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Abstract

Irrigation according to reliable estimates of crop water requirements (CWR) is one of the key
strategies to ensure long-term sustainability of irrigated agriculture. In southern Mediterranean
regions, during the irrigation season, CWR is almost totally controlled by the potential evapo-
transpiration of the irrigated crop. An innovative system for forecasting crop potential evapo-
transpiration (ETp) has been implemented recently in the Campania region (southern Italy).
The system produces ETp forecasts with a lead time of up to 5 days, by coupling the visible
and near-infrared crop imagery with numerical weather prediction outputs of a limited area
model. The forecasts are delivered to farmers with a simple and intuitive web app interface,
which makes daily real-time ETp maps accessible from desktop computers, tablets and smart-
phones. Forecast performances were evaluated for maize fields of two farms in two irrigation
seasons (2014–2015). The mean absolute bias of the forecasted ETp was <0.3 mm/day and the
RMSE was <0.6 mm/day, both for lead times up to 5 days.

Introduction

Global population growth is determining a progressive increase of the demand for food supply,
which in turn increases the amount of water that needs to be allocated for crop production. In
some areas of the world, irrigated agriculture represents the major consumer of water
resources, typically about 0.70 of the total water use (UNWAP 2016). Indeed, irrigation allows
lands to be, on average, twice as productive as rain-fed lands. In areas such as southern
Mediterranean regions, irrigation is essential for ensuring high crop yields during late spring
and summer, characterized by high temperatures and lack of rain (Wriedt et al. 2009).

Improving the efficiency of water use for irrigation is required for ensuring long-term sustain-
ability of irrigated agriculture (Pereira et al. 2009). The EU Common Agricultural Policy, com-
bined with the Water Framework Directive, imposes a substantial increase in the efficiency of
water use in agriculture for the next decades on farmers and irrigation managers (Heinz 2008).

The strategies for more rational and efficient water consumption in agriculture may be cate-
gorized as policy, engineering, system and irrigation/agronomic practice interventions (Stöckle
2001). Among the latter interventions, one possible solution is to irrigate according to reliable
estimates of actual water that must be supplied by irrigation to satisfy crop water needs, which
are not provided by rainfall or by water available in the profile (Romano et al. 2011).

For this purpose, irrigation advisory services have been built to help farmers decide the
right amount of water to be supplied. These services provide an assessment of the crop
water requirement (CWR) to farmers, accounting for the meteorological conditions and the
development stage of the crop. The effectiveness of these CWR estimates relies on the avail-
ability of updated data about the crop and the meteorological conditions, with adequate spatial
and temporal resolution (Allen et al. 2011).

Current Earth observation (EO) systems provide multispectral imagery of crops with rela-
tively high spatial and temporal resolutions. Several models have been developed and success-
fully applied to exploit the available time series of visible and near-infrared (VIS-NIR) images
of the crop for estimating crop potential evapotranspiration (ETp) and crop water use. The
main space agencies, such NASA and ESA, provide georeferenced multispectral imagery
with a high spatial resolution (30 m or less) and small time intervals (9 days or less), free
of charge. This data policy enhanced the development of satellite-based services that can
offer irrigation advice to farmers at a reasonable cost. A review of the current application of
remote sensing for crop water management has been provided recently by Calera et al. (2017).

In southern Mediterranean regions, ETp is the main component of CWR, under the assump-
tion that irrigated crops grow under excellent agronomic and soil water conditions (Allen et al.
1998). One possible approach for estimating ETp is to apply the Penman–Monteith equation,
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with crop parameters estimated from remotely sensed images. This
is the so-called ‘one-step’ approach followed by some satellite irriga-
tion services, such as IRRISAT in Southern Italy (https://www.irri-
sat.com/en/), EO4Water in Lower Austria (https://eo4water.com/)
and IRRIEYE in Southern Australia (http://www.irrieye.com).

In addition to crop parameters, the Penman–Monteith equa-
tion needs meteorological data as input variables, including air
temperature, wind speed, solar radiation and relative humidity.
These data are often unavailable or available only with large
uncertainty, since they are estimated by spatial interpolation of
sparse meteorological ground stations. The reliability of meteoro-
logical data produced by numerical weather prediction (NWP)
models has improved considerably in the 21st century. Thus,
NWP model outputs are a valuable source for estimating the
meteorological variables relevant for calculating ETp maps, alter-
native to the spatial interpolation of spatially coarse ground-based
weather data sets (WMO 2012).

Operational NWP models can be also exploited for forecasting
ETp a few days ahead. This is particularly relevant for providing
irrigation advice to farmers in operative scenarios, since it allows
planning of irrigation water supply based on the expected
meteorological conditions rather than on past and current
meteorological data.

The current study presents an innovative ETp forecasting sys-
tem that has been implemented recently in the Campania region
(southern Italy). The forecasting system has been integrated into
the IRRISAT irrigation advisory service, which has been operative
in the Campania region since year 2007 and was originally based
on remote-sensing crop imagery and ground-based meteoro-
logical data. The new forecasting system integrates high-resolution
numerical weather forecasts with VIS-NIR crop imagery for pro-
viding ETp maps to farmers with a lead time of 5 days. The cur-
rent paper presents the methodological background and key
operational settings of the forecasting system. The forecast per-
formance of crop ETp was evaluated at two experimental sites
in Campania region, by comparing the forecasted ETp with that
estimated by means of ground meteorological observations.

Materials and methods

Methodological background for crop potential
evapotranspiration assessment

The CWR can be estimated according to the standard approach
proposed by Allen et al. (1998):

CWR = ETp − Pe (1)

where ETp (mm) is the crop potential evapotranspiration, i.e. the
amount of water consumed by crops via soil evaporation and
plant transpiration under optimum soil water conditions, and Pe
(mm) is the effective precipitation, i.e. the part of the rainwater
effectively available for crops, namely the rainwater excluding
the losses due to run-off and foliage interception.

During the irrigation season in southern Italy, due to features of
the Mediterranean climate, rainfall events are rare and generated
generally by intense thunderstorms of short duration and small
spatial extent, highly influenced by the local topography (Furcolo
et al. 2016). These rainfall patterns make monitoring difficult
with traditional rain gauge networks (Zoccatelli et al. 2015), and
forecasting with current NWP models is highly uncertain
(Montani et al. 2011). These characteristics of summer and spring

have been enhanced by the climatic change observed in the last
century (Diodato et al. 2011). Such rainfall events may cause floods
at local scale but provide little water supply to open field crops
(Preti et al. 2011). Thus, the rainfall contribution to overall CWR
is generally negligible as compared with crop ETp (D’Urso 2010).

Potential evapotranspiration depends on both crop para-
meters, such as surface albedo and crop height, and weather vari-
ables, such as air temperature, solar radiation, humidity, wind
speed and air pressure.

One conventional approach for assessing ETp is the so-called
‘two-steps’ procedure recommended by Allen et al. (1998).
According to this procedure, ETp can be evaluated by multiplying
the reference evapotranspiration (ET0) with a crop coefficient (Kc).

The reference evapotranspiration is the potential evapotrans-
piration of a hypothetical grass reference crop under optimum
soil water conditions and can be calculated with the FAO
Penman–Monteith equation using only weather information:

ET0 = 1
l

D(Rn − G) + g(900/T + 273)U(es − ea)
D+ g(1+ 0·34U) (2)

where λ is the latent heat of vaporization of water (MJ/kg), Rn is
the net radiation at the crop surface (MJ/m2/day), G is the soil
heat flux density (MJ/m2/day), T is the daily mean air temperature
at 2 m height (°C), U is the wind speed at 2 m above the ground
(m/s), es is the saturation vapour pressure (kPa), ea is the actual
vapour pressure (kPa), Δ is the slope of the vapour pressure
curve (kPa/°C) and γ is the psychometric constant (kPa/C).

The crop coefficient is then a proxy of the parameters describ-
ing the canopy development, i.e. leaf area index (LAI), surface
albedo and crop height (Vuolo et al. 2015).

An alternative method, which is the one used by IRRISAT for
producing remote-sensing-based estimates of ETp, is the so-called
‘one-step’ approach (D’Urso &Menenti 1995) that explicitly employs
aerodynamic and surface resistances to compute ETp as follows:

ETp = 86400
l

D(Rn − G) + rcp(es − ea)/ra
D+ g(1+ rs/ra)

[ ]
(3)

where ρ is the mean air density at constant pressure (kg/m3), cp is the
specific heat of the air (MJ/kg/°C), ra and rs are the aerodynamic and
surface resistances, respectively (s/m).

Visible and near-infrared imagery are processed to estimate
the canopy parameters required for applying Eqn (3): LAI, crop
height (hc) and the hemispherically integrated albedo (r).

The variability of LAI during the phenological development of
the crop has the largest impact on the estimation of ETp, as com-
pared with r and hc (Vanino et al. 2015).

Leaf area index and hc are used for computing the aero-
dynamic and surface resistances:

ra = ln[2−2/3hc/0·123hc]ln[2−2/3hc/0·0123hc]
(0.41)2U (4)

rs =
200
LAI

∀LAI ≤ 4

50 ∀LAI . 4

{
(5)

Albedo is used to estimate the fraction of incoming short-wave
radiation contributing to the net radiation Rn.
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IRRISAT operationally exploits LANDSAT-8 VIS-NIR
imagery for estimating canopy parameters with a spatial reso-
lution of 30 m. Upgrades are planned to exploit the Sentinel-2
remote-sensing imagery with a spatial resolution of 10 m.

The surface reflectance is used to estimate LAI with the CLAIR
model (Clevers 1989):

LAI =− 1
a
ln 1− WDVI

WDVI1

( )
(6)

where α is a shape parameter that must be calibrated with LAI
field measurements, WDVI is the weighted difference vegetation
index and WDVI∞ is the asymptotic value for LAI→∞, and it
is computed from the spectral reflectance (Vuolo et al. 2013).

Given the limited spectral resolution of the VIS-NIR imagery
employed, albedo is calculated as a weighted sum of surface spec-
tral reflectance:

r =
∑n
l=1

rlwl (7)

where ρλ is the surface spectral reflectance derived from the atmos-
pheric correction, while wλ is the fraction of solar irradiance in each
sensor band, according to D’Urso & Calera Belmonte (2006).

Crop height can be derived from crop maps or as function of
LAI with a specific regression equation that needs to be empiric-
ally determined. When this information is not available, hc is
fixed to 0.4 m. This is an acceptable approximation since the vari-
ability of crop height hc has little impact on the value of ETp,
especially in southern Mediterranean regions where the aero-
dynamic term of the FAO Penman–Monteith equation is much
smaller than the corresponding radiative term (Vuolo et al. 2015).

Numerical weather forecasts

The new ETp forecasting system implemented by IRRISAT
adopts the NWP outputs provided by COSMO-LEPS, which is
a Limited Area Ensemble Prediction System, operated by the
HydroMeteoClimate Regional Service of Emilia-Romagna, located
in Bologna, Italy (ARPA–SIMC). Pelosi et al. (2016) showed that
COSMO-LEPS produces skilful and reliable forecasts of the wea-
ther variables relevant for reference evapotranspiration (ET0) esti-
mates in Campania region, up to 5 days ahead, with limited
sensitivity to the forecast lead time.

Since December 2011, COSMO-LEPS has run twice a day, at
00:00 UTC and 12:00 UTC. The model has a forecast range of
132 h, with data available at 3 h intervals and a spatial resolution
of 7.5 km. The relevant weather variables to calculate ETp are
extracted from GRIB (GRIdded Binary or General Regularly-
distributed Information in Binary form) files released as output
of the 00:00 UTC run: atmospheric pressure reduced to mean
sea level, net short-wave radiation, albedo, wind speed at 10 m
above ground level, temperature and relative humidity at 2 m.
Figure 1 shows the points of the numerical grid adopted by
COSMO-LEPS covering the Campania region.

The numerical weather forecasts at a specific site are retrieved
by a triangle-based bi-linear interpolation method, which consists
of interpolating the three numerical grid points closest to the
examined site. A statistical post-processing technique is applied
for partially removing systematic and non-systematic forecast
errors produced by the NWP models, when ground measure-
ments of weather variables are available (Pelosi et al. 2017).

Web2.0 service for delivering crop potential evapotranspiration
forecast maps

Farmers can access ETp forecast maps by means of a dedicated
web-based platform with a protected login. At first access, farmers
need to draw the boundary of plots for which they request the
advisory service on a base layer. The platform then displays
updated maps and time series of crop LAI and daily crop evapo-
transpiration, with a forecast horizon up to 5 days, beside other
variables of potential interest for the farmer (e.g. air temperature,
rainfall, etc.). By clicking on the maps, the platform displays the
time series of the corresponding variables, either for each selected
pixel or aggregated at plot scale, according to the user requirement.

Sample layouts of the windows dedicated to LAI and crop ETp

are displayed in Figs 2 and 3. The web layouts are made up of a
coloured map with a legend, and graphs displaying both the cur-
rent value and the time series of the selected variable. In case of
ETp time series, the graph provides the values 5 days ahead of
the current day. Users can move the map by keeping the mouse
button held down while dragging it, and can use the zoom in
and zoom out button in the top left corner of the map. For
touchscreen devices, users can also use the multi-touch gesture
to pan and zoom the map. The position button, on the bottom
left, displays your location (based on global position system
(GPS) device of tablet or smartphone) on the map. Data in
tabular format are also provided as a summary report.

Measurements at the experimental maize fields

The test sites consisted of maize crop fields hosted by two farms,
Soffritti (40°27′) and Improsta (15°1′), located in the Campania
region (Fig. 1). Under the Köppen–Geiger climate classification,
this region is characterized by dry-summer sub-tropical climates,
which are often referred to as Mediterranean climate. During
summer, the mean monthly temperature ranges from 25 to 30 °C
and during winter, between 11 and 17 °C. The precipitation pat-
terns are influenced strongly by the interaction of wet air masses
with the orography (Pelosi & Furcolo 2015): mean annual

Fig. 1. COSMO-LEPS numerical grid (red circles) over Campania region and location
of Improsta and Soffritti farms hosting the verification sites.
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precipitation ranges from 800 to 1100 mm. The maximum
monthly precipitation values are recorded during November
and December, minimum values during July and August.
Irrigation in open fields starts no earlier than April and lasts
until the end of September, although the actual time span of
the irrigation season is influenced by climatic fluctuations and
specific agricultural practices.

The two selected farms are representative of two different
topographic conditions: Improsta is located in a large floodplain;
Soffritti is located in a hilly inland area. Choosing different terrain
is relevant for evaluating ETp forecast performances, since local
topographic conditions significantly affect the reliability of the
numerical weather forecast, as in other coastal regions of the cen-
tral Mediterranean basin (Buzzi et al. 1994), as well as of satellite-
based estimations of LAI (Calera et al. 2017).

Each farm was equipped with ground-based automatic weather
stations (AWS) providing measurements of precipitation, atmos-
pheric pressure, solar radiation, relative humidity, wind speed at
10 m above ground level and temperature at 2 m, with high accur-
acy and precision standards.

Ground LAI measurements were taken as follows: from seven
fields at Improsta on two dates in 2014, simultaneously to
DEIMOS-1 satellite acquisitions; from six fields at Soffritti farm
on eight dates in 2015, some of them close to or at the same
time as LANDSAT-8 Operational Land Imager (OLI) satellite
acquisitions.

Ground non-destructive measurements of LAI and leaf mean
tilt angle were made with a LICOR LAI-2000 Plant Canopy
Analyser (LI-COR 1992), which works by comparing the intensity
of diffuse incident illumination measured at the bottom of the
canopy with that arriving at the top. In order to reduce the effect
of multiple scattering on LAI-2000 measurements, the instrument
was only operated near dusk and dawn (6:30–9:30 a.m.; 6:30–8:30
p.m.) under diffuse radiation conditions, using one sensor for
both above- and below-stand measurements. In order to prevent
interference caused by the operator’s presence and the illumin-
ation conditions, the sensor field of view was limited using a
180° view cap. Measurements were azimuthally oriented opposite
to the sun azimuth angle. Leaf area index measurements were
taken with the instrument held a few centimetres above the soil,

Fig. 2. Layout of the web-based app, displaying LAI map and time series at a farm plot: a coloured map with legend is located at the top. The graph at the bottom
left displays the LAI value at the current day. On the bottom right, the graph displays the time series of the LAI.
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generally within 3 days of image data acquisition. A measurement
of ambient light was made with the sensor extended upward and
over the top of the canopy at arm’s length. Eight below-canopy
readings were then made. This procedure was conducted three
times per spot, and the resulting 24 samples comprise one full
set of measurements. Finally, each centre of the LAI-2000 trans-
ects was geolocated using GPS measurements. This measurement
protocol allowed determination of statistically meaningful LAI
values, characterized by a low ratio between the standard error
of the LAI (SEL) and LAI itself (SEL/LAI ranged between ≈0.03
and ≈0.13 for the test sites at Improsta and SEL/LAI ranged
between ≈0.02 and ≈0.17 for the test sites at Soffritti); thus, the
actual LAI should be within 11% of the LAI sample mean.

Leaf area index maps at Improsta were derived by combining
DEIMOS-1 satellite acquisitions with a spatial resolution of
22 m and LANDSAT-8 imagery, to get LAI data with an average
time frequency of 1 week. Leaf area index maps at Soffritti were
derived with a spatial resolution of 30 m from LANDSAT-8
imagery elaborated with a time frequency of 15 days, allowing
for favourable atmospheric conditions.

DEIMOS-1 is a commercial tasking EO satellite and is part of
the Disaster Monitoring Constellation (DMC) (http://www.dmcii.
com). The sensor records radiance in three spectral bands corre-
sponding to green (520–600 nm), red (630–690 nm) and near-
infrared (770–890 nm) parts of the electromagnetic spectrum at
a ground sampling distance (GSD) of 22 m. DEIMOS-1 images
were processed to a high degree of accuracy using an industry-
standard atmospheric correction algorithm (ATCOR-2) (Richter
1996; GEOSYSTEMS 2017).

LANDSAT-8 OLI data at a GSD of 30 m were generated rou-
tinely by the Landsat Ecosystem Disturbance Adaptive Processing
System (LEDAPS) and obtained through the USGS Land Science
Research and Development (LSRD) website; LEDAPS uses Dense
Dark Vegetation (DDV) targets to estimate the aerosol optical
thickness (AOT). The estimated AOT was used afterwards as
input to the Second Simulation of a Satellite Signal in the Solar
Spectrum (6S) radiative transfer model.

All images were elaborated using Eqn (6) with α = 0.35, which
was determined for this area based on previous field campaigns
(D’Urso & Calera Belmonte 2006).

Fig. 3. Layout of the web-based app, displaying crop ETp map and time series at a farm plot: a coloured map with legend is located at the top. The graph at the
bottom left displays the cumulative ETp with a user-defined time interval. On the bottom right, the graph displays the time series of the cumulative ETp.
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Results

Satellite-based estimates of leaf area index

In total, 62 ground LAI measurements (seven fields per two dates
at Improsta and six fields per eight dates at Soffritti) were taken
during the two irrigation seasons 2014 and 2015. The satellite esti-
mations were in good agreement with the ground observations
(coefficient of determination R2 = 0.70). Figure 4 shows the

scatterplot of field and satellite LAI estimates of years 2014 and
2015 at the test sites.

Figure 5 shows the time evolution of satellite and field LAI
estimates at the three test fields at Improsta and Soffritti, respect-
ively. The data show good agreement in the central part of the
irrigation season, while larger differences are observed in the
second half of July. A systematic overestimation of LAI by satellite
was observed at some plots in Soffritti. The impact of these differ-
ences on ETp forecasts was generally negligible, especially for high
LAI values, given the asymptotic behaviour of Eqn (3).

Potential evapotranspiration prediction errors obtained by
applying Eqn (3) with LAI equal to the one estimated with the
last satellite acquisition were generally larger than those obtained
by applying Eqn (3) with LAI estimated by remote-sensing, espe-
cially in the central part of phenological development of the crop.

Crop potential evapotranspiration forecasts

The performances of the new ETp forecasting system implemented
in IRRISAT at the selected fields are presented. The ‘best estimate’
of ETp, taken as a benchmark to assess the forecast performances,
was computed by using ground-based weather data combined with
interpolated values of LAI between two satellite estimates. The
IRRISAT approach used COSMO-LEPS forecasts for weather vari-
ables and LAI equal to the last available satellite estimate, to provide
forecasts of ETp with a lead time of up to 5 days.

The performance analysis also included a ‘mixed approach’,
which used COSMO-LEPS weather forecasts and interpolated
values of LAI between two satellite estimates, to evaluate the
impact of IRRSAT LAI approximation on ETp forecasts. Table 1
provides a summary of the methods employed in this comparison
study.

Fig. 4. Scatter plot of satellite estimates of LAI v. field estimates of LAI at Improsta
and Soffritti farms. The red line is the 45-degree line of perfect agreement between
the two estimates; the green dashed line is the least-squares line computed from
data. The R2 statistics refers to the perfect agreement between the two data sets.

Fig. 5. Time evolution of LAI estimates from satellite images and ground measurements at three of the selected maize fields of Improsta farm (top row) and Soffritti
farm (bottom row).
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Figure 6 shows a sample temporal evolution of the 5-day
cumulative ETp with lead time of 5 days as predicted by
IRRISAT, in comparison with the best estimate and the estimate
given by the mixed approach (COSMO + interpolated LAI), at
two representative test sites located, respectively, at Improsta
(left panel) and Soffritti (right panel). The IRRISAT and mixed
approaches provided very similar estimates at Improsta in 2014
because of the high frequency of available satellite estimates of
LAI. The main reason for dissimilarity between IRRISAT esti-
mates and the best estimates is due to errors in the weather fore-
casts: on average, IRRISAT underestimates the 5-day cumulative
ETp. On the contrary, at Soffritti in 2015, IRRISAT overestimated
the 5-day cumulative ETp compared with the best estimate. Then,
in this case, because of less frequent available satellite estimates of
LAI, the differences between the estimates given by IRRISAT and
mixed approaches were more evident and, as expected, IRRISAT
underestimated the 5-day cumulative ETp with respect to the
results of the mixed approach. The main sources of error in fore-
casting ETP were still due to errors in the weather forecasts,
although errors due to LAI approximations were not negligible.

Figures 7(a) and (b) depict the BIAS and RMSE, respectively,
of the cumulative ETp forecast by IRRISAT with respect to the
best estimate. The boxplots show the BIAS and RMSE across all
test sites, belonging to the two different farms, for increasing
cumulative forecasting time intervals (1, 3 and 5 days). On each
box, the central mark is the median, the edges of the box are
the 25th and 75th percentiles, the whiskers extend to the most
extreme data values not considered outliers, and outliers are plot-
ted individually. The points are drawn as outliers if they are larger
than q3 + 1.5(q3–q1) or smaller than q1− 1.5(q3–q1), where q1 and
q3 are the 25th and 75th percentiles, respectively. The circle mark
represents the mean value among all test sites in the same farm.

At Improsta, there was a prevailing negative BIAS, which
means that IRRISAT on average underestimated the cumulative

ETp. At Soffritti, the BIAS was on average positive, indicating
overestimation. Table 2 summarizes the average BIAS and
RMSE of the forecast ETp for different lead times (i.e. 1, 3 and
5 days) at both Improsta and Soffritti farms. The RMSE values
were higher for the field sites at Soffritti than those at Improsta,
probably because of the combined effect of the errors in weather
forecasts and in the LAI approximations, as mentioned above.

The ratio, rBIAS, between the bias in ETp due only to the
approximations made on LAI and the bias in ETp due only to
weather forecasts, is defined as follows:

rBIAS =
∑n

i=1 ETIRRISAT
p −ETMIXED

p

∣∣∣ ∣∣∣∑n
i=1 ETMIXED

p −ETBEST
p

∣∣∣ ∣∣∣ (8)

where n is number of days in the irrigation season.
Figure 8 shows rBIAS across all test sites, belonging to the two

different farms, for varying cumulative intervals having increasing
lead times (1, 3 and 5 days). Table 2 reports the average rBIAS for
different forecast lead times and at both Improsta and Soffritti
farms.

The ratio rBIAS was always lower than unity, which means
that, for the ETP forecasts, the main source of error is given by
weather forecasts. It was higher at Soffritti than Improsta because
of the less frequent available satellite LAI estimates (Fig. 5), which
led to major approximations on LAI values. The variability of
rBIAS with the lead time indicates that for Improsta, the impact
on forecast errors of the approximations made on LAI increased
with the cumulative time interval. For the case of Soffritti, this was
valid only for rBIAS related to the 5-day cumulative ETp.

Discussion

Irrigation advisory services can take advantage of the latest gener-
ation of high-resolution NWP models, also known as limited area
models (LAM), which represent a good data source for retrieving
the weather data relevant for ETp estimation where the spatial
density of weather stations is poor. These models also provide reli-
able forecasts of weather variables a few days in advance and with
a spatial resolution of a few kilometres. In contrast, quantitative
forecast of rainfall patterns is still affected by large uncertainty,
especially for forecasting lead times longer than 24 h.

Table 1. Overview of the methods employed in the performance analysis

Approach LAI Weather data source

IRRISAT Last available image COSMO-LEPS

Mixed Interpolated LAI COSMO-LEPS

Best estimate Interpolated LAI Ground AWS

Fig. 6. Sample time series of 5 days accumulated ETp forecasted with a lead time of 5 days by means of the IRRISAT approach and the mixed approach, based on
post-processed COSMO-LEPS outputs. The forecasted values are compared with the best estimate obtained by employing measured weather data.
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The current paper presents the performance of an innovative
system providing forecasts of crop ETp with a lead time of 5
days, which has been implemented in the IRRISAT irrigation
advisory service in Campania region (southern Italy). The fore-
casting system takes advantage of EO-imagery for assessing
crop canopy parameters and a high-resolution NWP model for
forecasting weather variables. It combines LAM outputs with a
post-processing procedure of the crop VIS-NIR imagery, for
computing maps of crop ETp based on the Penmann–Monteith
equation. Other irrigation services, such as the Irrigation Water
Management by Satellite and SMS system (IrriSatSMS) currently
implemented in Australia, exploit the NWP model, but they imple-
ment the so-called FAO-56 two-steps procedure (Hornbuckle et al.
2009). In IrriSatSMS, for example, NWP model outputs are used
for forecasting reference crop evapotranspiration (ET0). Earth
observation-imagery is then exploited for computing the basal
crop coefficient, which is used to scale the forecast ET0 according
to the specific crop phenological state.

Performances of the proposed ETp forecasting system were
evaluated at two farms in the Campania region, located in areas
characterized by significantly different topographic conditions.
Potential evapotranspiration forecasts accumulated over 5 days
were delivered 5 days in advance with an RMSE <3 mm (i.e.
0.6 mm/day) and an absolute bias <2 mm (i.e. 0.4 mm/day).
Local terrain properties greatly affected both reliability of the wea-
ther forecasts and accuracy of the canopy parameters estimated
from satellite images. In hilly and mountainous areas, weather
forecasts are more prone to errors since numerical models (having

a spatial resolution of a few kilometres) are not able to resolve the
terrain effects on local weather patterns. Complex terrain features
also represent a detrimental factor for post-processing satellite
images (Moran et al. 1997). For this reason, ETp forecast perfor-
mances at Soffritti, which is located in a hilly area, were generally
worse than at Improsta, located in a large river plain.

Another source of error for ETp forecasts lies in the fact that
crop parameters are updated only when a new satellite image of
the crop is available. This means that the accuracy of ETp forecasts
is influenced by the frequency of satellite acquisitions, especially
during the stages of fast crop canopy development. In the current
study, the impact of this approximation on the ETp forecast was
lower than that of the weather forecast errors. Nevertheless, the
new EO systems, such as Sentinel-2, can contribute towards les-
sening the impact of this approximation by providing crop
imagery with a smaller repeat cycle. Another option for dampen-
ing this source of error is to develop methods for forecasting the
crop parameters (Medina et al. 2014a). For instance, crop models
emulating the dynamic evolution of crop parameters could be
implemented by sequentially assimilating the observations pro-
vided by satellite images (Chirico et al. 2014; Medina et al. 2014b).

Besides the valuable forecasting performances, the success of
an irrigation advisory service also relies on its usability. For this

Fig. 7. (a) BIAS (mm) and (b) RMSE (mm) of forecasted ETp accumulated in 1, 3 and 5 days for increasing lead time.

Table 2. Summary of the average performance statistics of IRRISAT cumulative
ETp forecasts with respect to the best estimate

Forecast lead time

1 day
3
days

5
days

Average BIAS (mm) Improsta farm −0.28 −0.81 −1.30

Soffritti farm 0.30 0.64 1.50

Average RMSE (mm) Improsta farm 0.68 1.60 2.40

Soffritti farm 0.72 2.40 3.00

Average rBIAS Improsta farm 0.18 0.23 0.27

Soffritti farm 0.36 0.39 0.42
Fig. 8. Ratio between the ETp absolute bias due to LAI approximations and the ETp
absolute bias due to weather forecast errors.
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reason, the new ETp forecasting system has been integrated with
the most advanced web 2.0 technologies to deliver irrigation
advice to farmers in an effective and intuitive format. Future stud-
ies will be devoted to evaluating the performance of the proposed
irrigation advisory service from the end-users’ perspective.
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