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This work studies the application of a reinforcement learning (RL)-based flow control
strategy to the flow past a cylinder confined between two walls to suppress vortex shedding.
The control action is blowing and suction of two synthetic jets on the cylinder. The theme
of this study is to investigate how to use and embed physical information of the flow in
the RL-based control. First, global linear stability and sensitivity analyses based on the
time-mean flow and the steady flow (which is a solution to the Navier–Stokes equations)
are conducted in a range of blockage ratios and Reynolds numbers. It is found that the
most sensitive region in the wake extends itself when either parameter increases in the
parameter range we investigated here. Then, we use these physical results to help design
RL-based control policies. We find that the controlled wake converges to the unstable
steady base flow, where the vortex shedding can be successfully suppressed. A persistent
oscillating control seems necessary to maintain this unstable state. The RL algorithm is
able to outperform a gradient-based optimisation method (optimised in a certain period
of time) in the long run. Furthermore, when the flow stability information is embedded
in the reward function to penalise the instability, the controlled flow may become more
stable. Finally, according to the sensitivity analyses, the control is most efficient when the
probes are placed in the most sensitive region. The control can be successful even when
few probes are properly placed in this manner.

Key words: machine learning, wakes, flow control

1. Introduction

The flow past a cylinder constitutes one of the classical problems in fluid mechanics. It
has intriguing flow phenomena that have attracted generations of researchers hoping to
unveil the essential fluid mechanics underneath (Williamson 1996). We consider here a
specific type of the wake flow confined between two parallel walls (Schäfer et al. 1996).
This flow is representative in many industrial and engineering scenarios such as a flow
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past dividers in polymer processing and turbulence promoters in the liquid-metal blankets
of fusion reactors (Kanaris, Grigoriadis & Kassinos 2011). More importantly, we place
the study of the confined wake flow in the context where we want to use a reinforcement
learning (RL)-based strategy to control the flow to evaluate the control performance of
RL, possibly boosted by the flow physics knowledge we obtain from the stability analyses.
Studies on machine-learning-based algorithms in fluid mechanics are burgeoning in recent
years (Duraisamy, Iaccarino & Xiao 2019; Brunton, Noack & Koumoutsakos 2020), but
works on applying RL to flow control are still relatively few (see Rabault et al. 2020;
Viquerat, Meliga & Hachem 2021; Garnier et al. 2021 for a more complete literature
review). There exist some unexplored topics in this field and some of them will be
addressed in this work. In the following, we will first summarise the past works on confined
and unconfined cylinder wake flows (especially their flow instability) and then review the
recent development of machine learning in fluid mechanics (only relevant works will be
discussed).

1.1. Cylinder wake flows and their flow instability
In the confined wake flow, the ratio of the cylinder diameter to the wall distance is termed
as the blockage ratio (Chen, Pritchard & Tavener 1995; Sahin & Owens 2004). Coutanceau
& Bouard (1977) investigated this flow via experimental visualisation techniques and
identified the limits of the Reynolds number (Re) range in which the twin vortices exist
and adhere stably to the cylinder. Chen et al. (1995) showed that the formation of the
steady vortex pair at the rear of the cylinder was not owing to the bifurcation of the full
dynamic system but instead was probably associated with a bifurcation of a restricted
kinematical problem. They identified the Hopf bifurcation point by solving an eigenvalue
problem resulting from linearisation and showed that the flow stability was lost through
a symmetry-breaking Hopf bifurcation. Anagnostopoulos, Iliadis & Richardson (1996)
investigated the flows past a cylinder with three different blockage ratios at Re = 106
(their description implied that they used the cylinder diameter as the reference length).
They found that the size of the standing vortices decreased with the blockage ratio before
the Hopf bifurcation and the spacing of the vortices decreased with increasing blockage
ratio when the wake became unsteady. Sahin & Owens (2004) systematically investigated
two-dimensional flows past a confined circular cylinder with different blockage ratios. The
neutral stability curve was obtained via the linear global stability analysis. They identified
four regions in the parameter space of Re (based on the cylinder diameter and maximum
inlet fluid speed) and the blockage ratio, and each region corresponded to one type of flow
motion: steady symmetric flow; symmetric vortex shedding; steady asymmetric flow and
asymmetric vortex shedding.

As mentioned above, when the Reynolds number exceeds a critical value, the confined
flows experience a Hopf bifurcation from a steady symmetric state towards a time-periodic
non-symmetric state. This is similar to a flow past an unconfined cylinder (Provansal,
Mathis & Boyer 1987; Sreenivasan, Strykowski & Olinger 1987). Thus, it is necessary and
instructive to review the works on the unconfined wake flow past a cylinder. Continuous
efforts have been made to understand the mechanism underneath the vortex shedding
phenomenon, which is usually unwanted or even harmful. It has been shown that the global
instability (Noack & Eckelmann 1994) is responsible for the onset of the vortex shedding
process (Jackson 1987). Pier (2002) showed that the two-dimensional time-periodic vortex
shedding regime observed in the cylinder wake at moderate Reynolds numbers may
be interpreted as a nonlinear global structure. Barkley (2006) studied the stability of a
(time-)mean flow and showed that the eigenfrequency of the mean flow tracked almost
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exactly the Strouhal number of the (nonlinear) vortex shedding. Through a global weakly
nonlinear analysis, Sipp & Lebedev (2007) further confirmed for the cylinder flow that the
mean flow was approximately marginally stable and showed that the linear dynamics of
the mean flow yielded the frequency of the saturated Stuart–Landau limit cycle. Leontini,
Thompson & Hourigan (2010) conducted linear global stability analysis on the mean flows
and showed that the mean cylinder wake for Re ≤ 600 was marginally stable and the
eigenfrequency of the leading global mode was close to the saturated vortex shedding
frequency.

In addition to the linear stability analysis, sensitivity analysis has also been applied to
unconfined cylinder flows. Based on the insights provided by stability analyses, Strykowski
& Sreenivasan (1990) managed to suppress the vortex shedding behind circular cylinders
over a limited range of Reynolds numbers by a proper placement of a much smaller
cylinder in the near wake of the main cylinder. Their results revealed that this part of
the flow is important for flow control. Hill (1992) applied a sensitivity analysis based on
the adjoint method (Jameson 1988; Luchini & Bottaro 2014) to the flow past a cylinder
and computed the sensitivity of the least stable growth rate to the placement of a second
smaller cylinder. The sensitivity analysis reproduced the most sensitive regions that have
been experimentally identified by Strykowski & Sreenivasan (1990). Giannetti & Luchini
(2007) performed an analysis of the eigenvalue sensitivity to structural perturbations in
the linearised governing equations and identified the ‘wavemaker’ region by overlapping
the direct and adjoint perturbation modes, which agreed well with the experimental data
obtained by Strykowski & Sreenivasan (1990). Using the linear stability theory and the
adjoint method, Marquet, Sipp & Jacquin (2008) presented a general theoretical formalism
to assess how base-flow modifications alter the flow stability. Boujo & Gallaire (2014)
used the adjoint method to identify the regions that were the most sensitive to volume
forcing and wall blowing/suction. The control strategies designed based on the sensitivity
analyses were proven to be effective via validations using the full nonlinear Navier–Stokes
simulations. Furthermore, sensitivity analyses have also been shown to be effective in the
control of flow disturbances for the optimal transient growth (Corbett & Bottaro 2001), the
noise amplification in a globally stable flat-plate boundary layer (Brandt et al. 2011) and
other flow control problems. Nevertheless, because the adjoint-based optimal control law
is obtained by minimising the cost function such as time-averaged drag or flow fluctuation
via the simulations of Navier–Stokes equations, it is still not computationally affordable to
use this method in real-time active control of fluid flows. As an alternative, the RL control
strategy will be studied in this work.

1.2. Reinforcement learning as a flow control strategy
Recently, reinforcement learning (RL), which has been used in some complex systems
including automated driving and game playing, has been applied in the field of flow
control. Modelling the control as a Markov decision process, an RL-based control agent is
trained to take actions (to exert influences on the environment) to maximise the expected
cumulative gains (reward) in a period. RL can be treated as a black-box technique from
the user side and establishes a control law from scratch. Verma, Novati & Koumoutsakos
(2018) used the RL-based control to find an efficient collective swimming strategy of
fishes by harnessing vortices. Rabault et al. (2019) applied reinforcement learning in active
flow control for drag reduction in a confined wake flow at a moderate Reynolds number
(Re = 100 based on the averaged velocity and the cylinder diameter), and Rabault &
Kuhnle (2019) further presented a multi-environment approach to accelerate the training
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of the RL agent. Tang et al. (2020) trained the RL agent to achieve a robust control of
the drag reduction in the flow past the confined cylinder at multiple Reynolds numbers.
Xu et al. (2020) used RL-based control to stabilise the wake of the main cylinder by
rotating two small cylinders located at two symmetrical positions downstream of the main
cylinder. Paris, Beneddine & Dandois (2021) used a stochastic gated input layer in the
RL agent to select an optimal subset from some initially placed probes. Ren, Rabault
& Tang (2021) performed a follow-up study of Rabault et al. (2019) and presented a
successful application of the RL control in weakly turbulent conditions (Re = 1000)
with a drag reduction of 30 %. Beintema et al. (2020) applied RL in the suppression of
Rayleigh–Bénard convection and discussed limitations in controlling unstable and chaotic
dynamics. Overall, most of the state-of-the-art works are focused on the validation of
RL-based control in two-dimensional applications, which may not be persuasive enough
for industrial applications in real-world flows with three-dimensional effects. Fan et al.
(2020) demonstrated, for the first time, the effectiveness of RL in experimental fluid
mechanics by applying it in the drag reduction of circular cylinders in a turbulent flow. The
configuration chosen by Fan et al. (2020) resulted in a simple control strategy (basically
anti-clockwise rotations of control cylinders), so, regarding the use of RL for controlling
turbulent flows, there would be much to investigate in more complex cases.

Recent developments of machine learning algorithms applied in fluid mechanics point
to a very important line of research where we ought not to entirely rely on a brute-force
strategy when designing and applying a machine learning algorithm in a flow problem, but
should rather consider embedding some of the most fundamental physical or mathematical
constraints or using some prior knowledge in the construction of the algorithm. This idea
is drawing increasing attention in the broad fields of physics and engineering (von Rueden
et al. 2021) as it will significantly reduce the searching space or guide the algorithm to
advance in a more physically relevant direction, which will help to converge to the sought
solutions more rapidly. For example, in the work of Ling, Kurzawski & Templeton (2016), a
deep learning approach to RANS turbulence modelling that embedded Galilean invariance
into the network using a higher-order multiplicative layer was presented. This approach
ensured that the predicted anisotropy tensor lies on an invariant tensor basis and was shown
to have significantly more accurate predictions than a generic neural network that did
not have any embedded invariance properties. Raissi, Perdikaris & Karniadakis (2019b)
presented a physics-informed deep learning framework that synergistically combines
mathematical models and training data, enabling scientific prediction and discovery from
incomplete models and incomplete data. Raissi et al. (2018) used the fluid mechanics
governing equations as regularisation mechanisms in the loss function of the deep
learning network and demonstrated that this physics-informed deep learning algorithm
is particularly effective for multi-physics problems such as vortex-induced vibrations of
cylinders. Similar applications can also be found in discovering turbulence models (Raissi,
Babaee & Givi 2019a), estimating hydraulic conductivity in Darcy flows (Tartakovsky
et al. 2020) and so on. In the case of RL, Belus et al. (2019) found it useful to
embed translational invariance into the architecture of the RL agent via the control of
a one-dimensional depth-integrated falling liquid film. Zeng & Graham (2021) studied
the Kuramoto–Sivashinsky equation using RL to minimise the dissipation rate and power
cost in the chaotic system. Importantly, they trained the RL in a symmetry-reduced space
(Budanur & Cvitanović 2017), showcasing the significance of considering embedding
some physical constraint in the RL design. We believe that there still remains a lot to
do in the research of RL-based flow control that uses prior knowledge of the flows in the
construction of the algorithm. This is the theme of the current work. In particular, we
will obtain useful information provided by the flow stability and sensitivity analyses and
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use it in the RL-based control policies to suppress vortex shedding. The flow instability
mechanism, for example being absolutely or convectively unstable (Huerre & Monkewitz
1990), affects the choice of control strategies. Using the information of flow instability
(coupled with linear control theory Kim & Bewley 2007) to modify the mean flow
structure can be very efficient even by small-amplitude perturbations. Delaunay & Kaiktsis
(1999) found that in an unconfined flow past a cylinder, a slight suction destabilises
the wake in the subcritical Re regime and a slight blowing stabilises the flow in the
supercritical regime. As shown by Sahin & Owens (2004), flows at different Re and
blockage ratios have such different characteristics that the optimal control strategy for
them may differ. Thus, being aware of some fluid information is helpful to design the
control strategy. In fact, in this work, we have experienced that directly applying RL to
some challenging flow control problems (e.g. in the range of parameters that are difficult
to control) without analysing the flow mechanism may fail. The RL-based flow control
by Rabault et al. (2019) has shown its limitation in the cases where the drag reduction
performance of the control policy becomes unstable (Tang et al. 2020). Analysing the
instability mechanism may help to shed light on how to improve the control performance
of RL and hopefully obtain more effective RL-based control strategies. To the best of our
knowledge, there are currently no studies in the literature on reporting how stability or
sensitivity analysis can be effectively used in RL-based flow control.

1.3. The position of the current work
The primary aim of the current work is to explore the application of RL in fluid mechanics
by harnessing the stability and sensitivity analyses in the RL-based control of confined
wake flows. This parallels the efforts of embedding/using the flow physics in machine
learning studies to better leverage the power of the latter to obtain more physically relevant
results, exemplified in the important works such as Ling et al. (2016), Raissi et al. (2019b)
among others, as reviewed above.

The flow physics of the confined wake flow will first be investigated. We will reproduce
some reported results on the global stability analysis of the confined wake flow as
validation of our computations and will also apply the sensitivity analysis (which has not
been applied to the confined wake flow) to describe the important flow structures/patterns
and discuss their dynamics. These results will serve to guide the design of efficient control
strategies in RL, which is the core theme of our study. In this part, a vanilla RL-based
control method will first be applied to suppress the vortex shedding at different blockage
ratios and Reynolds numbers. The pros and cons of RL-based control in different regimes
are analysed. As a comparison, with the flow sensitivity used as a priori knowledge
(for guiding the probe placement) and the stability information (embedded in the reward
design), we will show that the performance of the RL-based control can be improved.

The paper is structured as follows. In § 2, we introduce the confined cylinder wake
problem and the control facilities. In § 3, we introduce the methodologies used in this
work. The results on the flow stability and sensitivity analyses are reported in § 4. In § 5,
we discuss different facets of the RL-based control and present how to use the results
of stability and sensitivity analyses to improve the control performance (especially the
placement of the probes). Finally, in § 6, we conclude the paper with some discussions.

2. Problem formulation

We investigate the wake flow past a two-dimensional cylinder in a confined space (Chen
et al. 1995; Sahin & Owens 2004), as shown in figure 1. We work with a Cartesian
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Inlet

Outlet

Two synthetic jets

H = 2

D

y
x

ω
Ω

Figure 1. Cylinder symmetrically confined by two parallel no-slip walls. The channel height is H = 2.0 and
the cylinder diameter is D. The synthetic jet width is w = π/18.

coordinate with x and u in the horizontal (or streamwise) direction and y and v in the
vertical (or wall-normal) direction. The length is non-dimensionalised by D (which is the
diameter of the cylinder) and the velocity by Umax (which is the maximum velocity of
the parabolic inflow, to be discussed below). The cylinder is placed in the middle of the
confined channel and the coordinates of the cylinder centre are (0.0, 0.0). We use the
blockage ratio β = D/H to quantify the degree of blockage. The non-dimensionalised
inflow profile is given as

u( y) = 1 − y2, v( y) = 0. (2.1)

At the surface of the cylinder and on both sides of the channel, we apply the no-slip
boundary condition. On the right-hand side of the computational domain, we impose
an outflow condition with ( pI − (1/Re)∇u) · n = 0, where p is the pressure, Re is the
Reynolds number, u = (u, v)T is the velocity and n is the outward normal. The Reynolds
number is defined as Re = UmaxD/ν, where ν is the kinematic viscosity. Note that some of
the previous works on the confined cylinder wake flow (Chen et al. 1995; Sahin & Owens
2004) have also used this definition of Re or its variant. A comparison with their results
will be made below.

When the Reynolds number exceeds a critical value (see § 4.2), the confined cylinder
wake flow starts to fluctuate and exhibit vortex shedding, which may excite a structural
vibration. With active suction or blowing of the synthetic jet flows (Glezer 2011; Rabault
et al. 2019), the stability of the confined cylinder wake can be modified and then the vortex
shedding may be damped. As shown in figure 1, two synthetic jets are placed at the top and
bottom tips of the cylinder with a width of w = π/18. For both jets, as in Rabault et al.
(2019), a velocity boundary condition of a cosine-like profile is applied:

f θ,Qupper
(x, y, t) = ( fx, fy)T = Qupper(t)

π

2ωR2 cos
(π

ω
(θ − 0.5π)

)
(x, y)T

f θ,Qlower
(x, y, t) = ( fx, fy)T = Qlower(t)

π

2ωR2 cos
(π

ω
(θ − 1.5π)

)
(x, y)T

⎫⎪⎬⎪⎭ , (2.2)

where θ is the radian angular coordinate of an arbitrary point (x, y) on the surface of the
jets; and fx and fy are the velocity components along the x and y directions, respectively.
The flow rates of the upper and lower jets are controlled by changing the scaler values of
Qupper and Qlower, respectively. The condition Qupper + Qlower = 0 is enforced to ensure
that there is no additional mass added to the flow. An effective active control law of the
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synthetic jet flow rates is vital to the suppression performance and we will use RL to learn
such a control policy.

3. Methodologies

3.1. Direct numerical simulation
Flow simulations are performed by solving the two-dimensional (2-D) incompressible
Navier–Stokes equations in the computational domain Ω:

∂u
∂t

+ u · ∇u = −∇p + 1
Re

∇2u, ∇ · u = 0. (3.1)

The open-source Nek5000 code developed by Fischer, Lottes & Kerkemeier (2017) is used.
The spatial discretisation in Nek5000 is based on the spectral element method (SEM). In
each spectral element, the velocity space is represented by Nth-order Legendre polynomial
interpolants based on tensor-product arrays of Gauss–Lobatto–Legendre (GLL) quadrature
points. The SEM has been shown to have little numerical dispersion and dissipation, which
is important in the stability analysis. We use the two-step backward differentiation formula
for time integration in the unsteady flow simulation with a time step of 5 × 10−3 unit time.
Based on the mesh convergence study (§ 4.1), we choose a mesh with 273 elements of
order N = 7, which leads to 17 472 grid points. The flow field is advanced from a certain
initial flow field; however, owing to the convective effect in the flow, the initial conditions
are not important in the following analysis, and we will analyse and control the period of
vortex shedding. The lift force FL and drag force FD are computed by integrating forces
on the cylinder surface, and the lift coefficient and drag coefficient are defined as Cl =
FL/0.5DU2

max and Cd = FD/0.5DU2
max, respectively.

3.2. Linear stability analysis
We will conduct the linear stability analysis to study the flow stability/instability of the
confined wake flow. To linearise the incompressible Navier–Stokes equations, the total
flow states (u, p) are decomposed as a sum of steady base states (Ub, Pb) and infinitesimal
perturbations (ũ, p̃). Based on the specific problems to be analysed below, Ub can be
chosen as the mean flow or the steady-state solution to the nonlinear Navier–Stokes
equations, which are called respectively the mean flow and the base flow in this work.
The mean flow can be easily obtained by time-averaging the DNS results. For the
base flow, however, when the Re number is greater than the critical Rec, the cylinder
wake flow experiences a Hopf bifurcation (Sahin & Owens 2004) and evolves to be a
time-periodic non-symmetric state. Thus, the steady-state solution cannot be obtained by a
time-marching method. We use the selective frequency damping (SFD) method developed
by Akervik et al. (2006) to damp the unsteady temporal oscillations via a low-pass filter.

In the linear stability analysis, the perturbations are assumed to be in the form of normal
modes (ũ(x, y, t), p̃(x, y, t))T = (û(x, y), p̂(x, y))T exp(σ t) with σ = λ+ iω, where the
real part λ and the imaginary part ω are the growth rate and frequency of the mode,
respectively, and (û(x, y), p̂(x, y))T are called shape functions of the variables. After
substituting the normal-mode ansatz into the Navier–Stokes equations and linearising
them around the base state (Ub, Pb), we obtain

σ û + ∇û · Ub + ∇Ub · û = −∇p̂ + 1
Re

∇2û, ∇ · û = 0. (3.2)
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The boundaries for the linear direct problem are the same as those in the nonlinear
Navier–Stokes equations, except that the inlet boundary condition for the velocity is a
Dirichlet type with û = 0.

The equations in (3.2) lead to an eigenvalue problem and the solutions constitute linear
global modes of the problem. For clarity, we use q̂ to represent (û(x, y), p̂(x, y))T . Then,
the stability analysis can be investigated by solving the following eigenvalue problem:

Aq̂ = σ q̂, with A =
⎛⎝−Ub · ∇ − ∇Ub · +Re−1∇2 −∇

∇· 0

⎞⎠ . (3.3)

As one can see, the Jacobian matrix A depends on the base state (Ub, Pb). This global
eigenvalue problem can be solved by an iterative approach, and the most popular one is
the Arnoldi algorithm (Arnoldi 1951; Saad 1980). It is a time-stepping-based Jacobian-free
method (meaning that one does not need to explicitly construct A) and has been widely
used in the global stability analyses of complex flow problems, such as by Eriksson & Rizzi
(1985), Tezuka & Suzuki (2006) and Barkley, Blackburn & Sherwin (2008) among many
others, see also the review paper by Theofilis (2011). The major step is the generation of
a Krylov subspace Km by marching the linearised Navier–Stokes equations from a certain
initial snapshot q̂0 at successive equidistant instants of time (Δt). An orthogonal basis is
then generated by the Gram–Schmidt procedure, transforming the large-scale eigenvalue
problem to a smaller one of Hessenberg form that can be solved easily.

3.3. Sensitivity analysis
The sensitivity analysis based on the adjoint method will also be performed in the current
work. It is an important tool which has been extensively applied in flow control and shape
optimisation. As in Giannetti & Luchini (2007) and Marquet et al. (2008), the adjoint
equation of the linearised Navier–Stokes equations reads

σ ∗û+−∇û+ · Ub + (∇Ub)
T · û+= − ∇p̂++ 1

Re
∇2û+

, ∇ · û+=0, (3.4)

where û+ and p̂+ are the adjoint vectors to û and p̂, respectively. In principle, the boundary
conditions for the adjoint equation are (following Peplinski et al. 2014)

û+=0 at the inlet and walls, (3.5a)

p̂+n − Re−1(∇û+
) · n = (Ub · n)û+ at the outlet. (3.5b)

The boundary conditions (3.5b) are not supported in the current SEM flow solver
(Peplinski et al. 2014). Instead, Giannetti & Luchini (2007) explained that because of
the particular structure of the base flow, the adjoint mode decays rapidly away from the
cylinder; therefore, û+ → 0 can be considered when the outlet is far enough from the
cylinder. This method is adopted here because a far enough outlet has been used in the
current work (see the geometry in figure 3 in the following) and we have checked that in
our simulations, the amplitude of û+ at the outlet is almost zero.

Similar to the direct problem, the adjoint can be solved by the Arnoldi method. For
certain flows, the structural sensitivity analysis can be used to locate the origin of the
instability perturbations, called the wavemaker region, which can help to understand the
instability mechanism (Pier & Huerre 2001). As shown by Giannetti & Luchini (2007), the
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Agent

s → a

Environment

DNS using Nek5000
Reward rt

Action at

State st

Figure 2. The reinforcement learning framework in flow control: Agent, neural network; Environment, DNS
using Nek5000; Action, adjustment of the synthetic jet flow rates; Reward, reduction of the shedding energy;
States, spatial velocities.

wavemaker region η can be identified by overlapping the direct eigenvector û and adjoint
eigenvector û+:

η = |û||û+|〈
û, û+〉 . (3.6)

It is noted that for the confined cylinder wake flow, we cannot find results on its
sensitivity analysis in the literature. Thus, the results reported below on this analysis will
be interesting by themselves (especially, the variation of the wavemaker region when Re
or β changes). However, the linear stability analyses of confined cylinder wake flows have
been documented (Chen et al. 1995; Sahin & Owens 2004) and we will compare our
results (based on the SFD base flow) with them for the validation purpose and will further
perform the stability analysis based on the mean flow.

3.4. Reinforcement learning
Reinforcement learning trains the control agent from scratch by interacting with the
environment and maximising the expected cumulative reward. As shown in figure 2,
reinforcement learning is composed of three fundamental components, i.e. the agent,
the environment and the reward function. The agent usually contains a neural network
such as a multilayer perceptron or convolutional neural network that is used to determine
the control action at based on the current state of the environment st; the action is then
applied to the environment; and the reward rt (evaluating the quality of control actions) is
calculated and recorded for network updates.

As a policy-gradient method, the RL agent network (with parameters θ , i.e. weights and
biases) is trained to find the optimal policy πθ (at|st), which is the distribution probability
of action at (with respect to the states st) to maximise the expected cumulative reward:
Rt = ∑

k>t γ
(k−t)rt, where γ ∈ (0, 1] is a discount factor. The current RL agent uses

the proximal policy optimisation (PPO) method developed by Schulman et al. (2017) to
update the parameters θ . PPO is an episode-based actor–critic algorithm. In addition to the
network approximating the policy π for action distributions (called ‘actor’), PPO involves
a critic network V to predict the discounted reward with respect to the states st, which is
further used to update the actor network. When training the critic network, Ât = Rt − V(st)
is defined to measure the discrepancy between the predicted and actual discounted rewards,
and the loss function to be minimised can be defined as Lcritic = Êt(Ât

2
), where Êt is the

empirical expectation over time. A clipped surrogate objective function is maximised to
update the actor network: LClip(θ) = Êt[min( pt(θ)Ât, clip(pt(θ), 1 − ε, 1 + ε)Ât)], where
pt(θ) = πθ (at|st)/πθold(at|st). The clip term removes the incentive for moving pt outside
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of the interval [1 − ε, 1 + ε] (ε is 0.2 as recommended) and thus prevents an excessively
large policy update. More technical details on PPO can be found in Schulman et al. (2017).
The adam optimiser is used to update the networks and the learning rate is fixed as 0.001.

In this work, for the suppression of the vortex shedding in the confined wake flow
past a cylinder, the RL environment is simulated by direct numerical simulation of the
wake flow using Nek5000. Referring to the open-source RL-based cylinder flow control
repository developed by Rabault et al. (2019) based on the Tensorforce library (Kuhnle,
Schaarschmidt & Fricke 2017), we present an open-source Python code to interface the
Nek5000 simulation environment with the RL agent, which is available as a GitHub
repository:https://github.com/npuljc/RL_control_Nek5000. Because the flow rates of two
synthetic jets are confined according to Qlower + Qupper = 0, the RL action is realised by
manipulating the flow rate of the upper synthetic jet, and the lower synthetic jet has the
same flow rate but opposite direction. Vortex shedding frequencies of the cases studied in
this work are approximately 0.3 ∼ 0.4 (see § 4.3) and we choose a duration of Δt = 0.2
between two control actions (corresponding to 6 % ∼ 8 % vortex shedding period) to leave
a large degree of control freedom. We define a training episode composed of 16 time units,
which corresponds to 4.8 ∼ 6.4 vortex shedding periods, and thus, 80 actions will be taken
in each episode. To avoid abrupt changes, we adopt the same strategy used by Rabault
et al. (2019) to gradually update the jet flow rate after each time step in DNS; that is,
u(t+1)

jet = u(t)
jet + 0.1 × (uaction − u(t)

jet). Following Rabault et al. (2019), we define the policy
network as a multilayer perceptron with two hidden layers (512 × 512). The RL agent is
updated every 20 episodes in the training process. Probe sensors that monitor velocity
components in both directions are placed in the flow field to provide environment states
for RL.

Rabault et al. (2019) discussed that the number of probes has a direct influence on
the control performance in RL. We extend this investigation and further determine that
the probes are better placed in the regions that are important in the sensitivity analysis.
This heuristic approach may also be helpful to be combined with the optimal searching
method proposed by Paris et al. (2021). Furthermore, the definition of the reward function
is important in RL-based control. Rabault et al.(Rabault et al. 2019; Rabault & Kuhnle
2019) used a drag-based reward function to control (reduce) the drag force on the cylinder.
In the current work, to damp the vortex shedding, we use a reward function defined based
on the kinetic energy of vortex shedding and the details are discussed in §§ 5.1 and 5.2.

4. Results: stability and sensitivity analyses of confined wake flows

4.1. Mesh convergence study
As shown in figure 3, the computational domain is defined by three parts for the ease
of mesh generation. Here, x1 and x2 are the lengths of the two rectangle subdomains in
the streamwise direction. The two rectangle subdomains are discretised using n1 × n3 and
n2 × n3 element nodes, respectively. The middle square domain with a side length of 2.0
is discretised using an ‘O’-type mesh with 4 × n3 × n4 element nodes (4 here denotes
the four compartments delimited by the blue lines in the figure; n3 = 8 and n4 = 6). To
obtain a reasonable computational mesh, we study the influences of both the computational
domain size and the mesh resolution on the numerical results. As shown in table 1, five
computational sizes are investigated for Re = 200, β = 0.5 (Re = 200 is in the upper
limit of the Reynolds numbers we investigate in this work) and E is the total number
of elements. For each computational size, we compare numerical results by using meshes
of two resolution levels (L1 and L2). The L1 mesh is finer, which is generated by doubling
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x1

n3

n4

n1 n3 n2

x22.0

Figure 3. The computational mesh is composed of two rectangle domains and a square domain.

Mesh x1 x2 n1 n2 E Cd by L2 Cd by L1

D1 3.0 10.0 6 15 273 2.422105 2.422176
D2 3.0 20.0 6 20 308 2.422132 2.422176
D3 10.0 10.0 15 15 336 2.422096 2.422168
D4 10.0 20.0 15 20 371 2.422139 2.422168
D5 20.0 20.0 20 20 406 2.422140 2.422168

Table 1. Resolution parameters of L2 meshes in five computational domains and the time-averaged Cd on the
confined cylinder with β = 0.5 and Re = 200 evaluated by different meshes. Here, E is the total number of
elements in the spectral element method.

the element numbers used in the L2 mesh. The time-averaged Cd evaluated by different
meshes are shown in table 1 and the reference value evaluated by Sahin & Owens (2004)
is 2.4245. The choice of five computational domains does not significantly influence the
numerical results and all are close to the reference. This means that using the smallest
computational domain (D1) is sufficient. Compared with the finer L1 mesh, the L2 mesh
merely introduces an error of less than 0.003 %. In the following, we will use D5-L1 as the
configuration for all the stability analyses below and in the case of RL control, to reduce
the computational burden, we use D1-L2.

4.2. Critical Reynolds numbers
The dynamics of the confined cylinder wake flow is governed by the Reynolds number
and the blockage ratio. The vortex shedding in the wake flow occurs through a
symmetry-breaking Hopf bifurcation beyond the critical Reynolds number (Rec). In the
confined flow past a cylinder, Rec varies with the blockage ratio. To determine the vortex
shedding region in the Re–β plane, we solve the eigenvalue problem in the linear stability
analysis based on the SFD base flow.

As shown in figure 4, two values of β are studied. For the confined flow with β = 0.5,
the growth rate of the leading eigenmode increases monotonically with a rise of Re
from 100 to 150. When the Reynolds number is greater than Rec = 123.6, the base flow
becomes unstable and then the wake starts meandering. However, for the confined flow
with the blockage ratio β = 0.75, two critical Rec values, Rec1 = 108.9 and Rec2 = 169.6,
are identified. With the increase of Re from 100, the flow stability is lost via the first
Hopf bifurcation point at Rec1 and the wake vortex starts shedding subsequently. If
the Re further increases, passing the other bifurcation point at Rec2, the flow becomes
stabilised. As shown in figure 5, the confined flows with β = 0.25 and β = 0.5 merely
have one recirculation zone; whereas for the larger blockage ratio β = 0.75, in addition
to the recirculation bubble just downstream of the cylinder, two additional recirculation
bubbles develop close to the walls further downstream when Re is large enough.
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Figure 4. Eigenvalues of the leading eigenmode at different Reynolds numbers for two blockage ratios β =
0.5, 0.75. The curves are interpolated using data of the scatter points. The grey shade indicates flow instability.
Note that that the data points are our computational results and the lines are fitted to guide the eyes.

Re = 100

Re = 150

Re = 200

Re = 100

Re = 125

Re = 150

Re = 100

Re = 140

Re = 180

0 2 4 6 0 2 4 6 0 2 4 6

(b)(a) (c)

Figure 5. Vorticity of SFD base flows of different confined cylinder wake flows. The purple dashed lines and
black dash–dotted lines are the recirculation zones boundaries of the SFD base flows and time-mean flows,
respectively: (a) β = 0.25; (b) β = 0.5 and (c) β = 0.75.

Similar to observations by Sahin & Owens (2004), the recirculation bubbles on the
confinement walls become larger with the increase of Re and lead to the other Hopf
bifurcation point at Rec2.

By examining the critical Reynolds numbers with different blockage ratios, the vortex
shedding region is shown in figure 6 as a grey background in the Re–β plane. The region
is determined by two branches of critical points, and we have used 13 and 8 data points in
the lower branch and upper branch, respectively. The favourable agreement with the results
by Chen et al. (1995) and Sahin & Owens (2004) demonstrates the good accuracy of the
numerical methods and meshes used in this work. The confined flow becomes more stable
as β increases up to 0.5. Then, the flow becomes destabilised as the block ratio increases.
When β is larger than ∼0.85, the flow is again stabilised. For a relatively large β (� 0.85),
another stability region can be identified when Re is sufficiently large (when Re ≤ 200).
It is noted that the flow phenomena are richer and more complex in the upper-right region
of the Re–β plane (see figure 5 of Sahin & Owens 2004) and they are not studied here.
We will focus on the grey region where vortex shedding occurs and will use RL control to
abate it.
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Figure 6. Vortex shedding region (grey) delimited by the neutral stability curve. Flows in the white region
are stable. A comparison is made to two previous publications, as shown in the legend.

4.3. Vortex shedding phenomenon
In general, the oscillating Kármán vortex street downstream the cylinder wake occurs
owing to the loss of instantaneous reflection symmetry through a Hopf bifurcation. For
the unconfined flow past a cylinder, it is suggested by Maurel, Pagneux & Wesfreid (1995)
and Noack et al. (2003) that the amplitude of the oscillating wake saturates when the
time-averaged flow (mean flow) is marginally stable and the mechanism for nonlinear
saturation of the oscillating wake flow is the mean flow correction/modification through
the formation of Reynolds stresses. The mean flow provides a good profile to predict the
shedding frequency of the unconfined cylinder wake (Yang & Zebib 1989; Pier 2002;
Barkley 2006). To understand in detail the stability property of the confined cylinder wake,
hereafter, we perform the global linear stability analysis of its mean flow.

Figure 7 shows the leading eigenvalues of the confined cylinder wake with β = 0.25,
β = 0.5 and β = 0.75. Compared with the stability analysis based on the SFD base flow
(black solid lines), the frequencies solved by the linear analysis based on the mean flow
(blue dashed lines) agree better with the results of nonlinear DNS (red filled triangles),
and the relative discrepancies are almost within 1 %. The growth rates of the mean flows
are close to zero, which implies that the confined mean flows are marginally stable.
The conclusions hold for both the weak and strong confinement cases. This implies that
the confined cylinder wake flows approximately have the real-zero imaginary-frequency
(RZIF) property (Turton, Tuckerman & Barkley 2015), which is similar to the unconfined
cylinder wake. The RZIF property implies that the eigenfrequency of a nonlinearly
saturated oscillating flow can be well approximated by a linear analysis based on the
time-mean flow (Pier 2002; Barkley 2006; Sipp & Lebedev 2007). Furthermore, the linear
stability analysis using the SFD base flow (black lines) generates apparently different
results than those using the mean flow and of DNS (except the frequency in the case
of β = 0.75).

To reveal the relationship between the SFD base flow and the mean flow, we perturb and
evolve the SFD base flow at β = 0.25 at Re = 150 to see how it develops to the saturated
state (with vortex shedding). This analysis follows that for the unconfined wake flows in
Barkley (2006). As shown in figure 8, because the SFD base flow is unstable, the amplitude
of the Cl oscillation increases and eventually saturates at a periodic vortex shedding state.
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Figure 7. Frequencies and growth rates as a function of Re in the global linear stability analysis of confined
cylinder flows for three values of confinement ratio β.
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Figure 8. Relationship between the SFD base flow and the mean flow at Re = 150 with β = 0.25: (a) Cl as
function of t from the SFD base flow to the saturated flow with vortex shedding; (b) phase diagram of Cl and
Cd from t = 0 to t = 150; (c) growth rates and frequencies of the SFD base flow and the mean flow solved by
the linear stability analysis.

The cone-like shape of drag evolution has been explained by Loiseau, Noack & Brunton
(2018) based on the sparse identification of nonlinear dynamics, SINDy (Brunton, Proctor
& Kutz 2016). Similarly to the unconfined flow past a cylinder, the evolution of the unstable
SFD base flow in the confined wake is a nonlinear saturation of oscillations (as shown in
panels a and b), and the selection of vortex shedding amplitude and frequency is based
on the marginal stability of the mean flow. In figure 8(c), we show the growth rates and
frequencies of the SFD base flow and the saturated mean flow.

4.4. Structural sensitivity
The above section details the frequency and growth rate of the dominant linear mode
in the confined cylinder wake flow. Regarding the flow control and manipulation,
much more useful information can be obtained by conducting a sensitivity analysis.
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Figure 9. Growth rates and frequencies of SFD base flows of confinement cylinder wakes with different
blockage ratios and Reynolds numbers.

Structural sensitivity reveals the most sensitive spatial part of the flow to perturbation;
this region is traditionally dubbed as a wavemaker region. We investigate the influence
of blockage ratios and Reynolds numbers on the wavemaker region in this section. Three
Reynolds numbers, Re = 115, 150, 185 are selected, covering subcritical and supercritical
cases. The growth rates and frequencies of the leading eigenvalues obtained in the global
linear stability analysis are shown in figure 9. When the blockage ratio β is smaller than
0.5, increasing β stabilises the confined cylinder wake, and the leading eigenfrequency
decreases simultaneously. For the confined wake flow at Re = 115, the vortex shedding is
even fully suppressed (i.e. the flow becomes stable) when 0.4 < β < 0.6. Then, further
increasing β destabilises the wake, which becomes unstable again when 0.6 < β < 0.8.
These results on the growth rate are consistent with those in figure 6. In confined
cylinder wakes at Re = 150, a similar stabilising–destabilising trend is observed when
0.4 < β < 0.6 but the flow is always unstable with a positive growth rate. A stabilising
effect is observed when β > 0.7 and the flow becomes stable when β = 0.8. This is
because the second critical Reynolds number (Rec2) exists in the confined cylinder wakes
with β > 0.7 and it decreases significantly with the increase of β, see figure 6. For wake
flows at Re = 185, the stabilising effect for β > 0.7 is more significant and leads to a more
stable flow when β = 0.8. Despite the stability, the wake flow is in an asymmetric status
(see figure 10(c) with β = 0.8 below), and this phenomenon has been reported by Sahin &
Owens (2004). However, the effects of Re on the leading eigenfrequency are not significant
when 0.4 < β < 0.7, as shown in figure 9(b). When β > 0.7, the leading eigenfrequency
of Re = 185 decreases more significantly.

Next, we show the direct, adjoint modes and wavemaker region in the confined
cylinder wake flow with different blockage ratios and Reynolds numbers in figure 10.
The amplitudes of adjoint and direct modes for velocity are represented by the red and
blue colour maps, respectively. The wavemaker region is shown by nine contour lines
using the grey colour map, which illustrates the sensitive domain with η > 5 % × ηmax,
where η is the overlap function in structural sensitive analysis evaluated by (3.6) and
ηmax is the largest η in the computational domain. Similar to unconfined cylinder wakes
(Giannetti & Luchini 2007; Marquet et al. 2008), the wavemaker region of the confined
wake flow is located downstream of the cylinder, and thus to some extent, the upstream
domain is less important in terms of flow sensitivity and needs not to be monitored in
the suppression of wake vortex shedding. Furthermore, when β < 0.7, the cylinder wake
flow with a larger blockage ratio (i.e. a stronger confinement effect) possesses a longer and
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Figure 10. Structural sensitivity analysis of confined cylinder wakes with different blockage ratios and
Reynolds numbers. The adjoint mode, direct mode and wavemaker are shown by red, blue and grey colour
maps. The recirculation zone is illustrated by the purple dashed line. Note that only part of the domain is
shown: (a) Re = 115; (b) Re = 150 and (c) Re = 185.

wider recirculation zone, and correspondingly the wavemaker region also expands and
moves downstream. Regarding the length of the recirculation region, Chen et al. (1995)
also reported longer recirculation zones as a function of Re, whereas the result of the
elongated wavemaker region with β seems not to have been reported in the literature for
the confined cylinder wake flow. However, increasing the Reynolds number also leads
to longer recirculation zones, and the wavemaker region is pushed downstream (at least
for the three Re values investigated here). Regarding the flow control of the confined
cylinder wake flows, the significance of these results is that to more efficiently suppress
the vortex shedding, one should monitor the perturbations further downstream from the
cylinder when β or Re increases because the most sensitive region (wavemaker) is located
further downstream. Finally, for some wake flows with larger β, i.e. Re = 150, β = 0.8
or Re = 185, β = 0.7, 0.8, recirculation bubbles are developed on the confinement walls
downstream of the cylinder wake (similar to the results in figure 5), which stabilises the
cylinder wake and leads to a second critical Re as analysed in the previous section.

5. Results: RL-based control of confined wake flows

In the above section, we have shown in detail the results of the stability and sensitivity
analyses of the confined cylinder wake flow to obtain important flow information such as
the wavemaker region. In this section, we analyse the influences of key parameters in the
RL algorithm on the control performance.
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5.1. Vortex shedding suppression via reinforcement learning
After characterising the linear instability and flow sensitivity of the confined cylinder
wake flows, we adopt the deep RL to control the vortex shedding in this flow using the
two synthetic jets on the cylinder. In the literature, Rabault et al. (2019) has studied an
RL-based control method to reduce the drag on the cylinder.

To begin, we would like to first obtain some preliminary results by defining the reward
as

r0 = −
nnode∑

i

((ui)2 + (vi)2), (5.1)

to have a peek of what the controlled wake may become. Here, r0 is the negative value of
a plain sum of the kinetic energy in the computational domain and nnode is the number of
grid nodes in DNS. Two points that deserve to be mentioned are that the kinetic energy
will not decrease to zero as long as we feed the flow domain with an inflow and that the
kinetic energy will decrease with the suppression of the vortex shedding. Thus, the RL
algorithm will control the confined wake flow towards the lowest kinetic energy where the
vortex shedding is weakest. All the control investigations from §§ 5.1–5.4 are based on 86
velocity probes covering the wavemaker region (see probe distributionin figure 19b). The
reason for this selection will be explained in § 5.6.

Following Rabault et al. (2019), we use a random reset in the training process so that new
episodes have a 20 % possibility to start from the given uncontrolled initial condition and
otherwise they start from the last state of the previous episode. As shown in figure 11(a),
the averaged energy decreases with the training of the RL agent, especially after 100
episodes. The energy spikes of the learning curve result from the starting points of new
episodes from the given initial condition. After 400 ∼ 500 episodes, the RL training
approximately converges. As shown in figure 11(b), we test the RL-based control from
t = 16 to t = 200 (the flow starts from the initial condition at t = 0). Although the testing
control time is shorter than that in the fluidic pinball stabilisation (Maceda et al. 2021), the
controlled flow shows a convergence to a periodic state in this case. The obtained control
policy reduces the kinetic energy and the wake vortex shedding is suppressed (figure 12).
At the beginning of the control (briefly after t = 16), the energy first increases, and a
slightly larger lift is observed consequently (see the inset in figure 11b). Then, the energy
decreases exponentially and the oscillations of the lift coefficient are also reduced before
reaching a steady oscillation. This result seems to be a common characteristics of the RL
control applied to the wake flow in our case and will be seen later in our results. A larger
actuation has also been observed in the RL control of Tang et al. (2020) whose aim is
to reduce the drag on the cylinder. Eventually, the value of the lift coefficient converges
to an oscillation with a small amplitude. Figure 12 shows the vorticity of the baseline
and controlled flows. RL control increases the recirculation zone when it suppresses the
oscillation. Nevertheless, slight vortex shedding downstream from the recirculation zone
can still be observed, though the extent and amplitude are largely decreased.

5.2. SFD base flow
From figure 12, we see that when the confined wake flow is controlled, one salient feature
is that the recirculation zone elongates. This is in fact a strong clue indicating that the
controlled wake flow may converge to a flow that is close to the SFD base flow, because
the recirculation zone in the latter case is relatively long (see figure 5).
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Figure 11. RL-based vortex shedding suppression control using the plain sum of the kinetic energy (β = 0.25
and Re = 150). In panel (b), the grey shade means that no control is applied until t = 16. The reward function
is (5.1). (a) Training process and (b) RL control performance.
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Figure 12. Vorticity of the baseline confined cylinder flow with β = 0.25 at Re = 150 and the controlled
flow with the RL agent trained by the total energy. RL control using the kinetic energy damps the oscillation
by increasing the recirculation zone. Nevertheless, the vortex shedding is not fully suppressed. The reward
function is (5.1).

To confirm this hypothesis, we use the fluctuation of the kinetic energy to monitor the
strength of the vortex shedding, which is computed by

se =
nnode∑

i

((ui − ui
0)

2 + (vi − vi
0)

2). (5.2)

The shedding wake flow (u) can be decomposed as a sum of a reference part u0 = (u0, v0)
and a shedding part us, as in u = us + u0. To suppress the vortex shedding, we can use r =
−se as the reward function in RL, which will minimise the fluctuation shedding energy.
The idea is then to use the time-mean flow or the SFD base flow to evaluate the shedding
energy in training RL control agents; that is, the mean flow ub (obtained by time-averaging
the periodic vortex shedding) and the SFD base flow ū (obtained by the SFD method) are
used in (5.2) for u0. If the RL control with the SFD base flow being used in the reward
can yield r → 0, then we can understand that the controlled wake flow indeed converges
to the SFD base flow. The time-mean flow is also tested for a comparison.

Figure 13 shows the RL control performances of the corresponding agents. Using
the mean flow in the shedding energy evaluation cannot effectively suppress the vortex
shedding. The result indicates that the time-averaged mean flow is modified to another
status where the vortex shedding is slightly suppressed. Thus, the mean flow is not the
flow to which the RL algorithm will lead the controlled wake flow. However, using the
SFD base flow in the shedding energy evaluation (5.2) leads to a complete suppression.
The shedding energy is reduced to approximately zero, which means that the controlled
wake is almost the same as the SFD base flow. The fluctuations of the lift coefficient are
also almost fully suppressed and no vortex shedding is observed in the vorticity contours.
It can be concluded that vortex shedding suppression (by RL) in the confined cylinder
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Figure 13. RL-based vortex shedding suppression of the confined cylinder wake (β = 0.25 and Re = 150)
with RL agents trained using different reference flows (mean flow and SFD base flow). It can be seen that using
the SFD base flow as the reference in the RL reward evaluation leads to an effective control with the vortex
shedding fully suppressed. The reward function is (5.2).

wake flow is realised by modifying the wake flow to be a status which is very close to
the SFD base flow. Interestingly, Flinois & Colonius (2015) found similar results in the
adjoint-based optimal control of an unconfined cylinder wake that the controlled flow is
the same as the SFD base flow. Because of its good performance, we will use the SFD
base flow to evaluate the shedding energy for RL control in the following.

5.3. Control starting time
The above RL control starts at t = 16, which is arbitrarily chosen. We next test the
robustness of the RL control policy in terms of its application at other phases in
the vortex-shedding period. Figure 14 shows the control processes of the confined
cylinder wake with the RL-based control starting from three different time stamps. The
interval between adjacent time points is 0.8 unit time (t2 − t1 = t3 − t2 = 0.8), which is
approximately 1/3 period of the vortex shedding. Among the three cases explored here, a
general trend is that the trained RL always uses large positive jet flow rates ahead of the
next minimum point of the lift coefficient, when the upper vortex rolls up. Afterwards,
relatively small jet rates are needed, and the shedding energy starts to decay. Figure 14
also shows the vorticity fields at the moments with largest jet flow rates, which are
exactly the moment of the upper vortex rolling-up. The large blowing of the upper jet
produces positive vorticity to offset the rolling-up vorticity, which can be considered to
be destructive to the vortex development. This suggests that using large flow rates when
the vortex rolls up is an important step in suppressing the cylinder wake fluctuations. The
trained RL agent is adaptive to the shedding phase and captures the ‘right’ timing. Owing
to the symmetry of the problem at hand, it can be understood that there is a similar RL
control policy that uses significant blowing of the lower jet to suppress the rolling-up of
the lower vortex.

5.4. Necessity of a persistent oscillating control
According to the linear stability analysis, the SFD base flow is unstable; the RL agent
maintains this unstable status by actively modifying the jet flow rate in real time.

932 A44-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
45

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1045


J. Li and M. Zhang

0

500

1000

–0.5

0

0.5

0.05

0.10

0

2

Time
4 6 8 10 12 14

Cl

S
h
ed

d
in

g
 e

n
er

g
y
 

Je
t 

fl
o
w

 r
at

e

Control starting from t1
Control starting from t2
Control starting from t3

t1

t2
t3

(a) (b)

(Control starting from t1)

(Control starting from t2)

(Control starting from t3)

Figure 14. (a) Confined cylinder wakes (β = 0.25 at Re = 150) with the RL control starting at different time
points (t1, t2 and t3). (b) Wake vorticities at t = 7.5. It can be seen that no matter when the control starts, RL
always chooses to use large flow rates to offset the vorticity at the moment of the upper vortex rolling-up.

To probe how the stability property of the flow changes with time, we will use dynamic
mode decomposition (DMD; Nsnapshot = 20 and Δt = 0.2) to monitor the status of the
flow stability/instability in the control process. In additional tests (not shown), we used
more DMD snapshots and found that the results agreed well with those to be presented
in the following. In figure 15, the control starts at t = 16, and in the beginning, again,
relatively large jet flow rates are imposed by the RL agent. Then, as the lift coefficient
is reduced, the flow rate of the synthetic jets decreases to a small value with a very
small oscillating amplitude (see the inset in panel a). Even though the amplitude of the
fluctuation is insignificant, we find that this fluctuation in the flow rate is vital to the
successful continuous suppression of vortex shedding (we note in passing that the jet flow
rate does not oscillate exactly around 0 because the overall effect of blowing/suction will
introduce a small degree of asymmetry with respect to the channel centreline in the flow).
We perform a numerical experiment in figure 15 to impose a sudden modification to the jet
flow rate after t = 80. If nothing is changed in the RL control, when t > 80, the controlled
wake flow is stable with the slightly fluctuated flow rates (the black lines). However, using
a similar but constant jet flow rate (u = 0.00352, see the red dashed line in panel a) at
t = 80 soon triggers flow instability (panel c) and gradually leads to vortex shedding in
the cylinder wake (panel b). Figure 16 shows the leading DMD modes of the two flows
from t = 85 to t = 100. With the active jet flow rate fluctuation, significant vorticity is
observed around the jets in the leading mode of the RL controlled flow. However, the
leading DMD mode remains almost unchanged in the (successful) controlled process from
t = 85 to t = 100. Yet if a constant jet flow rate is forced, the vorticity around the jets
of the leading mode vanishes. At the same time, the leading mode becomes unstable and
gradually evolves to a state with much stronger vorticities downstream the cylinder. Finally,
the flow develops to a saturated periodic vortex shedding state, which has a similar Cl
magnitude to the uncontrolled flow (see figure 15b). To sum up, in the vortex shedding
suppression of cylinder wake, the RL-based policy tends to spend large energy at the start
of the control in modifying the mean flow structure. Then, much less effort is required to

932 A44-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
45

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1045


RL-based control of confined wakes with stability analyses

0.05

0.10

0

–0.5

0.003

0.004

0

0.5

–0.5

0

0.5

Cl

G
ro

w
th

 r
at

e
Je

t 
fl

o
w

 r
at

e

0 20

Time
40 60 80 100

80 100

120 140

0 20 40 60 80 100 120 140

0 20 40 60 80 100 120 140

(a)

(b)

(c)

RL control starts at t = 16 Testing a constant jet flow rate from t = 80

Figure 15. DMD analysis of the RL-based control process. The grey shade is the confined cylinder wake
without control and the RL-based control starts at t = 16. We test a constant jet flow rate in the controlled
cylinder wake from t = 80, which is shown as the red shade. The black solid lines show results of RL-based
control and the red lines are results with the control switched to the constant flow rate.
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Figure 16. Vorticities of the leading DMD modes in the controlled flows (β = 0.25 at Re = 150). Only part
of the computational domain is shown for clarity. After the vortex shedding is damped, using a similar but
constant jet flow rate soon triggers flow instability and gradually leads to vortex shedding in the cylinder wake.

maintain the stabilised flow. A similar tendency is found in the RL-based drag reduction
control of a confined cylinder (Rabault et al. 2019). Nevertheless, a persistent active control
using the RL agent, even though its oscillating amplitude is small, is required to suppress
the vortex shedding in the cylinder wake. This is because the controlled flow is almost
identical to the SFD base flow, which is unstable. Thus, when the persistent control is
suppressed, the stabilised flow will become unstable and the vortex starts shedding again,
as demonstrated in our numerical experiment above.

In real-world applications, the control system always faces uncertain noise. Tang et al.
(2020) and Paris et al. (2021) have shown that the RL-based control can be robust to the
Reynolds number variation and systematic noise. There is another uncertainty which is
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Figure 17. DMD analysis of the RL-based control process with noisy forces in the inflow domain, which is
imposed at t ∈ [60, 80]. We test two force magnitudes (A = 2.0 and A = 10.0), which are shown as the red and
blue lines, respectively. The controlled wake flows are not developed to significant vortex shedding and become
stabilised again after the noisy force is removed.

the incoming disturbances penetrating into the inlet domain. To study this influence, we
place an external forcing term F (x, y)γ (t) following Hervé et al. (2012). Here, γ (t) is a
random scaling factor of standard deviation σγ = 0.1 and F (x, y) is the spatial structure
with a Gaussian shape

F (x, y) = A exp

(
−(x − x0)

2

2σ 2
F

)
exp

(
−(x − x0)

2

2σ 2
F

)
(1, 1)T , (5.3)

where σF = 0.1 and the spatial centre is x0 = −1.5 and y0 = 0. The magnitude of the
external force can be modified by changing A, and two values (A = 2.0 and A = 10.0)
are studied. Figure 17 shows the RL-based control of the cylinder wake flow with noisy
forces imposed at t ∈ [60, 80]. To stabilise the flow, jet flow rates controlled by the RL
agent are increased slightly, and the increase magnitude is positively correlated with A.
Although the noisy spatial forces trigger instabilities in the controlled wake flow, the wake
does not develop significant vortex shedding. After the noisy force is removed (t > 80),
the wake gets fully stabilised again after 20 unit time. This numerical experiment shows
that RL-based control is robust to spatial noise from the inflow and it is vital to sustain a
persistent RL-based control.

5.5. Stability-enhanced reward
Next, we discuss how the reward in RL can be changed to incorporate some information
on flow stability/instability to improve the control performance. Increasing the Reynolds
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Figure 18. RL control performance of cylinder wakes with different β at Re = 200. The black region indicates
the wavemaker region and the probes are placed to cover it (see the discussion in § 5.6). The stability-enhanced
reward reduces unstable instants in the controlled wake flows. From t = 128, the RL-based control is shut down
(shown as the red shade), and the controlled wake flows re-develop to significant vortex shedding, which shows
the necessity of a persistent control.

number destabilises the confined wake flows, especially for cylinders with β ≤ 0.5. In
the RL-based drag reduction control of a confined cylinder wake with β ∼ 0.25, Tang
et al. (2020) found that small drag oscillations still existed in the controlled flow at Re =
200 although four synthetic jets were used; and with a further increase of Re, although
a significant reduction of the averaged drag was achieved, the RL agent could not find a
fully stabilised control strategy to completely suppress oscillations in the drag coefficient.
This means that the strong instability with the increase of Re in confined cylinder wakes
brings significant challenges to RL-based control, and thus full suppression of the vortex
shedding is difficult. We increase the Reynolds number to Re = 200 (note the difference
in the definitions of Re in our work (Re = UmaxD/ν) and their works (Re = ŪD/ν); Re =
200 in our work corresponds to Re = 400/3 in their work) and investigate its influence on
vortex shedding suppression with different β. As shown in figure 18, the increase of Re
further pushes the wavemaker domains downstream of the cylinder. We place the probes
for RL control to cover the wavemaker region (to be discussed in § 5.6) and train RL agents
for vortex suppression at Re = 200 using the original reward in (5.2). It can be seen that
not all the controlled wake flows are fully stabilised owing to the increase of Re.

We used DMD (Nsnapshot = 20 and Δt = 0.2) to analyse the controlled flows and found
that the growth rate may flip to be positive even after the shedding energy is significantly
reduced, which leads to flow instabilities and a subsequent increase of shedding energies.
This unstable control is not preferable in practice. To obtain an effective control policy, we
use a stability-enhanced reward function for RL, which embeds the information of flow
stability/instability in the original reward:

Reward = −seeg, (5.4)

where se is the shedding energy defined in (5.2) and g is the largest growth rate of the
flow, which is evaluated by DMD. For a stable flow, the growth rate is smaller than zero

932 A44-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
45

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1045


J. Li and M. Zhang

and eg < 1.0, which means a larger reward is given to motivate such control policies.
For a neutral flow, the growth rate is zero, and (5.4) is equivalent to using the original
reward defined by the shedding energy. For unstable flows, the growth rate is larger than
zero. In this circumstance, the stability-enhanced term eg > 1.0, and the reward decreases
correspondingly. With such a reward function, the trained RL agent will come up with a
control policy that compensates for the decrease of the reward arising from flow instability.
This mitigates the adverse effect of flow instability in the control. We train RL agents
using the stability-enhanced reward for vortex suppression with different β at Re = 200.
As shown in figure 18, using the stability-enhanced reward, the instants when the growth
rate is larger than zero become fewer in the controlled wake flows. Thus, instabilities in the
controlled flows are significantly damped. Such an instability-abated effect is of great value
in practical applications such as prevention of aerodynamic buffeting (Gao et al. 2017) and
aeroelastic flutter (Jonsson et al. 2019). In most cases (figure 18), the shedding energy with
the stability-enhanced reward is reduced to a lower value that can be maintained for a long
run, and, in these circumstances, the amplitude of the control actions is decreased as well.
This implies that it is favourable to maintain the controlled cylinder wake flow close to
the base flow because it costs lower control energy, which is a beneficial side effect of the
proposed stability-enhanced reward. Nevertheless, there is still no guarantee to get a fully
stabilised wake flow by using the proposed stability-enhanced reward (see t ∈ [100, 128]
in the case of β = 0.6). We also investigate the destabilising process of the controlled flow
with the shut-down of control actions (shown as the red shades in figure 18). The results
show that a continuous control is necessary; otherwise, the flow will become unstable.

We provide some discussions on these results in terms of flow physics. In the literature
of 2-D cylindrical wake flow, the shift mode has been found to be indispensable in a
successful reduced-order model (ROM) of the transient dynamics in this flow (Noack
et al. 2003). Inclusion of this mode in a ROM realises a mean field correction, pointing
from the unstable steady flow to the time-averaged mean flow. Our results on the RL of
the confined wake flow can be understood in a similar manner. The controlled flow is
the SFD base flow, which is unstable and tends to evolve to the periodic flow once the
control is turned off (see figure 15). Thus, when we improve the RL agent by telling it
how to abate the instability, the control can be more effective and efficient, as shown
in our tests (see figure 18). Admittedly, our stability-enhanced reward is still crude as
we simply incorporate the information of the first DMD mode in the new reward. In
answering a comment by one of the reviewers, we realise that the analysis and RL control
can be conducted more delicately by abating the flow instability in the direction of the
unstable base flow drifting to the time-mean flow (currently we do not know how much
the abatement effect of using the first DMD mode can contribute in this direction). This
may lead to a more efficient RL control. More research is required to explore the new
design of reward function in RL in the future.

5.6. A heuristic strategy of probe placement
The reinforcement learning agent observes environment changes via the probes. In
preparing this work, we found that Paris et al. (2021) studied the probe placement by
modifying the architecture of RL-based control by adding a stochastic gated input layer
between the states and agent. The modified RL can select an optimal subset from the initial
probe sensors. However, a good control performance in this case may be largely dependent
on the initial placement of the probes. It may be the case that the initial placement of the
probes is not able to encompass the global optimal solution of the control. To achieve an
effective RL-based control, probes should be placed in domains that can convey all the
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Figure 19. Probes covering the wavemaker zone lead to the best control of the confined cylinder wake
(β = 0.25 at Re = 150).

essential changes in the flow. In the following, we take a heuristic approach to evaluate the
placement strategy of the probes by harnessing the results of the structure sensitivity.

As the most sensitive region to flow perturbations, the wavemaker region may be the
ideal monitoring position for the probe placement. Strykowski & Sreenivasan (1990)
showed that the wavemaker is similar to the region where one can place a small control
cylinder to suppress the vortex shedding. We hypothesise that the most effective probes
should be placed to cover (at least partially) the wavemaker domain in RL-based control
of vortex suppression in confined cylinder wakes. We place the probes according to the
wavemaker region calculated using the SFD base flow. In the following, three sets of tests
have been conducted as shown in figures 19–21, which are explained below.

First, in figure 19, we would like to demonstrate that the probes should be placed
to cover the wavemaker region. To verify this, we consider three kinds of probes:
(1) probes upstream of the wavemaker; (2) probes inside the wavemaker; (3) probes
downstream of the wavemaker. As shown in figure 19, placing the probes upstream of the
wavemaker significantly reduces control effectiveness (even though they are very close
to the cylinder); while placing the probes downstream of the wavemaker cannot train a
stable control policy either, even though the RL performance is better than the previous
case. Probes placed inside the wavemaker have an effective and stable RL control. Because
the wavemaker is obtained by overlapping the direct mode and adjoint mode, we further
investigate the control effectiveness with probes being placed to cover the direct mode
and adjoint mode, respectively. As shown in figure 19, the RL-based control with probes
covering the direct mode is ineffective, while the control with probes covering the adjoint
mode is effective and the performance is almost close to those covering the wavemaker.
This may arise from the fact that the adjoint mode covers most of the wavemaker
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Figure 20. Even with slight differences in the placement, probes covering the wavemaker zone can always lead
to effective and stable RL control of the confined cylinder wake (β = 0.25 at Re = 150). The optimal control
policy solved by the gradient-based optimisation achieves better short-term performance and RL agents lead to
a better performance in the long term.

domain while the direct mode is located further downstream. Although the direct mode
describes the spatial structure of vortex shedding and most residual non-stationarities in
the controlled wake flows are located in the region of the direct mode, it is more effective
for RL-based control to monitor flow changes in the core domain of instability.

Next, in figure 20, we would like to demonstrate that a small difference in the probe
distribution will not affect the general good function of RL as long as the main part
of the wavemaker is covered, which will confirm the robustness of its performance. All
the control policies also display the similar features found in the last section; that is,
large flow rates of the synthetic jets are used in the beginning to modify the mean flow
structure and much smaller time-varying jet flow rates are required to maintain the status.
In the same figure, we have also added a result of a gradient-based optimisation method
in reducing the shedding energy. This consideration is to understand how the RL-based
policy compares with other control methods. In the gradient-based optimisation method,
the flow rates at different time steps are discretised as independent design variables with a
control horizon of 32 time units. The objective function of the control design optimisation
is the total shedding energy in the control time-horizon. The gradient of the objective
function with respect to the flow rates is solved by using the finite difference method. More
details are provided in Appendix C. It can be seen in figure 20 that placing the probes
in the wavemaker region achieves a control performance that is close to that solved by
the gradient-based optimisation. The control policy found by gradient-based optimisation
leads to more reductions of the shedding energy in the short-term (t ∈ [5, 15]), because
this strategy can achieve the smallest total shedding energy in the chosen control horizon
(meaning that the controlled solution based on the gradient-based optimisation method is
optimal in the sense that the total energy with t ∈ [0, 32] is minimum). Nevertheless, it
cannot be guaranteed that other solutions may exist that have locally smaller shedding
energies than the policy found by the gradient-based optimisation. For example, our
RL-based controls have slightly better long-term performances (for instance, look at the
results at t = 30 in the figure), which can be more preferable in practice.
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The wavemaker domain of the confined cylinder wake changes with the blockage
ratio or the Reynolds number. We investigate the influence of different blockage ratios
on RL-based control performance at Re = 150. As shown in figure 22 of Appendix D,
increasing the blockage ratio pushes the wavemaker to the downstream region, as we have
discussed above. We place probes for RL control of confined wakes with different blockage
ratios at the corresponding wavemaker regions. With the RL-based control, the shedding
energies are all reduced to a small value. This means that regardless of the blockage ratio,
as long as the probes are placed to cover the wavemaker region, the RL-control policy is
able to effectively control the confined flow to damp the vortex shedding (at least for the
Reynolds number investigated, Re = 150). In practice, if the probes are fixed in a series
of control tests with different parameters (such as β or Re), the optimal placement of the
probes should be determined to be suitable for all the parameters (the trend of how the flow
properties change with these flow parameters has been analysed in the previous sections).

Finally, we consider the cases where the number of probes is insufficient. We choose
to train the RL agent using ten probes. The probe distributions and control performances
are shown in figure 21. Distributions 1 ∼ 3 are evenly placed in the wavemaker region,
and Distributions 4 ∼ 5 are placed in the most sensitive part (black). We can see that even
though all the five placements successfully reduce the shedding energy, difference exists
in their performance. The best performance belongs to Distribution 1, where the shedding
energy has been abated to almost zero when t > 20. This result indicates that Distribution
1 should be close to the global optimal solution in the RL (in which the shedding energy is
zero). However, Distributions 2,3, even though they are also trying to cover the wavemaker
region as fully as possible, somehow perform poorly owing to the insufficient number
of probes. Note that, compared with figure 20, the results of Distributions 2,3 should
be considered to be worse. Finally, when clustering all the available probes in the most
sensitive region (black colour) as in Distributions 4,5, the RL control does not necessarily
yield good performance. All these results indicate that when insufficient probes are used,
the performance of the RL control is scattered depending on the placement strategy of
the probes. Our heuristic approach indicate that Distribution 1 is the best choice; however,
this fortuitous result may not be carried over to other situations. Based on this result,
future works can consider coupling the proposed criterion of probe placement (to cover
the wavemaker region) with an optimisation method with the former providing a general
good choice of the initial placement of the probes and the latter fine-tuning the selection of
the probes by the optimisation of the probes, exemplifying the combination of the a priori
knowledge on flow physics and the power of RL algorithm. For example, the modified RL
developed by Paris et al. (2021) can be used to select the optimal subset from the probes
which are initially covering or not covering the wavemaker region (and we hypothesise
that the probes covering the wavemaker region will be selected when vortex shedding is to
be abated).

6. Conclusions

In this work, we have studied the linear stability and flow sensitivity of confined wake
flows in a range of β and Re(≤ 200). The main objective of the work is to understand
further the reinforcement learning (RL) algorithm in controlling a complex flow system
and showcase how some information of the flow physics can help us in designing and
applying the RL in the flow control (more specifically, to suppress the vortex shedding by
actively changing the flow rates of two synthetic jets on the cylinder).
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Figure 21. RL control of the confined cylinder wake (β = 0.25 at Re = 150) using ten probes. Different
distributions of probes lead to a significant divergence in the control performance.
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Figure 22. RL control performance of cylinder wakes with different β at Re = 150. The probes are placed
based on the wavemaker-based criterion.

6.1. Flow stability and sensitivity of confined wake flows
In the stability study of the confined cylinder wakes, the neutral curve in the Re–β plane is
determined. In a range of Re ∈ [0, 200], the confined cylinder wake with β < 0.7 has one
critical Re, where the wake becomes unstable beyond this point and the vortex shedding
starts. For confined cylinder wakes with β > 0.7, other than the main recirculation
bubble downstream the cylinder, two additional recirculation bubbles may develop close
to the confinement walls further downstream of the cylinder with the increasing effect
of confinement. This is similar to the observations by Sahin & Owens (2004) and the
recirculation bubbles on the confinement walls become larger with the increase of Re. This
is associated with a second critical point, after which the vortex shedding is suppressed
for confined cylinder wakes with β > 0.7. Vortex shedding of confined cylinder wakes
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with different β and Re is studied using the global linear stability analyses. Similar to
the findings by Maurel et al. (1995), Noack et al. (2003) in unconfined cylinder wakes,
we find that the oscillating wakes of confined cylinders saturates when the time-averaged
flow is marginally stable. The frequencies solved by nonlinear DNS agree well with the
results of the global linear analysis based on the time-mean flow, rather than the SFD base
flow. Thus the mean flow can provide a good profile to predict the shedding frequency of
confined cylinder wakes. The relationship between the SFD base flow and the saturated
mean flow is studied by using global linear stability and DMD. Similar to the unconfined
flow past a cylinder (Barkley 2006), the evolution of the unstable SFD base flow in the
confined cylinder wake is a nonlinear saturation of oscillations, and the selection of vortex
shedding amplitude and frequency is based on the marginal stability of the mean flow.

The wavemaker regions of confined cylinder wake flows with various β and Re are
obtained by performing structural sensitivity analyses. Similar to unconfined cylinder
wakes (Giannetti & Luchini 2007; Marquet et al. 2008), the wavemaker region of the
confined wake flow is located downstream of the cylinder, which means the downstream
domain is more important in terms of flow sensitivity and should be monitored in the
suppression of wake vortex shedding. We found that with the increase of β, a longer and
wider recirculation zone is developed and the wavemaker region expands correspondingly
and moves downstream. Increasing Re also leads to longer recirculation zones and the
wavemaker region is pushed downstream. The results imply that to efficiently suppress the
vortex shedding in confined cylinder wakes, perturbations further downstream from the
cylinder should be monitored when β or Re increases because the most sensitive region
(wavemaker) is located further downstream.

6.2. RL-based control of confined wake flows
In the second part of this work, we used RL-based control to suppress the vortex shedding
in the cylinder wake. It is found that using the sum of kinetic energy as the reward function
can suppress the oscillation to some extent but does not fully damp the shedding. We
define a reward function based on the shedding energy relative to the SFD base flow and
this reward gives rise to a more effective RL control. With the shedding energy being
reduced to approximately zero, it can be concluded that vortex shedding suppression of
the confined cylinder wake flow is realised by modifying the confined wake flow to a
status similar to the SFD base flow. Similar results have been observed in the adjoint-based
optimal control of an unconfined cylinder wake by Flinois & Colonius (2015). We found
that the RL-based control tends to spend large energy in the beginning to fast modify the
mean flow structure. No matter when the control starts, the trained RL agent is adaptive
to the shedding phase and can capture the ‘right’ timing, i.e. at the moment of the vortex
rolling-up, to excite large flow rates. Afterwards, much less effort with significantly small
jet flow rates is required to maintain the stabilised flow. Nevertheless, consistent active
control using the RL agent is still necessary; otherwise, the stabilised flow will become
unstable and the vortex starts shedding again. This is because the controlled flow is the
unstable SFD base flow.

For confined cylinder wakes with β ≤ 0.5, increasing Re brings more challenges to
the vortex shedding suppression owing to the rise of flow instability (from the modal
stability analysis, we know that for smaller β ≤ 0.5, the flow becomes more unstable
when Re increases). In this circumstance, we used a stability-enhanced reward function to
embed the flow instability (evaluated by an instability penalty) into the RL reward. With
the stability-enhanced reward and the wavemaker-based probe placement, vortex shedding
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of confined cylinder wakes with different β at higher Re can be further suppressed with
different degrees of success.

In the end, we find that placing the velocity probes covering the wavemaker is preferable
in RL-based control of confined cylinder wakes to suppress the vortex shedding. As
mentioned earlier, the wavemaker region is a region where the flow is most sensitive to
variation. Our results show that placing the probes to cover the wavemaker region yields
a better performance of the RL than placing them elsewhere. This can be interpreted as
the flow information (as the environment and state components in the RL framework) is
more accurately detected by the probes if they are placed in this manner, so that the action
can be more efficient in controlling the flow. Furthermore, the robustness has also been
confirmed: as long as the main part of the wavemaker is covered, small differences in
the placement of probes do not affect the general good performance of RL. When the
probes are properly placed, we also find that the RL-control policy can outperform a
gradient-based optimisation method (optimised in a certain time-horizon) in the long run.
When insufficient probes are used, the performance of the probe distributions considered
in this work is scattered. Our heuristic approach is able to identify a good distribution as an
initial strategy for the placement of the probes, but more systematic approaches should also
be adopted, such as that in Paris et al. (2021) to obtain more desirable results. Combining
this heuristic result with the optimisation method thus may be promising.

In this study, the best policy trained in a fixed episode number (500) is used, which
has shown a good convergence because there is only one independent actuator. For
policy-gradient RL methods such as PPO, the policy network integrates over both state
and action spaces, and increasing the number of actuators/actions may require much
more training episodes. Thus, the exploitation performance may be significantly decreased
within a given learning budget, especially for cases using computationally expensive
three-dimensional simulations. In this circumstance, the deterministic policy gradient
method (Silver et al. 2014) might be more efficient because the policy merely integrates
over the state space. Furthermore, proper use of the knowledge of flow physics in a control
agent can simplify its structure without losing performance (see the phase control in
the drag reduction of a bluff body in Pastoor et al. 2008, which is mostly based on the
understanding of decoupling shear layer development and wake processes). More research
on the coupling of fluid mechanics and RL-based control is needed to improve efficiency,
effectiveness and robustness in real-world complex applications.
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Appendix A. Open-source code

The code for the RL-based flow control in this study is open-source as a GitHub
repository: https://github.com/npuljc/RL_control_Nek5000. It is developed by referring
to the open-source RL-based control code of Rabault et al. (2019), so they have the
same structure and both are based on the PPO agent implemented in Tensorforce.
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The main difference is the simulation environment, which is based on a SEM solver
Nek5000 (Version 19.0, Fischer et al. 2017) in our repository. Another difference is that the
reward function in our code is defined by the shedding energy (5.2) and there is an option
to use the stability-enhanced reward (5.4). More details can be found in the Readme file of
the repository.

Appendix B. Dynamic mode decomposition

In our analysis, we have also used the dynamic mode decomposition (DMD) to further
probe the flow instability when the conventional linear stability analysis is hard to apply.
When the flow rate of the synthetic jet is zero (i.e. the control is off), the conventional
linear stability analysis can be applied properly. However, when the control is on and the
synthetic jet flow rates are varying, it turns out to be difficult to apply the conventional
linear stability analysis and in this case we use DMD.

As first proposed by Schmid (2010), Rowley et al. (2009), DMD is a data-based method
in the analysis of the time evolution of fluid flows. We briefly summarise the algorithm
and refer the reader to Schmid (2010) for the complete theory. For a series of flow
snapshots V

Nsnapshot
1 = v1, v2, . . . , vNsnapshot that is generated with a time interval of Δt,

one assumes that a linear mapping A connects the flow field vi to the subsequent flow
field vi+1, that is, vi+1 = Avi. Then, we have AV

Nsnapshot−1
1 = V

Nsnapshot−1
1 S + reT

Nsnapshot−1,

where r is the residual vector and eNsnapshot−1 ∈ R
Nsnapshot−1 is a (Nsnapshot − 1)th unit

vector. The eigenvalues of S then approximate some of the eigenvalues of A. To improve
the robustness, we use an implementation based on eigenvalue decomposition of a ‘full’
matrix Ŝ, which is related to S via a similarity transformation:

Ŝ = UV
Nsnapshot
2 WΣ−1, (B1)

where U , W and Σ are obtained by performing a singular value decomposition of

V
Nsnapshot−1
1 = UΣW H . The dynamic modes are Φ i = Uyi, where yi is the ith eigenvector

of Ŝ, i.e.
Ŝyi = μiyi. (B2)

The growth rates and frequencies of the modes can be obtained by the logarithmic
mapping of corresponding DMD eigenvalues. For the ith mode with eigenvalue μi, the
the frequency fi = Im(ln μi)/2πΔt and growth rate gi = Re(ln μi)/Δt.

Appendix C. Gradient-based optimisation of the control policy for synthetic jet flow
rates

For reference, gradient-based optimisation is used to solve the optimal control policy
in a given control horizon of 32 time units, which equals to two episode in RL-based
control. The sequential least-squares programming (SLSQP) algorithm implemented in
pyOptSparse (Perez, Jansen & Martins 2012; Wu et al. 2020) (https://github.com/mdolab/
pyoptsparse) is used to minimise the total shedding energy in the control horizon. The
shedding energy is evaluated using (5.2) with a reference of the SFD base flow. The
finite difference method implemented in pyOptSparse is used to solve the gradient of
the shedding energy with respect to each control variable. As mentioned above, the
synthetic jet flow rate can be adjusted every 0.2 time unit and this means that we have
160 independent control variables in the optimisation. To reduce the computational cost
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Functions Quantity Description

minimise
∑t=32

t=0 e(t)
s 1 Total shedding energy in a control horizon of 32 time units

with respect to ki 80 Cubic spline knots for jet flow rates

Table 2. Optimisation problem statement of the synthetic jet flow rate control policy.

in gradient evaluations, the 160 jet flow rates are parametrised by a cubic spline with
80 evenly distributed knots. Referring to the RL-based control policies, a cubic spline
with 80 knots can provide enough degrees of freedom for the control of synthetic jet flow
rates in this problem. Thus, the gradient-based optimisation is actually subject to 80 design
variables. We summarise this optimisation problem in table 2.

Appendix D. RL control of cylinder wakes with different β

To see if the wavemaker-based probe placement criterion works with the change of the
blockage ratio, we investigate the influence of different blockage ratios on RL-based
control performance at Re = 150, and probes for RL control are adjusted based on the
corresponding wavemaker region of the confined wake. The results are shown in figure 22.
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