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A linearized model of water exit
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A model of hydrodynamic loads acting on a rigid floating body during the lifting
of the body from the liquid surface is presented. The liquid is of infinite depth,
inviscid and incompressible. Initially the liquid is at rest. The body suddenly starts
to move upwards from the liquid at a constant acceleration. Boundary conditions
on the liquid surface are linearized and imposed on the equilibrium position of the
liquid surface. The resulting boundary problem is solved by the methods of analytical
functions. Negative pressures are allowed and the pressure is assumed continuous at
the periphery of the wetted area. The unknown size of the wetted area is determined
by the condition that the speed of the contact points is proportional to the local
velocity of the flow. This condition provides a nonlinear Abel-type integral equation
which is solved explicitly. Both two-dimensional and axisymmetric configurations
are considered. Predicted hydrodynamic forces are compared with the computational
fluid dynamics results by Piro & Maki (11th International Conference on Fast Sea
Transport. Honolulu, Hawaii, USA, 2011) for both a rigid wedge and circular cylinder,
which initially enter the water and then exit from it.

Key words: aerodynamics, flow–structure interactions, waves/free-surface flows

1. Introduction
The two-dimensional unsteady problem of a rigid body with small deadrise angle,

which is initially in contact with an inviscid liquid at rest and then suddenly starts
to move from the liquid at a constant acceleration, is considered (see figure 1). The
hydrodynamic loads acting on the moving body are of primary interest. The liquid is
assumed inviscid and incompressible, and its flow irrotational. The liquid is infinitely
deep and initially at rest. Initially the body is in contact with the liquid over a finite
interval, −c0 < x < c0 (figure 1). The intervals y = 0, x > c0 and x < −c0 correspond
to the initial positions of the liquid free surface. The initial position of the body is
described by the equation y = f (x) − h0, where h0 is the initial draft of the body.
Only the initially wetted part of the body surface matters in the exit problem. The
body is symmetric, f (−x) = f (x), f (0) = 0 and f ′(x) > 0, where 0 < x < c0. At the
initial time instant, t = 0, the body starts to move upwards with a given acceleration
h′′(t). The current position of the wetted part of the body is described by the equation
y= f (x)−h0+h(t), where |x|< c(t), h(t) is the body displacement, h′′(t)> 0, h(0)= 0,
h′(0) = 0 and the interval −c(t) < x < c(t) corresponds to the wetted area of the
moving surface.
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y

x

FIGURE 1. Initial position of a body on the surface of liquid of infinite depth at rest.

We shall determine the hydrodynamic force F(t) acting on the moving body and the
function c(t), which describes the size of the wetted part of the body surface under
the following assumptions: (i) the deadrise angle of the body is small, 0 < f ′(x)� 1,
where 0 < x < c0; (ii) the acceleration of the body h′′(t) is much greater than the
gravitational acceleration g; (iii) the wetted area is shrinking in time, c′(t) < 0 and
c(0) = c0; (iv) the hydrodynamic pressure in the wetted area can be below the
atmospheric pressure patm but is higher than the cavitation pressure pcav at which
the liquid turns into a vapour. The atmospheric pressure patm is taken below as the
reference pressure.

Note that if there is no surface tension, gravity, or air above the liquid, and
hydrodynamic pressures in the contact region are not allowed to be below the
atmospheric pressure, then the body surface separates from the liquid instantly at
t = 0 without inducing any flow (see figure 2). This observation makes the present
problem different from the water exit problem studied intensively in the past, where
initially a body is submerged under the liquid free surface and then moves towards
the liquid surface. Greenhow (1988) wrote: ‘For exit the calculations predict the
lifting of the water above the cylinder and subsequent formation of thin layers;
the draw-down and rush-up of the free surface beneath the cylinder, the rush-up
terminating in localised breaking clearly seen in the experiments; the fluid motion after
complete cylinder exit; and, perhaps most interestingly, the formation of large regions
of strongly negative pressure on the cylinder surface during late stages of exit which
explains the occurrence of the “spontaneous” breaking of the free surface seen in
experiments.’ See also Greenhow & Moyo (1997) for more results on the water exit
problem for horizontal circular cylinders.

The configuration shown in figure 1 is similar to the water entry problem studied
within the Wagner theory (Wagner 1932; Korobkin & Pukhnachov 1988; Howison,
Ockendon & Wilson 1991; Oliver 2002). Oliver (2002) wrote: ‘. . . the leading-order
outer problem is linearly stable if and only if the turnover curve is advancing, i.e. the
time reversal of the entry problem is linearly unstable. This suggests that modelling
the water exit of a partially submerged hull by the time reversal of a water entry
problem is illposed.’ This discussion by Oliver (2002) is related to our present
problem, with the ‘turnover curve’ corresponding to the contact points x = ±c(t)
in our notations. More results and explanations as to why the present exit problem
cannot be treated as a reversed entry problem were published by Chapman et al.
(1997) and Gillow (1998). We conclude that the formulation of the present problem is
very different from the entry problem, the formulation of which is well understood at
present. However, we expect that some ideas from the Wagner theory of water entry
can be used in the exit problem as well. Namely, for small deadrise angles of the body,
it is expected that the horizontal speeds of the contact points x = ±c(t) are greater
than the vertical speed of the body, at least during the early stage. If so, the boundary
conditions on both the free surface and the wetted portion of the body surface, which
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(a)

(b)

(c)

FIGURE 2. (a) Initial position of a body on the surface of liquid of infinite depth at rest.
(b) Lifting of the body if there is no gravity, adhesion, or presence of air. (c) Expected shape
of the liquid surface in a model where negative hydrodynamic pressures in the wetted area are
allowed.

exits from the liquid, can be linearized and imposed on the equilibrium position of the
liquid surface, similar to the linearization procedure adopted for entry problems during
the initial stage. However, the motions of the contact points in the exit problem are
governed by another mechanism, which is still unclear at present. In the entry problem,
the motions of the corresponding contact points are described by the Wagner condition,
which implies that the displacements of liquid particles are finite.

The problem under consideration in this paper is similar to that of the second
stage of wave impact from below on a platform placed just above the water surface,
so-called ‘wetdeck slamming’, studied by Baarholm (2001) and Faltinsen, Landrini
& Greco (2004). During the first impact stage the wave hits the wet deck of
the platform from below, and the wetted area of the platform increases in time.
Then the wetted area starts to diminish, and the water falls down due to gravity.
The problem of wetdeck slamming was studied numerically in two-dimensional
formulation. Faltinsen et al. (2004) wrote: ‘The water-exit phase lasted much longer
than a von Kármán method would predict. The water-exit phase causes a negative
force. The maximum absolute value of the negative force is comparable to the
maximum force during the water-entry phase.’ These findings were confirmed by
Scolan, Remy & Thibault (2006), who performed three-dimensional experiments with
a standing wave impact onto a horizontal transparent plate placed just above the water
surface. The line of separation of the water from the plate during the exit stage
was recorded and the wetted area as a function of time was plotted together with
the measured hydrodynamic force. In the two-dimensional formulation of wetdeck
slamming, Baarholm & Faltinsen (2004) suggested that, in addition to the Kutta
condition, the speed of the contact point, which is dc/dt in our notation, is equal to
the velocity of the flow at this contact point (see equation (14) in their paper). They
wrote that the latter condition ‘provides a stable solution that makes it possible to
simulate water exit until the deck becomes almost entirely dry.’ In the present analysis
this condition will also be employed but in a generalized form. The condition that the
speed of the contact point is proportional to the local speed of the flow at the contact
point will be used to close the formulation of the exit problem.
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Two-dimensional problem of water entry and exit of both rigid and elastic wedges
was investigated numerically by Piro & Maki (2011, 2012, 2013) with a Navier–Stokes
solver from OpenFOAM library. The analysis was motivated by ‘performance of
vehicles such as seaplanes, planing craft, space craft that land in the ocean, and ships
in general.’ Piro & Maki performed computational fluid dynamics (CFD) computations,
in particular, for a two-dimensional rigid wedge with deadrise angle of 10◦. The wedge
initially touches the flat water surface at a single point and suddenly starts to penetrate
the liquid with a given speed and a constant deceleration. Conditions of the impact are
selected in such a way that the speed of the wedge becomes zero before the wedge is
completely wetted. Then the wedge moves upwards from the liquid and finally exits
it. In particular, computations were performed by Piro & Maki (2011, 2013) for initial
velocity 4 m s−1 and deceleration 92 m s−2. Note that this deceleration is about ten
times greater than the gravitational acceleration g = 9.81 m s−2. It was found that the
hydrodynamic force is initially positive and then becomes negative during the entry
stage. The maximum magnitude of the negative force is achieved at the end of the
entry stage. During the exit stage the force is negative and its magnitude decays in
time. The force profile at the exit stage is rather particular; it is reproduced by the
model of the present paper. Shapes of the free surface are shown by Piro & Maki
(2013, figure 7) for different stages of the wedge motion. It is seen that the free
surface comes to the separation point almost tangentially, which is in agreement with
observations by Faltinsen et al. (2004) for wetdeck slamming. However, very close
to the wedge surface the liquid motion is more complicated, with part of the liquid
remaining on the body surface in the form of a thin film. This is due to viscous effects
which were not included in the analysis by Faltinsen et al. (2004).

The CFD analysis by Piro & Maki does not permit cavitation in the fluid. However,
they computed the pressure distribution in the wetted area of the parabolic section
y = x2/(2R) − h(t), where R = 1.4 m, which enters water with the initial speed
h′(0)= 1 m s−1 and constant deceleration h′′(t)=−19.5 m s−2, and concluded that the
minimum pressure is well above the vapour pressure of water pcav, which is 2.3 kPa
at 20 ◦C (Tassin et al. 2013). In these computations, the maximum penetration depth
was 2.5 cm and the minimum hydrodynamic pressure was computed just 7 kPa below
the atmospheric pressure patm ≈ 101 kPa, which gives the total pressure ∼94 kPa. The
minimum pressure occurs at the centre of the wetted area when the speed of the
parabolic section is zero.

Gravity and turbulence were neglected by Piro & Maki (2013) in the entry/exit
problems with large decelerations, but gravity was included by Piro & Maki (2012) in
the exit problems with constant speed. It was shown that for speeds of the body exit
greater than 5

√
gh0, where h0 is the initial-penetration depth of the wedge, the effect

of gravity can be neglected. This result is for the wedge with deadrise angle 10◦. The
results by Piro & Maki (2011) were the first results on the exit problem with constant
acceleration. The analysis of the present paper is based on the pioneering paper by
Piro & Maki (2011).

The present study is also motivated by the ‘2D+ t’ approach applied to the analysis
of aircraft landing on the surface of water (see Tassin, Korobkin & Cooker 2012). In
this approach, the fuselage of the aircraft is considered as a slender structure entering
the water with a horizontal speed much higher than the vertical speed of the aircraft.
In a vertical plane of the global coordinate system, which is perpendicular to the
direction of the aircraft motion, the liquid flow caused by impact is approximated
as two-dimensional, independent of the longitudinal coordinate. The two-dimensional
unsteady flow in such a control plane is governed by the time-dependent contour
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of the intersection between the fuselage and this vertical plane. Once the fuselage
enters the plane, the contour starts from a single point, grows in all directions, enters
the water, then decreases, exiting the water, and finally disappears when the fuselage
leaves the plane. The two-dimensional problem of a body of time-varying shape,
which enters the water and then exits from the water, was studied by Tassin et al.
(2012) by using the modified Logvinovich model from Korobkin (2004) during the
entry stage and the von Kármán model (see Kaplan 1987) during the exit stage. This
combined MLM/vK model was applied to the vertical water entry and exit of the
wedge studied by Piro & Maki (2011) using a fully nonlinear CFD method. It was
found that during the entry stage these two methods agree very well. The agreement
during the exit stage is good; however, the results by Piro & Maki (2011) predict
a longer exit stage, which is not captured by the von Kármán method. The latter
observation is consistent with the results by Faltinsen et al. (2004) in the problem of
wetdeck slamming. Accurate prediction of the negative forces in the rear part of the
fuselage during its landing on water is important in terms of the aircraft motion and
the bending stresses in the fuselage caused by the highly non-uniform distribution of
the loads along the fuselage.

The separation point, the motion of which was modelled by Faltinsen et al. (2004)
by using a special condition on the speed of this point, also appears in the problems
of oblique impact on the water surface of two-dimensional bodies. Three different
conditions which may govern the motion of the separation point were proposed by
Reinhard, Korobkin & Cooker (2012), with the Brillouin–Villat condition being one of
them. It was shown that the choice of the separation condition significantly changes
the predicted motion of the body. The flow before the separation starts was analysed
by Moore et al. (2013) for the two-dimensional case, by Moore et al. (2012) for
axisymmetric bodies and by Scolan & Korobkin (2012) for three-dimensional bodies.
The flow with the separation point at the rear of the body during oblique impact was
studied by Reinhard et al. (2012) for deep water and by Khabakhpasheva & Korobkin
(2013) for shallow water. Skimming impacts and rebounds on shallow liquid layers
were studied by Hicks & Smith (2011) with the separation point on the trailing sharp
edge of a body. Khabakhpasheva & Korobkin (2013) wrote: ‘The separated part of
the water surface and the subsequent motion of the separation point are determined
by using the Brillouin–Villat condition, which requires the continuity of the pressure
together with its tangential derivative at the separation point. This condition is not well
established but reasonable.’ This condition was used, for example, by Tuck & Simakov
(1999) and Semenov, Wu & Yoon (2012) in the steady problem of a body moving
along the free surface of liquid of infinite depth. It might be expected that the local
flow close to the separation point in the problem of water exit is similar to that in
the problem of oblique impact with separation. However, the Brillouin–Villat condition
at the moving separation point is not satisfied in the model of the present paper. The
Brillouin–Villat condition was also used by Korobkin (2003) in a related problem of
water entry of a decelerating body, where the liquid starts to separate from the moving
body where the pressure on the body surface drops below the vapour pressure.

Reis et al. (2010) showed that the domestic cat laps by a subtle mechanism
based on water adhesion to the dorsal side of the tongue. They wrote: ‘A combined
experimental and theoretical analysis reveals that Felis catus exploits fluid inertia to
defeat gravity and pull liquid into the mouth. At the lowest position of the tongue’s
tip, its dorsal side rests on the liquid surface, without piercing it. When the cat lifts
the tongue, liquid adhering to the dorsal side of the tip is drawn upward, forming a
column. The tongue accelerates as it leaves the water surface, attains a remarkable
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maximum speed of 78 ± 2 cm s−1, then decelerates as it enters the mouth.’ The speed
of ∼80 cm s−1 is achieved in 30 ms (see figure 2 in Reis et al. 2010). Therefore the
tongue is lifted at an acceleration of ∼27 m s−2, which is three times greater than
the acceleration due to gravity, g. Experiments were performed by Reis et al. (2010)
with a glass disc representing the tongue’s tip. The disc was initially placed on the
water surface and then pulled upwards vertically. The results of the experiments were
summarized as: ‘Estimation of the forces involved suggests that the fluid dynamics
of lapping are governed by inertia and gravity, whereas viscous and capillary forces
are negligible. Inertial entrainment draws liquid upward into a column, while gravity
acts to collapse it. Ultimately, gravity prevails and the column pinches off.’ This is
a remarkable finding, which gives us the idea that during the early stage of exit and
large acceleration of the body lifting, gravity can be neglected. The viscous effects and
surface tension are important close to the body surface but can be neglected in terms
of the global motion of the fluid.

We expect that the law of the body’s motion during exit of the body from a fluid
plays a most important role. Based on the results reviewed above we may assume that
both gravity and inertia matter for gravity-driven flows such as wetdeck slamming (see
Faltinsen et al. 2004) and motions of the body with acceleration of the order of the
acceleration due to gravity g. When the body moves more rapidly, the gravity can
be neglected during the initial stage of exit but has to be included at the later stages
when the displacement of the body is not small. If a floating body suddenly starts to
move from the liquid with non-zero speed, we expect the liquid to separate from the
body surface instantly: see Norkin & Korobkin (2011) for the corresponding model
of liquid separation. These arguments are additionally supported by Bugaenko (1973),
who studied forces acting on an elliptic cylinder lifted from water surface; the paper
by Bugaenko is reviewed in the book by (Korotkin 2009, chap. 5). Bugaenko assumed
that the liquid free surface can be modelled as a flat rigid plate and the cylinder exits
the liquid through this plate. This model is expected to be valid when the motion
of the body is very slow and the gravity dominates. Theoretical predictions were
compared with experimental results and good agreement was reported by Bugaenko
(1973). A similar model of exit was published by Greenhow & Yanbao (1987).

The viscous effects and surface tension can be neglected everywhere except for a
small vicinity of the body surface. We do not include the presence of air, and simplify
the shape of the wetted part of the body using the so-called ‘flat-plate approximation’.
Only inertia forces are included in the exit model of this paper. The present model
is concerned with the negative hydrodynamic force acting on a body lifted from the
liquid surface during the early stage.

Formulation of the problem is given in § 2. The pressure distribution in the wetted
area and the equation which relates the motion of the contact point and the body
displacement are derived. The latter equation is solved by the power series method in
§ 3 in the case of constant acceleration of the body. The corresponding axisymmetric
problem is solved in § 4. Comparisons with computational results by Piro & Maki
(2011) and Tassin et al. (2013) for a wedge and parabolic contour are established in
§ 5. Conclusions are drawn and future work is discussed in § 6.

2. Formulation of the problem
A body with a smooth surface starts to move upwards from the position depicted

in figure 1. The initial draft of the body h0 is assumed to be much smaller than the
initial horizontal size of the wetted area 2c0. The body displacement h(t) is of the
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374 A. A. Korobkin

order of the initial draft h0. The acceleration of the body h′′(t) is much greater than the
gravitational acceleration g. The flow is assumed to be two-dimensional, potential and
symmetric with respect to the centreline x= 0. In the present analysis, we linearize the
boundary conditions and impose them on the horizontal line y = 0. The function c(t),
which describes the motion of the contact points, is unknown in advance and should
be determined as part of the solution.

In order to justify this linearized model of water exit, we shall estimate the orders
of the terms in the Navier–Stokes equation and in the boundary conditions governing
the flow. We take c0 as the length scale and the characteristic acceleration of the body
a as the scale of the flow acceleration. We are concerned with the initial stage of
exit, 0< t < T , during which the vertical displacement of the body is of order O(aT2)

and is much smaller than the characteristic length of the problem, aT2/c0 � 1. Then
the velocity of the flow v(x, t) is of the order of O(aT). The viscous term ν∇2v in
the Navier–Stokes equation, where ν is the kinematic viscosity of the liquid, can be
neglected compared with the inertia term vt,

|ν∇2v|
|vt| = O(νT/c2

0), (2.1)

during the early stage of exit when νT/c2
0 � 1. Here ν ≈ 1.004 × 10−6 m2 s−1 for

water at 20 ◦C. The convective term (v ·∇)v can be neglected during the early stage,

|(v ·∇)v|
|vt| = O(aT2/c0), (2.2)

when the body displacement is small compared with the size of the wetted area.
The estimates derived above are valid for the main flow region. They are not
expected to be valid in close proximity to the moving rigid surface, where the body
wettability, fluid viscosity and the contact line dynamics are important. The gravity
can be neglected if g/a� 1. It is assumed below that the inequalities g/a� 1 and
aT2/c0� 1 are satisfied.

The derived estimates leave us with the linearized Euler equations

vt =− 1
ρ
∇p, ∇ ·v= 0, (2.3)

where ρ is the liquid density, which dictate that the hydrodynamic pressure p(x, t)
is of the order O(ρac0). The total pressure p + patm in the wetted area of the body
surface is below the atmospheric pressure during the body exit but above the vapour
pressure pcav when p > pcav − patm. This inequality can be violated for large values
of the product ac0 and negative hydrodynamic pressure p(x, t). In the linearized exit
model, which will be introduced below, the minimum hydrodynamic pressure is −ρac0

(see (2.15)). Thus, cavitation in the wetted area is possible when −ρac0 < pcav − patm,
which gives ac0 > 98 m2 s−2 for water at 20 ◦C.

It can be shown that the surface tension can be neglected in the main part
of the free surface if σT2/(ρc3

0) � 1, where σ is the surface tension coefficient,
σ ≈ 72×10−3 N m−1 for water at 20 ◦C. The inequality σT2/(ρc3

0)� 1 can be written
as (

σ

ρgc2
0

)(g

a

)(aT2

c0

)
� 1, (2.4)
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where g/a� 1 and aT2/c0 � 1. Therefore, in the exit problem, the surface tension
must be taken into account only if σ/(ρgc2

0) � 1, which gives c0 � √σ/(ρg).
Correspondingly, both sides of the inequality νT/c2

0 � 1 are convenient to square,
and we write the result as (

ν2

gc3
0

)(g

a

)(aT2

c0

)
� 1, (2.5)

where g/a� 1 and aT2/c0 � 1. Therefore, the liquid viscosity must be taken into
account only if ν2/(gc3

0)� 1, which gives c0 � (ν2/g)1/3. For example, for water at
20 ◦C we calculate (ν2/g)1/3 ≈ 0.05 mm and

√
σ/(ρg)≈ 3 mm.

The obtained estimates provide that: (i) the boundary conditions can be linearized
and imposed on the initial water level; (ii) gravity, surface tension and liquid viscosity
can be neglected in the leading order; (iii) water does not cavitate in the wetted area
during the early stage if

c0g� c0a< 98 m2 s−2 and c0 > 3 mm. (2.6)

We conclude that the linearized model without gravity, surface tension, viscosity
and cavitation can be used during the initial stage, T � √c0/a, if a � g and
3 mm< c0 < (98/a) m.

Within the linearized exit model, the flow is described by the velocity potential
ϕ(x, y, t), which satisfies the Laplace equation in the lower half-plane y < 0 and
decays at infinity, where x2 + y2→∞. The linearized Bernoulli equation provides the
hydrodynamic pressure

p(x, y, t)=−ρϕt(x, y, t) (y 6 0), (2.7)

where ρ is the liquid density. The dynamic boundary condition on the free surface
reads

ϕt(x, 0, t)= 0 (y= 0, |x|> c(t)). (2.8)

This condition implies that the horizontal velocity ϕx(x, 0, t) on the free surface is
zero, where |x| > c0, but should be determined as part of the solution on the intervals
c(t) < |x| < c0, which are formed by liquid particles attached initially to the body
surface. The linearized body boundary condition has the form

ϕy(x, 0, t)= h′(t) (y= 0, |x|< c(t)). (2.9)

We seek the solution of the formulated problem, which provides finite pressure in the
contact region. This condition implies that both the pressure and velocity of the flow
are continuous at the points x = ±c(t), y = 0. The function c(t) is calculated by using
the condition

dc

dt
= γ ϕx(c(t), 0, t). (2.10)

This condition can be considered as a generalized form of the condition used by
Faltinsen et al. (2004) in numerical calculations of wetdeck slamming. The coefficient
γ is undetermined in the present model and is chosen by using the numerical results
by Piro & Maki (2011). It will be shown that the parameter γ can be included in the
time scale of the problem.

Condition (2.10) comes from the assumption that the motion of the contact point
is governed by the local flow, which is characterized by the tangential velocity along
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the body surface, ϕx(c(t), 0, t). This component of the flow velocity increases with the
body speed, which should lead to a higher speed of the contact point. In the present
model, we assume that the relation between the speed of the contact point c′(t) and the
local tangential velocity of the flow is linear, with the coefficient γ dependent on the
physical characteristics of both the liquid and the body surface, such as wettability of
the body surface and viscosity of the liquid.

We shall solve the problem (2.7)–(2.10) and compare the obtained results with the
numerical ones by Piro & Maki (2011) and Tassin et al. (2013) for the case of water
exit of a wedge and circular cylinder with a constant acceleration. Note that in the
present model, the shape of the body is assumed to provide a higher-order contribution
to the hydrodynamic loads. It is expected that this contribution can be recovered by
extending the model to higher-order effects.

It is convenient to introduce a complex acceleration potential

w(z, t)= ϕt(x, y, t)+ iψt(x, y, t), (2.11)

where z= x+ iy and ψ(x, y, t) is the stream function. The function w(z, t) is analytic in
the lower half-plane y < 0 and decays at infinity as w(z, t) = O(z−1), where |z| →∞.
Conditions (2.8), (2.9) and the symmetry of the flow give

Re[w(x− i0, t)] = 0 (|x|> c(t)), (2.12)
Im[w(x− i0, t)] = −h′′(t)x (|x|< c(t)). (2.13)

Condition (2.13) is exact for any shape of the body if it is imposed on the actual
position of the body surface. In (2.12), quadratic terms are missing and the condition
is imposed on the horizontal line y = 0, but not on the actual position of the free
surface.

The solution of the mixed boundary-value problem (2.12) and (2.13) has the form

w(z, t)= ih′′(t)
(√

z2 − c2(t)− z
)
, (2.14)

where the function
√

z2 − c2(t) is defined on the complex plane z with the cut along
the interval y= 0, |x|< c(t), and such that it is real and positive on the interval y= 0,
x > a(t). The boundary values of this function on y = −0 (note that y < 0 in the flow
region) are

√
x2 − c2(t), where y = −0 and x > c(t), −√x2 − c2(t), where y = −0 and

x < −c(t), and −i
√

c2(t)− x2, where y = −0 and |x| < c(t). Note that this function
tends to +i

√
c2(t)− x2, where y→+0 and |x|< c(t).

The solution (2.14) and the linearized Bernoulli equation (2.7) provide the pressure
distribution in the wetted area,

p(x, 0, t)=−ρh′′(t)
√

c2(t)− x2 (|x|< c(t)), (2.15)

and the time derivative of the stream function on the free surface,

ψt(x, 0, t)= h′′(t)(
√

x2 − c2(t)− x) (x> c(t)). (2.16)

The hydrodynamic force F(t) acting on the moving body is obtained by integrating the
pressure (2.15) along the contact region,

F(t)=
∫ c(t)

−c(t)
p(x, 0, t) dx=−ρh′′(t)

∫ c(t)

−c(t)

√
c2(t)− x2 dx=−mah′′(t), (2.17)

where ma = 0.5πρc2(t) is the added mass of the equivalent flat plate. Therefore, the
hydrodynamic force can be calculated if the function c(t) is known.
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A linearized model of water exit 377

The components of the flow velocity on the boundary y = 0 are obtained by
integrating (2.16) and the corresponding equations for ϕt(x, 0, t),

ϕt(x, 0, t)= h′′(t)
√

c2(t)− x2 (|x|< c(t)), (2.18a)
ϕt(x, 0, t)= 0 (|x|> c(t)), (2.18b)

in time, and subsequent differentiation of the results with respect to x along the
boundary. The integration must be performed carefully. We introduce a function t(x)
such that c[t(x)] ≡ x and t(c0) = 0. Then the velocity potential on the boundary is
given by

ϕ(x, 0, t)=
∫ t

0
h′′(τ )

√
c2(τ )− x2 dτ (|x|< c(t)), (2.19)

ϕ(x, 0, t)=
∫ t(x)

0
h′′(τ )

√
c2(τ )− x2 dτ (c(t) < |x|< c0), (2.20)

ϕ(x, 0, t)= 0 (|x|> c0). (2.21)

Equation (2.19) provides the velocity of the flow along the body surface:

ϕx(x, 0, t)=−x
∫ t

0

h′′(τ ) dτ√
c2(τ )− x2

. (2.22)

A similar formula for the horizontal velocity of the liquid in the wake, y = 0,
c(t) < x< c0, follows from (2.20):

ϕx(x, 0, t)=−x
∫ t(x)

0

h′′(τ ) dτ√
c2(τ )− x2

. (2.23)

The horizontal velocity is continuous at the contact point x= c(t), where

ϕx(c(t), 0, t)=−c(t)
∫ t

0

h′′(τ ) dτ√
c2(τ )− c2(t)

. (2.24)

Equations (2.10) and (2.24) yield the following equation for the function c(t):

dc

dt
=−γ c(t)

∫ t

0

h′′(τ ) dτ√
c2(τ )− c2(t)

. (2.25)

Equation (2.25) will be studied in the next section.
The vertical velocity of the liquid boundary can be calculated by using (2.16) and

the function t(x). The result is

ϕy(x, 0, t)= h′(t)− x
∫ t

0

h′′(τ ) dτ√
x2 − c2(τ )

(x> c0), (2.26)

ϕy(x, 0, t)= h′(t)− x
∫ t

t(x)

h′′(τ ) dτ√
x2 − c2(τ )

(c(t) < x< c0), (2.27)

ϕy(x, 0, t)= h′(t) (0< x< c(t)). (2.28)

Equations (2.26)–(2.28) show that the vertical velocity of the boundary is a continuous
function of x.
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378 A. A. Korobkin

3. Size of the contact region in the exit problem
To solve (2.25), it is convenient to introduce new non-dimensional variables α and σ

such that

c2(t)= c2
0(1− σ), c2(τ )= c2

0(1− α), (3.1)

where α and σ are equal to zero when t = 0 and τ = 0, correspondingly, and α = σ at
τ = t. A new unknown function f (σ ) is introduced by the equation

h′′(t)= f (σ )
dc2

dt
. (3.2)

Equation (3.1) yields

dc2

dt
=−c2

0

dσ
dt
, (3.3)

which makes it possible to integrate (3.2) with the result

h′(t)=−c2
0

∫ σ

0
f (α) dα. (3.4)

Substituting (3.1) and (3.2) in (2.25), we derive the nonlinear integral equation

h′′(t)= 2γ c3
0(1− σ)f (σ )

∫ σ

0

f (α) dα√
σ − α . (3.5)

Equations (3.4) and (3.5) serve to evaluate the functions f (σ ) and σ(t). The speed of
the body h′(t) and the body acceleration h′′(t) are assumed to be given functions of
time in these equations. The equations are too complicated to be solved in a general
case. Below we consider the exit problem for constant acceleration, h′′(t) = a, of the
body. Formally, the present model can only be used for small σ . However, in the
following, we will use the derived equations up to σ = 1 which corresponds to the end
of the exit stage with c= 0.

If the body acceleration is constant, then the body speed h′(t) and the body
displacement h(t) are

h′(t)= at, h(t)= 1
2 at2, (3.6)

and (3.4) and (3.5) can be significantly simplified. With respect to the non-dimensional
unknown function

G(σ )=−f (σ )

(
a

2γ c3
0

)−1/2

, (3.7)

equations (3.5) and (3.4) take the form

(1− σ)G(σ )
∫ σ

0

G(α) dα√
σ − α = 1, (3.8)

t =
(

c0

2γ a

)1/2 ∫ σ

0
G(α) dα. (3.9)

It is seen that (3.8) is independent of any parameters of the problem and can be solved
first with respect to the function G(σ ). Then we calculate t(σ ) using (3.9), which
together with (3.1) provides c(t) in parametric form.
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A linearized model of water exit 379

The duration of the exit stage is given by (3.9) at σ = 1. The present linearized
model is valid only for small displacements of the body, h(t)/c0 � 1, that is, for
small σ . However, we will use the obtained solution for 0 < σ < 1 with the aim of
comparing the asymptotic predictions with the results of numerical simulations. This
comparison will give us ideas about the practical range of validity of the present
model, which could be wider than that defined by the formal conditions derived in § 2.
Note that the maximum displacement of the body during the exit stage is independent
of the acceleration a and proportional to the initial size of the contact region,

hmax = c0

4γ

(∫ 1

0
G(α) dα

)2

. (3.10)

Equation (3.8) shows that the unknown function G(σ ) is singular at σ = 0, when the
body starts to move, and at the end of the exit stage, σ = 1. For small σ , the solution
is sought in the form

G(σ )= q̃0σ
−k + · · ·. (3.11)

Equations (3.8) and (3.11) provide in the leading order as σ → 0

q̃2
0σ
−2k+(1/2)

∫ 1

0

ξ−k dξ√
1− ξ ∼ 1, (3.12)

which gives k = 1/4 and q̃0 = π−1/4[0(5/4)/0(3/4)]1/2, where 0(x) is the gamma
function. When σ → 1, a similar analysis yields G(σ ) ∼ D(1− σ)−3/4, where
D= π−1/4[20(5/8)/0(1/8)]1/2.

The solution of (3.8) is sought in the form

G(σ )= q̃0σ
−1/4

∞∑
n=0

qnσ
n, (3.13)

where q0 = 1. The coefficients qn in (3.13) are calculated by the recurrent relations

qn+1 =
[

qn

(
1+ 3

8
βn

)
+

n−1∑
m=1

qmβm(qn−m − qn−m+1)

]/
(1+ βn+1), (3.14a)

βn+1 = βn

(
1− 2

4n+ 5

)
, (3.14b)

β0 = 1, q0 = 1, q1 = 5
8
, q2 = 49× 15

22× 64
. (3.14c)

The results of the calculations by (2.17), (3.9), (3.13) and (3.14) are presented in
figure 3 in terms of the non-dimensional size of the wetted area c(t)/c0 =

√
1− σ ,

non-dimensional hydrodynamic force F(t)/|F(0)| = σ − 1, where F(0) = −0.5πρac2
0,

and the body displacement h(t) = 0.5at2, which is shown here to indicate the initial
stage during which the non-dimensional displacement of the body is small and the
present linearized model is expected to be valid. Note that the undefined parameter
γ can be included in the time scale of the exit problem and does not affect the
magnitude of the hydrodynamic force. At the end of the exit stage the force is small
and the present model can be used even if the displacement of the body is not small.
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FIGURE 3. The non-dimensional size of the wetted area, hydrodynamic force and the vertical
displacement of the body as functions of the non-dimensional time t

√
γ a/2c0.

The obtained solution predicts that the speed of the contact point for small time
behaves as

dc

dt
≈−1

2
[3γ 2c0a2t/q̃4

0]1/3 (t→ 0). (3.15)

On the other hand, the small-time asymptotic analysis of the floating plate problem,
where the plate is lifted upwards with a constant acceleration, can be performed in
a same manner as that used by Iafrati & Korobkin (2008) in the problem of floating
plate impact. The result is c′(t) = O(t1/3), which is in agreement with the formula
(3.15) predicted by the present model.

The shapes of the free surface at four time instants are shown in figure 4 for the
parabolic contour, whose initial position is described by the equation y= x2/(2R)− h0,
where R = 1 m and h0 = 2 cm. Correspondingly, the initial coordinate of the
intersection point is c0 =

√
2Rh0 = 20 cm. Initially the liquid is at rest and the body

starts to exit from the liquid at t = 0 with constant acceleration a = 20 m s−2. The
shape of the free surface, y = η(x, t), is computed by integration of the linearized
kinematic boundary condition ∂η/∂t = v(x, t) in time with the corresponding initial
condition. Here v(x, t) = ϕy(x, 0, t), where |x| > c(t). The non-dimensional size of
the wetted area, c(t)/c0, is shown in figure 3 as a function of the non-dimensional
time τ = t

√
γ a/2c0. In the present calculations,

√
γ a/2c0 = 10 s−1 for γ = 2. The

differential equation for v(x, t) follows from (2.16) and has the form

∂v

∂t
= a

(
1− x√

x2 − c2(t)

)
(|x|> c(t)). (3.16)

The differential equations for the elevation of the free surface η(x, t) and the vertical
velocity of the free surface v(x, t) are integrated with respect to the non-dimensional
time τ with time step 10−4 for values of the non-dimensional horizontal coordinate
x/c0 from zero to 0.44 with the step 0.0055. The function c(t) in (3.16) was
approximated by

c(τ )= (1− µ1τ
µ2 + µ3τ

3)c0, (3.17)

where µ1 = 1.46838, µ2 = 1.31525, µ3 = 0.509565, in the interval 0 < τ < 0.8 (see
figure 3) with the relative error 4 × 10−5. Note that µ2 ≈ 4/3, which is in agreement
with the asymptotic formula (3.15). Figure 4 resembles the expected shape of the free
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FIGURE 4. Shapes of the free surface at (a) t = 0.02 s, (b) t = 0.04 s, (c) t = 0.06 s and
(d) t = 0.08 s are shown by thin lines. Thick lines show the positions of the rigid surface at
the corresponding time instants. The horizontal and vertical axes are in metres. The initial
position of the free surface is shown by the dashed line.

surface shown in figure 2(c) except for intervals around the initial position of the
contact point x = a0, where the slope of the free surface is significant and the surface
tension is not negligible. To resolve this singularity, the surface tension has to be
included in the analysis starting from the earliest stage. This can be done by using
the asymptotic analysis similar to that employed by Korobkin & Iafrati (2005) in the
problem of floating body impact by introducing inner regions close to the ends of the
floating plate. The asymptotic analysis predicts that the size of the inner region is of
the order of t2/3 as t→ 0, the flow in the inner region is nonlinear and is governed
by surface tension. The inner problem can only be solved by numerical methods. The
inner flow close to the initial position of the contact point is not considered in this
paper.

4. Axisymmetric problem
The results of § 3 are based on the formula (2.15) for the pressure distribution in

the wetted area of the moving surface. In the corresponding axisymmetric problem, the
pressure distribution in the contact region, r < c(t), is given by

p(r, 0, t)=− 2
π
ρh′′(t)

√
c2(t)− r2, (4.1)

where r and z are cylindrical coordinates. Equation (4.1) makes it possible to calculate
the velocity potential in the wetted part of the circular wetted area and the radial
velocity ϕr(r, 0, t). The formula for the radial velocity is similar to (2.22) but with
factor 2/π. Correspondingly, in the equation (2.25) for the radius of the wetted area
c(t), γ should be changed to 2γ /π. For constant acceleration of the body a, the
analysis of § 3 provides

t
√
γ a/2c0 =

(
π

8

)1/2
∫ σ

0
G(α) dα,

c(t)

c0
= (1− σ)1/2, (4.2)

F(t)= F(0)(1− σ)3/2, F(0)=−4
3
ρac3

0, (4.3)
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where G(σ ) is given by (3.13) and (3.14). It is seen that the duration of the exit stage
for a circular disc of diameter 2c0 is ∼40 % shorter than for a two-dimensional plate
of the same width. The force F(t) tends to zero more quickly at the end of the exit
stage in the axisymmetric problem than in the two-dimensional problem.

5. Comparison with CFD results
Numerical calculations of the hydrodynamic force acting on a two-dimensional

wedge of deadrise angle β = 10◦ were performed by Piro & Maki (2011) with a
Navier–Stokes solver from OpenFOAM library. Both rigid and elastic wedges were
studied. Only results for the rigid wedge are considered here. The wedge displacement
is described by the equation

h(t)= Vt − 1
2 at2, (5.1)

where V is the initial speed of the wedge and a is the wedge deceleration. In
computations, V = 4 m s−1 and a = 92 m s−2. Note that the body deceleration is
about ten times higher than the gravitational acceleration g. The speed of the wedge
is zero at t = V/a. The latter quantity is taken as the time scale, t = Vt̃/a, where t̃ is
the non-dimensional time. The time interval 0 < t̃ < 1 corresponds to the entry stage,
during which the wedge penetrates the water, and t̃ > 1 corresponds to the exit stage.
The non-dimensional force F̃(t̃)= F(t)/Fsc computed by Piro & Maki (2011) is shown
in figure 5 by a thin line. The thick line in this figure corresponds to the hydrodynamic
force calculated by the Wagner theory of water impact when 0 < t̃ < 1 and by the
present linearized theory of water exit when t̃ > 1. The parameter γ in the water exit
model was set equal to 2, in order to fit the theoretical prediction to the computed
force. Note that variation of the parameter γ stretches the force curve when t̃ > 1 only
in time but not in terms of the force magnitude. The force scale is taken as ρ(V/2)2B,
where V/2 is the mean speed of the body during the entry stage (see Piro & Maki
2011), ρ is the liquid density and B= h(tsc)/ tanβ. The Wagner theory provides

F̃(t̃)= 5π3

4 tanβ
(t̃2 − 2t̃ + 4/5)(2− t̃)t̃ (0< t̃ < 1) (5.2)

and, in particular, F̃(1) ≈ −43.9613. It is seen that the theoretical force with γ = 2
reproduces well the numerical force during the exit stage. Moreover, the duration of
the exit stage is well predicted. During the entry stage the force calculated by the
Wagner model is higher than the force computed by Piro & Maki (2011). This is
a well known feature of the Wagner model (see Wagner 1932). Prediction of the
hydrodynamic force during the entry stage can be improved by using the modified
Logvinovich model by Korobkin (2004): see figure 2 in Tassin et al. (2012).

Similar CFD computations were performed in Tassin et al. (2013) for parabolic
contour y = x2/(2R), where R = 1.37 m, which motion is described by (5.1) with
V = 1 m s−1 and a= 19.5376 m s−2. The speed of the contour is zero at t = V/a. This
quantity is taken as the time scale, t = Vt̃/a, where t̃ is the non-dimensional time. The
time interval 0 < t̃ < 1 corresponds to the entry stage, and t̃ > 1 to the exit stage. The
non-dimensional force F̃(t̃) = F(t)/Fsc computed in Tassin et al. (2013) is shown in
figure 6 by a thin line. The thick line in this figure corresponds to the hydrodynamic
force calculated by the Wagner theory of water impact when 0 < t̃ < 1 and by the
present linearized theory of water exit when t̃ > 1 with γ = 2. The force scale Fsc is
taken as ρ(V/2)2B, where V/2 is the mean speed of the body during the entry stage
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FIGURE 5. The non-dimensional hydrodynamic force F̃ acting on the wedge with deadrise
angle of 10◦ entering water with the initial speed V = 4 m s−1 and constant deceleration
a = 92 m s−2 as a function of the non-dimensional time t̃. The thin line corresponds to the
numerical prediction by Piro & Maki (2011) and the thick line to the present model of water
exit, where t̃ > 1, and the Wagner model, where 0< t̃ < 1.
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FIGURE 6. The non-dimensional hydrodynamic force F̃ acting on the parabolic contour
entering water with the initial speed V = 1 m s−1 and constant deceleration a =
19.5376 m s−2 as a function of the non-dimensional time t̃. The thin line corresponds to
the numerical prediction by Tassin et al. (2013) and the thick line to the present model of
water exit, where t̃ > 1, and the Wagner model, where 0< t̃ < 1.

and B= 1 m in the CFD computations. The Wagner theory predicts

F̃(t̃)= 2πρRV2(1− 3t̃ + 1.5t̃2)/Fsc (0< t̃ < 1). (5.3)

Note that F̃(1) = −0.5F̃(0). It is seen that both the entry and exit stages are well
described by the corresponding theoretical models. The body returns to its initial
position with h= 0 at t̃ = 2, and the body is above the initial water level when t̃ > 2.

6. Conclusion
A model of lifting of a body with small deadrise angle from a liquid surface has

been presented. The model includes the liquid inertia only in a similar way to how
it was done in the water entry problem by Wagner (1932). The shape of the body

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

57
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.573


384 A. A. Korobkin

surface is not taken into account. The size of the wetted area of the body surface
plays the most important role. The wetted area is diminishing in time. The speeds of
the contact points are assumed to be proportional to the local speed of the flow at
these points. It was shown that the coefficient in this condition can be included in
the time scale of the problem and does not affect the magnitude of the hydrodynamic
force during the exit stage. The problem was solved for constant acceleration of the
body motion. The problem of a floating body lifting with a constant force can be
solved in a similar way. More complicated motions require numerical solutions of (3.4)
and (3.5). The problem of a body which exits from water and changes its shape in
time is very challenging, but can also be treated within the approach presented. The
solution of the latter problem is needed for evaluation of negative forces in the rear
parts of high-speed vessels and the fuselage of a ditching aircraft within the 2D + t
approximation.

Both two-dimensional and axisymmetric exit problems with constant accelerations
were analysed in this paper. Three-dimensional problems can be solved within the
present water exit model only numerically. Three-dimensional experimental results
were published by Scolan et al. (2006) but for wave impact from beneath a horizontal
plate when the gravity matters.

The hydrodynamic pressure (2.15) for constant acceleration a of the body exit
is negative, that is, below the atmospheric pressure. Its magnitude is maximum at
the centre of the wetted area, x = 0, at the initial instant, t = 0, when c(0) = c0.
Therefore, the minimum pressure in the contact area predicted by the linearized
theory is equal to −ρac0. In the conditions of the numerical analysis by Tassin
et al. (2013), ρ = 1000 kg m−3, a = 19.5 m s−2 and c0 ≈ 36 cm, (2.15) gives
p(0, 0,+0)≈−7.02 kPa, which is close to the value computed numerically.

The shapes of the free surface during the exit stage are shown in figure 4. The free
surface is tangential to the surface of the body at the contact points and drops down
monotonically in the interval from x = c(t) to x = c0. Then the free surface rises to
the initial liquid level where x > c0. The tangent to the free surface is not continuous
at x = c0, which indicates that the surface tension is important close to this point. The
initial stage of the body motion can be analysed using the approach by Korobkin &
Iafrati (2005) developed for impact of a floating body. It can be shown that the flow
close to the point x= c0 depends on the surface tension and is self-similar in the inner
variables (x− c0)/t2/3 and y/t2/3. The inner solution can be obtained only numerically.

The energy conservation law is satisfied within the present exit model for any
function c(t). Note that simplified models of water entry do not satisfy this law,
and additional effects should be included in the models, such as jetting or acoustic
effects; see Korobkin & Peregrine (2000) for discussion of energy conservation in
water impact problems.

The body wettability, contact line dynamics, viscous effects and surface tension are
expected to play a major role close to the surface of the body. This local analysis has
not yet been done. We expect that the local analysis will help us to justify (2.10) or to
derive another condition governing the motion of the contact point within the inviscid
model. In terms of the hydrodynamic force studied in § 5, condition (2.10) is fairly
reasonable.

More dedicated numerical simulations by CFD and specially designed experiments
are required to further develop theoretical models of water exit.
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