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The dynamics of a gene expression model with time delay are investigated. The
investigation confirms that a Hopf bifurcation occurs due to the existence of stability
switches when the delay varies. An explicit algorithm for determining the direction of
the Hopf bifurcations and the stability of the bifurcating periodic solutions has been
derived by using the theory of the centre manifold and the normal forms method.
The global existence of periodic solutions has been established using a global Hopf
bifurcation result by Wu and a Bendixson criterion for higher-dimensional ordinary
differential equations due to Li and Muldowney.

1. Introduction

The feedback inhibition of gene expression is a widespread phenomenon in molec-
ular biology. The feedback in eukaryotic cells involves time delays resulting from
transcription, transcript splicing and processing and protein synthesis. Generally,
such delays will result in oscillatory messenger ribonucleic acid (mRNA) and protein
expression [11].

The concept of oscillatory gene expression driven by negative feedback loops was
first predicted by Goodwin [4]. Since then, oscillations in biological systems with
delay have attracted considerable attention [10–15]. Although some mathematical
models incorporating delayed feedback have been studied [10, 11], these models
cannot demonstrate whether transcriptional and translational time delay has a
significant impact on the dynamics of gene expression.

The best-characterized system centres on the induction of oscillatory expression
of the basic helix–loop–helix transcription factor HES1 in cultured murine cell lines
stimulated by serum [7]. HES1 represses the transcription of its own gene through
direct binding to regulatory sequences in the HES1 promoter [7] (see figure 1).
Let M(t) be the concentration of HES1 mRNA at time t and let P (t) be the
concentration of HES1 protein at time t. Then the rate of change of M(t) and P (t)
might be supposed to obey the equations

Ṁ(t) = af(P (t − τ)) − µM(t), Ṗ (t) = bM(t) − dP (t), (1.1)

where a > 0 is the basal rate of transcript initiation in the absence of the associated
protein, b > 0 is the rate at which the HES1 protein is produced from HES1
mRNA, µ > 0 and d > 0 are the rates of degradation of HES1 mRNA and HES1
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Figure 1. Schematic representation of the delayed HES1 feedback loop. (1) Transcript
elongation, splicing, processing and export from the nucleus to the cytoplasm. (2) Synthesis
of HES1 protein by translation of HES1 mRNA. A translational delay can be absorbed
into the transcriptional delay. (3) Repression of transcript initiation from the HES1 gene,
through the binding of HES1 dimers to the promoter.

protein, respectively, and f(P (t−τ)) is the rate of production of new HES1 mRNA
molecules, which is assumed to be a decreasing function. Throughout this paper,
we assume that

f(P (t − τ)) =
1

1 + (P (t − τ)/P0)n
,

where P0 > 0 is a reference concentration of protein n > 1.
Monk [14] provided direct evidence that transcriptional delays can drive oscil-

latory gene activity and highlighted the importance of considering delays when
analysing genetic regulatory networks. Lewis [8] showed that the period of oscilla-
tion could be determined by the transcriptional and translational delays.

Recently, Verdugo and Rand [22] obtained a critical time delay beyond which a
periodic motion is born in a Hopf bifurcation, and further demonstrated that the
Hopf bifurcation may not occur if the rates of degradation are too large under the
condition that µ = d.

In the present paper, we provide a detailed analysis of this model. We investigate
not only the stability of the positive fixed point and the existence of the local Hopf
bifurcation, but also the direction of the Hopf bifurcation and the stability of the
bifurcating periodic solutions and the continuation of the Hopf branches. In order
to obtain the first global Hopf branch to show that an eight-dimensional ordinary
differential equation (ODE) has no periodic solutions, we use the Bendixson crite-
rion for higher-dimensional ODEs due to Li and Muldowney [9]. Since the model
with delay possesses more complex dynamics than the ODE, the mathematical
investigation of this model would be interesting. For instance, the model without
delay has no periodic solutions, but the number of periodic solutions of the model
increases as the delay increases.

In recent years, there have been several papers on the global Hopf bifurcation
of delay differential equations by using the global Hopf bifurcation theorem due to
Wu [32] and, hence, we refer the reader to [2,3,16,18–21,23–34] and the references
cited therein.

The remainder of this paper is organized as follows. In § 2 we employ a result
from Ruan and Wei [17] to analyse the distribution of the characteristic equation
associated with this model, and obtain the existence of the local Hopf bifurcation. In
§ 3 the direction of the Hopf bifurcation and the stability of the bifurcating periodic
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solutions are determined by using the normal form theory and centre manifold
argument presented in [6]. In § 4 global Hopf bifurcations are established. Some
numerical simulation examples are given in order to illustrate the results obtained
in § 5.

2. Stability and local Hopf bifurcation

In this section we employ the result due to Ruan and Wei [17] to study the stability
of the positive equilibrium and existence of local Hopf bifurcation.

By setting m = M/a, p = P/ab and p0 = P0/ab, system (1.1) can be expressed
as follows:

ṁ(t) =
1

1 + (p(t − τ)/p0)n
− µm(t), ṗ(t) = m(t) − dp(t). (2.1)

If (m∗, p∗) is an equilibrium of system (2.1), it satisfies

µm =
1

1 + (p/p0)n
, m = dp. (2.2)

This leads to

pn+1 + pn
0p − pn

0

µd
= 0.

Let

G(p) = pn+1 + pn
0p − pn

0

µd
.

Then

G(0) = − pn
0

µd
< 0 and G′(p) = (n + 1)pn + pn

0 > 0 for any p > 0.

This implies that the system (2.1) has a unique positive equilibrium, denoted by
(m∗, p∗). Clearly, m∗ < 1/µ and p∗ < 1/(µd).

Let m(t) = m(t) − m∗ and p(t) = p(t) − p∗. Then system (2.1) becomes

ṁ(t) =
1

1 + ((p(t − τ) + p∗)/p0)n
− µ(m(t) + m∗),

ṗ(t) = m(t) − dp(t).

⎫⎬
⎭ (2.3)

The linearization of (2.3) around (m∗, p∗) is given by

ṁ(t) = −Kp(t − τ) − µm(t), ṗ(t) = m(t) − dp(t), (2.4)

where K = nβ/[p∗(1 + β)2] and β = (p∗/p0)n, whose characteristic equation is

λ2 + (µ + d)λ + µd + Ke−λτ = 0. (2.5)

Now, let us consider the distribution of the roots of (2.5).

Lemma 2.1. Assume that
K > µd (H1)
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is satisfied. Then (2.5) has a pair of purely imaginary roots ±iω0 when τ = τj,
where

ω0 = ( 1
2 [−µ2 − d2 +

√
(µ2 + d2)2 − 4(µ2d2 − K2)])1/2,

τj =
1
ω0

[
arccos

ω2
0 − µd

K
+ 2jπ

]
, j = 0, 1, 2, . . . .

⎫⎪⎬
⎪⎭ (2.6)

Proof. Let iω (ω > 0) be a root of (2.5). Then

−ω2 + i(µ + d)ω + µd + K(cos ωτ − i sinωτ) = 0.

The separation of the real and imaginary parts yields

−ω2 + µd + K cos ωτ = 0,

−(µ + d)ω + K sin ωτ = 0.

}
(2.7)

Hence

ω2 = 1
2 [−µ2 − d2 ±

√
(µ2 + d2)2 − 4(µ2d2 − K2)].

Clearly, (H1) implies that

ω0 = ( 1
2 [−µ2 − d2 +

√
(µ2 + d2)2 − 4(µ2d2 − K2)])1/2,

and, hence,

τ0 =
1
ω0

arccos
ω2

0 − µd

K
.

Define τj = τ0 +2jπ/ω0, j = 0, 1, 2, . . . . Then (τj , ω0) solves (2.7). This means that
iω0 is a root of (2.5) when τ = τj , j = 0, 1, 2, . . . . This completes the proof.

Let λ(τ) = α(τ)+ iω(τ) be the root of (2.5) satisfying α(τj) = 0 and ω(τj) = ω0,
j = 0, 1, 2, . . . .

Lemma 2.2. If (H1) holds, then α′(τj) > 0.

Proof. By substituting λ(τ) into (2.5) and differentiating both sides of the equation
with respect to τ , we obtain

α′(τj) =
ω2(2ω2 + µ2 + d2)

∆
,

where ∆ = [µ + d − τω2 + τµd]2 + [2ω + (µ + d)τω]2. The conclusion follows.

Lemma 2.3.

(i) If K < µd holds, then all roots of (2.5) have negative real parts.

(ii) If (H1) holds, then there exist τ0 < τ1 < τ2 < · · · such that all the roots
of (2.5) have negative real parts, when τ ∈ [0, τ0) and (2.5) has 2(j + 1) roots
with positive real parts when τ ∈ (τj , τj+1), where τj is defined as in (2.6).
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Proof. When τ = 0, (2.5) becomes

λ2 + (µ + d)λ + µd + K = 0. (2.8)

Clearly, the roots of (2.8) have negative real parts. The ω0 defined in (2.6) is
meaningless when K < µd, which means that (2.5) has no roots appearing on the
imaginary axis. Hence, the conclusion of (i) follows. By using lemmas 2.1 and 2.2
and [17, corollary 2.4], the conclusion of (ii) follows under the condition (H1).

Applying lemmas 2.2, 2.3 and the Hopf bifurcation theorem of functional differ-
ential equations [5], we have the following results.

Theorem 2.4.

(i) If K < µd, (m∗, p∗) is asymptotically stable for any τ > 0.

(ii) Suppose that (H1) is satisfied. Then (m∗, p∗) is asymptotically stable for τ ∈
[0, τ0), and unstable for τ > τ0. System (2.1) undergoes a Hopf bifurcation at
(m∗, p∗) when τ = τj for j = 0, 1, 2, . . . , where τj is defined as in (2.6).

3. Direction and stability of the Hopf bifurcation

In the previous section, we obtained conditions for Hopf bifurcations to occur when
τ = τj , j = 0, 1, 2, . . . . In this section we investigate the direction of the Hopf
bifurcation and the stability of the bifurcating periodic solutions when τ = τ0, using
techniques of the normal form and centre manifold theory (see, for example, [6]).

For convenience, let t = sτ , and still denote time t. Then system (2.3) can be
rewritten as

ṁ(t) =
τ

1 + ((p(t − 1) + p∗)/p0)n
− τµ(m(t) + m∗),

ṗ(t) = τm(t) − τdp(t).

⎫⎬
⎭ (3.1)

Correspondingly, the characteristic equation (2.5) becomes

v2 + τ(µ + d)v + τ2µd + τ2Ke−v = 0, (3.2)

with v = τλ for τ �= 0. From lemma 2.3(ii) we know that if (H1) holds and τ = τ0,
all roots of (3.2) except ±iτ0ω0 have negative real parts. Furthermore, by lemma
2.2, the root of (3.2),

v(τ) = τα(τ) + iτω(τ),

with α(τ0) = 0 and ω(τ0) = ω0 satisfies

d(τα(τ))
dτ

∣∣∣∣
τ=τ0

= τ0α
′(τ0) > 0.

Set τ = τ0 + α, α ∈ R. Then α = 0 is the Hopf bifurcation value of system (3.1).
Then rewrite (3.1) as

ṁ(t) = (τ0 + α)[−Kp(t − 1) + a2p
2(t − 1) + a3p

3(t − 1) − µm(t)] + O(p4),
ṗ(t) = (τ0 + α)(m(t) − dp(t)),

}

(3.3)
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where

a2 =
βn(βn − n + β + 1)

2(β + 1)3p∗2 ,

a3 =
βn[6βn(1 + β)(n − 1) − (n − 1)(n − 2)(1 + β)2 − 6(βn)2]

6(β + 1)4p∗3 .

Choose the phase space as C = C([−1, 0], R2). For any φ = (φ1, φ2)T ∈ C, let

Lα(φ) = (τ0 + α)
(

−µ 0
1 −d

) (
φ1(0)
φ2(0)

)
+ (τ0 + α)

(
0 −K

0 0

) (
φ1(−1)
φ2(−1)

)

� (τ0 + α)Aφ(0) + (τ0 + α)Bφ(−1)

and

f(α, φ) � (τ0 + α)
(

a2φ
2
2(−1) + a3φ

3
2(−1) + O(φ4

2)
0

)
.

By Riesz’s representation theorem, there exists a matrix whose components are
bounded variation functions η(θ, α) in θ ∈ [−1, 0] such that

Lαφ =
∫ 0

−1
dη(θ, α)φ(θ) for φ ∈ C. (3.4)

In fact, we can choose η(θ, α) = (τ̂ + α)Aδ(θ) + (τ̂ + α)Bδ(θ + 1), where

δ(θ) =

{
1, θ = 0,

0, θ �= 0.

Then (3.4) is satisfied.
For φ ∈ C, define

A(α)φ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dφ(θ)
dθ

, θ ∈ [−1, 0),

∫ 0

−1
dη(t, α)φ(t), θ = 0,

R(α)φ =

{
0, θ ∈ [−1, 0),

f(α, φ), θ = 0.

Then system (3.1) can be rewritten in the following form:

u̇t = A(α)ut + R(α)ut, (3.5)

where ut = u(t + θ) for θ ∈ [−1, 0].
For ψ ∈ C1([0, 1], R2), define

A∗ψ(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−dψ(s)
ds

, s ∈ (0, 1],

∫ 0

−1
dTη(t, 0)ψ(−t), s = 0.
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For φ ∈ C([−1, 0]) and ψ ∈ C([0, 1]), define a bilinear form

〈ψ, φ〉 = ψ̄(0)φ(0) −
∫ 0

−1

∫ θ

0
ψ̄(ξ − θ) dη(θ)φ(ξ) dξ,

where η(θ) = η(θ, 0). Then A∗ and A(0) are adjoint operators. Let q(θ) and q∗(s)
be eigenvectors of A and A∗ corresponding to iτ0ω0 and −iτ0ω0, respectively. By
direct computation, we obtain

q(θ) = (iω0 + d, 1)Teiω0τ0θ,

q∗(s) = D(1, iω0 + µ)eiω0τ0s,

where

D̄ =
1

d + µ + τ0Ke−iω0τ0
.

Moreover, 〈q∗, q〉 = 1 and 〈q∗, q̄〉 = 0. Using the same notation as in [6], we first
compute the centre manifold C0 at α = 0. Let ut be the solution of (3.3) when
α = 0, and then define

z(t) = 〈q∗, ut〉, W (t, θ) = ut(θ) − 2 Re{z(t)q(θ)}.

On the centre manifold C0, we have

W (t, θ) = W (z(t), z(t), θ),

where

W (z, z̄, θ) = W20(θ)
z2

2
+ W11(θ)zz̄ + W02

z̄2

2
+ W30(θ)

z3

6
+ · · · .

z and z̄ are local coordinates for the centre manifold C0 in the direction of q∗ and
q̄∗. Note that W is real if ut is real. We consider only real solutions. Since α = 0,
for solution ut ∈ C0, we have

z′(t) = iω0τ0z + q∗(θ)f(W + 2 Re{z(t)q(θ)})
= iω0τ0z + q̄∗(0)f(W (z, z̄, 0) + 2 Re{z(t)q(0)})
� iω0τ0z + q̄∗(0)f0(z, z̄), (3.6)

where

f0(z, z̄) = fz2
z2

2
+ fz̄2

z̄2

2
+ fzz̄zz̄ + fz2z̄

z2z̄

2
+ · · · .

We rewrite this as
ż(t) = iω0τ0z + g(z, z̄), (3.7)

with

g(z, z̄) = q̄∗(0)f0(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄

2
+ · · · . (3.8)

Then we have g20 = q̄∗(0)fz2 , g11 = q̄∗(0)fzz̄, g02 = q̄∗(0)fz̄2 and g21 = q̄∗(0)fz2z̄.
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By (3.5) and (3.7), we obtain

Ẇ = u̇t − żq − ˙̄zq̄ =

{
AW − 2 Re{q̄∗(0)f0q(θ)}, θ ∈ [−1, 0),
AW − 2 Re{q̄∗(0)f0q(θ)} + f0, θ = 0,

� AW + H(z, z̄, θ),

⎫⎪⎪⎬
⎪⎪⎭ (3.9)

where f0 � f0(z, z̄), and

H(z, z̄, θ) = H20(θ)
z2

2
+ H11(θ)zz̄ + H02(θ)

z̄2

2
+ · · · . (3.10)

By expanding the above series and comparing the coefficients, we obtain

(A − 2iω0τ0I)W20(θ) = −H20(θ), AW11 = −H11(θ), . . . . (3.11)

From ut = zq(θ) + z̄q̄(θ) + W (t, θ), it follows that

p(t − 1) = e−iω0τ0z + eiω0τ0 z̄ + W 2
20(−1)

z2

2
+ W 2

11(−1)zz̄ + · · · ,

and from (3.8), we have

g20 = 2Dτ0a2e−2iω0τ0 ,

g11 = 2Dτ0a2,

g02 = 2Dτ0a2e2iω0τ0 ,

g21 = 2Dτ0[2a2e−iω0τ0W 2
11(−1) + a2eiω0τ0W 2

20(−1) + 3a3e−iω0τ0 ].

Since, for θ ∈ [−1, 0),

H(z, z̄, θ) = −q∗(0)f0q(θ) − q∗(0)f̄0q̄(θ) = −g(z, z̄)q(θ) − ḡ(z, z̄)q̄(θ),

and by comparing coefficients with (3.10), we obtain

H20(θ) = −g20q(θ) − ḡ02q̄(θ), H11(θ) = −g11q(θ) − ḡ11q̄(θ).

By substituting these relations into (3.11) we can derive the following equation:

W ′
20(θ) = 2iω0τ0W20(θ) + g20eiω0τ0θ + ḡ02e−iω0τ0θ.

Solving for W20(θ), we obtain

W 2
20(−1) = − g20

iω0τ0
e−iω0τ0 − ḡ02

3iω0τ0
eiω0τ0 + E2

1e−2iω0τ0 .

Similarly,

W 2
11(−1) =

g11

iω0τ0
e−iω0τ0 − ḡ11

iω0τ0
eiω0τ0 + E2

2 ,

where E2
1 and E2

2 will be determined as follows. From

H(z, z̄, 0) = −2 Re{q̄∗(0)f0q(0)} + f0,

we have

H20 = −g20q(0) − ḡ02q̄(0) + fz2
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and

H11 = −g11q(0) − ḡ11q̄(0) + fz(z̄).

From (3.11) and the definition of A, we obtain

[
2iω0τ0I −

∫ 0

−1
dη(θ)e2iωτ0θ

]
E1 = fz2

and ∫ 0

−1
dη(θ)e2iωτ0θE2 = −fzz̄.

Thus,

E2
1 =

2a2e−2iω0τ0

(2iω0 + µ)(2iω0 + d) + Ke−2iω0τ0
and E2

2 =
2τ0a2

µd + Ke−2iω0τ0
.

Since each gij above is determined by the parameters and delays in system (3.1),
we can compute the following quantities:

C1(0) =
i

2ω0τ0
(g20g11 − 2|g11|2 − 1

3 |g02|2) +
g21

2
,

µ2 = −Re{C1(0)}
Re λ′(τ0)

,

β2 = 2 Re{C1(0)},

T2 = − Im C1(0) + µ2(Im λ′(τ0))
ω0

.

It is well known that µ2 determines the direction of the Hopf bifurcation: if
µ2 > 0 (µ2 < 0), then the Hopf bifurcation is supercritical (subcritical) and the
bifurcating periodic solutions exist for τ > τ0 (τ < τ0). β2 determines the stability
of the bifurcating periodic solutions. The bifurcating periodic solutions are orbitally
asymptotically stable (unstable) if β2 < 0 (β2 > 0), and T2 determines the period
of the bifurcating periodic solutions: the period increases (decreases) if T2 > 0
(T2 < 0).

From the discussion in § 2 we know that Re(λ′(τ0)) > 0. We therefore have the
following result.

Theorem 3.1. The direction of the Hopf bifurcation of system (2.1) at the equilib-
rium (m∗, p∗) when τ = τ0 is supercritical (subcritical) and the bifurcating periodic
solutions are orbitally asymptotically stable (unstable) if Re(C1(0)) < 0 (Re > 0).

4. Global existence of periodic solutions

In this section we study the global continuation of positive periodic solutions bifur-
cating from the point (x∗, τj), j = 1, 2, . . . , x∗ = (m∗, p∗) for system (2.1). Through-
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out this section, we closely follow the notation in [32]. We define

X = C([−τ, 0], R2),
Σ = Cl{(x, τ, l) : (x, τ, l) ∈ X × R+ × R+,

x is an l-periodic solution of system (2.1)},

N =
{

(x̂, τ, l) : x̂ = (m̂, p̂), µm̂ =
1

1 + (p̂/p0)n
, m̂ = dp̂

}
,

∆(x∗,τ,l)(λ) = λ2 + (µ + d)λ + µd + Ke−λτ ,

and let C(x∗, τj , 2π/ω0) denote the connected component of (x∗, τj , 2π/ω0) in Σ,
where ω0 and τj are defined in (2.6).

Lemma 4.1. If n is an even number, then all periodic solutions of system (2.1) are
positive and uniformly bounded.

Proof. Let (m(t), p(t)) be a non-constant periodic solution of system (2.1), and let
m(t1) = M , m(t2) = m be the maximum and minimum of m(t), respectively. Then
m′(t1) = m′(t2) = 0, and by (2.1)1 we have

M =
1

µ(1 + (p(t1 − τ)/p0)n)
and m =

1
µ(1 + (p(t2 − τ)/p0)n)

.

Note that n is an even number, and hence (p(t − τ)/p0)n � 0. Then m > 0 and
M � 1/µ. This shows that 0 < m(t) � 1/µ.

Let p(t3) = P and p(t4) = p be the maximum and minimum of p(t), respectively.
Then, p′(t3) = p′(t4) = 0, and by (2.1)2, we have

P =
m(t3)

d
and p =

m(t4)
d

.

It follows that 0 < p(t) � 1/(µd). The proof is now complete.

Lemma 4.2. System (2.1) has no non-trivial τ -periodic solution.

Proof. For a contradiction, suppose that system (2.1) has a τ -periodic solution.
Then the following system of ODEs has a τ -periodic solution:

ṁ =
1

1 + (p/p0)n
− µm, ṗ = m − dp. (4.1)

If we define

P (m, p) � 1
1 + (p/p0)n

− µm and Q(m, p) � m − dp,

then
∂P

∂m
+

∂Q

∂p
= −µ − d < 0.

According to the classical Bendixson negative criterion, system (4.1) has no non-
constant periodic solutions. This completes the proof.
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Lemma 4.3. Assume that one of the following is satisfied:

(i) µ + d >
√

2
(

1 +
(n + 1)2

4np0

(
n − 1
n + 1

)n−1)
;

(ii) d > 1 or µ >
(n + 1)2

4np0

(
n − 1
n + 1

)n−1

.

Then, system (2.1) has no periodic solution of period 4τ . Moreover, system (2.1)
has no periodic solution of period 2τ .

Proof. Let x(t) = (m(t), p(t)) be a 4τ -periodic solution. Set

uk(t) = x(t − (k − 1)τ), k = 1, 2, 3, 4.

Then u(t) = (u1(t), u2(t), u3(t), u4(t)) is a periodic solution to the following system
of ODEs:

ṁ1 =
1

1 + (p2/p0)n
− µm1, ṗ1 = m1 − dp1,

ṁ2 =
1

1 + (p3/p0)n
− µm2, ṗ2 = m2 − dp2,

ṁ3 =
1

1 + (p4/p0)n
− µm3, ṗ3 = m3 − dp3,

ṁ4 =
1

1 + (p1/p0)n
− µm4, ṗ4 = m4 − dp4.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.2)

From lemma 4.1, the periodic orbit of system (4.2) belongs to the region

G =
{

u ∈ R
8

∣∣∣∣
(

0
0

)
< uk <

(
1/µ

1/µd

)
, k = 1, 2, 3, 4.

}
(4.3)

If we want to prove that there is no 4τ -periodic solution, it suffices to prove that
there is no non-constant periodic solution of system (4.2) in the region G. To do
this, we apply the general Bendixson criterion in higher dimensions developed in [9].
It is easy to compute the Jacobian matrix J(u) of system (4.2) for u ∈ R

8:

J(u) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−µ 0 0 f(p2) 0 0 0 0
1 −d 0 0 0 0 0 0
0 0 −µ 0 0 f(p3) 0 0
0 0 1 d 0 0 0 0
0 0 0 0 −µ 0 0 f(p4)
0 0 0 0 1 d 0 0
0 f(p1) 0 0 0 0 −µ 0
0 0 0 0 0 0 1 d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

f(pk) = − npn−1
k

pn
0 (1 + (pk/p0)n)2

, k = 1, 2, 3, 4.

Then the second additive compound matrix J [2](u) of J(u) is an
(8
2

)
×

(8
2

)
matrix

defined as follows. For any integer i, j ∈ N = {1, 2, . . . , 28}, the element in the i
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row and the j column of J [2](u) is

bij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2µ if i = j ∈ A,

−µ − d if i = j ∈ B,

−2d if i = j ∈ C,

1 if (i, j) ∈ D,

f(p1) if (i, j) ∈ {(6, 1), (28, 13)},

−f(p1) if (i, j) ∈ {(17, 8), (21, 9), (24, 10), (26, 11)},

f(p2) if (i, j) ∈ {(4, 19), (5, 20), (6, 21), (7, 22)},

−f(p2) if (i, j) ∈ {(1, 9), (2, 14)},

f(p3) if (i, j) ∈ {(2, 5), (8, 11), (17, 26), (18, 27)},

−f(p3) if (i, j) ∈ {(14, 20), (15, 23)},

f(p4) if (i, j) ∈ {(4, 7), (10, 13), (15, 18), (19, 22)},

−f(p4) if (i, j) ∈ {(23, 27), (24, 28)},

0, otherwise.

Here,

A = {2, 4, 6, 15, 17, 24},

B = {1, 3, 5, 7, 8, 10, 12, 14, 16, 18, 19, 21, 23, 25, 26, 28},

C = {9, 11, 13, 20, 22, 27},

D = {(3, 2), (5, 4), (7, 6), (8, 2), (9, 3), (9, 8), (10, 4), (11, 5), (11, 10),
(12, 6), (13, 7), (13, 12), (16, 15), (18, 17), (19, 15), (20, 16), (20, 19),
(21, 17), (22, 18), (22, 21), (25, 24), (26, 24), (27, 25), (27, 26)}.

Choose a vector form in R
28 as

|(x1, x2, . . . , x28)| = max{|xi|,
√

2|xj |}, i ∈ I, j ∈ N

I
,

where

N = {1, 2, . . . , 28}, I = {2, 4, 6, 9, 11, 13, 15, 17, 20, 22, 24, 27}.

With respect to this norm, we can obtain that the Lozinskĭl measure µ(J [2](u))
of the matrix J [2](u) is given by [1]

µ(J [2](u)) = max{−µ − d +
√

2(1 + |f(pk)|)}, k = 1, 2, 3, 4. (4.4)

By [9, corollary 3.5], system (4.2) has no periodic orbits in G if µ(J [2](u)) < 0 for
all u ∈ G. By (4.4), we have µ(J [2](u)) < 0 if and only if

µ + d >
√

2(1 + |f(pk)|), k = 1, 2, 3, 4. (4.5)

Note that |f(0)| = 0, limv→∞ |f(v)| = 0. For any v � 0,

d|f(v)|
dv

=
nvn−2[n − 1 − (n + 1)vn/pn

0 ]
pn
0 (1 + vn/pn

0 )3
= 0,
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if and only if v = 0 or vn = (n − 1)pn
0/(n + 1). So we know that |f(v)| takes its

minimum and maximum at

v = 0 and v = n

√
n − 1
n + 1

pn
0 , respectively.

The substitution of v = n
√

(n − 1)pn
0/(n + 1) into |f(v)| yields∣∣∣∣f

((
n − 1
n + 1

pn
0

)1/n)∣∣∣∣ =
(n + 1)2

4np0

(
n − 1
n + 1

)n−1

.

From condition (i), we can obtain (4.5).
If we choose |(x1, x2, . . . , x28)| = max1�i�28{|xi|} as the vector norm, the corre-

sponding Lozinskĭl measure µ(J [2](u)) of the matrix J [2](u) is as follows [1]:

µ(J [2](u)) = max{−2d + 2,−2µ + 2|f(pk)|}, k = 1, 2, 3, 4.

In order to obtain µ(J [2](u)) < 0, we should take

d > 1 or µ > |f(pk)|, k = 1, 2, 3, 4,

and this can be satisfied by condition (ii).

Theorem 4.4. Suppose that n is an even number,

µd < K <
√

µd(µ + d), (H2)

and that either (i) or (ii) of lemma 4.3 is satisfied. Then, for each τ > τj, j =
0, 1, 2, . . . , system (2.1) has at least j + 1 non-constant, positive periodic solutions,
where τj is defined by (2.6).

Proof. It is sufficient to prove that the projection of C(x∗, τj , 2π/ω0) onto τ -space
includes [τj ,∞) for each j � 0. We gave the characteristic matrix of system (2.1)
at an equilibrium (m∗, p∗) at the beginning of this section.

By lemmas 4.1 and 4.3, there exist ε > 0, δ > 0 and a smooth curve λ : (τj −
δ, τj + δ) → C, such that

∆(λ(τ)) = 0, |λ(τ) − iω0| < ε,

for all τ ∈ [τj − δ, τj + δ] and

λ(τj) = iω0,
d Re(λ(τ))

dτ

∣∣∣∣
τ=τj

> 0.

Define lj = 2π/ω0, and let

Ωε = {(0, l) : 0 < u < ε, |l − lj | < ε}.

Obviously, if |τ − τj | � δ and (u, l) ∈ ∂Ωε such that ∆(x∗,τ,l)(u + 2πi/l) = 0, then
τ = τj , u = 0, l = lj . Set

H±
(

x∗, τj ,
2π

ω0

)
(u, l) = ∆(x∗,τj±δ,l)

(
u +

2πi
l

)
.
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We obtain the crossing number

γ1

(
x∗, τj ,

2π

ω0

)
= degB

(
H−

(
x∗, τj ,

2π

ω0

)
, Ωε

)

− degB

(
H+

(
x∗, τj ,

2π

ω0

)
, Ωε

)
= −1.

We conclude that ∑
(x̂,τ,l)∈C(x∗,τj ,2π/ω0)

γ1(x̂, τ, l) < 0.

By [32, theorem 3.3], C(x∗, τj , 2π/ω0) is unbounded.
Lemma 4.1 implies that the projection of C(x∗, τj , 2π/ω0) onto the x-space is

bounded. Similarly to lemma 4.2, one can prove that system (2.1) with τ = 0 has
no non-constant periodic solutions. Hence, the projection of C(x∗, τj , 2π/ω0) onto
the τ -space is bounded below.

From the definition of τj in (2.6) and (H2), we know that
π

2
< τ0ω0 < π, 2π < τjω0 < (2j + 1)π, j � 1.

Hence,

2τ0 <
2π

ω0
< 4τ0,

τj

j + 1
<

2π

ω0
< τj , j � 1.

From lemmas 4.2 and 4.3 we know that 2τ < l < 4τ if (x, τ, l) ∈ C(x∗, τ0, 2π/ω0),
and τ/(j + 1) < l < τ if (x, τ, l) ∈ C(x∗, τj , 2π/ω0) for j � 1. So, in order
for C(x∗, τ0, 2π/ω0) to be unbounded, its projection onto the τ -space must be
unbounded. So, for each τ > τj , system (2.1) has j + 1 non-constant, positive
periodic solutions. This completes the proof.

Remark 4.5. From the proof of theorem 4.4, we know that the first global Hopf
branch contains periodic solutions of the period between 2τ and 4τ . These are
the slowly oscillating periodic solutions. For j � 1, the τj branches contain fast-
oscillating periodic solutions because the periods are less than τ .

Remark 4.6. For j � 1,
τj

j + 1
<

2π

ω0
< τj

automatically holds. The bounds on the period l for (x, τ, l) ∈ C(x∗, τj , 2π/ω0) hold
without the result of lemma 4.3. Thus, the global extension of the τj branches for
j � 1 can be proved without the restrictions (i) and (ii) in lemma 4.3 and (H2).

5. Computer simulation

In order to illustrate the analytical results obtained, we will consider a particular
case of system (2.1). Since the reasonable estimates for p0, n and τ are 10 � p0 �
100, 2 � n � 10 and 15 min � τ � 20 min [14], we choose the coefficients as follows:
µ = 0.16, d = 0.1, n = 4 and p0 = 40. Then system (2.1) can be expressed as
follows:

ṁ =
1

1 + (p(t − τ)/40)4
− 0.16m, ṗ = m − 0.1p. (5.1)
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Figure 2. Waveform and phase plots for system (2.1) with µ = 0.16, d = 0.1, n = 4,
p0 = 40 and τ0

.= 18.2674 < τ = 18.5 < 20. (a) m waveform; (b) p waveform; (c) m − p
phase plots.
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Figure 3. Waveform and phase plots for system (2.1) with µ = 0.16, d = 0.1, n = 4,
p0 = 40 and τ = 20. (a) m waveform; (b) p waveform; (c) m − p phase plots.

The equilibrium is given by (3.6654, 36.6543), and (H1) is satisfied. We can obtain

τ0
.= 18.2674, Re λ′(τ0) = 9.2284 × 10−4, g20

.= 0.0014 + 0.0081i,
g11

.= 0.0025 − 0.0079i, g02
.= −0.0058 + 0.0059i, g21

.= −0.0031 + 0.0038i.

So, we have

C1
.= −0.0016 + 0.0019i, µ2

.= 1.7079, β2
.= −0.0032, T2

.= −0.0191.

Hence, we can conclude that the bifurcation occurs when τ crosses τ0 to the right-
hand side, the bifurcating periodic solutions are orbitally asymptotically stable and
the period decreases. Figure 2 shows a simulation of the model with τ = 18.5. We
can also verify that (H2) and lemma 4.3(ii) are satisfied. These are illustrated in
figure 3.

Remark 5.1. Model (5.1) exhibits pronounced oscillations in HES1 mRNA and
HES1 protein expression when τ > τ0, and this situation will continue in the rea-
sonable region of τ . That is, the sustained oscillation can be induced if τ ∈ (τ0, 20].
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