et al. 2013).
Older literature on the mode of reproduction in

the free-living generation is contradictory (Streit,
2008). Although a few authors suggested that
under certain circumstances free-living Strongy-
loides spp. females may reproduce in the absence of
males (Sandground, 1926; Zaffagnini, 1973), there
is wide agreement that males are present and neces-
sary in the free-living generations of all species of
Strongyloides tested (Beach, 1936; Premvati, 1958b;
Triantaphyllou and Moncol, 1977; Eberhardt et al.
2007). However, most cytological studies on
various species of Strongyloides concluded that

males do not contribute genetically to the progeny
but that reproduction occurs by sperm-dependent
parthenogenesis (pseudogamy) (Nigon and Roman,
1952; Bolla and Roberts, 1968; Triantaphyllou and
Moncol, 1977; Hammond and Robinson, 1994).
Contrary to this, Graham (1939b) noticed that herit-
able traits tended to be more variable in cultures
maintained through the heterogonic cycle when
compared with cultures passaged exclusively
through the homogonic cycle, indicating that in con-
trast to the parasitic generation, recombination of
genetic material does occur in the free-living gener-
ation. Furthermore, recent molecular genetic work
argued clearly for sexual reproduction at least in S.
ratti (Viney et al. 1993; Harvey and Viney, 2001;
Nemetschke et al. 2010b), S. papillosus (Eberhardt
et al. 2007) and Strongyloides vituli (Kulkarni et al.
2013).
Remark:Rather frequently, I meet colleagues who

remember from their textbooks that free-living
Strongyloides spp. are supposed to be diploid,
while parasitic females are triploid. This information
originated from a single reference (Chang and
Graham, 1957), in which the authors claimed that
the sperm of free-living S. papillosus males contri-
butes one set of chromosomes to the diploid egg pro-
duced by the females, leading to triploid individuals
destined to become parasitic. Parasitic females, in
turn, were proposed to produce triploid and
diploid offspring forming the parasitic and free-
living progeny, respectively. For several reasons, I
believe that Chang and Graham (1957) should be
disregarded. First, this reference is a meeting ab-
stract, which does not contain any detailed descrip-
tion of data and the authors never published these
findings in a full publication. Second, multiple
authors, based on cytological observations like
those by Chang and Graham (1957), concluded
that the free-living and the parasitic females of S.
papillosus (Zaffagnini, 1973; Triantaphyllou and
Moncol, 1977; Albertson et al. 1979), S. stercoralis
(Hammond and Robinson, 1994) and S. ratti
(Nigon and Roman, 1952) have equal numbers of
chromosomes. Third, genetic experiments demon-
strated that the progeny of free-living S. papillosus
and S. ratti are diploid (Viney et al. 1993; Viney,
1994; Eberhardt et al. 2007). Fourth, many authors
found that female larvae of several Strongyloides
species produced by parasitic females definitely
commit to either parasitic or free-living live only
after they became first-stage larvae (Streit, 2008;
Viney and Lok, 2015). It is hard to imagine that
the larvae going on to become L3i change their
ploidy at this stage of development.

SEX DETERMINATION

A puzzling aspect of the life cycle of Strongyloides
spp. is that parthenogenetic parasitic females
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produce two sexes while, with very few exceptions
(Streit, 2008), the progeny of the sexually reprodu-
cing free-living generation is exclusively female.
For all species of Strongyloides where it has been
studied it was found that different isolates produce
very different sex ratios in the progeny of the parasit-
ic generation, indicating that there exists a genetic
pre-disposition for more or fewer males (Sand-
ground, 1926; Graham, 1939b; Viney et al. 1992;
Viney, 1996). However, there is clearly also an envir-
onmental effect on the sex ratio produced (Moncol
and Triantaphyllou, 1978; Gemmill et al. 1997;
Harvey et al. 2000; Crook and Viney, 2005). In all
cases studied, the stronger is the immune response
of the host, the more males are produced. At the
same time the females are pre-disposed but not
fixed for the heterogonic cycle. Further, it has been
noted that living in a permissive but suboptimal
host species alters the sex ratio in the progeny of
the parasitic generation, in most (Brumpt, 1921;
Sandground, 1926; Matoff, 1936; Triantaphyllou
and Moncol, 1977) but not all (Crook and Viney,
2005) cases towards more males. Among the
different species of Strongyloides two different
numbers of chromosomes have been found
(Fig. 1). In S. ratti (Nigon and Roman, 1952;
Bolla and Roberts, 1968) and S. stercoralis
(Hammond and Robinson, 1994), the haploid
chromosome number is three, namely two auto-
somes and one X chromosome (n = 3) and all chro-
mosomes are roughly of equal size. In these species

(diploid), females have two X chromosomes along
with two pairs of autosomes (2n= 6) and males
have only one X (2n= 5) resulting in an environmen-
tally influenced XX/XO sex determining system
(Harvey and Viney, 2001). In females of S. papillosus
(Triantaphyllou and Moncol, 1977; Albertson et al.
1979), Stronglyoides ransomi (Triantaphyllou and
Moncol, 1977), Strongyloides venezuelensis (Hino
et al. 2014) and S. vituli (Kulkarni et al. 2013) the
diploid chromosome number is only four (2n = 4)
and one pair of chromosomes is about twice the
size of the other. Correspondingly, females have
two large and two medium-sized chromosomes
(2L2M). Based on molecular genetic experiments
and whole-genome sequencing, it became clear that
in these species (strictly shown for S. papillosus
and S. venezuelensis) the genomic regions corre-
sponding to the S. ratti chromosomes I and X are
combined in the larger chromosome (Nemetschke
et al. 2010a; Hunt et al. 2016). Sex determination
in this group of species has been best character-
ized in S. papillosus. Triantaphyllou and Moncol
(1977) concluded, based on cytological observa-
tions that in S. papillosus and S. ransomi males do
not differ karyotypically from females. However,
later authors described, based on cytology and mo-
lecular genetic evidence, that in S. papillosus a
male-specific chromatin diminution event takes
place in the mitotic oocyte maturation division
(Albertson et al. 1979; Nemetschke et al. 2010a).
In the process, the genomic region corresponding
to the X chromosome in S. ratti is eliminated from
one of the two long (L) homologous chromosomes
(Albertson et al. 1979; Nemetschke et al. 2010a).
This leads to individuals with two copies of the
regions of the genome that correspond to S. ratti
autosomes but only one copy of the genomic
region corresponding to the S. ratti X. Because the
eliminated portion is flanked by retained regions,
which are not joined together upon chromatin dim-
inution, the diploid chromosome number in males is
five, namely one long (not diminished X-I fusion
chromosome), three medium-sized (the pair M,
like in females and one end of the diminished
chromosome which is roughly equal in size) and
one small (S, the other end of the diminished
chromosome) leading to a 1L3M1S chromosomal
configuration. Parastrongyloides trichosuri repro-
duces sexually in both generations and employs
XX/XO sex determination with 2n = 6 in females,
suggesting that within the genus Strongyloides the
mode of sex determination in S. ratti is ancestral
(Mackerras, 1959; Grant et al. 2006; Kulkarni
et al. 2013; Streit, 2014).
At times when it was assumed that the free-living

generation reproduced by pseudogamy the all-
female progeny was easily explained because in
such a scenario all progeny are genetically identical
with the mother and therefore karyotypically

Fig. 1. Chromosomes in P. trichosuri, S. ratti and S.
papillosus. Chromosomes and chromosomal regions
present in two copies in both sexes are in black,
Chromosomes and regions present in two copies in females
but only one copy in males are in grey. I: autosome
number 1; II: autosome number 2; X: X-chromosome; L:
large chromosome; M: medium-sized chromosome; S:
small chromosome. For detailed explanation and
references see text.
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female. In the case of sexual reproduction, as it was
shown to occur in at least three species of
Strongyloides (Viney et al. 1993; Harvey and
Viney, 2001; Eberhardt et al. 2007; Nemetschke
et al. 2010b; Kulkarni et al. 2013), this is more
difficult to achieve. Several non-mutually exclusive
mechanisms are imaginable. Genetically male (XO)
embryos might be nonviable. Alternatively, sperm
without an X chromosome might be inefficient or
even incapable of fertilizing eggs. Alternatively,
such sperm might never be formed in the first
place. Two lines of evidence suggest that in S. papil-
losus mature male-determining sperm are never
made. (i) For markers that are very closely linked
with the region undergoing male-specific chromatin
diminution only the allele present on the complete
homologue of the autosome-X fusion chromosome
and never the one present on the remnants of
the diminished chromosome is present in mature
sperm (Nemetschke et al. 2010a). (ii) Quantitative
DNA sequencing revealed that autosomal and
X-derived chromosomal regions are present in
equal amounts in mature S. papillosus sperm
(Kulkarni et al. 2016). Contrary to this, when
DNA isolated from mature S. ratti sperm was quan-
titatively sequenced, X-derived sequences were
present in lower amounts than autosomal sequences,
indicating that not all sperm contain an X chromo-
some (Kulkarni et al. 2016). Dying early embryos
were observed consistently in S. ratti but not S.
papillosus. However, the number of these dying
embryos was lower than what would have been
expected based on the number of nullo-X sperm
suggested by the sequencing experiments
(Kulkarni et al. 2016). This might indicate that in
addition, nullo-X sperm fertilize eggs less efficiently
than X-bearing sperm.

HOMOGONIC–HETEROGONIC SWITCH

The switch between homogonic and heterogonic
development is the most extensively studied
process in basic Strongyloides biology. First, the ana-
lysis of various isofemale/inbred lines of S. ratti and
P. trichosuri demonstrated that there is a heritable
component to this switch such that some isolates/
lines are much more prone to heterogonic develop-
ment than others (Viney et al. 1992; Stasiuk et al.
2012). It was also shown that lines with more or
less heterogonic development can be selected from
a genetically heterogeneous population (Viney,
1996; Guo et al. 2015). However, environmental
factors, in particular the immune status of the host,
the population density and the temperature, also
influence the switch (e.g. Viney, 1996; Harvey
et al. 2000; Nolan et al. 2004; Minato et al. 2008;
Stasiuk et al. 2012; Sakamoto and Uga, 2013; for
more, older, references see Streit, 2008). This inher-
ent temperature dependence allowed identification

of the late L1 early L2 stage as the time point
when the decision is made by temperature shift
experiments (Premvati, 1958a; Arizono, 1976;
Nwaorgu, 1983; Viney, 1996; Minato et al. 2008).
The homogonic – heterogonic switch is believed

to be evolutionarily related to the switch between
the formation of fast developing L3s and dauer
larvae in C. elegans (this so-called dauer hypothesis
for the evolution of parasitism (Crook, 2014) is dis-
cussed in more detail elsewhere in this special
issue). Therefore, several studies used candidate
approaches based on previous knowledge from C.
elegans dauer formation and exit. A first approach
was characterizing the structure and expression pat-
terns of genes whose C. elegans homologues are
known to control the dauer switch, and asking if
the findings in Strongyloides are consistent with a
similar role of the gene in the homogonic–heterogo-
nic switch (Crook et al. 2005; Massey et al. 2005,
2006, 2013; Hu et al. 2010; Stoltzfus et al. 2012a, b).
Several attempts were made to further investigate

the regulatory machinery controlling the homogo-
nic–heterogonic switch at a more functional level.
At the heart of the dauer switch is the nuclear
hormone receptor DAF-12 (Antebi et al. 2000).
DAF-12 when free of ligand promotes dauer forma-
tion. When the ligand, dafachronic acid (DA)
(Motola et al. 2006) is made no dauer larvae are
formed and dauer formation can be prevented
pharmacologically by the application of exogenous
DA. Two groups demonstrated simultaneously and
independently of each other that DA also prevents
the formation of infective larvae in S. papillosus
and S. stercoralis, respectively (Ogawa et al. 2009;
Wang et al. 2009), indicating that there is a con-
served endocrine regulatory module that controls
dauer formation in C. elegans and L3i formation in
Strongyloides spp. However, although a clear daf-
12 orthologue is present in Strogyloides spp. (Wang
et al. 2009) the demonstration that the pharmaco-
logical effect of DA is through DAF-12 is pending
and it is not known yet if the natural ligand of
Strongyloides DAF-12 is DA. In fact, it is not even
known if DA exists in Strongyloides spp. (but see
below).
Based on these findings and the extensive knowl-

edge about the genetic control of dauer entry and
exit in C. elegans the Lok lab reported in multiple
publications an extensive characterization of the
L3i formation and activation in S. stercoralis, com-
bining all currently available genetic tools in
Strongyloides including RNA expression studies,
transgenes encoding reporter constructs and wild-
type and mutant versions of proteins (for example
GFP tagged non-phosphorylatable, phospho-
mimiking or dominant negative derivatives of the
forkhead transcription factor type O (FOXO)
FKTF-1b, the orthologue of C. elegans DAF-16)
and pathway activating and inhibiting chemicals
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[phosphatidylinositol-3 (PI3) kinase inhibitors,
8-bromo-cGMP, cytochrome P450 inhibitors and
DA] (Castelletto et al. 2009; Stoltzfus et al. 2012a,
b, 2014; Massey et al. 2013; Albarqi et al. 2016).
Due to the lack of mutations along with the candi-
date approach based on C. elegans gene function,
which will inherently miss Strongyloides specific
factors, and the much smaller number of man-
hours spent on Strongyloides research, the picture
is not as clear as in C. elegans. Nevertheless, the
results are most interesting and indicate that dauer/
L3i formation and exit are, at least in part, controlled
by the same players in S. stercoralis and inC. elegans.
In particular, the most recent of these papers Albarqi
et al. (2016) demonstrated that inhibition of cyto-
chrome P450 activity by ketoconazole, which in
C. elegans prevents biosynthesis of DA, has the
opposite effect of DA addition in S. stercoralis and
is suppressible by DA administration. This strongly
indicates that in S. stercoralisDA or a closely related
steroid hormone is involved in the process.
Interestingly, however, differences in the expression
patterns of several genes as well as varying epistatic
relationships between regulatory modules strongly
indicated that there are substantial differences in
the regulatory logics of the two species.

Conclusions and outlook

Over the years, how genetic information in
Strongyloides spp. and P. trichosuri is passed from
one generation to next has been elucidated in quite
some detail (see above). Nevertheless, one has to
remain open for the possibility that under certain cir-
cumstances or in particular species of Strongyloides
alternatives from what has emerged as general rules
for Strongyloides spp. are conceivable. Schad (1989),
for example, has explicitly warned not to prematurely
disregard the reports of parasitic males by Faust and
Kreis (Kreis, 1932; Faust, 1933).
The sequencing efforts over the last years have

yielded a comprehensive catalogue of genes present
in several species of Strongyloides and in P. trichosuri
(Hunt et al. 2016). In order to study the functions of
these gens, methods to knock them out are highly
desirable. No true success with this respect can be
reported yet in Strongyloides spp. but there is hope.
Over the last few years sequence-specific endonu-
cleases such as Zn-finger nucleases, TALENs and
the CRISPR/Cas9 system have been established for
mutation induction and genome editing in various
systems, among them the nematodes C. elegans,
other species of Caenorhabditis and P. pacificus
(Jinek et al. 2012; Wiedenheft et al. 2012; Lo et al.
2013; Irion et al. 2014; Kim and Kim, 2014; Sung
et al. 2014; Waaijers and Boxem, 2014; Wei et al.
2014; Witte et al. 2015). In particular, the
CRISPR/Cas9-based approach taken by (Cho et al.
2013) for C. elegans and (Witte et al. 2015) for

P. pacificus looks promising for Strongyloides/
Parastrongyloides. In this approach, the components,
namely the endonuclease Cas9 and a bipartite single
guide RNA (sgRNA, one part recognizes a 20 bp
target site by base-pairing and the other part binds
Cas9) are synthesized and assembled into the active
complex in vitro. The complex is then injected into
the gonad of adult hermaphrodites (which in C.
elegans and P. pacificus replace females). Contrary
to the approaches taken by the other references men-
tioned above, which include expression of the RNA
and/or Cas9 from transgenes or injected RNAs, this
approach does not depend on the availability of pro-
moters or untranslated RNA regions known to work
efficiently in the gem line. The modified strategy for
S. ratti could be as follows (Fig. 2). Inject the Cas9/
sgRNA complex designed to recognize a particular
gene into the gonads of free-living females. This is
expected to introduce double-strand breaks at the
recognition site in germ cells, some of which will
be imperfectly repaired leading to progenies with
small deletions/insertions. These mutations will
usually only be present in one of the two copies of
the gene such that carriers are phenotypically wild-
type (assuming the mutation is recessive). The
progeny of the injected mothers are then used to
infect host animals and emerging larvae are first
tested in batch by PCR and sequencing for the pres-
ence of mutations at the desired position. If such a
mutation is present among the worms shed by a
host individual, gravid adult free-living females are
singled out and allowed them to reproduce. Once
they have produced a number of progeny they
are used for DNA preparation and tested for the
presence of the mutation. Single infective larvae
derived from heterozygous mutant mothers are
then used to infect hosts and establish a culture of
heterozygous mutant worms. Single worm infec-
tions with S. ratti are successful in roughly half of
the attempts (Viney et al. 1992). For Parastrongy-
loides the passage through the host is not necessary
and the free-living progeny of the injected mothers
can be tested directly after they produced a
number of offspring, which can be used to secure
the mutation.
Classical forward genetic approaches with the

random introduction of mutations followed by
screening for a phenotype of interest would also be
most useful. This approach has several advantages.
It does not rely on prior assumptions about which
genes may be involved in the process of interest
and it leads not only to loss of function mutations
or alterations with already known consequences
(e.g. dominant negatives) but also to hypomorphic
(reduced function), hypermorphic (enhanced func-
tion) or neomorphic (new function) alleles, which
can be highly informative, as is illustrated by one
of the best-known mutations in the fruit fly.
The phenotype of the mutation nasobemia in the

321Genetics: modes of reproduction and genetic analysis

https://doi.org/10.1017/S0031182016000342 Published online by Cambridge University Press

https://doi.org/10.1017/S0031182016000342


gene antennapedia, which eventually led to the dis-
covery of the conserved homeobox (McGinnis
et al. 1984; Gehring et al. 1994) is caused by the
mis-expression of the gene (Schneuwly et al. 1987).
Such a mutation would not have been found in the
context of a systematic gene knock out analysis.
Protocols for the induction of mutations in S. ratti
are available and mutant worms were isolated suc-
cessfully (Viney et al. 2002; Guo et al. 2015). But,
so far forward genetic studies in Strongyloides have
been hampered by the formidable obstacles to iden-
tifying the mutated genes causing the phenotype.
However, there is great hope that this will change

in the near future. With the recent progress in se-
quencing technology, requiring less material and be-
coming more affordable, in the model nematodes C.
elegans (Sarin et al. 2008; Doitsidou et al. 2010) and
P. pacificus (Ragsdale et al. 2013) it has become pos-
sible to identify mutations by sequencing the
genomes of mutant animals and comparing them
with the wild-type. In particular, the approach by
(Doitsidou et al. 2010) looks to be very promising
at least for S. ratti where an excellent reference
genome is now available (Hunt et al. 2016). In this
strategy (Fig. 3), the mutant line (parental line 1′,
which is a mutagenized derivative of a line 1) is

Fig. 2. Proposed strategy for targeted gene knock out in S. ratti. This protocol is proposed based the one published for P.
pacificus (Witte et al. 2015) and has not yet been successfully used in Strongyloides spp. or Parastrongyloides spp. Further
modifications, for example the co-injection of a DNA repair template in order to achieve a specific mutation (deletion,
insertion or alteration) are possible. For details, see text.
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first crossed with a different strain (parental line 2)
with several thousands of known sequence differ-
ences compared with line 1. Theoretically parental
lines 1 and 1′ differ only at the positions that have
been altered by the mutagenesis treatment. The
resulting F1 animals are all heterozygous at all
different loci, including the locus of interest and
therefore, assuming the mutation is recessive,
phenotypically wild-type. The F1 animals are then
crossed among themselves. The resulting F2

progeny is divided into two pools containing the
mutant and all the phenotypically wild-type
animals, respectively. From these pools DNA is iso-
lated and quantitatively sequenced. Around the pos-
ition of the mutation causing the phenotype of
interest, all mutant animals carry only alleles
derived from parental line 1′. At all positions not
genetically linked the allele frequency for both
alleles is expected to be 50%. Within the region
that in mutants is all parental line 1′ derived, only
very few positions will differ between parental line

1′ and line 1. These are the interesting candidates.
In order to make this approach workable in S. ratti
suitable parental lines 1 and 2 need to be established.
Since the genomic sequence of the currently most
commonly used standard laboratory isolate ED321
has been determined and published (Hunt et al.
2016), this strain is a prime candidate for parental
line 1. However, ED321 has been maintained in
several laboratories for many years and the popula-
tions have accumulated rare alleles, which are un-
detectable by sequencing genomic DNA isolated
from large numbers of worms (Guo et al. 2015).
Selection of individuals with the desired mutant
phenotypes represents a very dramatic population
bottleneck (the mutant population is derived from
the one originally mutant individual and its mates).
This will make visible all the rare alleles present in
the founding individuals. These variants will
appear as differences from the wild-type along with
the mutations induced by the mutagen, thereby in-
creasing the number of candidate mutations (Guo

Fig. 3. Proposed strategy for mapping and cloning of mutations in S. ratti. This protocol is proposed based on the one
published for C. elegans (Doitsidou et al. 2010) and has not yet been successfully used in Strongyloides spp. or
Parastrongyloides spp. It is assumed that the mutation of interest is recessive and worms with the mutation in the
homozygous state are viable. Generating mutations and homozygous mutant lines require at least one host passage but is
abbreviated as one step. Red and blue lines represent chromosomes derived from parental line 1 (red) or parental line 2
(blue). Parental line 1 is the one used for mutagenesis. Parental line 2 is a different isolate, whose genome sequence differs
from that of parental line 1 at thousands of positions. The mutation to be mapped is indicated by a yellow asterisk. Only
one of the two chromosomes not containing the mutation is shown. In the example the chromosome not shown is the X
chromosome. The strategy also works for mutations on the X chromosome provided that hemizygous mutant males are
fertile. Wt, wild-type.
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et al. 2015). Creating two more strongly inbred la-
boratory strains should therefore be a priority for
S. ratti geneticists.
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