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In this paper we prove new existence results for non-autonomous systems of first
order ordinary differential equations under weak conditions on the nonlinear part.
Discontinuities with respect to the unknown are allowed to occur over general classes
of time-dependent sets which are assumed to satisfy a kind of inverse viability
condition.

1. Introduction and preliminaries

We are concerned with the existence of Carathéodory solutions for

x′(t) = f(t, x(t)) for almost all (a.a.) t ∈ I := [t0, t0 + L], x(t0) = x0, (1.1)

where L > 0, t0 ∈ R, x0 ∈ Rm and f : I × Rm → Rm may be discontinuous. We
recall that Carathéodory solutions are absolutely continuous functions on I that
satisfy (1.1). We shall denote by C the set of all Carathéodory solutions of (1.1).

This paper’s point of view somewhat recaptures the spirit of [18]: we pass from
problem (1.1) to a solvable differential inclusion, and then we look for solutions
of (1.1) among those of the inclusion. This process of ‘passing from the equation to
the inclusion and back again’ has a twofold interest: first, it leads to new existence
results for (1.1); and, second, it provides us with a bridge between two different
approaches to discontinuous differential equations.

To start introducing some necessary preliminaries, let us say that the main idea
consists of replacing f by a suitable multi-valued mapping F : I × Rm → P(Rm)
and then searching for solutions of the initial-value problem

x′(t) ∈ F (t, x(t)) for a.a. t ∈ I, x(t0) = x0. (1.2)

One can find in the literature different F s, which lead to different notions of a solu-
tion (see [1,9,10,12,18,21] and the references therein). We shall consider Krasovskij
solutions, which are absolutely continuous functions that satisfy (1.2) with

F (t, x) :=
⋂
ε>0

co f(t, x + εB), (t, x) ∈ I × Rm. (1.3)
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Here, co means closed convex hull, B = {y ∈ Rm : ‖y‖ � 1} is the unit closed
ball centred at the origin and x + εB is the closed ball of radius ε > 0 and centre
x ∈ Rm. Unless stated otherwise, we shall use the maximum norm

‖x‖ = max{|xi| : 1 � i � m} for each x = (x1, x2, . . . , xm) ∈ Rm.

We shall denote by K the set of all Krasovskij solutions of (1.1).
Plainly, the definition of F guarantees that f(t, x) ∈ F (t, x) for all (t, x), and

therefore C ⊂ K. Now we reduce our problem to obtain conditions on f which
imply that K is non-empty and, on the other hand, that K ⊂ C. It is well known
that continuity with respect to x is enough, but we are precisely interested in
discontinuous differential equations and thus we are forced to improve that.

In order to achieve our goal, we shall introduce conditions on the sets where f is
discontinuous, so that Krasovskij solutions either become Carathéodory solutions
whenever their graphs lie on those sets, or they are simply pushed away from them.
There exist previous mathematical formulations of this idea, as the reader can see
in [18]. Here we use an ‘inverse-viability’ approach. The high development reached
by viability theory makes it easy to find in the literature very general conditions that
imply that the graphs of all solutions of a given differential inclusion are forced to lie
on a certain set. We are interested in the opposite kind of result, but the necessary
(and sharp!) theoretical background already exists.

The main elements in viability theory are contingent cones and derivatives: for a
given set A ⊂ Rm, the Bouligand’s contingent cone at x ∈ A is defined as

TA(x) :=
⋂
ε>0

⋂
α>0

⋃
0<h<α

(
1
h

(A − x) + εB

)
.

An analytical description of Bouligand’s contingent cone is established in the fol-
lowing proposition.

Proposition 1.1 (cf. proposition 2, p. 177, of [1]). v ∈ TA(x) if and only if there
exists sequences of strictly positive numbers hn and of elements un ∈ Rm satisfying
the following.

(i) limn→∞ un = v.

(ii) limn→∞ hn = 0.

(iii) x + hnun ∈ A ∀n � 0.

For an interval I ⊂ R and a set-valued map K : I → P(Rm), we recall the notion
of graph of K, which is the set graph(K) := {(t, x) ∈ I × Rm : x ∈ K(t)}. For the
case when K is strict, i.e. K(t) �= ∅ for each t ∈ I, the contingent derivative of K at
a point (t, x) ∈ graph(K) is defined as the mapping DK(t, x) : R → P(Rm), whose
graph is the contingent cone Tgraph(K)(t, x), i.e.

v0 ∈ DK(t, x)(t0) ⇔ (t0, v0) ∈ Tgraph(K)(t, x).

Just for notational purposes, if K(t) = ∅, then we shall write DK(t, x)(t0) = ∅ for
all t0 ∈ R.

For the case when K is single- and scalar-valued, we have the following results.
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Lemma 1.2. Let J ⊂ R be an interval and let γ : J → R. Then the mapping
K(t) := {γ(t)}, t ∈ J , satisfies the following conditions.

(a) DK(t, γ(t))(1) lies between D+γ(t) and D+γ(t) for all t ∈ J , where D+γ and
D+γ denote the lower-right and the upper-right Dini derivatives, respectively.

In particular, if γ is right differentiable at some t ∈ J , then we have that

DK(t, γ(t))(1) = {γ′
+(t)}.

(b) −DK(t, γ(t))(−1) lies between D−γ(t) and D−γ(t) for all t ∈ J , where D−γ
and D−γ denote the lower-left and the upper-left Dini derivatives, respectively.

In particular, if γ is left differentiable at some t ∈ J , then we have that

−DK(t, γ(t))(−1) = {γ′
−(t)}.

Proof. By definition, ξ ∈ DK(t, γ(t))(1) if and only if (1, ξ) ∈ Tgraph(K)(t, γ(t)).
Then, by proposition 1.1, we have that ξ ∈ DK(t, γ(t))(1) if and only if there
exist a sequence of strictly positive numbers {hn}n and another sequence {un}n =
{(tn, wn)}n ⊂ R2 such that {hn}n → 0, {un}n → (1, ξ) and (t, γ(t)) + hnun ∈
graph(K) for all n ∈ N. Therefore, for each n, we have

(t, γ(t)) + hnun = (t + hntn, γ(t + hntn)),

and then (a) follows from the expression

ξ = lim
n→∞

wn = lim
n→∞

wnt−1
n = lim

n→∞

γ(t + hntn) − γ(t)
hntn

.

The proof of (b) is similar.

Notice that γ need not be continuous in lemma 1.2.
This paper is organized as follows. In § 2 we study non-autonomous equations and

systems. In § 3 we prove an alternative result concerning the scalar case. Examples
and comparison with the literature are provided throughout the paper.

2. Existence results for systems

Let us consider problem (1.1) and assume that, for f : I × Rm → Rm, there exists
a null-measure set N ⊂ I such that the following conditions hold.

(i) There exists ψ ∈ L1(I) such that, for all t ∈ I \ N and all x ∈ Rm, we have
‖f(t, x)‖ � ψ(t)(1 + ‖x‖).

(ii) For all x ∈ Rm, f(·, x) is measurable.

We say that a (Carathéodory or Krasovskij) solution x∗ of (1.1) is the maxi-
mal solution if x∗(t) � x(t) for all t ∈ I and for any other solution x (here, ‘�’
must be understood component wise). The minimal solution is defined analogously:
when both the minimal and the maximal solutions exist, we call them the extremal
solutions.

We have the following result about Krasovskij solutions. By AC(I) we denote
the set of all real-valued functions that are absolutely continuous on I.
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Proposition 2.1. If f satisfies (i) and (ii), then K is a non-empty, compact and
connected subset of C(I, Rm).

Moreover, in the scalar case (m = 1), we have the following.

(1) K has pointwise maximum x∗ and minimum x∗, which are the extremal solu-
tions of (1.2). Moreover, for each t ∈ I, we have

x∗(t) = max{v(t) : v ∈ AC(I), v′(s) ∈ F (s, v(s)) − R+ a.e., v(t0) � x0},
(2.1)

x∗(t) = min{v(t) : v ∈ AC(I), v′(s) ∈ F (s, v(s)) + R+ a.e., v(t0) � x0}.
(2.2)

(2) K is a funnel, i.e. for all t̄ ∈ I and c ∈ [x∗(t̄), x∗(t̄)], there exists x ∈ K such
that x(t̄) = c.

Proof. It is clear that F (t, x), defined in (1.3), is closed, convex and non-empty for
all (t, x) ∈ I × Rm. Moreover, for each t ∈ I, F (t, ·) is upper semicontinuous and,
by (i), we have, for all t ∈ I \ N , that

sup{‖y‖ : y ∈ F (t, x)} � ψ(t)(1 + ‖x‖) for all x ∈ Rm.

Finally, condition (ii) implies that f(·, x) is a measurable selection of F (·, x) for
each x ∈ Rm, and then it follows from [9, corollary 5.1 and theorem 7.2] that K is
a non-empty compact and connected subset of C(I, Rm).

In the scalar case (m = 1), the existence of extremal solutions follows from a
similar argument to that in the proof of [8, theorem 3].

We are going to prove (2.2) using a slight modification of that of [8, theorem 4]
(such a modification is necessary because, in our case, F (·, x) needs not be measur-
able, as we shall show in § 3.1). Let v ∈ AC(I) be such that

v′(t) ∈ F (t, v(t)) + R+ for a.a. t ∈ I, v(t0) � x0.

On the exceptional null set, we (re)define v′(t) as any element of F (t, v(t)). Since
F (t, ·) is upper semicontinuous (USC) and F (·, x) has a measurable selection, it
follows from [9, proposition 3.5] that there exists a measurable selection w : I → R

of F (·, v(·)). Then we have that

v′(t) ∈ F (t, v(t)) + y(t) for all t ∈ I,

where y(t) := max{0, v′(t) − w(t)}, t ∈ I (note that y is measurable).
For each n � 1, let λn : I × R → [0, 1] be continuous and such that λn(t, x) = 1

for x � v(t) and λn(t, x) = 0 for x � v(t) + 1/n. Consider, for all (t, x) ∈ I × R,

Fn(t, x) = λn(t, x)F (t, min{x, v(t)}) + (1 − λn(t, x))(v′(t) − y(t)).

For each x ∈ R, the mapping

λn(·, x)(f(·, x)χA(·) + w(·)χB(·)) + (1 − λn(·, x))(v′(·) − y(·))

is a measurable selection of Fn(·, x), where

A = {t ∈ I : x � v(t)} and B = {t ∈ I : x > v(t)}.
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Whence, since Fn(t, ·) is USC and satisfies

sup{|z| : z ∈ Fn(t, x)} � ψ(t)(1 + |v(t)|)(1 + |x|) a.e.,

the problem

z′
n(t) ∈ Fn(t, zn(t)) for a.a. t ∈ I, zn(t0) = x0,

has a solution zn and we have that zn � v +1/n on I. By a standard argument, we
deduce that a subsequence of {zn}n converges uniformly to a solution of (1.2), z � v.
Then, since x∗ � z � v, we obtain (2.2). The proof of (2.1) is similar.

Finally, let t̄ ∈ I be fixed. Since K is connected and the function πt̄ : K → R

defined as πt̄(x) = x(t̄) is continuous, we have that πt̄(K) is also connected.
Then, for all c ∈ [x∗(t̄), x∗(t̄)] = [πt̄(x∗), πt̄(x∗)], there exists x ∈ K such that
πt̄(x) = x(t̄) = c.

Following the sketch that we outlined in § 1, we now have to re-enforce the
assumptions required in proposition 2.1 in order to also obtain that K ⊂ C. A first
result in this direction is the following theorem.

Theorem 2.2. Assume that, for a null-measure set N ⊂ I, the mapping f : I ×
Rm → Rm satisfies conditions (i), (ii) and, for each t ∈ I \ N , f(t, ·) is continuous
on Rm \ N1 × · · · × Nm, where Ni ⊂ R is a null-measure set for i = 1, . . . , m.

Moreover, if, for each t ∈ I \ N and each x ∈ N1 × · · · × Nm, we have that⋂
ε>0

co f(t, x + εB) ∩ {0} ⊂ {f(t, x)}, (2.3)

then C = K for each x0 ∈ Rm (and thus C enjoys all the properties established for K
in proposition 2.1).

Proof. For x ∈ K, we define A := {t ∈ I : x(t) ∈ N1 × · · · × Nm}. If we put
x(t) = (x1(t), x2(t), . . . , xm(t)), then A =

⋂m
i=1Ai, where Ai := {t ∈ I : xi(t) ∈ Ni}.

By [19, theorem 38.2], we have that x′
i(t) = 0 for a.a. t ∈ Ai and thus x′(t) = 0 for

a.a. t ∈ A. Hence 0 ∈ F (t, x(t)) for a.a. t ∈ A. Our hypothesis implies then that
f(t, x(t)) = 0 for a.a. t ∈ A and, consequently, x′(t) = f(t, x(t)) for a.a. t ∈ A. Since
F (t, x(t)) = {f(t, x(t))} for all t ∈ I \ (A ∪ N), we conclude that x′(t) = f(t, x(t))
for a.a. t ∈ I and therefore x ∈ C.

Remarks to theorem 2.2.

1. When specialized to the autonomous case, it can be proven exactly as in [21,
theorem 1] that the condition ‘K ⊂ C for all x0 ∈ Rm’ implies (2.3). In doing so, we
would have a generalization of [18, theorems 2.2 and 3.11]. Remember, however, that
in the scalar autonomous case, necessary and sufficient conditions for the existence
of Carathéodory solutions are known (see [5]).

2. Theorem 2.2 also improves the results in [18] for non-autonomous problems.

3. We emphasize that the assumptions do not imply that the set of discontinuity
points of f(t, ·) is equal to N1 × · · · × Nm, but it only needs to be contained in
N1 × · · · × Nm. Therefore, the set of discontinuity points of f(t, ·) is not explicitly
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prescribed, and thus such sets need not be the same for all values of t. However,
such a simple case as that of a nonlinear f which is discontinuous with respect to
x exactly at the points of the line x1 = · · · = xm = t falls outside the scope of
theorem 2.2. This is a severe limitation that we avoid in our next result (which the
reader should compare with example 4.1 in [18], which shows that existence may
fail if discontinuities depend on t).

To deal with more complicated types of time-dependent discontinuity sets, we
shall impose conditions (i), (ii) and the following.

(iii) For all t ∈ I \N , f(t, ·) is continuous in Rm \K(t), where K(t) =
⋃∞

n=1Kn(t),
and, for each n ∈ N and x ∈ Kn(t), we have⋂

ε>0

co f(t, x + εB) ∩ DKn(t, x)(1) ⊂ {f(t, x)}. (2.4)

Next we show how condition (iii) implies that K ⊂ C.

Lemma 2.3. Let f : I × Rm → Rm satisfy (i) and (ii) for some null-measure set
N ⊂ I. The following results hold.

(a) If there exist multi-valued mappings Kn : I → P(Rm), n ∈ N, such that, for
all t ∈ I \ N , all n ∈ N and all x ∈ Kn(t), we have⋂

ε>0

co f(t, x + εB) ∩ DKn(t, x)(1) ⊂ {f(t, x)}, (2.5)

then every x ∈ K satisfies

x′(t) = f(t, x(t)) a.e. in
{

t ∈ I : x(t) ∈
⋃
n∈N

Kn(t)
}

.

(b) If condition (iii) is satisfied, then K ⊂ C.

Proof. Let x ∈ K and put

Ix = {t ∈ [t0, t0 + L) \ N : x′(t) exists and x′(t) ∈ F (t, x(t))},

A =
{

t ∈ Ix : x(t) ∈
⋃
n∈N

Kn(t)
}

,

An = {t ∈ Ix : x(t) ∈ Kn(t)},

Bn = {t ∈ An : (t, t + εt) ⊂ I and (t, t + εt) ∩ An = ∅ for some εt > 0}.

To establish part (a), we have to show that x′(t) = f(t, x(t)) for a.a. t ∈ A. Since
A =

⋃
n∈N

An, it suffices to prove that x′(t) = f(t, x(t)) for a.a. t ∈ An and all
n ∈ N. This will be proven in the next two steps.

Step 1 (for each t ∈ An \ Bn, we have that x′(t) = f(t, x(t))). For t1 ∈ An \ Bn,
there exists a sequence of strictly positive numbers {hi}i that converges to 0 and
is such that t1 < t1 + hi < t1 + L and (t1 + hi, x(t1 + hi)) ∈ graph(Kn). Now we
define ui = (1, h−1

i (x(t1 + hi) − x(t1))) ∈ Rm+1 for i ∈ N, and we have
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(1) limi→∞ ui = (1, x′(t1));

(2) limi→∞ hi = 0;

(3) (t1, x(t1)) + hiui ∈ graph(Kn) ∀i ∈ N,

which, by proposition 1.1, implies that (1, x′(t1)) ∈ Tgraph(Kn)(t1, x(t1)), or, equiv-
alently, that x′(t1) ∈ DKn(t1, x(t1))(1). Moreover, x′(t1) ∈ F (t1, x(t1)), and then
equation (2.5) implies that x′(t1) = f(t1, x(t1)).

Step 2 (Bn is denumerable for each n ∈ N). For each t ∈ Bn, take the number
εt > 0 associated to it by the definition of Bn. Since the intervals (t, t+ εt), t ∈ An,
do not overlap, the sum of each denumerable subfamily of {εt : t ∈ Bn} is finite
and bounded above by L > 0. Hence the sum

∑
t∈Bn

εt is finite and therefore Bn

can be, at most, denumerable.

To prove (b), we have to show that for a.a. t ∈ Ix we have x′(t) = f(t, x(t)). This
follows directly from part (a) and the fact that F (t, x(t)) = {f(t, x(t))} whenever
t ∈ Ix \ A, as f(t, ·) is continuous at x(t) for t ∈ Ix \ A.

Now we establish this section’s main result, which follows immediately from
lemma 2.3 and proposition 2.1.

Theorem 2.4. If f satisfies (i), (ii) and (iii), then C is a non-empty, compact and
connected subset of C(I, Rm).

Moreover, in the scalar case (m = 1), we have the following.

(1) C has pointwise maximum x∗ and minimum x∗, which are the extremal solu-
tions of (1.1). Furthermore, for each t ∈ I, we have

x∗(t) = max{v(t) : v ∈ AC(I), v′(s) � f(s, v(s)) a.e., v(t0) � x0}, (2.6)
x∗(t) = min{v(t) : v ∈ AC(I), v′(s) � f(s, v(s)) a.e., v(t0) � x0}. (2.7)

(2) C is a funnel, i.e. for all t̄ ∈ I and c ∈ [x∗(t̄), x∗(t̄)], there exists x ∈ C such
that x(t̄) = c.

Example 2.5. Consider the problem x′(t) = f(t, x(t)) a.e. in [0, 1], x(0) = 0, where
f : [0, 1] × R → R is a changing-sign nonlinearity given by

f(t, x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2 if x � −t,

arctan (n − 3)
π

if −t +
1

n + 1
< x � −t +

1
n

, n ∈ N,

− 1
2 if −t + 1 < x.

It is obvious that f satisfies conditions (i) and (ii). Moreover, we have that f(t, ·)
is continuous in R \ K(t), where K(t) =

⋃
Kn(t) and Kn(t) = {−t + 1/n} for all

t ∈ [0, 1]. Then DKn(t, x)(1) = −1 for all (t, x) ∈ graph(Kn) and all n ∈ N. On the
other hand, f(t, x) � − 1

2 for all (t, x) ∈ [0, 1] × R, and therefore⋂
ε>0

co f(t, x + εB) ∩ DKn(t, x)(1) = ∅,
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which implies that f also satisfies (iii). Thus theorem 2.4 ensures the existence of
the extremal solutions for this problem. Furthermore, a standard uniqueness result
(see [13]) implies that there exists a unique solution because f(t, ·) is non-increasing.

We remark that the results established in [6,14,20] do not apply in this example.

Remarks to theorem 2.4.

1. We cannot expect to have extremal solutions in the conditions of theorem 2.4
when m � 2. In fact, the continuous system

x′
1 = t3 − x2, t ∈ [0, 1], x1(0) = 0,

x′
2 = 3x

2/3
2 , t ∈ [0, 1], x2(0) = 0,

has neither a maximal solution nor a minimal one in the sense defined at the
beginning of this section. Adding a standard quasi-monotonicity assumption over
f and re-enforcing the measurability conditions as in [14, theorem 5.1] is probably
the first step towards an extremality result, which we hope to consider elsewhere.

2. We can improve theorem 2.4, weakening hypothesis (iii) until we have the fol-
lowing.

(ĩii) For all t ∈ I \ N , we have that f(t, ·) is continuous in Rm \ K(t), where
K(t) =

⋃∞
n=1Kn(t), and for each n ∈ N and x ∈ Kn(t), we have⋂

ε>0

co f(t, x + εB) ∩ DKn(t, x)(1) ∩ −DKn(t, x)(−1) ⊂ {f(t, x)},

but we have preferred to use (iii) for simplicity.
Using the standard change of variables y(t) = x(2t0 − t), it is easy to check

that (i), (ii) and (ĩii), with the obvious modifications, guarantee an analogous to
theorem 2.4 for solutions defined on [t0 −L, t0]. Since (iii) implies (ĩii), theorem 2.4
holds valid for the interval [t0 − L, t0 + L].

We also note that when Kn is single and scalar valued, then (ĩii) is trivially
fulfilled at those points t where the left and right derivatives exist and they are
different (see lemma 1.2).

3. Carathéodory’s existence result is covered by theorem 2.4 with K(t) = ∅ for all
t ∈ I. Even Goodman’s characterization of the maximal and minimal solution [11] as
the greatest subfunction and the least superfunction is also included in theorem 2.4.

4. The existence result is not guaranteed, in general, in case the condition ‘F (t, x)∩
DKn(t, x)(1) ⊂ {f(t, x)}’ fails just for a single x and all t in a subinterval of I. The
following standard example shows this.

Example 2.6. The problem x′(t) = f(t, x(t)), x(0) = 0, for

f(t, x) =

{
1 if x < 0,

−1 if x � 0,

has no solution defined on, say, I = [0, 1]. Here, K(t) = {0} for all t ∈ I, and thus
DK(t, 0)(1) = {0} for all t.
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On the other hand, F (t, 0) :=
⋂

ε>0 co f(t, 0 + εB) = [−1, 1], and then

F (t, 0) ∩ DK(t, 0)(1) = {0} �⊂ {f(t, 0)}.

5. The condition ‘F (t, x) ∩ DKn(t, x)(1) = ∅ for all n ∈ N’, which implies (2.4),
is a type of transversality (or in-viability) condition, and it prevents the solutions
from touching ‘tangentially’ the discontinuity set graph(Kn). The geometrical idea
behind this condition is not new at all, and can be traced back to Filippov’s dis-
continuity surfaces described in [10]. Similar conditions for scalar problems were
introduced in [20].

6. Most existence results for inclusions of the type of (1.2) require the multi-valued
mapping F (·, x) be measurable for each x, i.e. that {t ∈ I : F (t, x) ∩ A �= ∅} be
Lebesgue measurable for each open A ⊂ Rm (see [16] or [9, definition 3.1]). It
seems that Davy in [7] was the first author who realized that, in many situations,
the existence of a measurable selection of F (·, x) is enough. This is exploited in, for
instance, the proofs of corollary 5.1 and theorem 7.2 in [9], which play a central role
in the proof of our proposition 2.1. Davy’s observation appears to be crucial in this
paper, as the multi-valued mapping F (t, x) :=

⋂
ε>0 co f(t, x + εB) may fail to be

measurable in t, even though f satisfies (i), (ii) and f(t, ·) is continuous everywhere
except, at most, on a countable and nowhere dense subset. This is the case in the
following example.

Example 2.7. Let S ⊂ (0, 1] be a non-measurable set and define the function
f : [0, 1] × R → R as

f(t, x) =

{
1 if t = s and x = s/n for some s ∈ S and some n ∈ N,

0 otherwise.

Note that, for each x ∈ R, there is, at most, a finite number of points s ∈ S and
a finite number of positive integers n such that x = s/n. Therefore, the function
t �→ f(t, x) is continuous everywhere except, at most, on a finite set of ts. Hence
f(·, x) is measurable for each x ∈ R.

On the other hand, for each t ∈ [0, 1], the function f(t, ·) is continuous everywhere
except, at most, on the points of the set K(t) = {t/n : n ∈ N}.

It is easy to see that F (t, 0) = {0} if t �∈ S and F (t, 0) = [0, 1] if t ∈ S. Hence
F (·, 0) is not measurable, since, for instance, {t : F (t, 0) ∩ ( 1

2 , 2) �= ∅} = S.

3. Another existence result for the scalar case

It is proven in [14] that problem (1.1) with m = 1 has extremal solutions provided
that f : I × R → R satisfies (ii) and

(iii)∗ for all t ∈ I \ N and all x ∈ R, we have

lim sup
y→x−

f(t, y) � f(t, x) � lim inf
y→x+

f(t, y),

together with a boundedness condition similar to (i).
In this part, we shall focus on the right-hand sides f that satisfy (iii)∗ outside a

certain set of the type of graph(K) in condition (iii), but first we shall prove some
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technical results on superpositional measurability that will be needed to establish
our existence results.

3.1. Conditions for superpositional measurability

It is not clear whether the technique employed in [14] may be adapted to this
new setting, and there is a main difficulty that we have to overcome in a different
way: compositions f(·, x(·)) may be non-measurable, even for x ∈ C(I) (see [14]).
We shall use an obvious way to wipe this problem out, which consists in explicitly
requiring something like

(ii)∗ f(·, x(·)) is measurable for each x ∈ C(I).

Although (ii)∗ is commonplace in the current literature of discontinuous differ-
ential equations (see [2–4]), it is not a completely satisfactory assumption. First,
despite the fact that everyone agrees that measurability is quite a weak condition,
it is easy to find elementary examples of solvable Cauchy problems satisfying (ii)
and (iii)∗, but not (ii)∗ (see [14]). On the other hand, condition (ii)∗ is stronger, and
hence harder to check, than the classical (ii). Thus we consider that it is interesting
to investigate which types of f that satisfy (ii) and (iii)∗ also satisfy (ii)∗.

We shall also show that, loosely speaking, the gap between those f fulfilling (ii)
and (iii)∗ and the ones satisfying (ii)∗ and (iii)∗ is occupied by functions that are
discontinuous with respect to x on curves of the (t, x)-plane such that the restriction
of f to those curves is not a measurable function.

First, we need the following lemma, which is a slight extension of lemma 2.1
in [14] for real-valued f .

Lemma 3.1. Let N ⊂ I be a null-measure set and let f : I × R → R be such that
f(·, q) is measurable for each q ∈ Q. Then we have the following.

(a) If, for all t ∈ I \ N and all x ∈ R, we have

min
{

lim sup
y→x−

f(t, y), lim sup
y→x+

f(t, y)
}

� f(t, x),

then the mapping t ∈ I �→ inf{f(t, y) : x1(t) < y < x2(t)} is measurable for
each pair x1, x2 ∈ C(I) such that x1(t) < x2(t) for all t ∈ I.

(b) If, for all t ∈ I \ N and all x ∈ R, we have

max
{

lim inf
y→x−

f(t, y), lim inf
y→x+

f(t, y)
}

� f(t, x),

then the mapping t ∈ I �→ sup{f(t, y) : x1(t) < y < x2(t)} is measurable for
each pair x1, x2 ∈ C(I) such that x1(t) < x2(t) for all t ∈ I.

Proof. We shall only prove part (a), since (b) is similar.
We denote by S the following set of step functions: v : [t0, t0 + L) → R belongs

to S if v assumes only rational values, x1(t) < v(t) < x2(t) on [t0, t0 +L) and there
exists j ∈ N such that v is constant on every interval[

t0, t0 +
L

j

)
,

[
t0 +

L

j
, t0 +

2L

j

)
, . . . ,

[
t0 +

(j − 1)L
j

, t0 + L

)
.
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As x1, x2 are continuous on [t0, t0 + L], then S is not empty. Note, moreover,
that for each q ∈ (x1(t), x2(t)) ∩ Q, there exists v ∈ S such that v(t) = q.

Since S is a countable family and any composition f(·, v(·)) with v ∈ S is mea-
surable on [t0, t0 + L), it suffices to prove that

ι(t) := inf
y∈(x1(t),x2(t))

f(t, y) = inf
v∈S

f(t, v(t)) =: ι0(t)

a.e. on [t0, t0 + L) to deduce that ι is measurable.
Clearly, ι(t) � ι0(t) on [t0, t0 + L). To prove that ι(t) � ι0(t) on [t0, t0 + L) \ N ,

we fix an arbitrary t ∈ [t0, t0 +L)\N and we take a sequence {yn}n ⊂ (x1(t), x2(t))
such that

lim
n→∞

f(t, yn) = ι(t). (3.1)

Our assumptions guarantee that, for each n, we have

lim sup
y→y−

n

f(t, y) � f(t, yn) or lim sup
y→y+

n

f(t, y) � f(t, yn),

and therefore there exists qn ∈ (x1(t), yn) ∩ Q (or qn ∈ (yn, x2(t)) ∩ Q) such that
f(t, qn) � f(t, yn) + 1/n. Since there exists vn ∈ S such that vn(t) = qn, we have,
for all n, that

ι0(t) = inf
v∈S

f(t, v(t)) � f(t, vn(t)) � f(t, yn) +
1
n

and, using (3.1), we conclude that

ι0(t) � lim
n→∞

[
f(t, yn) +

1
n

]
= ι(t).

It is known that a function g : R → R such that

lim sup
y→x−

g(y) � g(x) � lim inf
y→x+

g(y) for all x ∈ R,

can have at most a countable set of discontinuity points (as a consequence of Young’s
theorem [17, p. 287]). Therefore, for each mapping f : I × R → R for which there
exists a null-measure set N ⊂ I such that for all t ∈ I \ N we have

lim sup
y→x−

f(t, y) � f(t, x) � lim inf
y→x+

f(t, y) for all x ∈ R,

there must exist a countable set of mappings jn : In ⊂ I → R, n ∈ N, such that the
set of discontinuity points of f(t, ·) is exactly

⋃
n/t∈In

{jn(t)} for each t ∈ I \ N .
Bearing these considerations in mind, the assumptions required in the following

proposition are natural.

Proposition 3.2. Let N ⊂ I be a null-measure set and let f : I × R → R be such
that the following hold.

(1) f(·, q) is measurable for each q ∈ Q.
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(2) Either for all t ∈ I \ N and all x ∈ R we have

min
{

lim sup
y→x−

f(t, y), lim sup
y→x+

f(t, y)
}

� f(t, x),

or for all t ∈ I \ N and all x ∈ R we have

f(t, x) � max
{

lim inf
y→x−

f(t, y), lim inf
y→x+

f(t, y)
}

.

(3) There exist mappings jn : In ⊂ I → R, n ∈ N, such that, for each t ∈ I \ N ,
the set of discontinuity points of f(t, ·) is exactly

⋃
n/t∈In

{jn(t)}. Moreover,
the mappings jn and f(·, jn(·)) are measurable.

Then the mapping t ∈ I �→ f(t, x(t)) is measurable for each x ∈ C(I).

Proof. Assume that the first alternative in (2) holds, let x ∈ C(I) be fixed and let
J = {t ∈ I \ N : x(t) = jn(t) for some n ∈ N} and Jn = {t ∈ J : x(t) = jn(t)},
n ∈ N. For all t ∈ I, we have that

f(t, x(t))χJ(t) =
∞∑

n=1

f(t, jn(t))χJ̃n
(t),

where J̃1 = J1, J̃n = Jn \ (J1 ∪ J2 ∪ · · · ∪ Jn−1), n � 2, and χA stands for the
characteristic function of the set A. Therefore, f(·, x(·))χJ is measurable.

Now we consider (I \ N) \ J = {t ∈ I \ N : f(t, ·) is continuous at x(t)} =: Ic.
Then, for all t ∈ I \ N ,

f(t, x(t)) = lim inf
y→(x(t))+

f(t, y)χIc(t) + f(t, x(t))χJ(t)

= lim
n→∞

[
inf

y∈(x(t),x(t)+1/n)
f(t, y)χIc(t)

]
+ f(t, x(t))χJ(t),

which implies that f(·, x(·)) is measurable by virtue of lemma 3.1.
To establish the result using the second alternative in (2), it suffices to replace

inf by sup to express f(·, x(·)) as a limit of a sequence of measurable functions.

3.2. Existence results

It is the aim of this part to prove an analogous result to theorem 2.4 for m = 1 in
order to cover the case of nonlinear f : I × R → R which, for a given null-measure
set N ⊂ I, satisfies (i) and the following conditions.

(ii)′ f(·, v(·)) is measurable on I whenever v ∈ AC(I).

(iii)′ For all t ∈ I \ N , we have

lim sup
y→x−

f(t, y) � f(t, x) � lim inf
y→x+

f(t, y) for all x ∈ R \ K(t),

lim inf
y→x−

f(t, y) � f(t, x) � lim sup
y→x+

f(t, y) for all x ∈ K(t),
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where K(t) =
⋃∞

n=1Kn(t) and, for each n ∈ N and x ∈ Kn(t), we have⋂
ε>0

co f(t, x + εB) ∩ DKn(t, x)(1) ⊂ {f(t, x)}.

Remark 3.3. In this case, there is no hope to have K = C, since C need not be
closed nor connected in C(I, Rm), even though K(t) = ∅ for all t ∈ I. To see this,
it suffices to consider the problem x′ = f(t, x) for a.a. t ∈ [0, 1], x(0) = 0, for

f(t, x) =

⎧⎪⎨
⎪⎩

2 if x � t,

1 − 1/n if (1 − 1/n)t � x < [1 − 1/(n + 1)]t,
0 if x < 0.

To work with this new type of nonlinearity, we follow lemma 1 in [3] and we
define h : I × R2 → R as follows:

h(t, α, β) =

{
sup{f(t, δ) : α � δ � β} if α � β,

inf{f(t, δ) : β � δ � α} if α � β.
(3.2)

Furthermore, we shall need the following multi-valued extension of h: we define
H : I × R2 → P(R) as

H(t, α, β) =
⋂
ε>0

co h(t, α + εB, β). (3.3)

The following statement and its proof are nothing but immediate adaptations
of those of [3, lemma 1]. However, some minor differences arise due to our weaker
assumptions.

Lemma 3.4. Assume that (i), (ii)′ and (iii)′ hold. Then the function h defined
in (3.2) satisfies the following conditions.

(a) h(t, x, x) = f(t, x).

(b) For almost all t and each x, h(t, x, ·) is non-decreasing.

(c) For each absolutely continuous v : I → R, the function

(t, x) �→ h(t, x, v(t))

satisfies (i) and (ii). Moreover, for each t ∈ I \ N , h(t, ·, v(t)) is continuous
on R \ K(t).

Proof. Parts (a) and (b) are immediate. To prove that, for a.a. t ∈ I, h(t, ·, v(t))
is continuous on R \ K(t), it suffices to note that h(t, ·, β) is non-increasing for all
t ∈ I \ N and all β and to show that

lim
y→α−

h(t, y, β) � h(t, α, β) � lim
y→α+

h(t, y, β) for each α ∈ R \ K(t). (3.4)
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To see that, let t ∈ I \ N be fixed and assume that α � β is such that α �∈ K(t).
Then we have

lim
y→α−

h(t, y, β) = lim
y→α−

sup{f(t, δ) : y � δ � β}

= lim
y→α−

sup{sup{f(t, δ) : y � δ < α}, sup{f(t, δ) : α � δ � β}}(
by condition (iii)′, lim sup

y→α−
f(t, y) � f(t, α)

)
� sup{f(t, α), sup{f(t, δ) : α � δ � β}}
= h(t, α, β),

and if α > β, α �∈ K(t), we have

lim
y→α−

h(t, y, β) = lim
y→α−

inf{f(t, δ) : β � δ � y}

= inf{f(t, δ) : β � δ < α}(
by condition (iii)′, lim inf

y→α−
f(t, y) � f(t, α)

)
= inf{f(t, δ) : β � δ � α}
= h(t, α, β).

We note that the previous limits exist because the mappings involved are mono-
tone. The proof of the other half of (3.4) is similar.

Now we have to prove that h(·, x, v(·)) is measurable for each v ∈ AC(I) and
each x ∈ R, but this follows directly from the assumptions, lemma 3.1 and

h(t, x, v(t))
= max{f(t, x), f(t, v(t)), sup{f(t, δ) : x < δ < v(t)}}χI1(t)

+ min{f(t, x), f(t, v(t)), inf{f(t, δ) : v(t) < δ < x}}χI2(t)
+ f(t, x)χI3(t), t ∈ I,

where I1 = {t ∈ I : x < v(t)}, I2 = {t ∈ I : x > v(t)} and I3 = I \ (I1 ∪ I2).
Finally, the mapping (t, x) �→ h(t, x, v(t)) satisfies (i) with ψ(t) replaced by, for

instance, ψ̄(t) = ψ(t)(1 + |v(t)|).

Now we can proceed to establish some properties of H.

Lemma 3.5. Assume that for a null-measure set N ⊂ I, f : I ×R → R satisfies (i),
(ii)′ and (iii)′, and consider the mappings h and H defined in (3.2) and (3.3),
respectively. Then, for each t ∈ I \ N and all x ∈ R, we have the following.

(a) H(t, x, x) ⊂ F (t, x) :=
⋂

ε>0 co f(t, x + εB).

(b) H(t, x, ·) is non-decreasing in the following sense:

y1 � y2 ⇒ H(t, x, y1) ⊂ H(t, x, y2) − R+

and H(t, x, y2) ⊂ H(t, x, y1) + R+.
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Proof. Note that, for each (t, x) ∈ I × R, we have

F (t, x) =
[
min

{
f(t, x), lim inf

y→x
f(t, y)

}
, max

{
f(t, x), lim sup

y→x
f(t, y)

}]
,

and for each ε > 0,

co h(t, x + εB, x)
= [inf{h(t, y, x) : x − ε � y � x + ε}, sup{h(t, y, x) : x − ε � y � x + ε}]. (3.5)

Now we take into account the fact that

inf{h(t, y, x) : x − ε � y � x + ε}
= min{h(t, x, x), inf{h(t, y, x) : x − ε � y < x}, inf{h(t, y, x) : x < y � x + ε}},

and we compute

inf{h(t, y, x) : x − ε � y < x}
= inf{sup{f(t, δ) : y � δ � x} : x − ε � y < x}
= inf{max{f(t, x), sup{f(t, δ) : y � δ < x}} : x − ε � y < x}
� inf{sup{f(t, δ) : y � δ < x} : x − ε � y < x}
= lim sup

y→x−
f(t, y) � lim inf

y→x−
f(t, y)

and

inf{h(t, y, x) : x < y � x + ε}
= inf{inf{f(t, δ) : x � δ � y} : x < y � x + ε}
= inf{f(t, δ) : x � δ � x + ε}
= min{f(t, x), inf{f(t, δ) : x < δ � x + ε}}.

Symmetric arguments with the right end of the interval (3.5) show that, for each
ε > 0, we have

co h(t, x + εB, x) ⊂
[
min

{
f(t, x), lim inf

y→x−
f(t, y), inf{f(t, y) : x < y � x + ε}

}
,

max
{

f(t, x), lim sup
y→x+

f(t, y), sup{f(t, y) : x − ε � y < x}
}]

,

and, since these intervals decrease with ε, we can go to the limit when ε tends to 0+

to obtain the desired estimate,

H(t, x, x) =
⋂
ε>0

co h(t, x + εB, x)

⊂
[
min

{
f(t, x), lim inf

y→x−
f(t, y), lim inf

y→x+
f(t, y)

}
,

max
{

f(t, x), lim sup
y→x+

f(t, y), lim sup
y→x−

f(t, y)
}]

= F (t, x).
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To establish part (b), it suffices to show that both endpoints of the interval
H(t, x, y1) are smaller than the corresponding ones of H(t, x, y2) when y1 � y2. We
shall only prove the result for the left extremes, as the arguments to prove it for
the right ones are similar. Since h(t, x, ·) is non-decreasing, for each ε > 0, we have

inf co h(t, x + εB, y1) = inf{h(t, y, y1) : x − ε � y � x + ε}
� inf{h(t, y, y2) : x − ε � y � x + ε}
= inf co h(t, x + εB, y2),

and then inf H(t, x, y1) = sup{inf co h(t, x + εB, y1) : ε > 0} � inf H(t, x, y2).

Finally, we establish this section’s main result. Its proof is based on the theory of
generalized iterative techniques for finding fixed points of discontinuous operators,
described by Heikkilä and Lakshmikantham in [15]. It will be divided in several
steps for the sake of clearness.

Theorem 3.6. If conditions (i), (ii)′ and (iii)′ hold, then problem (1.1) has the
minimal solution x∗ and the maximal one x∗.

Moreover, for each t ∈ I, we have

x∗(t) = max{v(t) : v ∈ AC(I), v′(s) � f(s, v(s)) a.e., v(t0) � x0}, (3.6)
x∗(t) = min{v(t) : v ∈ AC(I), v′(s) � f(s, v(s)) a.e., v(t0) � x0}. (3.7)

Proof. We start by defining an operator G : AC(I) → AC(I) as follows. For each
v ∈ AC(I), Gv is the minimal Krasovskij solution of x′ = h(t, x, v(t)), x(t0) = x0,
or, equivalently, the minimal solution of the multi-valued problem

x′(t) ∈ H(t, x(t), v(t)) for a.a. t ∈ I, x(t0) = x0. (3.8)

Claim 1. Gv is well defined.

By lemma 3.4 (c), the mapping (t, x) �→ h(t, x, v(t)) satisfies (i) and (ii). Hence
it follows from proposition 2.1 that problem (3.8) has extremal solutions, and, in
particular, the minimal solution exists.

Claim 2. G : AC(I) → AC(I) is non-decreasing.

Let vi ∈ AC(I), i = 1, 2, be such that v1 � v2 on I and put yi = Gvi, i = 1, 2.
By part (b) of lemma 3.5, we have, for a.a. t ∈ I, that

y′
2(t) ∈ H(t, y2(t), v2(t)) ⊂ H(t, y2(t), v1(t)) + R+,

which implies that y1 � y2 by virtue of (2.2) and the definition of y1.

A priori bounds on the solutions. As a consequence of (i) and Gronwall’s inequality,
we have that each solution v of (1.1) satisfies

|v(t)| � (1 + |x0|) exp
(∫ t

t0

ψ(s) ds

)
− 1 =: b(t) for all t ∈ I.

Claim 3. Gb � b.
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Indeed, from (i) and the definition of b, we have that

h(t, b(t), b(t)) = f(t, b(t)) � ψ(t)(1 + b(t)) = b′(t) for a.a. t ∈ I.

Then b′(t) ∈ H(t, b(t), b(t)) + R+ for a.a. t ∈ I and, moreover, b(t0) = |x0| � x0.
Therefore, by (2.2), we deduce that Gb � b.

Claim 4. There exists a ∈ AC(I), a � b, such that Gv � a for all v � b (in
particular, Ga � a). Moreover, if v ∈ AC(I) is a solution of (1.1), then

v ∈ [a, b] := {z ∈ AC(I) : a(t) � z(t) � b(t) for all t ∈ I}.

By the definition of h and (i), we have, for each v ∈ AC(I) with v � b, that

|h(t, x, v(t))| � ψ(t)(1 + b(t))(1 + |x|) for a.a. t ∈ I and for all x ∈ R.

Since the right-hand side of the above inequality is independent of v, there exists
ψ̄ ∈ L1(I) such that, for each v ∈ AC(I) with v � b, we have

|(Gv)′(t)| � ψ̄(t) for a.a. t ∈ I. (3.9)

Let us define

a(t) = min
{

−b(t), x0 −
∫ t

t0

ψ̄(s) ds

}
for all t ∈ I.

By (3.9), for all v ∈ AC(I) such that v � b, we have that a � Gv. Since a � b in
particular, it holds that a � Ga. Moreover, for any solution v of (1.1), we have that
|v(t)| � b(t) for all t ∈ I, and by the definition of a, we also have that v ∈ [a, b].

Claim 5. G has the minimal fixed point in the functional interval [a, b].

By claims 2, 3 and 4, we have that a � Ga, Gb � b and G is non-decreasing.
Moreover, equation (3.9) holds for each v ∈ [a, b]. Then, by [15, proposition 1.4.4],
there exists x∗, the minimal fixed point of G in [a, b], which satisfies

x∗ = min{x ∈ [a, b] : Gx � x}. (3.10)

Claim 6. x∗ is the minimal solution of problem (1.1).

Since Gx∗ = x∗, we have that x∗(t0) = x0 and x′
∗(t) ∈ H(t, x∗(t), x∗(t)) for a.a.

t ∈ I. Therefore, part (a) of lemma 3.5 guarantees that x′
∗(t) ∈ F (t, x∗(t)) for a.a.

t ∈ I.
We define A = {t ∈ I : x∗(t) ∈ K(t)} and B = I \ A. By (iii)′ and lemma 2.3 (a),

we have that x′
∗(t) = f(t, x∗(t)) for a.a. t ∈ A. On the other hand, h(t, ·, x∗(t)) is

continuous on R \ K(t) for a.a. t ∈ I (see lemma 3.4 (c)), and then

H(t, x∗(t), x∗(t)) = {h(t, x∗(t), x∗(t))} = {f(t, x∗(t))} for a.a. t ∈ B.

Therefore, we also have x′
∗(t) = f(t, x∗(t)) for a.a. t ∈ B, and thus x∗ is a

(Carathéodory) solution of (1.1).
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To see that x∗ is the minimal solution of (1.1), we have to take an arbitrary
solution of (1.1), say, x, and show that x∗ � x on I. We have that x(t0) = x0,
x ∈ [a, b] by claim 4, and

x′(t) = f(t, x(t)) = h(t, x(t), x(t)) ∈ H(t, x(t), x(t)) + R+ for a.a. t ∈ I.

Therefore, by (2.2) and the definition of G, we deduce that Gx � x. Now it follows
from (3.10) that x∗ � x.

Claim 7. x∗ satisfies (3.7).

Suppose that v ∈ AC(I) and that

v′(t) � f(t, v(t)) for a.a. t ∈ I, v(t0) � x0.

The mapping y(t) = min{v(t), b(t)}, t ∈ I, belongs to AC(I). Moreover,

y′(t) � f(t, y(t)) = h(t, y(t), y(t)) for a.a. t ∈ I, y(t0) = x0,

which implies that y′(t) ∈ H(t, y(t), y(t)) + R+ for a.a. t ∈ I. Then, by (2.2), we
have that Gy � y. Since y � b, it follows from claim 4 that a � Gy, and therefore
a � Gy � y � b. Hence we deduce from (3.10) that x∗ � y. Therefore, x∗ � v
and (3.7) is proved.

The arguments to prove that (1.1) has a maximal solution are dual.

3.3. Particular cases

In this section we give two corollaries of theorem 3.6 in order to more easily
obtain applicable results. Both results cover the case in which the discontinuity
set graph(K) consists of a countable union of possibly intersecting ‘curves’ in the
(t, x)-plane and improve theorem 3.1 of [20] in some aspects.

Corollary 3.7. Assume that, for f : I × R → R, there exists a null-measure set
N ⊂ I such that (i), (ii)′ and the following condition holds.

(iii)′′ There exist curves γn : In ⊂ I → R, n ∈ N, which are right-differentiable a.e.
on the interval In, such that, for all t ∈ I \ N , we have

lim sup
y→x−

f(t, y) � f(t, x) � lim inf
y→x+

f(t, y) for x ∈ R \
∞⋃

n=1

{γn(t)},

lim inf
y→x−

f(t, y) � f(t, x) � lim sup
y→x+

f(t, y) for all x ∈
∞⋃

n=1

{γn(t)}.

Moreover, for each n ∈ N and a.a. t ∈ In, the relation

min
{

f(t, γn(t)), lim inf
y→γn(t)

f(t, y)
}

� (γn)′
+(t)

� max
{

f(t, γn(t)), lim sup
y→γn(t)

f(t, y)
}

implies (γn)′
+(t) = f(t, γn(t)).
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Then problem (1.1) has extremal solutions, which satisfy (3.6) and (3.7).

Proof. We may assume that γn is right-differentiable on In \ N . For each n ∈ N,
we define Kn(t) = {γn(t)} for t ∈ In and Kn(t) = ∅ otherwise. By lemma 1.2 (a),
we have, for each t ∈ In, t �∈ N , that

DKn(t, γn(t))(1) = {(γn)′
+(t)},

and, following our convention, DK(t, γn(t))(1) = ∅ for t �∈ In. On the other hand,
for each n ∈ N and t ∈ In \ N , we have that⋂

ε>0

co f(t, γn(t) + εB)

=
[
min

{
f(t, γn(t)), lim inf

y→γn(t)
f(t, y)

}
, max

{
f(t, γn(t)), lim sup

y→γn(t)
f(t, y)

}]
,

and the result follows from theorem 3.6.

Now we state another consequence of theorem 3.6 and lemma 1.2.

Corollary 3.8. Assume that, for f : I × R → R, there exists a null-measure set
N ⊂ I such that (i), (ii)′ and the following condition holds.

(iii)′′′ There exist curves γn : In ⊂ I → R, n ∈ N, such that, for all t ∈ I \ N , we
have

lim sup
y→x−

f(t, y) � f(t, x) � lim inf
y→x+

f(t, y) for x ∈ R \
∞⋃

n=1

{γn(t)},

lim inf
y→x−

f(t, y) � f(t, x) � lim sup
y→x+

f(t, y) for all x ∈
∞⋃

n=1

{γn(t)}.

Moreover, for each n ∈ N and a.a. t ∈ In, we have that either

D+γn(t) < min
{

f(t, γn(t)), lim inf
y→γn(t)

f(t, y)
}

or

D+γn(t) > max
{

f(t, γn(t)), lim sup
y→γn(t)

f(t, y)
}

.

Then problem (1.1) has extremal solutions, which satisfy (3.6) and (3.7).

We illustrate the applicability of corollaries 3.7 and 3.8 in the following examples.
As far as the authors are aware, there is no previous existence result which can be
applied to study these examples.

Example 3.9. Let {qn}∞
n=1 be an enumeration of all rational numbers in (−∞, 0)

and define
ϕ(x) =

∑
qn<x

2−n for all x ∈ R.

Note that ϕ is non-decreasing and, in particular, Borel measurable, discontinuous
exactly on Q ∩ (−∞, 0), 0 < ϕ(x) � 1 for all x ∈ R and ϕ(x) = 1 for all x � 0.

https://doi.org/10.1017/S0308210500003383 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500003383
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Define now ψ : [0, 1] × R → R as

ψ(t, x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2 if x > 0,

0 if x < −t,∑
−t/n�x

2−n elsewhere,

and note that ψ is non-decreasing to both of its variables. Finally, we define f(t, x) =
ϕ(x)(1 − ψ(t, x)) for all (t, x) ∈ [0, 1] × R.

It is easy to check using the above-mentioned properties about ϕ and ψ that
the conditions of proposition 3.2 are satisfied with j0(t) = 0, jn(t) = −t/n for
all t ∈ [0, 1] and all n ∈ N. Therefore, f satisfies condition (ii)′. Condition (i) is
immediately verified and thus it only remains to check condition (iii)′ in order to be
in a position to apply corollary 3.7. To this end, we define γn = jn for n = 0, 1, 2, . . .
and we observe that, for t ∈ [0, 1] \ Q, we have that ϕ is continuous at −t/n, and
hence

lim
y→x−

f(t, y) � f(t, x) � lim
y→x+

f(t, y) if x �= − t

n

and

lim
y→x−

f(t, y) � f(t, x) � lim
y→x+

f(t, y) if x = − t

n
or x = 0.

Moreover, for each n ∈ N and all t ∈ [0, 1], we have that

γ′
n(t) = −1/n < 0 < min

{
f(t, γn(t)), lim inf

y→γn(t)
f(t, y)

}
.

On the other hand, for n = 0 and all t ∈ [0, 1], we have

−1 = min
{

f(t, 0), lim inf
y→0

f(t, y)
}

� γ′
0(t) = 0 = max

{
f(t, 0), lim sup

y→0
f(t, y)

}
,

and also γ′
0(t) = 0 = f(t, γ0(t)).

Then the problem x′(t) = f(t, x(t)), x(0) = x0, has extremal solutions on [0, 1]
for each x0 ∈ R.

Example 3.10. Let {qn}∞
n=1 be an enumeration of all rational numbers and con-

sider the mapping
φ(x) =

∑
qn<x

2−n for all x ∈ R.

Note that φ is non-decreasing, left-continuous everywhere, discontinuous exactly on
Q and 0 < φ(x) < 1 for all x ∈ R.

Let f(t, x) = φ(t − x) + φ(x) − 1 for all (t, x) ∈ [0, 1] × R.
Since φ is Borel measurable, condition (ii)′ holds. The remaining conditions in

corollary 3.8 can be easily checked with γn(t) = t − qn for all t ∈ [0, 1] and n ∈ N.
Notice that, for all n ∈ N and all t ∈ [0, 1], we have

γ′
n(t) = 1 > φ(q+

n ) + φ((t − qn)+) − 1 > max
{

f(t, γn(t)), lim sup
y→γn(t)

f(t, y)
}

.
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Therefore, the initial-value problem x′(t) = f(t, x(t)), x(0) = x0, has extremal
solutions on [0, 1] for each x0 ∈ R.

Remark 3.11. We note that the previous corollaries and theorem 3.1 of [20] are not
really comparable: conditions (iii)′′ and (iii)′′′ are clearly milder than condition (II)
in [20, theorem 3.1]. However, condition (ii)′ is stronger than (I) in [20], which only
requires that f(·, x) be measurable for each x.
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