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Manifestly Markovian closures for the interaction of two-dimensional inhomogeneous
turbulent flows with Rossby waves and topography are formulated and compared
with large ensembles of direct numerical simulations (DNS) on a generalized
β-plane. Three versions of the Markovian inhomogeneous closure (MIC) are
established from the quasi-diagonal direct interaction approximation (QDIA) theory by
modifying the response function to a Markovian form and employing respectively the
current-time (quasi-stationary) fluctuation dissipation theorem (FDT), the prior-time
(non-stationary) FDT and the correlation FDT. Markov equations for the triad
relaxation functions are derived that carry similar information to the time-history
integrals of the non-Markovian QDIA closure but become relatively more efficient for
long integrations. Far from equilibrium processes are studied, where the impact of a
westerly mean flow on a conical mountain generates large-amplitude Rossby waves
in a turbulent environment, over a period of 10 days. Excellent agreement between
the evolved mean streamfunction and mean and transient kinetic energy spectra are
found for the three versions of the MIC and two variants of the non-Markovian QDIA
compared with an ensemble of 1800 DNS. In all cases mean Rossby wavetrain pattern
correlations between the closures and the DNS ensemble are greater than 0.9998.
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1. Introduction

Modern statistical dynamical closure theory, initially applied to the iconic problem
of homogeneous isotropic turbulence (McComb 2014), has its origin in the pioneering
works of Kraichnan (1959a) who derived the equations for his Eulerian direct
interaction approximation (DIA) closure on the basis of formal renormalized
perturbation theory. His approach had elements in common with the renormalized
perturbation theory and functional approaches to quantum electrodynamics (QED)
developed in the mid-twentieth century by Tomonaga, Schwinger and Feynman
(Frederiksen (2017) reviewed the related literature). Unlike QED, where the fine
structure constant, measuring interaction strength is only ∼1/137, turbulence at
high Reynolds number is a problem of strong interaction. The DIA is a two-point
non-Markovian closure for the renormalized two-time covariances or cumulants and
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response functions but the interaction coefficients, or vertices, are unrenormalized or
bare. Herring (1965, 1966) subsequently developed the self-consistent field theory
(SCFT) closure and McComb (1974, 1990, 2014) developed the local energy transfer
(LET) closure through independent approaches. These two-point non-Markovian
closures were later shown to differ from the DIA only in how a fluctuation–dissipation
theorem (FDT) (Kraichnan 1959b; Deker & Haake 1975) is invoked (Frederiksen,
Davies & Bell 1994; Kiyani & McComb 2004). The prior-time FDT (Carnevale &
Frederiksen 1983a, equation (3.5)) relates the two-time spectral covariance Ck(t, t′) at
wavenumber k to the response function Rk(t, t′) and the prior single-time covariance
Ck(t′, t′) through

Ck(t, t′)≡ Rk(t, t′)Ck(t′, t′) (1.1)

for t > t′ as discussed in more detail in § 5. The SCFT has the same statistical
dynamical equations for the single-time covariance and response function as the DIA
but replaces the two-time covariance with the approximate expression in the FDT.
The LET on the other hand has the same equations for the single-time and two-time
covariances as the DIA but uses (1.1) to determine the response function.

Two space scale versions of the DIA closure have also been developed (Carnevale
& Martin 1982; Carnevale & Frederiksen 1983b) including mean fields (Yoshizawa
1984) as well as associated Markovian versions (Carnevale & Martin 1982; Carnevale
& Frederiksen 1983b; Yoshizawa et al. 1997). In particular, Carnevale & Frederiksen
(1983b) showed that the eddy-damped quasi-normal Markovian (EDQNM) reduces
to the Boltzmann equation for the wave action density in the resonant interaction
limit (Hasselmann 1966) of ‘wave turbulence’ (Newell & Rumpf (2011) reviewed
the related literature). Moreover, it was shown that in the resonant interaction limit
there is an additional quadratic invariant know as y-momentum for Rossby waves and
z-momentum for internal gravity waves (Carnevale & Frederiksen 1983b). Throughout
this paper we consider strong turbulence, and its interaction with Rossby waves in the
inhomogeneous case, rather than weak ‘wave turbulence’.

The Eulerian DIA and the SCFT and LET closures result in energy spectra that
generally agree well with the statistics of DNS in the energy-containing range of
the larger scales. However, at high Reynolds numbers, the DIA power laws differ
slightly from the classical k−5/3 energy and k−3 enstrophy cascading inertial ranges.
These discrepancies have been attributed to the fact that the DIA does not distinguish
adequately between sweeping effects and intrinsic distortion effects, resulting in
spurious non-local interactions between the large- and small-scale eddies (Kraichnan
(1964a), Herring et al. (1974) and Frederiksen & Davies (2000) reviewed the related
literature). To overcome these power law deficiencies, quasi-Lagrangian versions
of the direct interaction theories were developed by Kraichnan (Kraichnan 1965,
1977; Kraichnan & Herring 1978) and Kaneda (Kaneda 1981; Gotoh, Kaneda &
Bekki 1988). The non-Markovian quasi-Lagrangian theories, in common with the
Eulerian DIA, contain no ad hoc parameters, but the results depend on whether
the closure is formulated in terms of labelling time derivatives, like Kraichnan’s
Lagrangian-history direct interaction (LHDI) or in terms of measuring time derivatives,
like Kaneda’s Lagrangian renormalized approximation (LRA) and also on an ad hoc
choice of the basic variables used (Kraichnan (1977), Herring & Kraichnan (1979),
Kaneda (1981) and Frederiksen & Davies (2004) reviewed the related literature).
Interestingly, the Eulerian LET closure of McComb (1974, 1990), is also consistent
with the Kolmogorov (1941) classical k−5/3 inertial range for high-Reynolds-number
three-dimensional turbulence. In addition, in contrast to the quasi-Lagrangian closures,
the LET, like the Eulerian DIA, is independent of the choice of basic variables such
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as velocity, vorticity and strain. At finite resolution and moderate Reynolds numbers
the performance of the Eulerian DIA, SCFT and LET closures are quite similar, and
in two dimensions all tend to underestimate the amplitudes of the small-scale energy
spectra (Frederiksen & Davies 2000, 2004).

The Eulerian and quasi-Lagrangian closures describe the evolution of the
renormalized ‘propagators’, the response functions and two-point cumulants, but have
deficiencies that arise from not accounting systematically for ‘vertex’ renormalization,
the modification of the strength and form of the interaction coefficients. As noted by
Martin, Siggia & Rose (1973) ‘the whole problem of strong turbulence is contained
in a proper treatment of vertex renormalization’. This is an unsolved problem for
strongly interacting fields in general. However, Kraichnan (1964c) proposed removing
some of the convection effects of the large scales on the small scales so that the
modified Eulerian DIA becomes consistent with the Kolmogorov inertial range spectra.
He zeroed the interaction coefficients, vertex functions, to localize the interactions
between triads of wavenumbers dependent on a cut-off ratio α (our appendix C has
further details). Interestingly, we have found that the value of α that gives close
agreement at all scales of the energy spectra between ensembles of DNS and these
regularized closures is essentially universal (Frederiksen & Davies 2004; O’Kane &
Frederiksen 2004, hereafter OF04).

Non-Markovian closures with potentially long time-history integrals present a
significant computational challenge, particularly at high resolution, and even more
so if the general inhomogeneous problem is attempted. For a total integration time
of T , the computational effort of non-Markovian closures typically scales as O(T3),
whereas for Markovian closures the scaling is O(T). Orszag (1970) developed a
Markovian closure with the aim of overcoming the problems of possible negative
energies (Ogura 1963) in closures based on the quasi-normal, or fourth-order
cumulant discard, approximation (Millionshtchikov 1941). Orszag (1970) recognized
that an empirical damping of the third-order cumulant was needed, as well as
Markovianization, to stabilize the quasi-normal closure. The consequent closure,
denoted the EDQNM closure, describes the evolution of the single-time covariance
associated with homogeneous isotropic turbulence. To reproduce the Kolmogorov
inertial range at small scales, Orszag (1970) augmented the molecular viscosity
by an eddy viscosity that has a functional form consistent with the Kolmogorov
power law and a strength determined by an empirical constant. Interestingly, the
EDQNM closure for homogeneous isotropic turbulence satisfies an H-theorem that
guarantees the monotonic increase of entropy for the inviscid system and approach to
a canonical equilibrium solution for two- and three-dimensional systems (Carnevale,
Frisch & Salmon 1981). The EDQNM closure can also be derived by modifying
the Eulerian DIA: first, the response function is replaced by a Markovian form
with this eddy viscosity and second the two-time covariance is determined from the
current-time FDT

Ck(t, t′)≡ Rk(t, t′)Ck(t, t) (1.2)

for t > t′ (see § 5). Another one-parameter Markovian closure, the test-field model
(TFM), was developed by Kraichnan (1971) to yield the Kolmogorov inertial range in
three-dimensional turbulence and by Leith & Kraichnan (1972) for two-dimensional
turbulence.

Leith (1971) pioneered the numerical implementation of the EDQNM closure for
two-dimensional turbulence with application to atmospheric predictability and subgrid
modelling. Subsequently the EDQNM has been widely applied to both isotropic and
anisotropic problems in two- and three-dimensional turbulence and the interaction
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of waves and turbulence (Carnevale & Martin (1982), Carnevale & Frederiksen
(1983b), Bowman, Krommes & Ottaviani (1993), Frederiksen & Davies (1997) and
Cambon et al. (2017) reviewed the related literature). Leith & Kraichnan (1972)
implemented and employed the TFM closure for studying error growth in two-
and three-dimensional turbulent flows. Herring (1977) and Holloway (1978) applied
generalizations of the TFM for studying turbulent homogeneous flows over random
topography with zero mean. The TFM has also been applied in many other studies
of both isotropic and anisotropic turbulence (Bowman & Krommes (1997) reviewed
the literature).

Markovian closures based on a third-order cumulant discard hypothesis and on
eddy-damped quasi-normal forms have also been applied to problems in statistical
dynamical prediction (Epstein 1969a,b; Fleming 1971a,b; Epstein & Pitcher 1972;
Pitcher 1977). O’Kane & Frederiksen (2008a) have also examined the effects of the
third-order cumulant discard hypothesis within the QDIA formalism for ensemble
prediction. In recent years the interaction of zonal flows with waves and eddies has
also been studied with closures where the third-order cumulant is discarded, also
called the quasi-linear approximation (e.g. Srinivasan & Young 2012), or replaced
by empirical stochastic noise and damping (e.g. Farrell & Ioannou 2007), or with
closures where the empirical eddy-damped quasi-normal approximation is employed
(Marston, Qi & Tobias (2016) reviewed the related literature).

Bowman (1993) showed that for anisotropic turbulence in the presence of linear
wave phenomena, EDQNM-type closures may be potentially non-realizable. They
demonstrated that this was a possibility if the EDQNM was derived as a modification
of the DIA closure with Markovian response functions and the two-time covariances
determined by the current-time FDT in (1.2) or the prior-time FDT in (1.1). However,
they established a realizable Markovian closure (RMC) by using a response function
with positive damping and specifying the two-time covariance through the correlation
FDT

Ck(t, t′)≡ [Ck(t, t)]1/2Rk(t, t′)[Ck(t′, t′)]1/2 (1.3)

for t > t′ (see § 5). That is, equation (1.3) states that the correlation function
Ck(t, t′)[Ck(t, t)]−1/2

[Ck(t′, t′)]−1/2 is equal to the response function Rk(t, t′). They
determined Markovian equations for the triad relaxation functions rather than
specifying empirical analytical forms and also considered multi-field versions.
Bowman & Krommes (1997) also developed a realizable test-field model (RTFM)
closure for anisotropic turbulence and applied it and the RMC to study turbulence
in the presence of plasma drift waves through the Hasegawa–Mima equation,
whereas Hu, Krommes & Bowman (1997) performed similar studies for the two-field
Hasegawa–Wakatani equations (Krommes (2002) reviewed the related plasma physics
literature).

The aim of this article is to formulate and apply three versions of the Markovian
inhomogeneous closure (MIC) to the problem of general two-dimensional inhomoge-
neous turbulent flows interacting with Rossby waves and topography on a generalized
β-plane. In doing so, we extend the EDQNM and RMC closures for homogeneous
turbulence to Markovian closures for the general problem of the interaction of
inhomogeneous turbulent flows with waves and orography. Three versions of the MIC
are obtained from the quasi-diagonal direct interaction approximation (QDIA) theory
for inhomogeneous flows by modifying the response function to a Markovian form
and replacing the two-time covariance by the three forms of the FDT in (1.1)–(1.3),
respectively.
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The QDIA closure was developed for two-dimensional inhomogeneous turbulent
flows over topography on an f -plane by Frederiksen (1999, hereafter F99) and
generalized to include non-Gaussian and inhomogeneous initial conditions by O’Kane
& Frederiksen (OF04) and to Rossby wave turbulence on a β-plane by Frederiksen
& O’Kane (2005, hereafter FO05). It was subsequently formulated for general
classical field theories with first-order time derivatives (Frederiksen 2012a,b) and
for classical and quantum field theories with first- or second-order time derivatives
and non-Gaussian noise and non-Gaussian initial conditions (Frederiksen 2017). For
inviscid flows the QDIA closure relaxes to a canonical equilibrium solution (Carnevale
& Frederiksen 1987) as shown in F99.

The QDIA was numerically implemented for turbulent flows over topography on
an f -plane (OF04) and β-plane (FO05). It was shown to be only a few times more
computationally demanding than the homogeneous DIA (Frederiksen & Davies 2000,
2004) unlike Kraichnan’s (1964b, 1972) inhomogeneous DIA (IDIA), which has
not been computed for turbulent fluids. At moderate Reynolds numbers the QDIA
compares very favourably with large ensembles of DNS (FO05) whereas at high
Reynolds numbers a regularized version (appendix C) of the QDIA yields the right
small-scale power law behaviour (OF04) as for homogeneous turbulence (Frederiksen
& Davies 2004). The computational efficiency of the QDIA has also been enhanced
through a cumulant update restart procedure (Rose 1985; Frederiksen et al. 1994) that
uses non-Gaussian terms in the initial conditions (OF04; FO05). This variant is termed
the cumulant update QDIA (CUQDIA). The QDIA closure has been comprehensively
tested against large ensembles of DNS for problems in predictability (FO05; O’Kane
& Frederiksen 2008a), data assimilation using Kalman and related filters (O’Kane
& Frederiksen 2008b, 2010) and subgrid-scale parameterizations (Frederiksen &
O’Kane 2008; O’Kane & Frederiksen 2008c). The QDIA theory has also been the
framework for developing accurate subgrid-scale parameterizations for atmospheric
and oceanic turbulent flows within quasi-geostrophic and primitive equation models
and for three-dimensional boundary layer turbulence in channels as reviewed by
Frederiksen et al. (2017).

Renormalization methods (McComb 2004), and in particular renormalized field
theory (Frederiksen 2017), form the basis of much progress in many branches
of statistical physics including scattering, equilibrium and time-dependent non-
equilibrium systems in QED, strong interaction hadron particle physics, critical
phenomena, Bose–Einstein condensation, magnetism, plasma physics and cosmology,
in addition to fluid turbulence. These methods allow systematic derivation of realizable
closures such as the DIA and QDIA for both classical and quantum fields (Frederiksen
2017).

The paper is structured as follows. In § 2, we summarize the equations for general
two-dimensional flows over topography on a generalized β-plane with doubly periodic
boundary conditions. The flows consist of a large-scale component with a zonal
velocity that satisfies the form-drag equation and a spectrum of smaller scales that
satisfy the barotropic vorticity equation. The corresponding spectral equations are
documented in § 3. The QDIA closure model is presented in § 4 and the derivation
of three versions of the MIC is formulated in § 5 based on a Markovian form of the
response function and using the three FDT relations in (1.1)–(1.3), respectively, for the
two-time covariance. The performance of the three versions of the MIC, compared
with the two variants of the non-Markovian QDIA (with and without cumulant
update restarts) and an ensemble of 1800 DNS, is described in § 6. The significance
of our findings and conclusions and suggested future studies are presented in § 7.
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Appendix A documents the interaction coefficients used in the spectral equations,
appendix B lists relationships between off-diagonal and diagonal elements of the
two-point and three-point cumulants and response functions needed for establishing
the closures, and appendix C outlines the steps in developing regularized variants of
the MIC.

2. Two-dimensional flow over topography on a generalized β-plane
For this study of the development and performance of three versions of the MIC

model we employ the same equations for two-dimensional flow over topography on a
generalized β-plane as introduced by FO05. Again the streamfunction is written in the
form Ψ = ψ −Uy where the ‘small scales’ are determined by ψ and the large-scale
westerly flow by U.

2.1. Barotropic vorticity equation for the small scales
The ‘small scales’ evolve according to the barotropic vorticity equation in the presence
of the large-scale flow and topography,

∂ζ

∂t
=−J(ψ −Uy, ζ + h+ βy+ k2

0Uy)+ ν̂∇2ζ + f 0. (2.1a)

Here, ζ is the vorticity, h is the scaled topography, ν̂ is the viscosity, f 0 is a forcing
function, β is the beta effect and k0 is a wavenumber that, on a sphere, would
determine the strength of the vorticity of the solid-body rotation. This wavenumber
can be made as small as desirable to recover the standard β-plane equations. However,
the advantage of retaining a small k0 is that it allows us to combine the spectral
equations for the small and large scales into a single elegant form. As shown
in FO05, there is then a one-to-one correspondence between the spherical geometry
and β-plane equations that extends to the statistical mechanics equilibrium solutions
in the two geometries. The Jacobian is

J(ψ, ζ )=
∂ψ

∂x
∂ζ

∂y
−
∂ψ

∂y
∂ζ

∂x
(2.1b)

and the vorticity is related to the streamfunction through

ζ =∇2ψ ≡

(
∂2

∂x2
+
∂2

∂y2

)
ψ. (2.1c)

2.2. Large-scale flow equation
The large-scale flow U evolves according to the form-drag equation

∂U
∂t
=

1
(2π)2

∫ 2π

0
d2xh(x)

∂ψ(x)
∂x
+ αU(Ū −U). (2.2)

The integrations of equations (2.1) and (2.2) are carried out for flows on the doubly
periodic plane 0 6 x 6 2π, 0 6 y 6 2π. Here x = (x, y) and the flow U is forced by
relaxing it towards Ū with relaxation coefficient αU.
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3. Spectral equations
Spectral equations corresponding to the system in § 2 are derived by expanding each

of the ‘small-scale’ functions in a Fourier series. For example,

ζ (x, t)=
∑
k∈R

ζk(t) exp(ik · x), (3.1a)

where

ζk(t)=
1

(2π)2

∫ 2π

o
d2xζ (x, t) exp(−ik · x), (3.1b)

x = (x, y), k = (kx, ky), k = (k2
x + k2

y)
1/2, ζ−k = ζ

∗

k and R is a circular domain in
wavenumber space excluding the origin 0. As noted in FO05, it is possible to combine
the spectral equations for the ‘small scales’ with the spectral representation of the
form drag equation by defining

ζ−0 = ik0U, ζ0 = ζ
∗

−0, (3.2a,b)

as the zero wavenumber spectral component. In addition, the interaction coefficients
A(k, p, q) and K(k, p, q) need to be generalized as summarized in appendix A. Thus,
the spectral form of the vorticity equation may be written as in the same form as for
flows on a non-rotating domain (F99; OF04),(

∂

∂t
+ ν0(k)k2

)
ζk(t)=

∑
p∈T

∑
q∈T

δ(k, p, q)[K(k, p, q)ζ−pζ−q + A(k, p, q)ζ−ph−q] + f 0
k ,

(3.3)
where T = R ∪ 0. From (A 1c), δ(k, p, q)= 1 if k+ p+ q= 0 and otherwise is zero.
In addition

ν0(k)k2
= ν̂k2

+ iωk (3.4)
and the Rossby wave frequency

ωk =−
βkx

k2
. (3.5)

The k= 0 components of f 0
k and ν0(k) are defined by

f 0
0 = αU ζ̄0, (3.6)

ν0(0)k2
0 = αU. (3.7)

4. QDIA closure equations
We consider next an ensemble of flows satisfying (3.3) where the ensemble mean

is denoted by 〈ζk〉 and angle brackets denote expectation value. Then we can express
the vorticity component for a given realization by

ζk = 〈ζk〉 + ζ̃k, (4.1)

where ζ̃k denotes the deviation from the ensemble mean. The spectral equations (3.3)
can then be expressed in terms of 〈ζk〉 and ζ̃k as follows:(

∂

∂t
+ ν0(k)k2

)
〈ζk〉 =

∑
p

∑
q

δ(k, p, q) [K(k, p, q){〈ζ−p〉〈ζ−q〉 +C−p,−q(t, t)}

+A(k, p, q)〈ζ−p〉h−q] + f̄ 0
k , (4.2a)
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and (
∂

∂t
+ ν0(k)k2

)
ζ̃k =

∑
p

∑
q

δ(k, p, q) [K(k, p, q) {〈ζ−p〉ζ̃−q + ζ̃−p〈ζ−q〉

+ ζ̃−pζ̃−q −C−p,−q(t, t)} +A(k, p, q)ζ̃−ph−q] +f̃ 0
k . (4.2b)

Here, and in subsequent equations, the wave vectors lie in the larger T domain and

f 0
k = f̄ 0

k + f̃ 0
k , (4.3a)

with

f̄ 0
k = 〈 f

0
k 〉 (4.3b)

and

C−p,−q(t, s)= 〈ζ̃−p(t)ζ̃−q(s)〉, (4.3c)

are two-time covariance (and also two-point cumulant) matrix elements.
We briefly outline the derivation of the QDIA closure equations for barotropic

flow over topography by employing the expressions for the off-diagonal elements of
the two- and three-point cumulants and response functions, in terms of the diagonal
elements for the QDIA closure equations, as described in appendix B. First, to
close (4.2a) we need the expression for the two-point cumulant C−p,−q(t, t) in (B 1).
This results in the expression∑

p

∑
q

δ(k, p, q)K(k, p, q)C−p,−q(t, t)=−
∫ t

to

dsηk(t, s)〈ζk(s)〉 + f h
k (t), (4.4)

where

ηk(t, s)=−4
∑

p

∑
q

δ(k, p, q)K(k, p, q)K(−p,−q,−k)R−p(t, s)C−q(t, s), (4.5a)

and

f h
k (t)≡ f χk (t)= hk

∫ t

to

dsχk(t, s), (4.5b)

with

χk(t, s)= 2
∑

p

∑
q

δ(k, p, q)K(k, p, q)A(−p,−q,−k)R−p(t, s)C−q(t, s). (4.5c)

Here, ηk(t, s) is the nonlinear damping, χk(t, s) is a measure of the strength
of the interaction of the transient eddies with the topography and f h

k (t) is the
eddy–topographic force. The response function is defined for t > t′ through the
functional derivative

R̃k,l(t, t′) =
δζ̃k(t)

δf̃ 0
l (t′)

, (4.6a)

Rk,l(t, t′) = 〈R̃k,l(t, t′)〉. (4.6b)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

78
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.784


Markovian inhomogeneous closures for Rossby waves and turbulence 53

In (4.5) we have also used the shortened notation

Rk(t, t′) ≡ Rk,k(t, t′), (4.6c)
Ck(t, t′) ≡ Ck,−k(t, t′). (4.6d)

Substituting (4.4) into (4.2a) yields(
∂

∂t
+ ν0(k)k2

)
〈ζk(t)〉 =

∑
p

∑
q

δ(k, p, q)A(k, p, q)〈ζ−p(t)〉h−q

+

∑
p

∑
q

δ(k, p, q)K(k, p, q)〈ζ−p(t)〉〈ζ−q(t)〉

−

∫ t

to

dsηk(t, s)〈ζk(s)〉 + f h
k (t)+ f̄ 0

k (t). (4.7)

From (4.2b), we can obtain an equation for the diagonal two-time cumulant, needed
in (4.5), by multiplying by ζ̃−k(t′). Then taking the expectation value we have(

∂

∂t
+ ν0(k)k2

)
Ck(t, t′)

=

∑
p

∑
q

δ(k, p, q)A(k, p, q)C−p,−k(t, t′)h−q +
∑

p

∑
q

δ(k, p, q)K(k, p, q)

×[〈ζ−p(t)〉C−q,−k(t, t′)+C−p,−k(t, t′)〈ζ−q(t)〉 + 〈ζ̃−p(t)ζ̃−q(t)ζ̃−k(t′)〉]

+

∫ t′

t0

dsF0
k(t, s)R−k(t′, s), (4.8a)

where t> t′ and Ck(t, t′)=C−k(t′, t) for t′ > t and

F0
k(t, s)= 〈 f̃ 0

k (t)f̃
0∗
k (s)〉. (4.8b)

Again, equation (B 1) can be used to express the off-diagonal elements of the two-
time cumulant in terms of the diagonal elements. In the quasi-diagonal approximation,
the treatment of the three-point cumulant in (4.8) is the same as in the standard
DIA closure for homogeneous turbulence (Kraichnan 1959a; Frederiksen et al. 1994;
Frederiksen (2003) contains a simple derivation) and is given in (B 3). Thus,(

∂

∂t
+ ν0(k)k2

)
Ck(t, t′) =

∫ t′

t0

ds(Sk(t, s)+ Pk(t, s)+ F0
k(t, s))R−k(t′, s)

−

∫ t

t0

ds(ηk(t, s)+πk(t, s))C−k(t′, s). (4.9)

In (4.9),

Sk(t, s) = 2
∑

p

∑
q

δ(k, p, q)K(k, p, q)K(−k,−p,−q)C−p(t, s)C−q(t, s), (4.10a)

Pk(t, s) =
∑

p

∑
q

δ(k, p, q)C−p(t, s)[2K(k, p, q)〈ζ−q(t)〉 + A(k, p, q)h−q]

× [2K(−k,−p,−q)〈ζq(s)〉 + A(−k,−p,−q)hq], (4.10b)
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πk(t, s) = −
∑

p

∑
q

δ(k, p, q)R−p(t, s)[2K(k, p, q)〈ζ−q(t)〉 + A(k, p, q)h−q]

× [2K(−p,−k,−q)〈ζq(s)〉 + A(−p,−k,−q)hq], (4.10c)

and ηk(t, s) is given in (4.5a) and F0
k(t, s) in (4.8b). The additional nonlinear damping

term πk(t, s) is a measure of the interaction of transient eddies with the mean flow and
topography. Both the nonlinear noise terms, Sk(t, s), owing to eddy–eddy interactions,
and Pk(t, s), owing to eddy–mean flow and eddy–topographic interactions, are positive
semi-definite in the sense of Bowman (1993, equation (19)).

The equation for the diagonal response function is derived in a similar way
using (B 2) and (B 4). We find (F99; FO05)(

∂

∂t
+ ν0(k)k2

)
Rk(t, t′)+

∫ t

t′
ds(ηk(t, s)+πk(t, s))Rk(s, t′)= δ(t− t′) (4.11)

for t > t′, where the delta function implies that Rk(t, t) = 1. Finally, the single-time
cumulant equation takes the form(

∂

∂t
+ 2Reν0(k)k2

)
Ck(t, t) = 2Re

∫ t

t0

ds(Sk(t, s)+ Pk(t, s)+ F0
k(t, s))R−k(t, s)

− 2Re
∫ t

t0

ds(ηk(t, s)+πk(t, s))C−k(t, s). (4.12)

The CUQDIA closure, the cumulant update version of the QDIA, uses non-Gaussian
and inhomogeneous cumulants, accumulated in the integrations, in the initial
conditions of the periodic restarts, as described in the Appendix of FO05. For
the sake of brevity these terms are not included here since they are not needed for
the development of our three MIC models that follows next.

5. MIC equations
In this section, we formulate three slightly different versions of the MIC equations.

We employ three commonly used versions of the FDT together with a Markovian
version of the response function equation in the derivation. We begin by reformulating
the single-time covariance equation (4.9), which we first write in the form

∂

∂t
Ck(t, t) = 2Re[F S

k (t)+FPA
k (t)+FPB

k (t)+FPC
k (t)+FPD

k (t)+F 0
k (t)]

− 2Re[N η

k (t)+N πA
k (t)+N πB

k (t)+N πC
k (t)+N πD

k (t)+N 0
k ]. (5.1)

Here, we have first split up the Pk(t, s) and πk(t, s) terms into their mean vorticity,
topographic and cross terms. Simple algebra shows that the Fk(t) and Nk(t) functions
have the following expressions:

F S
k (t)= 2

∑
p

∑
q

δ(k, p, q)K(k, p, q)K(−k,−p,−q)∆S(−k,−p,−q)(t), (5.2a)

∆S(−k,−p,−q)(t)=
∫ t

t0

dsR−k(t, s)C−p(t, s)C−q(t, s), (5.2b)

FPA
k (t)= 4

∑
p

∑
q

δ(k, p, q)K(k, p, q)K(−k,−p,−q)∆PA(−k,−p,−q)(t), (5.2c)
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∆PA(−k,−p,−q)(t)= 〈ζ−q(t)〉
∫ t

t0

dsR−k(t, s)C−p(t, s)〈ζq(s)〉, (5.2d)

FPB
k (t)=

∑
p

∑
q

δ(k, p, q)A(k, p, q)A(−k,−p,−q)∆PB(−k,−p,−q)(t), (5.2e)

∆PB(−k,−p,−q)(t)= h−qhq

∫ t

t0

dsR−k(t, s)C−p(t, s), (5.2f )

FPC
k (t)= 2

∑
p

∑
q

δ(k, p, q)K(k, p, q)A(−k,−p,−q)∆PC(−k,−p,−q)(t), (5.2g)

∆PC(−k,−p,−q)(t)= 〈ζ−q(t)〉hq

∫ t

t0

dsR−k(t, s)C−p(t, s), (5.2h)

FPD
k (t)= 2

∑
p

∑
q

δ(k, p, q)A(k, p, q)K(−k,−p,−q)∆PD(−k,−p,−q)(t), (5.2i)

∆PD(−k,−p,−q)(t)= h−q

∫ t

t0

dsR−k(t, s)C−p(t, s)〈ζq(s)〉, (5.2j)

F 0
k (t)=

∫ t

t0

dsF0
k(t, s)R−k(t, s). (5.2k)

In addition,

N η

k (t)=−4
∑

p

∑
q

δ(k, p, q)K(k, p, q)K(−p,−q,−k)∆η(−p,−q,−k)(t), (5.3a)

∆η(−p,−q,−k)(t)=
∫ t

t0

dsR−p(t, s)C−q(t, s)C−k(t, s)≡∆S(−p,−q,−k)(t), (5.3b)

N πA
k (t)=−4

∑
p

∑
q

δ(k, p, q)K(k, p, q)K(−p,−k,−q)∆πA(−p,−k,−q)(t), (5.3c)

∆πA(−p,−k,−q)(t)= 〈ζ−q(t)〉
∫ t

t0

dsR−p(t, s)C−k(t, s)〈ζq(s)〉

≡∆PA(−p,−k,−q)(t), (5.3d)

N πB
k (t)=−

∑
p

∑
q

δ(k, p, q)A(k, p, q)A(−p,−k,−q)∆πB(−p,−k,−q)(t), (5.3e)

∆πB(−p,−k,−q)(t)= h−qhq

∫ t

t0

dsC−k(t, s)R−p(t, s)≡∆PB(−p,−k,−q)(t), (5.3f )

N πC
k (t)=−2

∑
p

∑
q

δ(k, p, q)K(k, p, q)A(−p,−k,−q)∆πC(−p,−k,−q)(t), (5.3g)

∆πC(−p,−k,−q)(t)= 〈ζ−q(t)〉hq

∫ t

t0

dsR−p(t, s)C−k(t, s)

≡∆PC(−p,−k,−q)(t), (5.3h)

N πD
k (t)=−2

∑
p

∑
q

δ(k, p, q)A(k, p, q)K(−p,−k,−q)∆πD(−p,−k,−q)(t), (5.3i)
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∆πD(−p,−k,−q)(t)= h−q

∫ t

t0

dsR−p(t, s)C−k(t, s)〈ζq(s)〉

≡∆PD(−p,−k,−q)(t), (5.3j)
N 0

k (t)= ν0(k)k2Ck(t, t). (5.3k)

The three versions of the fluctuation dissipation theorem (FDT) can be combined as
follows:

Ck(t, t′)≡ [Ck(t, t)]1−XRk(t, t′)[Ck(t′, t′)]X (5.4)

for t> t′ and Ck(t, t′)=C−k(t′, t) for t′> t. Here X= 0 corresponds to the current-time
FDT (see Frederiksen & Davies (1997, equation (A.16)) and references therein)
usually used in the EDQNM, X = 1/2 is the correlation FDT in Bowman (1993,
equation (61)) and X = 1 is the prior-time FDT (see Carnevale & Frederiksen
(1983a, equation (3.5)) and references therein). Bowman (1993) pointed out that
in the presence of wave phenomena it is possible for the forms with X = 0 and
X = 1 to lead to unphysical results whereas the form with X = 1/2 (together with
Markovian response functions with positive damping) will always be realizable. Their
demonstration showing that Ck(t, t) is real and non-negative when X = 1/2, in their
equation (65), applies equally in the QDIA inhomogeneous formalism. This follows by
replacing their eddy–eddy nonlinear noise Fk by our total nonlinear noise [Sk + Pk].
This is an important point in general, but whether unphysical results ensue will of
course also depend on the parameter regime of the flow. For that reason we examine
all three cases in this study.

With (5.4) substituted into equations (5.2) and (5.3) it is then possible to express
the nonlinear noises and dampings in forms that involve triad relaxation functions ΘX ,
ΦX and Ψ X . Thus,

F S
k (t)= 2

∑
p

∑
q

δ(k, p, q)K(k, p, q)K(−k,−p,−q)

× C1−X
−p (t, t)CX

−q(t, t)ΘX(−k,−p,−q)(t), (5.5a)

ΘX(−k,−p,−q)(t)=
∫ t

t0

dsR−k(t, s)R−p(t, s)R−q(t, s)CX
−p(s, s)CX

−q(s, s), (5.5b)

FPA
k (t)= 4

∑
p

∑
q

δ(k, p, q)K(k, p, q)K(−k,−p,−q)

× C1−X
−p (t, t)〈ζ−q(t)〉ΦX(−k,−p,−q)(t), (5.5c)

ΦX(−k,−p,−q)(t)=
∫ t

t0

dsR−k(t, s)R−p(t, s)CX
−p(s, s)〈ζq(s)〉, (5.5d)

FPB
k (t)=

∑
p

∑
q

δ(k, p, q)A(k, p, q)A(−k,−p,−q)

× C1−X
−p (t, t)h−qhqΨ

X(−k,−p,−q)(t), (5.5e)

Ψ X(−k,−p,−q)(t)=
∫ t

t0

dsR−k(t, s)R−p(t, s)CX
−p(s, s), (5.5f )
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FPC
k (t)= 2

∑
p

∑
q

δ(k, p, q)K(k, p, q)A(−k,−p,−q)

× C1−X
−p (t, t)〈ζ−q(t)〉hqΨ

X(−k,−p,−q)(t), (5.5g)

FPD
k (t)= 2

∑
p

∑
q

δ(k, p, q)A(k, p, q)K(−k,−p,−q)

× C1−X
−p (t, t)h−qΦ

X(−k,−p,−q)(t), (5.5h)

F 0
k (t)=

∫ t

t0

dsF0
k(t, s)R−k(t, s). (5.5i)

In addition,
N η

k (t)=Dη

k(t)Ck(t, t), (5.6a)

Dη

k(t)=−4
∑

p

∑
q

δ(k, p, q)K(k, p, q)K(−p,−q,−k)

× C1−X
−q (t, t)C−X

−k (t, t)ΘX(−p,−q,−k)(t), (5.6b)

N πA
k (t)=DπA

k (t)Ck(t, t), (5.6c)

DπA
k (t)=−4

∑
p

∑
q

δ(k, p, q)K(k, p, q)K(−p,−k,−q)

× C−X
−k (t, t)〈ζ−q(t)〉ΦX(−p,−k,−q)(t), (5.6d)

N πB
k (t)=DπB

k (t)Ck(t, t), (5.6e)

DπB
k (t)=−

∑
p

∑
q

δ(k, p, q)A(k, p, q)A(−p,−k,−q)h−qhq

×C−X
−k (t, t)Ψ X(−p,−k,−q)(t), (5.6f )

N πC
k (t)=DπC

k (t)Ck(t, t), (5.6g)

DπC
k (t)=−2

∑
p

∑
q

δ(k, p, q)K(k, p, q)A(−p,−k,−q)〈ζ−q(t)〉hq

×C−X
−k (t, t)Ψ X(−p,−k,−q)(t), (5.6h)

N πD
k (t)=DπD

k (t)Ck(t, t), (5.6i)

DπD
k (t)=−2

∑
p

∑
q

δ(k, p, q)A(k, p, q)K(−p,−k,−q)h−q

×C−X
−k (t, t)ΦX(−p,−k,−q)(t), (5.6j)

N 0
k (t)=D0

k(t)Ck(t, t), (5.6k)
D0

k(t)= ν0(k)k2. (5.6l)

Note that Ck(t, t)=C−k(t, t) since Ck(t, t) is real. It convenient then to define

F 1
k (t)=F S

k (t), F 2
k (t)=FPA

k (t), F 3
k (t)=FPB

k (t), F 4
k (t)=FPC

k (t), F 5
k (t)=FPD

k (t),
(5.7a−e)

D1
k(t)=Dη

k(t), D2
k(t)=DπA

k (t), D3
k(t)=DπB

k (t), D4
k(t)=DπC

k (t), D5
k(t)=DπD

k (t).
(5.7f−j)
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From equations (4.12) and (5.1) we see that

5∑
j=0

Dj
k(t)= ν0(k)k2

+

∫ t

t0

ds{(ηk(t, s)+πk(t, s))C−k(t, s)[Ck(t, t)]−1
}. (5.7k)

Thus,
∂

∂t
Ck(t, t)= 2Re

[
5∑

j=0

{F j
k(t)−Dj

k(t)Ck(t, t)}

]
. (5.8)

Now to complete the Markovianization, the response function equation (4.11) must
also be replaced by

∂

∂t
Rk(t, t′)+

5∑
j=0

Dj
k(t)Rk(t, t′)= δ(t− t′). (5.9)

From equation (5.7k) we see that (5.9) is equivalent to

∂

∂t
Rk(t, t′)+

[
ν0(k)k2

+

∫ t

t0

ds{(ηk(t, s)+πk(t, s))C−k(t, s)[Ck(t, t)]−1
}

]
Rk(t, t′)

= δ(t− t′). (5.10)

The advantage of the forms (5.8) and (5.9) is however that the integral terms can
be replaced by manifestly Markovian equations for the triad relaxation times that also
involve the damping terms Dk(t). This can be seen as follows. The integral expression
for the relaxation time,

ΘX(k, p, q)(t)=
∫ t

t0

dsRk(t, s)Rp(t, s)Rq(t, s)CX
p (s, s)CX

q (s, s), (5.11a)

is equivalent to the differential equation

∂

∂t
ΘX(k, p, q)(t)+

5∑
j=0

[Dj
k(t)+Dj

p(t)+Dj
q(t)]Θ

X(k, p, q)(t)=CX
p (t, t)CX

q (t, t), (5.11b)

with ΘX(k, p, q)(0)= 0. In addition,

ΦX(k, p, q)(t)=
∫ t

t0

dsRk(t, s)Rp(t, s)CX
p (s, s)〈ζ−q(s)〉 (5.11c)

is equivalent to

∂

∂t
ΦX(k, p, q)(t)+

5∑
j=0

[Dj
k(t)+Dj

p(t)]Φ
X(k, p, q)(t)=CX

p (t, t)〈ζ−q(t)〉, (5.11d)

with ΦX(k, p, q)(0)= 0. Finally,

Ψ X(k, p, q)(t)=
∫ t

t0

dsRk(t, s)Rp(t, s)CX
p (s, s) (5.11e)
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is equivalent to

∂

∂t
Ψ X(k, p, q)(t)+

5∑
j=0

[Dj
k(t)+Dj

p(t)]Ψ
X(k, p, q)(t)=CX

p (t, t), (5.11f )

with Ψ X(k, p, q)(0)= 0.
To close the Markovian equations for the single-time diagonal cumulant and

response function, with auxiliary equations for the triad relaxation times, we need to
formulate a Markov version of the mean field equation. From (4.7) we have(

∂

∂t
+ ν0(k)k2

)
〈ζk〉 =

∑
p

∑
q

δ(k, p, q) [K(k, p, q)〈ζ−p〉〈ζ−q〉

+A(k, p, q)〈ζ−p〉h−q] −NM
k (t)+ f h

k (t)+ f̄ 0
k (t). (5.12)

Here, the nonlinear damping and eddy–topographic force are given by

NM
k (t) = −4

∑
p

∑
q

δ(k, p, q)K(k, p, q)K(−p,−q,−k)

×

∫ t

t0

dsR−p(t, s)C−q(t, s)〈ζk(s)〉, (5.13a)

f h
k (t) = 2

∑
p

∑
q

δ(k, p, q)K(k, p, q)A(−p,−q,−k)

× hk

∫ t

t0

dsR−p(t, s)C−q(t, s). (5.13b)

Thus,

NM
k (t)=−4

∑
p

∑
q

δ(k, p, q)K(k, p, q)K(−p,−q,−k)∆M(−p,−q,−k)(t), (5.14a)

∆M(−p,−q,−k)(t)=
∫ t

t0

dsR−p(t, s)C−q(t, s)〈ζk(s)〉, (5.14b)

and

f h
k (t)= 2

∑
p

∑
q

δ(k, p, q)K(k, p, q)A(−p,−q,−k)∆h(−p,−q,−k)(t), (5.14c)

∆h(−p,−q,−k)(t)= hk

∫ t

t0

dsR−p(t, s)C−q(t, s). (5.14d)

Next, we again use the FDT (5.4) for t > t′. Then we have

NM
k (t)=DM

k (t)〈ζk(t)〉, (5.15a)

where

DM
k (t) = −4

∑
p

∑
q

δ(k, p, q)K(k, p, q)K(−p,−q,−k)

×C1−X
−q (t, t)〈ζk(t)〉−1ΦX(−p,−q,−k)(t), (5.15b)
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and

f h
k (t)= 2

∑
p

∑
q

δ(k, p, q)K(k, p, q)A(−p,−q,−k)C1−X
−q (t, t)hkΨ

X(−p,−q,−k)(t).

(5.15c)
Here, the expressions for ΦX and Ψ X are the same as in (5.5). Similarly, we have
the manifestly Markovian equations for the triad relaxation times associated with the
mean field as in (5.11).

Now, equation (5.12) can be written in the form

∂

∂t
〈ζk〉 =

∑
p

∑
q

δ(k, p, q)[K(k, p, q)〈ζ−p〉〈ζ−q〉 + A(k, p, q)〈ζ−p〉h−q]

− [D0
k +DM

k (t)]〈ζk(t)〉 + f h
k (t)+ f̄ 0

k . (5.16)

This then closes the equations for the three versions of the MIC with the unique triad
relaxation times being ΘX(k, p, q)(t), ΦX(k, p, q)(t) and Ψ X(k, p, q)(t). Of course,
rather than performing the integrals over time, the partial differential equations for
the triad relaxation times must be solved. The relative efficiency of the methods will
depend on how long the integration needs to be done before a cumulant update restart
can be performed (OF04; FO05) and the dimensionality of the problem. However, the
MIC also offers the possibility of analytic forms of the triad relaxation times, such
as is typically used in EDQNM calculations, and this of course would speed up the
calculations enormously.

6. Performance of MIC models for turbulent flow and Rossby waves over
topography
We test the performance of the three versions of the MIC model, described in § 5,

against two variants of the non-Markovian QDIA and against a large ensemble of
direct numerical simulations (DNS) for the case of inhomogeneous turbulent flows
over an isolated topographic feature. The numerical simulation and closure calculation
setup is similar to that described by FO05. We consider the turbulent interaction of
an initial two-dimensional eastward mean flow U impinging on isolated topography
on a β-plane. As noted by FO05, where many references are given, this is an iconic
problem in mean flow–topographic interaction going back to the work of Kasahara
(1966). This is a far from equilibrium problem that is a severe test of the closures with
the Rossby wavetrains rapidly spun up in the presence of turbulence. The topography
is a circular conical mountain centred at 30 ◦N, 180 ◦W, with a height of 2.5 km and
a diameter of 45◦ latitude (figure 1 of FO05) and is also similar to that used in the
linear and nonlinear study on the sphere by Frederiksen (1982).

The focus here is on a case similar to case 1 of FO05 where the initial mean flow
U is eastward at 7.5 m s−1 and the β-effect is 1.15× 10−11 m−1 s−1. Throughout we
use a length scale of one-half of the Earth’s radius, ae/2, and a time scale of the
inverse of the Earth’s rotation rate, Ω−1, which means the non-dimensional values are
U = 0.0325, β = 1/2 and k2

0 = 1/2, and the β-effect is typical of that at 60◦ latitude.
The viscosity is 2.5× 104 m2 s−1 or ν̂ = 3.378× 10−5 in non-dimensional units and
f 0
= 0= αU. Other details of the initial setup are specified in table 1. As well as the

large-scale flow U the initial conditions include a small-amplitude mean flow, which
is localized over the isolated topography, and an isotropic transient spectrum, both of
which are specified in table 1. The calculations are started from this mean field, to
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FIGURE 1. (a) The evolved day 10 CUQDIA, (b) QDIA, (c) MIC with X = 0, (d) MIC
with X= 1/2, (e) MIC with X= 1 and ( f ) ensemble of DNS Rossby wave streamfunction
in non-dimensional units. Multiply values by (1/4)a2

eΩ
−1
= 740 km2 s−1 to convert into

units of km2 s−1.

1t ν̂ Ck(0, 0) 〈ζk(0)〉 a b U (m s−1)

0.21 3.378× 10−5 0.01k2

a+ bk2
−10bhkCk(0, 0) 4.824× 104 2.511× 103 7.5

TABLE 1. Parameters and initial conditions used in the calculations and for figures.

which is added Gaussian isotropic perturbations with the spectrum given in table 1.
The calculations use a circular C16 resolution, with k 6 16, which is adequate for
studying Rossby wave dispersion in a turbulent environment.

Some care is needed in setting up the 1800 initial conditions for the ensemble of
DNS fields that the closure calculations are compared with, as noted by FO05. First
a field is constructed as a Gaussian sample with zero mean and unit variance. Then
from this field further initial members are obtained by moving its origin by a given
increment in the x-direction and then in the y-direction. A total of n realizations
are obtained by successively moving the initial field by 2π/n in the x-direction. By
subsequently moving each of these n realizations by 2π/n in the y-direction we
obtain a total of n2 realizations, and also taking the negative values of each gives 2n2
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realizations. The process can be repeated until the required number of realizations
are arrived at and the fields then scaled as required and added to the mean vorticity
in table 1. The method ensures that the DNS covariance matrix is nearly isotropic
for sufficiently large n.

The time evolutions with the DNS, with two variants of the non-Markovian QDIA
and with the three versions of the MIC, are carried out with a time step of 1/30 day
(non-dimensional 1t= 0.21) for a total of 10 days each. The time stepping employs
a predictor–corrector method and the integrals are performed using the trapezoidal
rule (Frederiksen et al. 1994; OF04; FO05). The CUQDIA calculations use a restart
every day as in FO05, but we also integrate the non-Markovian QDIA equations with
the full 10-day integrals evaluated without restart. As noted, the CUQDIA uses the
calculated off-diagonal elements of the two- and three-point cumulants in the new
initial conditions of the periodic restart procedure. This makes the code more efficient
at the expense of a judicious choice of the restart time. However, here we have also
performed the much larger computational task with the full non-Markovian QDIA to
make a very clean comparison with the Markovian closures.

Figure 1 shows the Rossby wavetrains in the zonally asymmetric component of the
mean streamfunction on day 10 for the non-Markovian CUQDIA and QDIA closures,
for the three variants of the MIC model and for the ensemble of DNS. The wave
patterns show the typical Rossby wave dispersion found in both linearized models
and in nonlinear simulations (see FO05 and references therein). The results in all six
panels are extremely similar. The numbers in brackets above each figure panel are the
pattern correlations between each of the closure results and those from the ensemble
of DNS. The agreement between the DNS and the three MICs and the non-Markovian
QDIA and CUQDIA closures is excellent, with pattern correlations greater than 0.9998
in all cases.

Next we examine the evolution of the statistics through the band-averaged kinetic
energy spectra where the mean and transient components are defined as

Ē(ki, t)=
1
2

∑
k∈S

〈ζk(t)〉〈ζ−k(t)〉k−2, (6.1a)

Ẽ(ki, t)=
1
2

∑
k∈S

Ck(t, t)k−2, (6.1b)

and the total is E(ki, t)= Ē(ki, t)+ Ẽ(ki, t). The set S is defined by

S = [k | ki = Int.(k+ 1
2)]. (6.2)

Here, the average is taken over all k that lie within a band of unit width at a radius
ki and the energy of the large-scale flow is plotted at zero wavenumber.

Figure 2 shows the initial and 10-day evolved mean and transient kinetic energy
spectra for the non-Markovian CUQDIA and QDIA closures and each of the three
variants of the MIC model, and spectra for the ensemble of DNS are also depicted in
each panel for comparison. There are only slight differences in the six sets of results
on day 10. The CUQDIA kinetic spectra, both mean and transient, are virtually
identical to those of the ensemble of DNS, as are the QDIA spectra with just the
slightest increase in the transients between wavenumbers 2 and 6. The realizable MIC
that employs the correlation FDT (X = 1/2) and the MIC that uses the prior-time
FDT (X = 1) again perform exceptionally. For both, the evolved mean kinetic energy

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

78
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.784


Markovian inhomogeneous closures for Rossby waves and turbulence 63

10-3

10-4

10-5

10-6

10-7

10-8

10-9

10-10

10-11

10-12

10-13

E(k)

0
k

2 4 6 8 10 12 14 16 0
k

2 4 6 8 10 12 14 16

10-3

10-4

10-5

10-6

10-7

10-8

10-9

10-10

10-11

10-12

10-13

E(k)

0
k

2 4 6 8 10 12 14 16 0
k

2 4 6 8 10 12 14 16 0
k

2 4 6 8 10 12 14 16

(a)

(c) (d) (e)

(b)

FIGURE 2. The evolved non-dimensional kinetic energy spectra for the five
inhomogeneous closures (a) CUQDIA, (b) QDIA, (c) MIC with X = 0, (d) MIC
with X = 1/2, (e) MIC with X = 1, and the ensemble of DNS in each panel. Shown are
initial mean energy (dotted), initial transient energy (thin solid), evolved DNS transient
energy (thick solid), evolved DNS mean energy (short wide dashed), evolved closure
transient energy (thin dashed) and evolved closure mean energy (thick dashed). Multiply
by (1/4)a2

eΩ
−2
= 5.4× 104 m2 s−2 to convert into units of m2 s−2.

spectra are virtually indistinguishable from the ensemble of DNS, as are the transient
spectra but with some slight increases between wavenumbers 2 and 6. This range
of wavenumbers is of course where the changes in the mean kinetic energy are
largest as the Rossby waves amplify, and it is also where there is some increase
in the turbulent kinetic energy. The MIC that uses the current-time FDT (X = 0)
again has evolved mean and transient kinetic energy spectra in close agreement with
the ensemble of DNS but with somewhat weaker transients between wavenumbers
2 and 6 than the DNS and other closures. The method of Markovianization for this
MIC (with X = 0) is of course closest to that employed for the EDQNM where
the current-time FDT in (1.2) is also used. Interestingly, the large-amplitude Rossby
waves between wavenumbers 2 and 6 will tend to reduce the kinetic energy transfer
into those wavenumbers as is the case for the EDQNM (see Frederiksen, Dix &
Kepert 1996 and references therein). The magnitude of the 10-day evolved relative
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kinetic energy difference between the closures and DNS, |E(k) − EDNS(k)|/EDNS(k),
has a root mean square (r.m.s.) value, over k, that varies little between the closures.
The r.m.s. difference is less than 1.8 % for the QDIA, CUQDIA and MIC closure
with X = 1, for the MIC closure with X = 1/2 it is 1.9 % whereas for X = 0 it
is 2.1 %. For the QDIA, CUQDIA and MIC closures with X = 1/2 and X = 1 the
maximum difference in |E(k) − EDNS(k)|/EDNS(k) is ∼3 % between wavenumbers
7 and 9 whereas for the MIC with X = 0 the peak magnitudes of ∼4 % occur at
wavenumbers 11 and 16.

Altogether, the performance of the three versions of the MIC model, and of the non-
Markovian CUQDIA and QDIA closures, is quite remarkable in this parameter regime
of large-scale Rossby wave dispersion over topography in a turbulent environment. As
noted, the performance of the MIC with X=0 is slightly poorer in terms of the kinetic
energy spectra than the other closures. For higher resolution and higher Reynolds
numbers we expect that the MICs, like the non-Markovian DIA (Frederiksen & Davies
2004) and QDIA (OF04), will need to incorporate a regularization, or empirical vertex
renormalization, to yield the correct small-scale spectra. The regularized MICs are
documented in appendix C.

The results here show the potential of the MICs to reproduce the mean and
transient statistics of ensembles of DNS in a strongly inhomogeneous context. If
broadly universal and analytic expressions for the triad relaxation times, or the
underlying response functions, can be established in the presence of waves and
inhomogeneities, then very efficient closures, like the EDQNM, can be developed to
tackle the general problem of inhomogeneous turbulent flows.

7. Discussion and conclusions

We have formulated manifestly MIC models for turbulent flows and Rossby waves
over topography on a generalized β-plane. These have been derived as modifications
of the non-Markovian QDIA closure (F99; OF04; FO05) in which the diagonal
two-time covariance is replaced by one of three versions of the FDT and the
diagonal response function equation is modified to a form that is Markovian. The
three different MICs employ the current-time FDT (quasi-stationary), the prior-time
FDT (non-stationary) and the correlation FDT, respectively. Bowman (1993) pointed
out that the correlation FDT for homogeneous turbulence, in the presence of waves,
together with positive damping in Markovian response functions, resulted in an RMC
that guaranteed real and non-negative cumulants Ck(t, t). We have noted that the
cumulants Ck(t, t) are again realizable in the more complex inhomogeneous MIC
formalism with the correlation FDT, but, as in the homogeneous case, not necessarily
with the current-time FDT or the prior-time FDT. Of course, whether unphysical
results arise will depend on the parameter regimes of the flows, and in this article
we have documented results for each of the three Markovian closures in the same
regimes.

The MICs differ from the non-Markovian QDIA closure in that the response
function has been modified to a form that is Markovian and the time history integrals
have also been modified by the FDTs in such a way that their information can be
characterized by three triad relaxation functions (for each variant) that satisfy auxiliary
Markovian tendency equations. Thus, the MICs contain much the same information
as the non-Markovian QDIA, but the time history integrals can be replaced by
differential equations that become relatively more efficient for long integrations. In
addition, there is the prospect of developing analytical forms of the triad relaxation
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functions, or underpinning response functions, as is the case for isotropic EDQNM
closures, that would increase the computational efficiency enormously.

The performance of the three MICs has been compared with results from an 1800
member ensemble of DNS and with the non-Markovian QDIA and CUQDIA closures
for turbulent flow over isolated topography on a generalized β-plane. For each of
these calculations, the initial flow consists of an eastward mean flow U, together with
smaller-amplitude mean and transient ‘small scales’. The impact of the mean flow on
the conical mountain topography results in the rapid generation of large-amplitude
Rossby waves in a turbulent environment in 10-day integrations. The calculations are
performed at a C16 resolution with wavenumbers k 6 16, which is sufficient for this
large-scale process. This is a far from equilibrium process (Frederiksen 1982; FO05),
which severely tests the closures. The performance of each of the three MICs, and
the non-Markovian QDIA integrated without a restart over the 10 days, is excellent,
like the CUQDIA closure calculations with periodic 1-day restarts (FO05). In all
cases, the pattern correlations of the day 10 mean Rossby wave streamfunction for
the closures with the ensemble result for 1800 DNS are greater than 0.9998. Over
the 10 days, there is significant evolution of the mean and transient energy spectra
particularly between wavenumbers 2 and 6 where the Rossby waves amplify by
orders of magnitude in the mean; in this range, there are some slight differences in
the transient kinetic energy between the MIC calculations and the ensemble of 1800
DNS. The MIC with X = 0 is slightly poorer in terms of the kinetic energy spectra
than the other closures.

We have also formulated a regularized version of the inhomogeneous closures, along
the lines of the regularized DIA closure of Frederiksen & Davies (2004) and the
regularized QDIA closure of OF04, which are needed for high-resolution and high-
Reynolds-number calculations. The regularized closures have a wavenumber cut-off
parameter α which localizes the interactions, and corresponds to an empirical vertex
renormalization (C.1). It has been found that the value of α that is consistent with
inertial range behaviour in the DIA (Frederiksen & Davies 2004) and QDIA (OF04)
is essentially universal.

In future studies we aim to experiment with different analytical expressions of
the triad relaxation functions, or underpinning Markovian response functions, to
see whether it is possible to establish Markovian closures for the inhomogeneous
problem in the presence of waves that have similar computational efficiency to the
EDQNM closure for isotropic turbulence. We also aim to examine the performance
of regularized versions of the Markovian closures at high resolution and Reynolds
numbers. We further seek to generalize the LET closure of McComb (1974,
1990, 2014) to inhomogeneous turbulent flows and compare the performance of
non-Markovian and Markovian variants.
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Appendix A. Interaction coefficients
As discussed in FO05, when the spectral equations for the small-scale and the large-

scale flow are combined into a single equation as in (3.3), the required interaction
coefficients are

A(k, p, q)=−γ (pxq̂y − p̂yqx)/p2, (A 1a)
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K(k, p, q)= 1
2 [A(k, p, q)+ A(k, q, p)] = 1

2γ [pxq̂y − p̂yqx](p2
− q2)/p2q2 (A 1b)

and

δ(k, p, q)=

{
1 if k+ p+ q= 0,
0 otherwise.

(A 1c)

Here, the zero wave vector representing the large-scale flow is included by defining
γ , q̂y and p̂y as follows:

γ =


−

1
2 k0 if k= 0,

k0 if q= 0 or p= 0,
1 otherwise,

(A 2a)

p̂y =

{
1 if k= 0, or p= 0, or q= 0,
py otherwise,

(A 2b)

q̂y =

{
1 if k= 0, or p= 0, or q= 0
qy otherwise.

(A 2c)

For all values of k, p and q, including the zero vectors, the interaction coefficients
satisfy the relationships

A(−k,−p,−q)= A(k, p, q), (A 3a)
K(−k,−p,−q)=K(k, p, q), (A 3b)

and

K(k, p, q)+K( p, q, k)+K(q, k, p)= 0. (A 3c)

Appendix B. QDIA two- and three-point cumulant and response function terms
Here we summarize expressions and relations for the two-point and three-point

cumulants and response functions that are needed to close the QDIA equations. The
first two relationships determine the QDIA off-diagonal elements of the two-point
cumulant and response function through

Ck,−l(t, t′)=
∫ t

t0

ds Rk(t, s)Cl(s, t′)[A(k,−l, l− k)h(k−l) + 2K(k,−l, l− k)〈ζ(k−l)(s)〉]

+

∫ t′

t0

ds R−l(t′, s)Ck(t, s)[A(−l, k, l− k)h(k−l) + 2K(−l, k, l− k)〈ζ(k−l)(s)〉] (B 1)

and

Rk,l(t, t′) =
∫ t

t′
ds Rk(t, s)Rl(s, t′)

×[A(k,−l, l− k)h(k−l) + 2K(k,−l, l− k)〈ζ(k−l)(s)〉]. (B 2)

These relationships between the first-order renormalized off-diagonal elements of the
two-point cumulant, or covariance, and response function and the diagonal components
and mean field and topography were derived in F99. They apply for the case of
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homogeneous initial conditions. For inhomogeneous initial conditions an extra term
appears in the two-point cumulant as given in equation (5.4) of FO05.

We shall also need expressions for the three-point cumulant and between the
response function and perturbation field, which for the QDIA are

〈ζ̃−l(t)ζ̃(l−k)(t)ζ̃k(t′)〉 = 2
∫ t′

t0

dsK(k,−l, l− k)C−l(t, s)C(l−k)(t, s)Rk(t′, s)

+ 2
∫ t

t0

dsK(−l, l− k, k)R−l(t, s)C(l−k)(t, s)Ck(t′, s)

+ 2
∫ t

t0

dsK(k,−l, l− k)C−l(t, s)R(l−k)(t, s)Ck(t′, s) (B 3)

and

〈R̃(l−k)(t, t′)ζ̃−l(t)〉 = 2
∫ t

t′
dsK(l− k,−l, k)C−l(t, s)R(l−k)(t, s)Rk(s, t′). (B 4)

A simple derivation of these relationships that apply to the DIA, and to the
QDIA, appears in Frederiksen (2003) for the case of Gaussian initial conditions.
For non-Gaussian initial conditions the initial three-point function also appears as
shown in (5.8) of FO05. A complete derivation of the two-point and three-point
terms needed in the cumulant update QDIA closure is also presented by O’Kane &
Frederiksen (2010).

Appendix C. Regularization of MICs
Here, we summarize the regularization of the MICs that will be needed to simulate

the small scales of high-Reynolds-number turbulence just as is needed for the
non-Markovian DIA (Frederiksen & Davies 2004) and QDIA (OF04) closures. The
regularization involves modifying the interaction coefficients, vertices, to localize
the interactions. The reasons for this are discussed in some detail by Frederiksen &
Davies (2004 and references therein). Thus, the interaction coefficients are modified
to

Ă(k, p, q) = θ(p− k/α)θ(q− k/α)A(k, p, q), (C 1a)
K̆(k, p, q) = θ(p− k/α)θ(q− k/α)K(k, p, q), (C 1b)

where θ is the Heaviside step function and α is a wavenumber cut-off parameter. Then,
the Markov version of the regularized response function equation for t > t′ becomes

∂

∂t
Rk(t, t′)+

5∑
j=0

D̆j
k(t)Rk(t, t′)= δ(t− t′). (C 2)

Here, D̆j
k are defined through equations (5.6) and (5.7) with the replacements

A(k, p, q) → Ă(k, p, q) and K(k, p, q) → K̆(k, p, q). In the original notation the
regularized Markov version of response function equation takes the form

∂

∂t
Rk(t, t′)+

[
ν0(k)k2

+

∫ t

t0

ds{(η̆k(t, s)+ π̆k(t, s))C−k(t, s)[Ck(t, t)]−1
}

]
Rk(t, t′)

= δ(t− t′) (C 3)
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for t> t′. Here, η̆k(t, s) is given by (4.5a) and π̆k(t, s) by (4.10c) with the replacements
A(k, p, q)→ Ă(k, p, q) and K(k, p, q)→ K̆(k, p, q). In the equations for the triad
relaxation times D̆j

k replace Dj
k, but the single-time covariance equations (4.9) and

(5.8) and the mean-field equations (4.7) and (5.12) remain unchanged.
The studies of Frederiksen & Davies (2004) and OF04 suggest that the correct

small-scale spectral behaviour is obtained with a value of α, which is essentially
universal or only weakly flow-dependent.
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