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Coherent structures in turbulent round jets are evaluated for a jet Reynolds number
up to Red = 50 000 with the aid of two-point measurements and an existing direct
numerical simulation (DNS) dataset at Red = 7290. The experimental data comprise
simultaneous velocity time series acquired with both radial and azimuthal separations
between the sensors. A spectral correlation analysis is applied to these data that reveals
that the coherent structures in the jet flow consist of two principal configurations, which
correspond to two main spectral domains. One spectral domain, which is signified by
small to medium wavelengths, is associated with hierarchical eddy structures (ESs) for
which a physical aspect ratio of 1.2 : 1 : 1 in the axial, radial and azimuthal directions
is observed. The other spectral domain, indicated by large wavelengths, is associated
with very-large-scale motions (VLSMs). The wavelength marking the boundary between
these spectral domains is used to decompose the velocity fluctuations into ES and
VLSM components, and the corresponding ES and VLSM components of two-point
correlations are obtained from the experimental data. The VLSM component of two-point
correlations denotes helical structures as the dominant VLSMs in the jet turbulent
region. Instantaneous axial velocity fluctuation fields from DNS support the prevalence
of helical VLSMs in the jet. Moreover, the ES signatures are evident in the unwrapped
axial–azimuthal planes of the DNS, indicating that the VLSMs are formed by the
concatenation of ESs. Consistent with the experimental two-point correlations and DNS
flow fields, a conceptual model is proposed for the ESs and VLSMs, which illustrates their
arrangements.
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1. Introduction

This study is concerned with the eddy structures (ESs) and very-large-scale motions
(VLSMs) in the (fully turbulent) intermediate field of turbulent round jets. The jet flow
issuing from a contracting nozzle comprises three regions: the near field, the intermediate
field and the far field. The near field, which appears only for jets issuing from a contracting
nozzle, is defined by its potential core, and is usually within 0 ≤ x/d ≤ 7. The far field,
located from approximately x/d ≥ 70, is the self-similar region of the jet. The intermediate
field is the streamwise region between the near and far fields and becomes fully turbulent
from approximately x/d ≥ 10 (Ball, Fellouah & Pollard 2012).

Our focus in the present study is on the jets that discharge from contracting nozzles.
Before the introduction of coherent structures, turbulent flows were considered as random
phenomena and were approached purely from a statistical point of view. The discovery of
coherent structures in turbulent flows changed this view and facilitated notable advances
in understanding the physics of turbulence as well as the control of turbulent shear flows
(Hussain 1983). One of the chief applications of coherent structures is in the study of
aerodynamic noise in the near field of turbulent jets (see e.g. Crow & Champagne 1971;
Mankbadi & Liu 1984; Hussain 1986; Cavalieri et al. 2013; Fu et al. 2017, among others).
Interaction of the coherent structures is also crucial in mixing and entrainment (Winant &
Browand 1974; Philip & Marusic 2012) and the development of turbulent jets (Browand
& Laufer 1975; Breda & Buxton 2018). In technological applications, coherent structures
and their interactions could be artificially magnified or suppressed through excitation or
interruption imposed on the flow with the purpose of enhancing heat transfer, mixing and
entrainment as well as noise reduction (Zaman & Hussain 1981; Sadeghi & Pollard 2012).
Hence, better understanding of the flow physics of coherent structures of various scales
should lead to more efficient control of jets.

Coherent structures in axisymmetric jets that discharge from a contracting nozzle
constitute a broad variety of scales and configurations that occur at different stages of
the jet evolution (Ball et al. 2012), with vortex rings being the dominant structures in
the transitional region in the near field of the turbulent round jet. Yule (1978) studied
the transitional and fully turbulent region in the round jets. His experiments showed that
Kelvin–Helmholtz instabilities produce a street of vortex-ring-like vorticity concentrations
in the transitional region. As these vortex rings move downstream, they generally coalesce
and break into three-dimensional large eddies. Yule emphasized that orderly, easily
visualized, circumferentially coherent vortices in the transition regions of free shear
flows are different from the less clearly visualized, but strong, large eddies in the fully
turbulent region. Using laser-induced fluorescence measurements, Liepmann & Gharib
(1992) showed that, as the jet progresses into the turbulent region, azimuthal instabilities
break the vortex rings by producing axial vortex pairs in what is referred to as the braid
region. Distinct mushroom-like structures form around the jet potential core in this region
and move outwards after their formation. Using stereoscopic particle image velocimetry
(PIV) and resolvent analysis in the jet near field, Nogueira et al. (2019) showed that
large-scale streaky structures and the lift-up mechanism, which are important phenomena
in wall-bounded turbulence, are also relevant aspects of the jet dynamics in the near field.

Several studies suggest the presence of hairpin-like eddies as the main vortical structure
in the fully turbulent region of the jet. Based on the correlation measurements of three
velocity components in turbulent free shear flows, Townsend (1976) suggested that the
flow features are dominated by double-roller ESs that are inclined to the axial direction.
Nickels & Perry (1996) followed Townsend’s proposal for the dominant ESs. They
modelled the turbulent round jet using double-roller eddies with a characteristic velocity
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that is proportional to the centreline velocity of the jet, and a characteristic length that
is proportional to the characteristic radius of the jet. Each of these eddies has a limited
azimuthal extent and a number of them are randomly distributed in different azimuthal
and axial positions with equal probability to form the flow. They used a single-size ES to
model the jet flow and observed fairly good agreement between the Reynolds stresses and
energy spectra calculated from this model compared to those from experiments.

The single-size ES model in the turbulent round jet is in contrast to hierarchies of
ESs required to model turbulent wall-bounded flows (Nickels & Marusic 2001). Using
two-point correlations of temperature and velocity fluctuations obtained from direct
numerical simulation (DNS) of a round jet at a jet Reynolds number Red = 〈Uj〉d/ν =
1200, Suto et al. (2004) showed that both temperature and velocity can be used as an
indicator of an eddy. Here 〈Uj〉 is the jet mean velocity, d is the nozzle diameter and ν

is the fluid kinematic viscosity. They proposed a conceptual model of a hairpin-like eddy
and validated it by two-point correlations and probability density function analysis for the
eddy alignment. They found that the eddies stand with their legs inclined downstream at
an inclination angle of 45◦, suggesting that a hairpin-like eddy is one of the universal
structures in turbulent shear flows. The inclined legs of these eddies are consistent with
the mushroom-like structures reported by Liepmann & Gharib (1992) in the braid region.

Matsuda & Sakakibara (2005) used time-resolved stereo PIV measurements to study
the turbulent region of the jet up to Red = 5000. They used isosurfaces of the swirling
strength and revealed the existence of a group of hairpin-like ESs around the rim of the
shear layer of the jet. Hairpin-like ESs have also been reported in DNS of the turbulent
region of round jets (e.g. Wang et al. 2010; Tyliszczak & Geurts 2014; Anghan et al.
2019). Recently, Samie, Lavoie & Pollard (2020) applied a spectral analysis to datasets
of two-point measurements in the turbulent region of round jets with radial separations
between the sensors, and showed that hierarchical ESs are embedded in the jet. They
also showed that the coherent ESs are self-similar in the jet shear layer and estimated a
stochastic axial–radial aspect ratio ofAxy ≈ 4.7 for them.

Contrary to the vortex rings in the near field, and the ESs in the transitional and
fully turbulent regions, there is hardly any consensus on the configuration of the
dominant VLSMs in the fully turbulent region of round jets. This is probably due to the
superposition of structures of various sizes, which complicates inference of the dominant
very-large-scale coherent structures. The main structures reported as the predominant
VLSMs in the fully turbulent region of round jets are rings, single helices and double
helices. Using laser-induced fluorescence measurements and observational reasoning,
Dimotakis, Miake-Lye & Papantoniou (1983) concluded that the far field of the turbulent
round jet is predominantly organized in the form of very-large-scale axisymmetric or
helical structures, or in a transitional state between these two configurations. Based on
modal analysis Fiedler (1988) stated that rings, single helices and double helices are the
first three modes in the turbulent round jet, which are approximately equally distributed.

Tso & Hussain (1989) used a rake of radially organized cross-wires to deduce
very-large-scale coherent structures in the far field of a turbulent round jet. Their results
showed that VLSMs with axisymmetric, helical and double helical configurations are
present in the flow, among which the helical structures are far more dominant than the
others. Yoda, Hesselink & Mungal (1994) measured the concentration of the turbulent
round jet and, based on these results, proposed that the structure of the far field of
the jet consists not of a single expanding helical structure, but of a pair of expanding
counter-rotating helical vortex filaments. Recently, Mullyadzhanov et al. (2018) analysed
results from DNS of a turbulent round jet issuing from a fully developed pipe at Re = 5940

916 A2-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

18
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.183


M. Samie, P. Lavoie and A. Pollard

based on the bulk velocity in the pipe and its diameter. Their results showed that a
propagating helical wave represents the optimal eigenfunction for the flow, and the first
two mirror-symmetric modes containing approximately 5 % of the total turbulent kinetic
energy capture all significant large-scale features.

Some of the extensively used techniques to extract coherent structures in turbulent flows
are proper orthogonal decomposition (e.g. Glauser, Leib & George 1987; Delville et al.
1999; Jung, Gamard & George 2004), spectral proper orthogonal decomposition (e.g.
Schmidt et al. 2018; Towne, Schmidt & Colonius 2018) and dynamic mode decomposition
(e.g. Schmid 2010; Semeraro, Bellani & Lundell 2012). In the present study, the linear
coherence spectrum (LCS) (Bendat & Piersol 2011), which is a normalized scale-by-scale
correlation between two signals, together with two-point correlation are used to educe
coherent features of different sizes in turbulent round jets. The LCS has been used
previously to assess coherent structures in wall-bounded turbulent flows (e.g. Bailey et al.
2008; Baars, Hutchins & Marusic 2016, 2017; Baidya et al. 2019).

Despite numerous studies conducted on the coherent structures in the fully turbulent
region of round jets over the past five decades or so, it is not clearly known whether the
ESs and VLSMs are completely independent entities or somehow connected. It is also
unclear why an axial–radial aspect ratio ofAxy ≈ 4.7 was found for the ESs by Samie
et al. (2020), while the axial and radial spans of a typical hairpin-like eddy are of O(1)

according to the eddy visualizations. Furthermore, doubts still exist on the configuration of
VLSMs in turbulent round jets. To address these issues, two-point simultaneous velocity
measurements are conducted with separating radial and azimuthal distances between the
sensors in the fully turbulent region of round jets across the Reynolds-number range Red =
10 000–50 000. Spectral analysis is applied to the data to assess the coherent structures in
both radial and azimuthal directions. Moreover, instantaneous velocity fluctuations from a
DNS of a turbulent jet at Red = 7920 from Shin, Sandberg & Richardson (2017) are used
to complement our analysis.

The rest of the paper is organized as follows. Experimental details are presented in § 2.
Experimental two-point correlations are discussed in § 3.1. A scale-dependent correlation
is introduced and applied to the experimental axial velocity signals in § 3.2. Based on this
scale-dependent correlation, a filter is introduced in § 3.3, which is used to isolates the
VLSMs, thereby shedding light on the configuration of the VLSMs. This is achieved by
inspecting the filtered correlation maps of axial velocities. Using the isolated VLSMs, it
is hypothesized that helical structures are the dominant VLSMs in turbulent round jets.
VLSMs and ESs from an existing DNS study are discussed in § 4, where the prevalence
of helical structures is further supported. In § 5, two synthetic flow fields are generated
to simulate the configuration of the VLSMs and a simplified model is proposed for the
arrangement of the ESs and VLSMs based on the observations from experiment, DNS
and synthetic flow fields. Finally, concluding remarks are presented in § 6.

2. Experimental details

Measurements were conducted in the intermediate region of a round jet using the facility
described in Fellouah, Ball & Pollard (2009) and Samie et al. (2020). The jet air flow
is produced by a fan mounted on anti-vibration pads. The fan exhaust is connected to
the jet settling chamber through a flexible hose. The settling chamber consists of a filter,
a flow-straightening section and three screens with different porosities, which break down
any large-scale structures, thereby ensuring a clean air flow at the jet exit. The air exhausts
through a round duct to the inlet of a smoothly contracting axisymmetric nozzle with
fifth-order polynomial wall contour. The exit diameter of the nozzle is d = 73.6 mm,
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producing a top-hat distribution velocity profile. More details about the jet facility can
be found in Fellouah et al. (2009).

Two single hot wires were used to simultaneously acquire the axial fluctuating velocity
of the turbulent jet at various axial and radial distances from the jet exit and jet centreline,
respectively. The sensing elements of the wires were 5 μm in diameter and 1000 μm in
length. This results in a sensor length-to-diameter ratio of 200, which ensures minimal
end conduction effects in the hot wires (Ligrani & Bradshaw 1987; Samie, Hutchins &
Marusic 2018). The wire elements are made of tungsten and were manufactured by Auspex
Corporation. The hot wires were calibrated against a Pitot-static tube in the potential
core of the jet at x/d ≈ 0, where the mean velocity profile is flat and the axial velocity
fluctuations are less than 1 % of the mean jet velocity, before and after each experiment.
This resulted in two to five hour time intervals between the pre- and post-calibrations
depending on the experiment duration. The experimental data were used only if the
difference between the pre- and post-calibration curves was below 1 %. The hot wires
were powered by a Dantec Streamline constant-temperature hot-wire anemometer with an
overheat ratio of 1.8.

The laboratory temperature was recorded at two locations near and far from the jet
exit before and after each experimental run, and its variation was always within ±2 ◦C.
Third-order polynomial curves were fitted to the calibration data. The hot-wire signals
were sampled using a 16-analogue-input multifunction data acquisition (DAQ) card
PCI-6052E (333 kS s−1, 16 bit), and a National Instruments SCXI signal conditioning
at a sampling frequency fs = 7 kHz and low-pass filtered using an analogue filter at
flp = 3 kHz to avoid aliasing. This is well beyond the maximum frequency content
of the axial energy spectra anywhere in the present flow. The total sampling time at
each measurement location is given by T and is normalized to give the eddy turnovers
TUref /y0.5, where Uref is the velocity at the reference sensor location and y0.5 is the jet
half-width and is determined as the radial location at which the mean axial velocity is
equal to half of the mean axial velocity at the centreline. In order to obtain converged
spectra and two-point correlations, this number should be large to capture several hundreds
of the largest structures past the sensor. In the present study TUref /y0.5 = 3000–9700
for all the measurements. The smallest eddy turnover values are associated with the
lowest-Reynolds-number measurements. A convergence test was conducted for the spectra
with the smallest eddy turnover values, and results of the test ensured convergence of the
spectra for all the measurements.

Simultaneous axial velocity signals were acquired using two different hot-wire
arrangements, as shown schematically in figure 1. In the radial arrangement displayed
schematically in figure 1(a), two hot-wire probes were mounted on a 1 m long vertical
aerodynamic sting using a probe holder, thereby allowing one hot wire to be fixed at
the reference radial distance from the jet centreline (yref ), while a second hot wire was
traversed incrementally to obtain various radial separations (�y) between the two hot
wires. In the azimuthal arrangement, as shown in figure 1(b), where the jet cross-stream
plane at the hot-wire locations is displayed schematically, the traversing system was
designed such that one probe could be positioned at an adjustable radial distance from
the centreline, while the second probe at the same radial distance from the centreline
could be azimuthally traversed to obtain various azimuthal separations between the probes
(�s = y�θ ). The shaft around which the traverse arms were rotated was nominally
fixed on the jet centreline. Measurements were made in the range x/d = 15–25, in both
radial and azimuthal arrangements, and at three Reynolds numbers, Red = 10 000, 20 000
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Jet centreline

TNTI

TNTI

HW 2

(traversed)

HW 2 (traversed)

HW 1

(fixed)

HW 1 (fixed)

(a) (b)

Figure 1. Arrangement of the hot-wire probes for (a) the radial measurements and (b) the azimuthal
measurements. TNTI is the turbulent/non-turbulent interface.

and 50 000. The flow was fully turbulent at all measurement locations and Reynolds
numbers.

3. Experimental results

3.1. Two-point correlation
The cross-correlation function between two velocity time series u(x, yref ; t) and
u(x, yref + �y, �s; t) is defined as

Ruu(x, yref , �y, �s; τ) = 〈u(x, yref ; t) u(x, yref + �y, �s; t + τ)〉
σu(x, yref ) σu(x, yref + �y, �s)

, (3.1)

where the angle brackets indicates a time averaging, x is the axial location of the sensors,
yref is the radial location of the reference sensor, �y and �s are the radial and azimuthal
distances between the traversing and the reference sensors, respectively, and σu denotes
the root-mean-square value of velocity fluctuations u (≡ U − 〈U〉).

First, Ruu is considered for the radial measurements where �s = 0 while �y is varied.
Reynolds-number comparison of the radial correlation contours at normalized radial
reference distances from the centreline yref /y0.5 ≈ 0, 0.3 and 0.6 (where y0.5 is the jet
half width) and an axial distance from the jet nozzle exit x = 15d is shown in figure 2.
The correlation contours are presented as a function of �y/y0.5 and τ 〈U〉/y0.5, where
〈U〉 is the local mean velocity. Let us assume that (for the purpose of comparison only)
the integral time scale is identified by the correlation level Ruu = 0.2. No perceptible
Reynolds-number dependence for the integral time scale is observed based on this
definition for Red = 10 000–50 000. Note that the above-mentioned findings can be made
on the integral length scale by invoking Taylor’s frozen-eddy hypothesis to convert time
to length scales. Interestingly, for yref /y0.5 = 0, there is a negative correlation region
for �y/y0.5 > 0.6 around τ 〈U〉/y0.5 = 0. Note that, although in figure 2(a) the negative
region is shown only for Red = 10 000, there are similar negative correlation regions for
Red = 20 000 and 50 000 for yref /y0.5 > 0.6. While the correlation contours are virtually
symmetric with respect to τ 〈U〉/y0.5 = 0 at yref /y0.5 ≈ 0, the coherent structures appear
to be forward-inclined (inclined opposite to the flow direction) at yref /y0.5 ≈ 0.3 and 0.6,
and the inclination angle changes with yref . The inclination angle of coherent structures is
inferred from the correlation contours via (3.2) in a process illustrated in figure 3.
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Figure 2. Effect of Reynolds number on the radial correlation maps (as functions of �y/y0.5 and τ 〈U〉/y0.5) at
(a) yref /y0.5 ≈ 0, (b) yref /y0.5 ≈ 0.3 and (c) yref /y0.5 ≈ 0.6. For all the measurements in this figure, x/d = 15
and the positive contour levels are Ruu = 0.2, 0.4 and 0.6. In panel (a), a contour level of Ruu = −0.1 is shown
for Red = 10 000 only; this contour level is not displayed for other Reynolds numbers for clarity.
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Figure 3. (a) Correlation curves at various �y spacings and (b) the corresponding correlation map at x/d =
15, Red = 50 000 and yref /y0.5 ≈ 0.6. Open circles depict the correlation peaks and are shown for every other
point for clarity. The green line represents the average inclination angle, θm. (c) Averaged angle of the coherent
structures as a function of yref /y0.5 for different Reynolds numbers and axial locations.
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The inclination angle of coherent structures with respect to the axial direction can
be quantified using the two-point correlation. Following Marusic & Heuer (2007), the
inclination angle θ is defined as

θ(x, yref , �y) ≡ tan−1
(

�y
�x∗

)
, (3.2)

where �y is the radial distance and �x∗ is the spatial delay in the axial direction
corresponding to a peak in the correlation Ruu. Time is converted to space using Taylor’s
frozen-eddy hypothesis. That is, �x∗ = τmax〈U〉, where 〈U〉 is the local axial mean
velocity and τmax is the time shift corresponding to the peak in the correlation. Taylor’s
frozen-eddy hypothesis can be used when a good approximation of the convection velocity
is available. Matsuda & Sakakibara (2005) showed for turbulent round jets that the
local mean velocity and convection velocity are virtually equal for radial distances up
to y/y0.5 = 1 in the turbulent region of round jets.

Figure 3(a) presents the correlation curves, Ruu, for a number of �y separations for
x/d = 15, yref /y0.5 ≈ 0.6 and a jet Reynolds number of Red = 50 000. Peaks of Ruu are
marked by open circles. It can be seen that the time shift corresponding to the peak of
Ruu grows with increasing �y. The corresponding correlation contour map is presented in
figure 3(b), where Ruu is plotted as a function of �y/y0.5 and τ 〈U〉/y0.5. In figure 3(a,b),
the open circles denote the peaks in the correlation at each �y/y0.5 and the inclination
angle θ is displayed for a sample point (�y/y0.5 = 0.44). Note that in figure 3(a,b),
only every other measurement point is shown for clarity. The green line represents the
average inclination angle θm, which is calculated by averaging over all inclination angles
corresponding to the correlation peaks that satisfy Ruu ≥ 0.2. Correlation peaks smaller
than 0.2 are excluded from the averaging to avoid inaccuracies due to low signal-to-noise
ratios. The average inclination angles are calculated in this way for various x/d locations,
Reynolds numbers and yref /y0.5 values and are given in figure 3(c). In general, the average
inclination angle decreases with an increase in yref /y0.5.

Azimuthal correlations combined with radial correlations can provide insight into
the three-dimensional features of the coherent structures. In relation (3.1), if the radial
separation between the sensors is zero, �y = 0, and the azimuthal distance �s is varied,
azimuthal correlations will be obtained. The velocity data acquired using the hot-wire
arrangement in figure 1(b) are used to determine the azimuthal correlations. The azimuthal
correlation maps are compared for Red = 20 000 and Red = 50 000 at y/y0.5 ≈ 0.3 and
0.5 in figure 4. The length scales, estimated by the correlation contour levels, display no
evident sign of Reynolds-number dependence. A clear characteristic of the correlation
contour maps in an axial–azimuthal plane is a negative correlation lobe alongside the
positive correlation lobe. This is observed in all the cases displayed in figure 4. Similar
results have been reported in turbulent jets (Ukeiley et al. 2007), pipes and channels
(Monty et al. 2007; Baltzer, Adrian & Wu 2013; Lee, Sung & Adrian 2019) and boundary
layers (Hutchins & Marusic 2007; Sillero, Jiménez & Moser 2014), and have been linked
to coherent structures. In fact, Townsend (1976) used these similarities in the correlations
to propose similar ESs as the dominant features of all turbulent shear flows.

3.2. Scale-dependent correlation
While a two-point correlation gives an estimate of the coherent structures averaged over all
length scales, a scale-by-scale correlation can be insightful for unravelling contributions
from each scale of motion to the correlation. A scale-by-scale correlation between two
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Figure 4. Effect of Reynolds number on the azimuthal correlation maps (as functions of �s/y0.5 and
τ 〈U〉/y0.5) at (a) y/y0.5 ≈ 0.3 and (b) y/y0.5 ≈ 0.5. For the results presented here, x/d = 15. Solid lines
represent correlation levels of Ruu = 0.1, 0.3 and 0.6, and the dashed line corresponds to a correlation level of
Ruu = −0.05.

velocity signals can be obtained by the LCS. The LCS (Bendat & Piersol 2011) is given by

γ 2
L (x, yref , �y, �s; f ) = |〈Ũ(x, yref ; f ) Ũ∗(x, yref + �y, �s; f )〉|2

〈|Ũ(x, yref ; f )|2〉〈|Ũ(x, yref + �y, �s; f )|2〉

= |φ′
uru(x, yref , �y, �s; f )|2

φurur(x, yref ; f ) φuu(x, yref + �y, �s; f )
, (3.3)

where Ũ is the Fourier transform of u in time or space based on the dataset, which leads to
the calculation of γ 2

L in the frequency (f ) or wavelength (λx) domain, respectively. When
γ 2

L is calculated in the frequency domain, it will be converted to the wavelength domain by
invoking Taylor’s frozen-eddy hypothesis, λx = 〈U〉/f , where 〈U〉 is the local axial mean
velocity used as the convection velocity. Angle brackets, 〈 〉, indicate ensemble averaging,
vertical bars, | |, denote the modulus and an asterisk, ∗, indicates the complex conjugate.
Therefore, the LCS is the ratio of the cross-spectrum magnitude squared and the product
of the power spectral density of the two velocity signals. Following this definition, γ 2

L is
bounded by 0 (no coherence) and 1 (complete coherence).

The radial LCS can be obtained by setting �s = 0 in (3.3). Figure 5(a) presents two
sample velocity signals acquired simultaneously in the turbulent jet flow at Red = 50 000
and x/d = 15. The LCS is computed for these signals and is shown as a function of
wavelength (λx) in figure 5(b). It can be seen that γ 2

L ≈ 0 for λx < 0.1 m and increases
with λx in the wavelength range λx = 0.1–0.7 m, beyond which it plateaus and becomes
approximately wavelength-independent.
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Figure 5. (a) Sample simultaneously acquired velocity signals u( yref ; t) and u( yref + �y; t) in the turbulent
jet and (b) associated LCS against wavelength λx.
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Figure 6. Reynolds-number comparison of radial coherence spectra at different yref locations, at x/d = 15: (a)
yref /y0.5 ≈ 0, (b) yref /y0.5 ≈ 0.3 and (c) yref /y0.5 ≈ 0.6. The vertical dotted lines correspond to λx/y0.5 = 4.

A γ 2
L spectrogram is generated when γ 2

L is plotted against λx and �y. A
Reynolds-number comparison of the radial γ 2

L spectra is presented in figure 6 for three
yref /y0.5 values. A common feature of the LCS is that, at a constant �y (i.e. a horizontal
line on the spectrogram), γ 2

L reaches its highest value at relatively large wavelengths
(λx/y0.5 > 4). Moreover, by increasing �y, non-zero coherence becomes increasingly
confined to larger wavelengths. The reason for this observation is that, by increasing
�y, smaller eddies are no longer present as common contributors to the simultaneously
acquired signals. It can be seen in figure 6 that the LCS contour lines are aligned with
λx ∝ �yp for λx/y0.5 ≈ 0.2–4 and then become approximately wavelength-independent
beyond λx/y0.5 ≈ 4 (marked by the vertical dotted line) in all cases. Furthermore, no
noticeable Reynolds-number dependence is observed in the coherence spectrograms.

Using the LCS, Samie et al. (2020) showed that hierarchical ESs corresponding to
the wavelength range λx/y0.5 ≈ 0.2–4 are ingrained in turbulent round jets and are
self-similar in the shear layer with p = 1. The power p = 0.72 at the centreline, and
increases to p = 0.9 at yref /y0.5 ≈ 0.3 and finally to p = 1 at yref /y0.5 ≈ 0.6. In the
shear layer (yref /y0.5 ≈ 0.6), λx ≈ 4.7�y. Following Samie et al. (2020) and Baars et al.
(2017), the constant of proportionality between �y and λx is defined as the axial–radial
aspect ratio of the self-similar ESs, Axy. The axial–radial aspect ratio Axy is obtained
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Figure 7. Azimuthal coherence spectrograms at Red = 20 000 and 50 000 for x/d = 15: (a) y/y0.5 ≈ 0.3 and
(b) y/y0.5 ≈ 0.5. Here, y is the radial distance of both sensors from the centreline.

by fitting γ 2
L = C[log(λx/�y) − log(Axy)] to the γ 2

L surface in the wavelength range
λx/y0.5 = 0.2–4. For a detailed analysis of the LCS and its features in turbulent round
jets, see Samie et al. (2020).

The azimuthal LCS is obtained if �y = 0 and �s is varied. The azimuthal LCSs
are compared for Red = 20 000 and 50 000 at y/y0.5 ≈ 0.3 and 0.5 in figure 7. A
good agreement is observed between the two Reynolds numbers at both normalized
radial locations. The azimuthal LCS can be divided into two main wavelength domains.
The first main domain itself (λx/y0.5 ≈ 0.2–4) is divided into two subdomains: in
the range λx/y0.5 ≈ 0.2–0.8 the contour lines are aligned with λx ∝ �s (blue solid
line) and in the range λx/y0.5 ≈ 0.8–4 they are aligned with λx ∝ �s0.7 (red dashed
line). The second main domain is associated with λx/y0.5 > 4, in which the contour
lines are approximately wavelength-independent. Therefore, the ESs associated with the
first subdomain (λx/y0.5 ≈ 0.2–0.8 and �s/y0.5 ≈ 0.05–0.16) are self-similar and an
axial–azimuthal aspect ratio (Axs) can be defined for them. It is interesting to note
that Axs ≈Axy ≈ 4.7. Non-self-similarity of the larger eddies (λx/y0.5 ≈ 0.8–4 and
�s/y0.5 > 0.16) is most likely due to the spatial constraints. Specifically, since the size
of these ESs is comparable to the perimeter of the round jet, they have to follow the
circular curvature of the jet, whereas the shape of the smaller ESs is independent of the jet
curvature.

The azimuthal γ 2
L spectra are compared for x/d = 15 and 25 in figure 8 at y/y0.5 ≈ 0.5

and 0.7. It is evident that the axial location has minimal effect on the azimuthal LCS for
x/d = 15–25; two main wavelength domains and two subdomains are again observed in
the LCS, similar to figure 7.

The physical dimensions of ESs (L × H × W) can be characterized based on the
axial–radial and axial–azimuthal spectral aspect ratios acquired from γ 2

L spectra. Here,
L, H and W are the length, height and width of an ES, respectively. Baidya et al.
(2019) illustrated that a spectral axial–azimuthal aspect ratio (Axs) inferred from the
γ 2

L contours is associated with a mean physical axial–azimuthal aspect ratio of L/W =
Axs/4. Therefore,Axs = 28 in the pipe flow leads to L/W = 7. Similarly, we can show
thatAxy ≈Axs ≈ 4.7 in the turbulent round jet imply L/H ≈ L/W ≈ 1.2. Therefore,
ESs in turbulent round jets have a mean physical aspect ratio of 1.2 : 1 : 1 in the axial,
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Figure 8. Azimuthal coherence spectrograms at x/d = 15 and 25 for Red = 50 000: (a) y/y0.5 ≈ 0.5 and (b)
y/y0.5 ≈ 0.7. Here, y is the radial distance of both sensors from the centreline.

radial and azimuthal directions, respectively. Comparison of the physical aspect ratio for
a turbulent jet with that for wall-bounded turbulent flows, which is 7 : 1 : 1 (Baidya et al.
2019), shows that the ESs are considerably shorter in turbulent jets. The physical aspect
ratio of 7 : 1 : 1 for pipe flow is consistent with the notion of eddy packets in wall-bounded
flows (e.g. Head & Bandyopadhyay 1981; Zhou et al. 1999; Adrian, Meinhart & Tomkins
2000; Guala, Hommema & Adrian 2006; Adrian 2007; Lee et al. 2019). On the other hand,
the physical aspect ratio of 1.2 : 1 : 1 in jet flows suggests that ESs do not form hierarchical
packets of eddies in the turbulent round jet.

While the LCS represents the coherence scale of the Fourier modes, the phase, Φ,
contains the shift of each Fourier mode between uref and u, and therefore can be used as a
scale-by-scale indicator of the shift between two velocity signals. Hence, it can be used to
determine the scale-by-scale angle of structures with respect to a reference point. To this
end, the cross-spectrum, which is related to the cross-correlation using φ′

uu = F{Ruu} and
is complex-valued, is used to define the phase as

Φ(x, yref , �y; f ) = tan−1
{

Im(φ′
uu)

Re(φ′
uu)

}
, (3.4)

where Im and Re indicate the imaginary and real components of φ′
uu, respectively,

and Φ is in radians. Since Φ is only determined for the synchronized data with
radial separation between the sensors, �s is not included in (3.4). Following Baars
et al. (2016), a scale-dependent time shift can be defined as τs(x, yref , �y; f ) ≡
Φ(x, yref , �y; f )/(2πf ) and subsequently a scale-dependent axial shift is obtained by
invoking Taylor’s frozen-eddy hypothesis as �x∗

s = τs〈U〉. A scale-dependent physical
inclination angle is then computed following

θs(x, yref , �y; f ) = tan−1
(

�y
�x∗

s

)
. (3.5)

Contour plots of θs(�y; λx) overlaid on the γ 2
L spectra are presented in figure 9 for Red =

10 000, 20 000 and 50 000 at yref /y0.5 ≈ 0.6 and x/d = 15 for the radial measurements. It
can be observed that, for all Reynolds numbers, the isocontours of θs are more or less
vertical and the contour levels generally decrease with increasing λx/y0.5 at any given
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Figure 9. Scale-dependent phase expressed as a physical angle (θs) overlaid on the γ 2
L spectra for x/d = 15

and yref /y0.5 ≈ 0.6: (a) Red = 10 000, (b) Red = 20 000 and (c) Red = 50 000.

�y/y0.5. The inclination angle obtained from two-point correlations via (3.2) for each
�y/y0.5 is averaged over all scales, while θs gives the inclination angle associated with
eddies of varying sizes. Comparing θm values at yref /y0.5 = 0.6 shown in figure 3(c)
with θs spectra shown in figure 9 reveals that the ESs associated with λx/y0.5 < 1 have
insignificant contribution to the average inclination angle since the θm values at yref /y0.5 =
0.6 are almost equal to the θs values corresponding to λx/y0.5 > 1 at each Red. According
to figure 9(a–c), the inclination angle at a specific λx/y0.5 decreases with increasing Red.
This Reynolds-number trend is consistent with that for the average inclination angle θm
observed in figure 3(c).

3.3. Filtered two-point correlations
The two-point correlation averages the coherent features over all scales. This masks some
of the features of ESs and VLSMs due to their superposition. A filter can be used to
separate these scales. The two-point correlations associated with the filtered velocities
will then be determined to assess the structural organizations of the ESs and VLSMs. The
VLSMs are well documented in wall-bounded flows, yet there is not a clear procedure
available to define a spectral boundary to separate them from the ESs. In the logarithmic
region of wall-bounded flows, there is a small-scale peak as well as a large-scale peak in the
premultiplied u-energy spectra associated with the dominant small-scale and large-scale
structures, respectively. An arbitrary wavelength between the wavelengths associated with
these small- and large-scale peaks is usually adopted as the spectral boundary separating
the VLSMs from the rest of the scales (e.g. Guala et al. 2006).

Based on the LCS, we propose a better-defined criterion to determine the spectral
boundary of the VLSMs. This criterion is valid for free shear and wall-bounded turbulent
flows. With the aid of a conceptual reconstruction of the γ 2

L spectra, it is illustrated in
Appendix B that the start of the wavelength-independent spectral domain in the LCS
corresponds to the largest ESs. Therefore, the wavelength associated with the start of the
wavelength-independent spectral domain in the LCS is adopted as the lower spectral limit
for the VLSMs and the upper spectral limit of the ESs.

The radial γ 2
L spectra overlaid on the normalized premultiplied u-energy spectra

(kxφuu/〈Uc〉2) at x/d = 15, Red = 50 000 and yref = 0 is displayed in figure 10(a), with
the vertical dashed line at λx/y0.5 = 4 demarcating the lower bound of the VLSMs and
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Figure 10. (a) The LCS (computed with respect to yref = 0) overlaid on the premultiplied u-energy spectra
(kxφuru/〈Uc〉2) for Red = 50 000 and x/d = 15. The contour levels for the LCS are 0.1 : 0.1 : 0.9 (increasing
from top to bottom). (b) Plot of kxφuru/〈Uc〉2 at y/y0.5 = 0.12 (associated with the location shown by the
horizontal dotted line in panel a), the gains of high-pass and low-pass filters, and the VLSM and ES components
of the energy spectrum. (c) The correlations Ruu, Rvl and Res associated with the velocities of panel (b)
computed with respect to yref = 0. (d) Example fluctuating velocity. The grey line is the raw velocity time
series while the thick black line is the VLSM component, uvl(t).

the upper bound of the ESs (start of the approximately wavelength-independent region in
the γ 2

L spectra). Here, kx = 2π/λx is the wavenumber and 〈Uc〉 is the mean axial velocity
at the centreline. Note that λx/y0.5 = 4 coincides with a long hump in the premultiplied
u-energy spectra.

If the VLSM component of the fluctuating velocity is obtained by passing the velocity
signal through a filter with a transfer function Hvl( f ), where f is the frequency, the VLSM
component of the correlation coefficient can be defined as

Rvl(x, yref , �y, �s; τ) =
∫ ∞

−∞
|Hvl( f )|2Suu(x, yref , �y, �s; f )ej2πf τ df . (3.6)

Here, Suu is the double-sided cross-spectrum of u(x, yref , t) and u(x, yref + �y, �s, t) and
is defined as

Suu(x, yref , �y, �s; f ) =
∫ ∞

−∞
Ruu(x, yref , �y, �s; τ)e−j2πf τ dτ, (3.7)

where Ruu(x, yref , �y, �s; τ) is obtained from (3.1). Taylor’s frozen-eddy hypothesis is
invoked to convert f to λx for the hot-wire data.
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Similarly, the ES component of the two-point correlation can be obtained as

Res(x, yref , �y, �s; τ) =
∫ ∞

−∞
|Hes( f )|2Suu(x, yref , �y, �s; f )ej2πf τ df , (3.8)

where Hes( f ) is a high-pass filter with a gain defined as |Hes( f )|2 = 1 − |Hvl( f )|2. A
second-order (N = 2) Butterworth filter is used to preserve the VLSM component of the
u-fluctuations here with a gain given by

|Hvl( f )| =
√

1/[1 + ( f /fc)2N], (3.9)

where fc is a separating frequency related to the separating wavelength as fc = 〈U〉/λc, in
which λc = 4y0.5.

The ES and VLSM components of the energy spectrum are defined as φes = |Hes|2φuu

and φvl = |Hvl|2φuu, respectively; therefore, they are related to the energy spectrum as
φes + φvl = φuu. The premultiplied u-energy spectrum (kxφuu) as well as the ES (kxφes)
and VLSM (kxφvl) components are presented for a sample radial position in figure 10(b).
The sample radial position is y/y0.5 = 0.12 and is marked by a horizontal dotted line in
figure 10(a). Also shown in figure 10(b) are the gains of the VLSM filter, |Hvl(λx)|, and the
ES filter, |Hes(λx)|. While using sharp filters to separate the VLSMs and ESs might seem
convenient, it is not physical, since these coherent structures have overlapping spectral
signatures. Moreover, applying filters with sharp cutoff frequencies results in unphysical
ringings in Rvl and Res (Lee et al. 2019). On the other hand, using filters with transition
bands that are overly broad is not physical either, since this results in spectral leakage from
the ESs to the VLSMs, and vice versa.

The effect of the filter transition band on the filtered correlations is examined in
Appendix A by comparing kxφes and kxφvl as well as Res and Rvl for different filter orders.
It appears that, while adoption of N = 1, 2 or 4 does not alter the qualitative features of the
filtered two-point correlations, N = 2 offers a good balance between the filter sharpness
and an effective scale separation by the filter. The two-point correlation (Ruu) between
the centreline velocity signal and the velocity at the sample radial location y/y0.5 = 0.12
compared with the ES and VLSM components of the sample correlation (Res and Rvl) is
presented in figure 10(c). Negative correlation lobes in Res and Rvl have implications for
the coherent structures embedded in the flow. Figure 10(d) displays the fluctuating velocity
time series u together with the VLSM component uvl at y/y0.5 = 0.12. It is evident that
the filter removes the small-scale components while preserving the VLSM contributions
to the velocity signal.

The filter introduced in figure 10 is used to compute the VLSM and ES components
of the radial two-point correlations at Red = 50 000 and yref = 0 and axial location x =
15d. These are shown in figures 11(b) and 11(c), respectively, while the (unfiltered) radial
correlation map is shown in figure 11(a) for comparison. Interestingly, in both Res and Rvl,
negative correlation lobes appear on the sides of the main positive correlation in the time
shift (τ ) direction. The time shift can be thought of as a space shift after invoking Taylor’s
frozen-eddy hypothesis. It appears that these negative correlation lobes are masked by
superposition of the ESs and VLSMs in the unfiltered correlation.

A Reynolds-number comparison of the radial Rvl (�s = 0) is displayed in figure 12 at
yref /y0.5 ≈ 0, 0.3 and 0.6 for Red = 20 000 and 50 000 and at an axial distance from the
jet exit of x = 15d. The VLSM component of the correlation, Rvl, is determined using
(3.6)–(3.9) with a separating wavelength λc = 4y0.5. At all radial reference locations and
at both Reynolds numbers, negative correlation lobes flank the main positive correlation
lobe in the τ -direction.
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Figure 11. Radial correlation coefficients at Red = 50 000 and yref = 0: (a) Ruu, (b) Rvl and (c) Res. Solid
contour lines correspond to the correlation levels of R = 0.1, 0.3 and 0.6, and dashed contour lines represent
correlation levels of Ruu = −0.03 and −0.06.
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Figure 12. Reynolds-number comparison of the VLSM component of the radial correlation coefficients (as
functions of �y/y0.5 and τ 〈U〉/y0.5) at (a) yref /y0.5 ≈ 0, (b) yref /y0.5 ≈ 0.3 and (c) yref /y0.5 ≈ 0.6. Solid
contour lines correspond to the correlation levels of Rvl = 0.1, 0.3 and 0.6, and dashed contour lines represent
a correlation level of Ruu = −0.05.
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Figure 13. Reynolds-number comparison of the VLSM component of the azimuthal correlation coefficients
(as functions of �s/y0.5 and τ 〈U〉/y0.5) at (a) y/y0.5 ≈ 0.3 and (b) y/y0.5 ≈ 0.5. Solid contour lines correspond
to the correlation levels of Rvl = 0.1, 0.3 and 0.6, and dashed contour lines represent a correlation level of
Rvl = −0.05.

A Reynolds-number comparison of the azimuthal Rvl (�y = 0) at radial positions
y/y0.5 ≈ 0.3 and 0.5 for Red = 20 000 and 50 000 is shown in figure 13. Similar to the
radial Rvl, in the azimuthal Rvl negative correlation lobes flank the main positive lobe
in the τ -direction. Note that the negative lobes in the τ -direction are not present in the
(unfiltered) azimuthal Ruu (see figure 4). The negative lobes in the �s-direction, which
are present in the azimuthal Ruu contours, are preserved in the Rvl contours. One can see
that the VLSMs are more elongated at Red = 50 000 than those at Red = 20 000. That is,
the coherent structures (inferred from the Rvl contours) at Red = 50 000 are both longer in
the τ -direction and narrower in the �s-direction than those at Red = 20 000. The negative
correlation lobes in the τ -direction of the VLSM component of correlation contours have
been reported previously in turbulent boundary layer flows and have been attributed to
the meandering nature of VLSMs (Hutchins & Marusic 2007). We hypothesize that these
negative correlation lobes observed in the VLSM component of the radial and azimuthal
correlations in the jet are linked to the obliqueness of the VLSMs in the axial–azimuthal
plane. This hypothesis will be further examined using a turbulent jet dataset from DNS in
§ 4 as well as synthetic flow fields in § 5.

The VLSM contribution to the total turbulence energy can be estimated by the VLSM
component of the u-turbulence intensity. This is determined by integrating the VLSM
component of the u-energy spectrum: u2

vl = ∫ ∞
0 φvl(λx) dλx. The VLSM component of

the u-turbulence intensity is compared with the total u-turbulence intensity in figure 14(a)
for a jet Reynolds number Red = 50 000 measured at the axial location x = 15d. It can be
seen that the ratio u2

vl/u2 increases with distance from the centreline from an approximate
value of 0.3 at y/y0.5 ≈ 0.12 to roughly 0.8 at y/y0.5 ≈ 2. For the purpose of comparison,
the VLSM component of the u-turbulence intensity is determined and compared with
the total u-turbulence intensity in a turbulent boundary layer flow at a friction Reynolds
number Reτ = 14 000 (Baars et al. 2017). Based on the LCS, a separating wavelength
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Figure 14. Contribution of the VLSMs to the u-turbulence intensity in (a) turbulent jets and (b) turbulent
boundary layers. Open circles show the total turbulence intensity, filled circles denote the VLSM component
of the turbulence intensity, and the lines show their ratio.

of λc = 10δ is used for the turbulent boundary layer data, where δ is the boundary layer

thickness. One can see a maximum ratio of u2
vl/u2 ≈ 0.16 for the turbulent boundary layer,

which is located around the middle of the logarithmic region. This is considerably lower
than the ratios found in the turbulent jet. This comparison emphasizes the critical role of
the VLSMs in the dynamics of turbulent jets. Using the considerably smaller separating
wavelength of λc = 3δ (compared to λc = 10δ used here) for turbulent boundary layers,
Balakumar & Adrian (2007) estimated the VLSM contribution to the total u-turbulence
intensity ratio to be u2

vl/u2 ≈ 0.4 in the logarithmic region. This is expectedly higher than
our estimate owing to the noticeably lower separating wavelength applied in their study.

4. Very-large-scale motions in direct numerical simulations

The two-point correlations together with the LCS from experimental data infer a stochastic
view of the configuration of VLSMs in turbulent round jets. Instantaneous flow fields from
DNS can provide a spatial visualization of the VLSM organizations in an instantaneous
sense, thereby complementing our understanding of these coherent structures. To this
end, data from a recent jet simulation at Red = 7920 from Shin et al. (2017) are used.
The azimuthal and radial LCS obtained from the DNS data are compared with those
from the experiment at Red = 50 000 in figure 15, showing excellent agreement between
the experimental and numerical coherence spectra despite the difference in Reynolds
number. This agreement shows that coherent structures from the DNS are comparable to
those from the experiments. The experimental data were obtained at x/d = 15 using two
stationary hot wires, and Taylor’s frozen-eddy hypothesis was used to convert frequency
to wavelength. In the DNS, snapshots of instantaneous u-fluctuations in the axial range
x/d = 10–22 are used to calculate the LCS. This axial range is chosen to ensure minimal
change in the local Reynolds number of the jet while being long enough to capture
the VLSMs. Some differences are observed in the long-wavelength region of the LCS
(λx/y0.5 > 2) between the DNS and experiment, which is most likely because the LCS are
computed from time-resolved point data in the experiment as opposed to the spatial data
used in the DNS flow fields.

A pair of one-dimensional filters were introduced in § 3.3 to separate the VLSMs and
ESs in the experimental velocity time series. In this section a pair of two-dimensional
filters are used to separate the VLSMs and ESs in the axial–azimuthal plane. The VLSM
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Figure 15. Comparison between the coherence spectra from the DNS data (at Red = 7920 and x/d = 10–22)
and experimental data (Red = 50 000 and x/d = 15): (a) azimuthal coherence spectrogram at y/y0.5 = 0.5;
and (b) radial coherence spectrogram at yref /y0.5 = 0.6.

filter is a second-order Butterworth filter with a gain given by

|Hvl(kx, ks)| =
√

1/{[1 + (kx/kxc)
2N][1 + (ks/ksc)

2N]}, (4.1)

where kx and ks are the axial and azimuthal wavenumbers, respectively. The separating
axial and azimuthal wavenumbers are kxc = 2π/λxc and ksc = 2π/λsc , where λxc = 3y0.5
and λsc = λxc/5 are chosen. The choice of λsc = λxc/5 is based on an averaged aspect
ratio of VLSMs observed in the DNS flow fields. Note that the chosen separating axial
wavelength is λxc = 3y0.5 for the DNS data compared to λxc = 4y0.5 for the experimental
data. The separating axial wavelength for the DNS data is adopted based on the azimuthal
LCS, where the approximately wavelength-independent region starts at λx = 3y0.5, while
the contour lines in the radial LCS do not seem to fully transition to wavelength
independence even up to λx = 10y0.5 (figure 15). This is probably due to a lack of
convergence of the DNS radial LCS over the large scales. The gain for the high-pass filter
is |Hes(kx, ks)|2 = 1 − |Hvl(kx, ks)|2.

An example instantaneous flow field (u-fluctuations) on an axial–azimuthal unwrapped
cone at y(x)/y0.5(x) = 1 from the jet simulation of Shin et al. (2017) is shown in
figure 16(a). Here, a Galilean decomposition is used, where the local mean velocity is
subtracted from the velocity field, i.e. u = U − 〈U〉. An unwrapped cone with a radius
proportional to the jet half-width (instead of an unwrapped cylinder) is used for visualizing
the jet data to capture the growing coherent structures in the jet with distance from the jet
origin. A low-pass and high-pass filter pair with a separating wavelength pair (λxc, λsc) =
y0.5 × (3, 3/5) is applied to the u-fluctuations and the resulting VLSMs and ESs are
presented in figures 16(b) and 16(c), respectively. It is evident that the filters successfully
separate the VLSMs and ESs. To further evaluate the filter performance and the criterion
used to identify the separating wavelengths, another pair of separating wavelengths as
(λxc, λsc) = y0.5 × (1, 1/5) is used, and the resulting VLSMs and ESs are displayed in
figures 16(d) and 16(e), respectively. It can be seen that, when a separating wavelength
that is noticeably smaller than the separating wavelength in the LCS (λxc = y0.5 compared
to λx = 3y0.5 here) is adopted, some of the ESs are left in the low-pass-filtered part. These
results lend support to the proposed criterion for identifying the separating wavelength for
the VLSM and ES filter pair.
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Figure 16. (a) Instantaneous u-fluctuations in an axial–azimuthal unwrapped cone at y(x)/y0.5(x) = 1.
(b) VLSMs and (c) ESs obtained using λxc = 3y0.5. (d,e) Same as (b,c), but with λxc = y0.5.

Figure 17 presents example u-fluctuations on axial–azimuthal unwrapped cones at
y(x)/y0.5(x) = 0.6 and 1. Visible in this figure (for x/d > 10) are several very long regions
of positive u-fluctuations (red regions) accompanied by negative u-fluctuation regions
(blue regions) on their sides. These high-speed features, which are marked by solid black
lines, are oblique, with both positive and negative angles relative to the axial direction,
and their characteristic length and width increase with x. This obliqueness of the very
large features results in the negative correlation lobes in the VLSM component of the
azimuthal correlations in both �s- and τ -directions as seen in the experimental results
in figure 13. Although there is a significant radial distance between the axial–azimuthal
planes displayed in figure 17 (�y = 0.4y0.5), some of these VLSMs are present in
both planes, indicating that their normalized height can be at least �y = 0.4y0.5. While
oblique structures are observed in the far field, in the near-field region (x/d < 10), streaky
structures nominally aligned with the flow direction are visible. These streaky structures
have been reported recently by Nogueira et al. (2019) in the near field of a turbulent round
jet.

Figure 18 displays enlarged views of u-fluctuations within the rectangles marked
in figures 17(a) and 17(b). Also shown in figure 18 are the in-plane velocity vectors
resulting from subtracting the local mean velocity from the flow field. When a Galilean
decomposition is considered in an axial–azimuthal plane, the vortical structures moving
with a velocity equal to the mean velocity are highlighted with a zero velocity vector (since
the mean azimuthal velocity is zero in axisymmetric jets). Patterns of circular streamlines
(demarcated by circles) are visible, which in some cases appear in pairs. Here, in figure 18,
for demonstration purposes, only clear circular streamline regions are marked, while other
less clear (unmarked) circular streamline regions are present. Similar circular patterns of
velocity vectors, called hairpin vortex signatures, have been reported in wall-bounded
turbulent flows (e.g. Tomkins & Adrian 2003; Lee & Sung 2011). Here, we call them
hairpin eddy signatures to avoid confusion between the vortex rings in the near field
and ESs in the fully turbulent region. These hairpin eddy signatures in wall-bounded
turbulence are known to be cross-sections through the two legs of three-dimensional
hairpin ESs whose spanwise head is parallel to the wall. Hairpin-like ESs have also
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Figure 17. Instantaneous u-fluctuations in an axial–azimuthal unwrapped cone at (a) y(x)/y0.5(x) = 0.6 and
(b) y(x)/y0.5(x) = 1. The solid black lines highlight high-speed features, while rectangles mark regions for
which enlarged views are shown in figure 18.

been reported in axisymmetric turbulent jets using time-resolved stereo PIV (Matsuda &
Sakakibara 2005) and scanning tomographic PIV data (Casey, Sakakibara & Thoroddsen
2013). In general, the orientation of a hairpin-like ES in an axisymmetric jet is such that
its legs are located near the jet axis while its head points away from the jet axis (Suto et al.
2004).

Another important feature of a hairpin eddy signature is that it is often observed on
the border of high-speed and low-speed regions. Indeed, this is the case in figure 18.
This observation is explained by induction of a positive axial velocity region inside a
hairpin ES and two negative axial velocity regions on both sides of it (discussed further
in § 5). When a single hairpin ES is found in the flow (e.g. at (x/d, yθ/d) = (16, 1.5)

in figure 18b), the induced positive axial velocity field can be seen clearly between the
hairpin eddy signatures, one of which is clockwise while the other one is anticlockwise.
However, the ESs often appear in groups and their total induced flow field is the result
of interactions of several ESs moving together in the flow. Although it is expected to
find two counter-rotating eddy patterns created by the intersection of the cut plane with
the eddy legs (Lee et al. 2019), this is often not the case due to grouping of ESs
and asymmetry of the ESs (i.e. one leg is shorter and both legs are not shown in an
axial–azimuthal plane). The existence of C-shaped ESs in the fully turbulent region of
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Figure 18. Hairpin eddy signatures shown on snapshots of axial velocity fluctuations at (a) y(x)/y0.5(x) = 0.6
and (b) y(x)/y0.5(x) = 1 for the regions demarcated by the rectangles in figure 17. In-plane velocity vectors are
shown at every fifth grid point in the axial direction and all the grid points in the azimuthal direction.

jets is evident from the study of Matsuda & Sakakibara (2005). They reported ESs in
both instantaneous and conditionally averaged flow fields. Using the linear stochastic
estimation, they extracted a conditionally averaged C-shaped ES in the turbulent jet
featured by a high-speed region between the legs of the eddy and low-speed regions on
both sides of the legs. The hairpin eddy signatures observed in figure 18 seem to indicate
the circular flow pattern created by the legs of these ESs in instantaneous flow fields
reported by Matsuda & Sakakibara (2005). The hairpin ES in wall-bounded turbulence
induces a low-speed region between its legs as opposed to the ES observed in the turbulent
round jet with a high-speed region induced between its legs.

5. Synthetic flow fields and a conceptual model

The DNS flow fields displayed oblique VLSMs in the axial–azimuthal plane. It was
hypothesized that the appearance of anticorrelation lobes in the experimental azimuthal
Rvl maps in both τ - and �s-directions (figure 13) stems from the obliqueness of the
VLSMs. To evaluate this hypothesis, two synthetic flow fields, consisting of only VLSMs,
are generated to model the jet flow in a two-dimensional axial–azimuthal unwrapped plane.
The first flow field is populated with structures that consist of axially aligned elongated
high-speed regions flanked on either side by low-speed regions of the same length and
width. This structure for the VLSM is inspired from the experimental azimuthal two-point
correlation maps displayed in figure 4. A representative axially aligned synthetic structure
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Figure 19. Two types of synthetic (analytical) structures used to model the synthetic flow field: (a) an axially
aligned structure, and (b) an oblique structure at an angle of 30◦ to the jet axis. (c,d) Azimuthal correlation
maps corresponding to the synthetic flow fields modelled with (c) axially aligned structures and (d) oblique
structures. Solid lines in panels (c,d) represent contour levels of Ruu = 0.2, 0.6 and 0.9, and dashed lines
correspond to contour levels of Ruu = −0.3 and −0.1.

is shown in figure 19(a). The lengths of the structures follow a normal distribution with
a mean lx = 10ls, where ls is half of the structure width, as displayed on figure 19(a).
Hundreds of these structures are randomly arranged to form a flow field with axial and
azimuthal lengths of Lx = 200ls and Ls = 10ls, respectively.

The second synthetic flow field comprises hundreds of oblique structures (with the same
length as the axially aligned ones); half of these oblique structures make positive angles
with the main flow direction following a normal distribution with a mean θp = 30◦, while
the orientation of the other half is θn = −θp. One of these oblique structures with a positive
angle is displayed in figure 19(b). Two hypothetical sensors are schematically shown close
to the axially aligned and oblique structures. One can see that when the axially aligned
structure passes the sensor (in the x-direction), either the high-speed or the low-speed
region is measured by the sensor. However, in the case of oblique structures, the sensor
measures both the high-speed and low-speed regions consecutively as projected by the
horizontal dashed line, leading to negative autocorrelation lobes in the �x-direction.

Azimuthal two-point correlations associated with the first and second synthetic flow
fields are calculated and averaged over dozens of synthetic flow fields and shown in
figures 19(c) and 19(d), respectively. Although the length scales of the features used to
populate the first and second synthetic flow fields are the same, a significant difference
is observed between the length scales associated with the correlation contour value
Ruu = 0.2. For the axially aligned case, the correlation contours at �s = 0 approximately
represent the axial span of the structure. However, for the oblique case, the correlation
contours at �s = 0 cross zero at �x/ls ≈ ±0.8, which is substantially smaller than the
axial length of the structures used to populate the synthetic flow. Notably, in the correlation
contours corresponding to the oblique structures case, anticorrelation lobes flank the
positive correlation main lobe in the �x-direction. This is a similar pattern to that observed
for the experimental VLSM component of the correlations displayed in figure 13. Although
the anticorrelation regions in the experimental correlation maps are weaker, this similarity
seems to support the hypothesis of the importance of oblique VLSMs in the turbulent
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Figure 20. Schematics of coherent structures. (a) Isometric view of an isolated ES (shown with the green
curved tube) and high-speed (red ellipsoid) and low-speed (blue ellipsoids) regions induced by the eddies. (b)
Top view of panel (a). (c) Helical concatenation of eddies forming a VLSM, where the structures are shown on
an unwrapped axial–azimuthal plane. (d) A helical VLSM formed by concatenation of several ESs.

round jet. These results do not imply that the oblique structures are the only form of
VLSMs in the round jet flow, but rather they support the hypothesis regarding their general
shape and importance. To obtain the probability of all the possible forms of VLSMs
(streaks, rings and helices), a conditional averaging type of analysis to educe VLSMs
similar to that conducted by Hutchins et al. (2011) is required and is the subject of ongoing
work.

A conceptual model is proposed for the coherent structures in the turbulent round
jet. This model is presented in a stochastic sense and holds only the salient features of
the VLSMs in an instantaneous flow field. The DNS instantaneous flow fields revealed
signatures of ESs on the boundaries between high-speed and low-speed regions. Based
on the γ 2

L spectra, a physical aspect ratio of 1.2 : 1 : 1 for the ESs was proposed in
§ 3.2. This is compatible with the visualization of hairpin-like ESs in both jet flows and
wall-bounded flows that exhibit similar spans in the axial, radial and azimuthal directions
for ESs. Therefore, contrary to wall-bounded flows, where packets of eddies are proposed
as hierarchical building blocks of coherent structures (Baars & Marusic 2020), in the round
jets single eddies are the hierarchical components shaping larger coherent features.

An ES together with its induced flow field is displayed schematically in figure 20(a,b).
Here the ES is represented by a C-shaped tube, while an induced high-speed and
two induced low-speed regions are shown by red and blue regions, respectively. Note
that the eddy presented here belongs to one eddy hierarchy level, and eddies of
varying sizes are present in the flow. When the VLSMs resulting from concatenation
of several eddies are considered, only the largest ESs are shown for clarity. The largest
ESs concatenate to form VLSMs. It was shown using both DNS data and synthetic
flow fields that the VLSMs, when viewed in an unwrapped axial–azimuthal cone,
form oblique angles with the x-axis. This implies that the VLSMs are stochastically
helical structures in a three-dimensional field of a turbulent round jet. The VLSMs are
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illustrated schematically in an axial–azimuthal two-dimensional plane in figure 20(c). A
three-dimensional isotropic view of a VLSM is presented in figure 20(d). The length of
these helical structures is not clear and can be very short, forming oblique structures,
or very long, forming a clear helix. The proposed simplified model is arguably the simplest
representation that explains the results presented here. Other equally valid models to
explain these observations may exist.

6. Concluding remarks

Two-point measurements were conducted with separations between the sensors in both
radial and azimuthal directions to assess coherent structures in axisymmetric turbulent
jets. The measurements were made in the intermediate field of a turbulent round jet in
the range x/d = 15–25 and over a range of Reynolds numbers from Red = 10 000 to
50 000. Radial two-point correlations displayed no sign of a Red effect on the large-scale
coherent structures. The average inclination angle (with respect to the x-axis) associated
with the coherent structures was estimated using the radial two-point correlations. It
was shown that this angle decreases with the radial distance for all Red. Azimuthal
two-point correlations indicate a negative correlation lobe in the azimuthal distance range
�s/y0.5 > 0.6 alongside the main positive lobe. A similar pattern has been reported in
other turbulent shear flows and is attributed to a stochastically dominant configuration of
the axial flow induced by ESs. When normalized with y0.5, the size of the structures in the
azimuthal correlation did not display a dependence on Red.

The LCS was computed using data from the two-point synchronized measurements
with sensor separations in both radial and azimuthal directions. The radial linear
coherence spectra revealed a hierarchical ES in the turbulent round jet associated with
the outer-scaled wavelength range λx/y0.5 ≈ 0.2–4. The ESs in the shear layer of the
jet are shown to be geometrically self-similar, with a stochastic axial–radial aspect ratio
ofAxy ≈ 4.7. The azimuthal linear coherence spectra (γ 2

L against �s/y0.5 and λx/y0.5)
showed that only the small ESs associated with the wavelength domain λx/y0.5 ≈ 0.2–0.8
are self-similar, with an axial–azimuthal aspect ratio that is equal to the radial–azimuthal
aspect ratio Axs ≈Axy ≈ 4.7. Consequently, a physical aspect ratio of 1.2 : 1 : 1 in
the axial, radial and azimuthal directions was proposed for the hierarchical ESs in
the turbulent round jet. In both radial and azimuthal experimental LCS, the coherence
contours become approximately wavelength-independent for λx/y0.5 > 4. We conjectured
that this wavelength domain is associated with the VLSMs. This wavelength was used
to separate the VLSMs and ESs in the jet, and the VLSM and ES components of
two-point correlations were obtained. Two negative correlation lobes appeared in the
τ -direction of the VLSM correlation maps for both radial and azimuthal correlations.
These anticorrelation lobes do not exist in the original two-point correlation maps due to
superposition of the VLSMs and ESs. The contribution of the VLSMs was estimated by
integrating the VLSM component of the u-energy spectrum. It was shown that, depending
on the radial location, VLSMs constitute between 30 % and 80 % of the total u-turbulence
intensity of the jet. Comparing these values with an estimated maximum value of 16 %
in turbulent boundary layers underlines the importance of VLSMs in the dynamics of
turbulent round jets.

Instantaneous views of u-fluctuations in axial–azimuthal unwrapped cones from DNS
suggest the presence of oblique VLSMs in the intermediate field of the jet, which
are identified as high-speed regions flanked by low-speed regions on either side in the
azimuthal direction. Overlay of the in-plane velocity vectors on the u-fluctuation contours
reveals two-dimensional vortex-like regions often located at the boundaries between the
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high-speed and low-speed regions. We attribute these hairpin eddy signatures to the ESs,
which induce a high-speed region between and low-speed regions outside of their legs.
These ESs appear in groups forming oblique VLSMs.

In order to examine the effect of obliqueness of the VLSMs on the two-point
correlations, two two-dimensional axial–azimuthal synthetic flow fields were generated.
In the first one, the VLSMs were modelled with axially aligned structures; while in
the second, synthetic flow field oblique structures were used to populate the flow. The
correlation map associated with the synthetic flow field populated with the oblique
structures qualitatively resembles the VLSM component of correlation maps from
experiment, reinforcing the observation that the VLSMs are predominantly oblique in an
axial–azimuthal plane. This implies the significance of helical structures as the VLSMs
in the axisymmetric turbulent jet. Finally, in accordance with the experimental and DNS
results, as well as the synthetic flow fields, an idealized model for coherent structures in
turbulent round jets was proposed in which ESs concatenate and form very-large-scale
helical structures.
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Appendix A

The VLSM and ES components of the u-fluctuations were separated in both experimental
and DNS data using second-order Butterworth filters. The effect of the filter order on the
ES and VLSM components of the correlations in the experimental data is examined here.
Figure 21(a) shows an example premultiplied u-energy spectrum together with the VLSM
and ES components obtained with Butterworth filters of orders N = 1, 2 and 4. Evidently,
increasing the filter order leads to a sharper transition at the separating wavelength
(λx = 4y0.5) for both VLSM and ES components. The ES and VLSM components of the
correlations associated with these filters are shown in figures 21(a) and 21(b), respectively.
One can see that, in both Res and Rvl, the main positive correlation lobe is flanked by
negative anticorrelation lobes for N = 1, 2 and 4. Moreover, the negative correlation
lobes seem to become more negative with increasing N. A Gaussian filter was also used
to separate the VLSMs and ESs (not shown here for clarity), which yielded filtered
correlations with negative lobes similar to those from a Butterworth filter with N = 1.
These results show that, although changing the order of the filter modifies the magnitude
of the negative lobe, the filtered correlations are qualitatively similar. Therefore, the filter
type and order do not affect our conclusions with regard to the coherent structures.

Appendix B

A conceptual reconstruction of the γ 2
L spectra is introduced here to help comprehend the

proposed spectral boundary between ESs and VLSMs inferred from the LCS. Samie et al.
(2020) showed that hierarchical ESs are embedded in the turbulent jet. Here, the LCS
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Figure 22. Conceptual reconstruction of the LCS. (a) Four schematic eddy hierarchy structures and associated
(b) γ 2

L spectra and (c) coherence spectrogram. (d) Coherence spectrogram for a realistic flow that comprises a
continuous spectrum of eddy sizes (as opposed to four discrete eddy hierarchy levels).

is reconstructed conceptually using four discrete hierarchy levels (ESs of four different
sizes) as shown schematically in figure 22(a) in the (x, y)-space. The number of hierarchy
levels is chosen arbitrarily here for illustration of the conceptual γ 2

L spectra reconstruction.
The inclination angle of the eddies with respect to the jet axis is neglected, since a
consistent phase shift is irrelevant in the context of the LCS and spectra.

Each ES in figure 22(a) represents a large number of eddies of that size, which are
randomly distributed around the jet centreline. Associated with each of these hierarchy
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levels is a minimum wavelength that is proportional to the axial length of the representative
eddy belonging to that level (λi, i = 1, . . . , 4), below which the energy spectrum
corresponding to that hierarchy level is zero.

Consider two probes that are located in the flow and simultaneously measure the axial
velocity field generated by these ESs. The white small square in figure 22(a) represents a
fixed probe while the blue circles (with different shadings) show the location of the second
probe (traversing probe) at four different positions. When the traversing probe is located at
point 1, both probes simultaneously measure the velocity field associated with the largest
ESs (first hierarchy level) only, yielding a coherence that is non-zero for λx > λ1 as shown
by the light-coloured lines in figure 22(b). Note that γ 2

L is non-zero for λx > λ1 due to the
random repetition of the eddies belonging to the first hierarchy level in the axial direction.

Moving the traversing probe to point 2, velocity fields of the first hierarchy and the
second hierarchy eddy levels are superposed. This results in the superposition of the
coherence from these two hierarchy levels corresponding to the minimum wavelengths λ1
and λ2, where λ1 > λ2. Therefore, the coherence contribution from the second hierarchy
level is superposed on that from the first hierarchy level, resulting in an increase of
coherence level where they overlap (λx > λ1) and producing non-zero coherence for λ2 <

λx < λ1 as shown in figure 22(b). Continuing this process for points 3 and 4 generates
coherence values that superpose over the overlapping wavelengths as shown in figure 22(b)
(lines 3 and 4).

Samie et al. (2020) verified the assumption of the superposition of the coherence using
a synthetic flow field. If the LCS are plotted against �y and λx, the γ 2

L spectrogram is
obtained as shown in figure 22(c). It is not difficult to show that, by increasing the number
of hierarchy levels, the staircase-like spectrogram corresponding to four hierarchy levels
approaches a smooth spectrogram for a realistic flow comprising a continuous spectrum
of eddy sizes. This is shown in figure 22(d). Note that, when the eddy hierarchy levels are
not discrete, the wavelength associated with each of them is not recognizable on the γ 2

L
spectra. However, the wavelength corresponding to the largest representative ES (λ1) is an
exception and is still visible as the wavelength where a transition in the behaviour of the γ 2

L
contours occurs. According to the experimental γ 2

L spectra, this wavelength is λ1/y0.5 ≈ 4
for the turbulent round jet. Based on the conceptual reconstruction of the γ 2

L spectra, one
can see that the LCS in the wavelength domain λx < λ1 is constructed by ESs, while the
domain corresponding to λx > λ1 is associated with the repetition of ESs (i.e. VLSMs).
Therefore, the wavelength associated with the start of the wavelength-independent spectral
domain in the LCS is adopted as the lower spectral limit for the VLSMs and the upper
spectral limit of the ESs.
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