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SUMMARY
This paper proposes a new path-planning algorithm which is close to the family of bug algorithms.
Path planning is one of the challenging problems in the area of service robotics. In practical
applications, traditional methods have some limitations with respect to cost, efficiency, security,
flexibility, portability, etc. Our proposed algorithm offers a computationally inexpensive goal-oriented
strategy by following a smooth and short trajectory. The paper also presents comparisons with other
algorithms. In addition, the paper also presents a test bed which is created to test the algorithm. We
have used a two-wheeled differential drive robot for the navigation and only a single camera is used
as a feedback sensor. Using an extended Kalman filter, we localize the robot efficiently in the map.
Furthermore, we compare the actual path, predicted path and planned path to check the effectiveness
of the control system.

KEYWORDS: Path planning, Bug algorithm, Extended Kalman filter, Homography, Localization,
PID controller

Notations Used:
r : Radius of the circle.
q(t ) : Centre of the circle at time t .
Br (q(t )) : Circle of radius r, centred at q(t ).
d (q(t ), q(t + 1)) : Distance between points q(t ) and q(t + 1).
L : Line joining the source and goal location.
rthreshold : Minimum radius.
rmax : Maximum radius for the initial obstacle-free circle.
W obs : Obstacle-prone workspace.
τ : Path stored as a list of control points.
φ : Empty set.
q.Rz(r, θ ) : Rotation around the point q in the z axis, with the radius r, at an angle of θ.

ql , qr : Propagating circle’s centre for the left and right branch, respectively.
qlp, qr p : Pivot circle’s centre for the left and right branch, respectively.
Xl , Xr : Rolling status of left and right branch, respectively.
pl , pr : Whether left and right branch have reached goal.
α = r(t+1)/r(t) : An algorithm parameter, ratio of the new radius of propagating circle with

respect to the previous radius.

1. Introduction
The problem of path planning is an integral part of mobile robots. The problem of path planning
is to determine a path that the robot must take in order to achieve a desired configuration, and in
case of a mobile robot, to reach the destination.1−3 A path is a set of generated configurations in
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the configuration space which have to be sequentially followed to reach the goal.4 Since the space
may contain obstacles or constrained paths, planning should generate an optimum path which obeys
every physical constraint present in the environment. Path planning is an NP-hard problem, where
we can verify the optimality of the solution, but finding the optimal solution is very difficult and a
computationally expensive problem. Also, the complexity increases exponentially with an increase
in the dimensions of the environment (space). Thus, the path-planning algorithm should be able to
provide a feasible path and should also be computationally inexpensive.

Our paper provides a relatively fast algorithm, whose motivation comes from the following analogy.
Suppose a person is lost in the middle of a forest, and all that he/she has is a compass and a map. And
he/she knows the direction in which he/she has to head to find a safe location. Then, the best way to
reach the destination will be to follow the shortest path, i.e. the one joining the current location and
the destination. But, practically, life is not that easy, and there are obstacles in the way. Then the best
possible way to avoid the obstacles, is to go around them, until again, we find the main track, and do
this until we reach the destination.

The mathematical model of our algorithm falls roughly into the family of bug algorithms,5,6 which
have two main modes of operation: following obstacle boundaries and moving towards the goal. But
unlike the bug algorithm, we assume our robot to be contained inside a circle, which propagates
towards the destination. The variable-sized circle used ensures that there is a maximum clearance
and the obtained path is also relatively smooth. There is an algorithm parameter, α, which is a ratio
and determines the radius of the circle in the next iteration. Now, if α is close to 1, the radius of
the final circle becomes a linear function of minimum clearance between the obstacles. This results
in a smoother path having a much better clearance. Further, while the bug family of algorithms are
entirely reactive in nature and can thus result in extremely poor paths, some deliberation is added into
the designed algorithm to make the algorithm generate shorter and acceptable paths.

A good planning algorithm has various constraints like environment noise, hardware errors, etc.
which come into the picture when they are applied to a physical system. Efficiently controlling the
robot is one of the most challenging tasks for successful navigation of the robot. After getting a
path, we can generate control signals and feed the robot, which it will use to navigate the path. Now,
everything seems fine, until the question pops, what is the guarantee that the robot has reached the
destination/desired state? Has the robot truly followed the desired path? Thus, the best control system
should have a feedback mechanism, which can monitor the robot and can execute the desired plan in
accordance to the situation. Precise localization of the robot is very important for an efficient feedback
system.7 Due to various sources of noise, the sensors of the robot may not always be correct. Thus, we
use an extended Kalman filter (EKF),8,9 which is used to predict the best possible state of the robot, in
case the sensors show fluctuant/inconsistent readings. Using a combination of different sensors and
filters, localization can be made very robust, which results in a better controlling of the system.

After getting the localized value from the filter, controlling should be done. The control system
should be designed in accordance to all the physical constraints that the robot possesses. We have
used the P, PD and PID variations of controllers in our test bed. The coefficients of the P, I and D
components of the PID controller10 are obtained by using a simulator, in which the real-world robot
is precisely mapped to the virtual robot. This is how the simulator’s PID coefficients also work fine
with the real physical robot.

The main intention behind the work is to make an algorithm that can be used by very cheap
indigenously developed robots. Even though research has led to a lot of advancements in robotics, the
adoption of robots in homes is limited due to different factors, one of them being the monetary cost.
We see a future wherein cheap robots will be doing much of the household work. For the same, this
approach is designed and tested for very cheap robots which have a very high noise in actuation and
sensing, and are assisted by a cheap external camera.

The algorithm can be seen as a hybrid of deliberative and reactive mechanisms for planning. The
deliberative algorithms are computationally expensive, but optimal and complete, while the reactive
algorithms are computationally less expensive, but miss out on the lines of optimality (and sometimes
completeness). Various schemes for the fusion have been proposed in the literature realizing the
relative pros and cons of the two methodologies. Most of these operate in two or multiple layers of
hierarchy. Here a scheme is designed, that does not take two different algorithms as a deliberative
and a reactive component; however, takes a reactive algorithm as a base and adds deliberation on
top of it for judicious decision making. Not only does the scheme mix the relative pros and cons of

https://doi.org/10.1017/S0263574718000127 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574718000127


884 Maximum clearance rapid motion planning algorithm

deliberative and reactive planning, it also enables us to solve the problem of clearance in the selected
reactive planner.

The main contribution of the work is to propose an algorithm which generates shorter paths and
paths with a very high clearance as compared to the bug algorithms, while taking a little extra
computational time. The proposed algorithm is tested in an indigenously designed cheap mobile robot
which is prone to extremely large actuation and sensing errors, and tested against low computational
expense. The attributes of the algorithm perfectly match the requirements of such a robot. Further,
a test bed is made consisting of a video camera for feedback, an EKF for localization and a PID
controller for control. Comparing the algorithm to other algorithms stresses upon the utility of the
algorithm for low-cost mobile robots with a high noise and limited computation facilities, where
optimal paths may not be a strict criterion and paths with acceptable lengths may suffice.

There have been numerous attempts in developing fast motion planning algorithms. In a recent
work by Salzman and Halperin,11 a hybrid fast algorithm, lower bound tree-RRT (LBT-RRT) was
developed by combining a fast RRT algorithm and asymptotically optimal RRT* and RRG algorithms.
An approximation factor was used to maintain the weights between RRT and RRG, and the resultant
approach was shown to produce better results than RRT and executed faster than RRT*. In this single
query approach, they used a combination of two roadmaps by maintaining the tree from RRG roadmap
and an auxiliary graph (lower bound graph).

There has been a thorough investigation of robot path-planning methods.12 In a related work, Sezer
and Gokasan13 proposed a mechanism for the robot to find large gaps between obstacles geometrically
and made the robot go through these gaps. In another work, Alvarez and Sanchez14 also assess the gap
using the robot’s sensors and made the robot travel in the direction of the largest gap. The algorithms
maximize clearance; however, the approach is purely reactive in nature, meaning that the robot can
get stuck.

More interesting works are done in the use of deliberative approaches to motion planning, especially
the approaches using hierarchical and multi-level decompositions. Such as the work of Zhang et al.,15

in which they proposed a new approach by using approximate cell decomposition to divide the
configuration space into cells and computed localized roadmaps by generating samples within these
cells. Then, using localized roadmaps, a connectivity graph for adjacent cells with pseudo free edges
was generated. Thus, using the connectivity of free space, an adaptive subdivision algorithm was
proposed. In another work using multi-level decomposition approach,16 the LPA*(Lifelong planning
A*) algorithm was made more robust and less computationally expensive. The algorithm utilized
the pre-computed multi-scale information of the environment to create the related search graph of a
smaller size. Thus, it reduced the computational complexity of the LPA*.

While comparing the algorithm in terms of finding a path of maximum clearance, the best algorithm
is the Voronoi diagram. The Voronoi diagram has a very large computation time when the map is
available as a grid map with obstacles not defined as polygons. In contrast, the proposed algorithm
visits a significantly lesser proportion of the space, giving results significantly earlier.

Another approach using hierarchical decomposition method was proposed by Cowlagi and
Tsiotras.17 They proposed a procedure in which a graph-search algorithm operated on a sequence
of vertices and a lower level planner ensured consistency between the two levels of hierarchy by
providing meaningful costs for the edge transitions of a higher level planner using dynamically feasible
and collision-free trajectories. The hierarchical solution of these two sub-problems was efficient. In
another related work, Kala et al.18 used a coarser deliberative planner based on cell decomposition,
and a reactive planner at the finer level for the navigation of the robot. The algorithm is largely trap
free, but the initial cell decomposition is highly resolution dependent and can be computationally
expensive.

Apart from the motion planning algorithms, there has also been a lot of work on mapping,
localization and control. In the work of Savkin and Li,19 a Pioneer-3dX robot mounted with range
finder sensors was used for map building in an unknown environment having obstacles. A randomized
algorithm was built for robot navigation. In a related work, William and Pinhas20 worked on the
confluence of mapping, localization and controlling of multi-robotic systems. They presented methods
for integrated exploration and SLAM in multi-robotic systems. Also, different benefits/trade-offs of
multi-robot system design were also presented. In other work by Maddahi et al.21 on control and
calibration, the authors presented a method for calibrating a mobile robot having a differential drive,
which corrects for the systematic errors. The proposed method was compared with the University of
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Michigan Benchmark (UMBmark) odometry method on two sets of comparisons. The first set of tests,
compared the workability and accuracy between the proposed method and UMBmark techniques,
while the second test compared the performance of mobile robot, calibrated by any one of the
techniques, while moving on an unknown path. In another related work by Hwang and Lee,22 laser
range finder was used to build a 2-D map using motion-free ICP algorithm. The consecutive data
frames acquired from the laser range finder were used to formulate a least square problem, having
constrained rotation and translation. The optimal data acquired at each time-frame was integrated to
build a robust 2-D map.

The paper is organized as follows. Section 2 gives an overview of the search and bug algorithms.
Section 3 introduces our proposed algorithm. Then in Section 4, we describe our test bed in detail.
Section 5 describes the results and discussions of the proposed algorithm, along with comparisons
with other algorithms. Finally, Section 6 concludes the work.

2. Overview of Search and Bug Algorithms
In most of the algorithms, the effectiveness of the algorithm depends upon the resolution of the
configurational space. The optimal algorithms, A* and Dijkstra are also resolution-optimal. The
path planned by these algorithms is optimal within the limits of the resolution of the environment.
This however can be improved by using multi-resolution quad tree techniques,23,24 in which a 2-
D environment is recursively decomposed into its four uniformly sized regions. The nodes of the
tree are classified as a free node and an obstacle node. In a related work,25 the resolution was
incrementally adapted to make an anytime algorithm using a graph search. The approaches reduce
the computational time, but still the optimality of the path is lost. Recursively dividing the map
creates the simplified grid, on which algorithms like A* would generate the path faster, but the
resolution is a function of the closest distance between the obstacles. Since the decomposition happens
independent of the source and goal, so theoretically in the worst case it is similar to working on
the undecomposed original map for scattered small obstacles. Apart from this, verifying the sub-
region (nodes) between obstacle and free node is a cumbersome process both computationally and
memory wise.

Motivated by the same, in our algorithm, we use variable-sized circles to divide the configurational
space in multiple resolutions. Unlike the typical multi-resolution approaches, the aim here is to divide
only a portion of the configuration space that is potentially on the way to the goal and therefore the
proposed algorithm is a lot less computationally intensive.

While most of the algorithms are offline, for online processing, one of the oldest algorithms is the
family of bug algorithms. The bug algorithms are the fundamental algorithms, which are complete
as they guarantee to search the goal, if it is possible in the given space. They do not suffer from the
problem of getting stuck in a local minima. Bug 1 algorithm is one of the oldest member of the bug
family. The algorithm never gets struck in a local minima, but sometimes generates a path which takes
the robot far away from the goal.6 The algorithm moves the robot towards the goal using the motion to
goal behaviour. In case of an encounter with an obstacle, the obstacle avoidance behaviour is invoked
and the robot starts to move around the obstacle. While moving around the obstacle, the robot stores
the distance between the current point and the goal. The robot stores the minimum distance point as
it completes one revolution around the obstacle. Henceforth, the robot again goes back to that point
which recorded the minimum distance and navigates further using the motion to goal behaviour. The
main drawback of this approach is that following the complete boundary of the obstacle can lead to
a very long path.

Bug 2 algorithm is another improved version of the bug algorithm. Here the path is planned using
a greedy approach.21 The algorithm begins by moving towards the goal. The behaviour changes to
obstacle avoidance whenever any obstacle is encountered and it moves around the obstacle. While
moving along the boundary, the slope is calculated from that position towards the goal. Once the slope
equals to the initial slope between the source and destination, it again starts moving towards the goal if
such a motion is possible and the current point is closer than the previous such leaving point. Although
the bug-2 works better than bug-1 in most cases, there can be cases where it does not perform better
than bug 1. On encountering an obstacle, the robot has to choose between clockwise or anti-clockwise
traversal of the obstacle. A wrong choice in this algorithm can lead to significantly poor paths. The
motivation behind the proposed algorithm is to add a little deliberation in the same methodology so

https://doi.org/10.1017/S0263574718000127 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574718000127


886 Maximum clearance rapid motion planning algorithm

as not to generate very poor paths. The advantages of a high clearance and a variable-sized circular
space decomposition are extra.

3. Proposed Algorithm

3.1. Overview of the proposed algorithm
Our proposed algorithm generates a feasible solution, while (non-strictly) optimizing two factors,
i.e. maximizing clearance factor of the path from obstacles and minimizing the processing time to
generate the solution. The algorithm was initially inspired from the quad tree approach using a multi-
resolution technique.23,24 In our proposed algorithm, we use a circle in place of square grids. The circle
is made to propagate towards the goal (destination), along the shortest path. As the source is fixed, the
initial circle encloses the robot at the source position. While traversing towards the destination, if
the circle encounters any obstacle, then we use the analogy of the bug-2 algorithm,5,6 and go around
the obstacle. But since our algorithm is an offline algorithm, we divide the circle at the junction and
send two different circles along the surface (boundary) of the obstacle. Now, among the two branches
of the circles, the one which reaches along the original line first (the line joining the source and
destination) is accepted and the other branch is rejected. Now again the circle traces the path towards
the goal and repeats the same steps if any obstacle is encountered. But suppose at any position both
the circles of different branches are unable to find a path or get struck in a loop, then there is a
condition of no path for that radius. Then we re-initialize the circle from the source with a new
radius which is α times the previous radius. The same process is repeated until an obstacle free
circle encompasses the destination or if the minimum permissible value of radius (threshold value)
is reached.

Using a circle as the propagating virtual robot in our algorithm, the maximum clearance from
the obstacle in ensured as the robot is enclosed inside the circle. The algorithm terminates when the
threshold radius is reached. This ensures that the found path is feasible with respect to the physical
dimensions of the robot. Moreover, the main utility of using a circular shape is that it can rotate
around a pivot circle, while still guaranteeing clearance on the path rotated. This property is used for
the propagation of the circle around the obstacle. This property is not met with any regular polygon.
As an example, consider a square as the shape chosen with a size of a. If a square is inside an obstacle
and we take that as a pivot and rotate another square around the obstacle-prone square. Now at the
corner, the rotating square has a distance of

√
2a from the pivot square, so the clearance is larger than

the clearance being maintained of a. While in case of a circle, the best bound of clearance will be the
radius.

3.2. Technical details
The algorithm is initialized by first determining the maximum obstacle-free region containing the
circle around the source. To determine the radius of this circle, an initial circle with some radius
δr is created around the source. The circle is checked for n (≈40), number of random points on its
circumference for obstacle bound region. The radius of the circle is iteratively increased by δr, until
the obstacle is detected or the goal is detected. Thus, the maximum radius of the circle without obstacle
region is taken as the initial propagating circle. If the goal is detected, then that gives a straight line
joining the source and the goal as the path. In Fig. 1, the step-wise determination of the initial radius
of the propagating circle is demonstrated. The algorithm uses the line joining the source and goal as
a heuristic to reach the goal. We define this line as the base line. The circles are propagated towards
the goal along the base line.

In free space, the circles are propagated along the line which is given by Eq. (1). Let r be radius of
propagating circle, q(t ), qg, qs represent the coordinates of the centre of the circle, goal and source,
respectively, at some iteration.

q (t + 1) = q (t ) + 2r
qg − qs

d
(
qg − qs

) (1)

But when the obstacle-containing regions intersect the straight line joining the source and destination,
the propagating circle which intersects the obstacle-containing region is converted into the pivot circle,
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Fig. 1. (From top left to bottom right) (a) Creating an initial circle (blue, dotted) and checking along the
points (dots) on the circumference. (b)–(e) Iteratively increasing the radius and checking for obstacle region. (f)
Maximum radius circle (solid) having obstacle free region is taken for initialization of the algorithm.

qp(t ), and the previous propagation circle, qpp(t ), prior to the pivot circle, is rolled in a clockwise
and an anti-clockwise direction along the pivot circle as shown by Eq. (2).

ql p = qp + Rz

(−π

3

)
.

[
qpp − qp

]
(2)

qr p = qp + Rz

(π

3

)
.

[
qpp − qp

]
(3)

where Rz(θ ) is the rotation matrix for θ angle of rotation around the z-axis. These two circles form
two branches. Again the circles are made to roll over the pivot circle in their respective directions.
Now if the new propagating circle of the branch contains obstacle region, then that circle is made as
the new pivot circle for that branch and the previous obstacle-free propagating circle is made to roll
over this new pivot circle. The process is repeated and finally both the propagating circles of the two
branches move along the boundary of the obstacle. Figure 2 demonstrates how the propagating circle
navigates around the obstacle after the initial maximum clearance radius is found. This approach is
also shown in the Supplementary video for better understanding. Since the radius of the circles are
fixed in one iteration, we have proved that there exists only an integral number of adjoining circles.
This property also helps to maintain the list of visited circles around the given pivot circle and can be
used to detect a loop.

Suppose there is circle with centre Ó and radius r. The circles with centre A and centre B are
its adjacent circles (Fig. 3). Let us take angle AÓC as θ . Since the angle ACÓ is π /2, we can use
trigonometry to find θ from Eqs. (4) and (5):

sin θ = AC

AO′ (4)

θ = sin−1 AC

AO′ (5)

θ = sin−1 r

r + r

θ = π

6
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Fig. 2. (From top left to bottom right) (a), (b) Initializing initial propagating circle (blue) and propagating it
towards the goal. (c) Obstacle containing circle is made as the pivot (red). (d) Rotation around the pivot is done
and two circles are generated, (e), (f) Two branches are propagated, but no free path is found. (g) A circle with
a new radius is initialized, (h)–(j) Circles are propagated towards the goal. (k), (l) The upper branch finds the
goal first and the touching points of the adjacent propagating circles are taken as the control points.
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r 

Fig. 3. Circle with centre Ó is surrounded by two neighbouring circles.

We know that the length of tangents to a circle from an external point are equal and the line joining
the external point and the centre of the circle acts as a bisector of the angle created by the tangents.
Thus, the angle CO’D will be π /3. This angle represents one neighbouring circle. Thus, if there are
n circles in the neighbourhood of the circle, then we can say that the sum of angles casted by all the
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Fig. 4. Minimum clearance is equal to 4 × radius in the worst scenario.

neighbouring circles is 2π. Simplifying it, we get

2π = n × π

3
(6)

n = 6.

Thus, there are only six neighbouring circles possible which can touch the given circle. All the
circles touch each other and roll at an angle of π/3 in case of an obstacle. Using this, it can be intuitively
observed that whatever is the path or whatever obstacle comes into the way during propagation, the
circles will never overlap. Even in the worst case, all the circles will be touching each other. This
shows that we can divide the map in a finite set of unique circles. This property helps us to maintain
the list of visited circles (state space), which is used to detect a loop.

Since our algorithm is offline, it gives the opportunity to handle the drawbacks of the bug-2
algorithm. At the junction where the circle first meets the obstacle, the pivot is set. Now at evzble,
thus we create two branches of circles. The circles are rotated at an angle of π /3 clockwise and π /3
anti-clockwise along the pivot for the two different branches. If any of the branch reaches the base
line, we add that branch’s control point to our original path and the other branch’s control point is
rejected. The algorithm again propagates along the base line until it reaches the goal. But there can
be a case that among the two branches around the obstacle, no one finds a path back to the base line
and gets stuck in a loop. Under that condition, the algorithm re-initializes the circle from the start,
with a different radius:

ri = α ri−1 (7)

where ri−1 is the previous radius and 0 < α < 1. α is the ratio factor by which the radius of the new
circle depends on the previous circle.

The radius of the final circle (clearance), which successfully finds a way to the goal, is linearly
related to the minimum clearance available in the configuration space between the obstacles. To prove
this, suppose α is set very close to 1. Considering the worst case, at any iteration i, a circle with radius
ri just misses to find a path (Fig. 4). Then in the next iteration, the new radius will be marginally
eligible to pass through the clearance. From the figure, it can be observed that the minimum radius
of the circle will be one-fourth of the minimum global clearance possible, which lies along the way.
No other worst-case configuration is possible as compared to this. If no explicit conversion of the
workspace to the configuration space is made by inflating the obstacles by the radius of the robot, the
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Fig. 5. Initialization phase. Circle with maximum permissible radius r.

clearance between the obstacles should be at least two times the physical dimensions of the robot, in
the worst case. If the workspace is however converted into a configuration space explicitly, smaller
radii will also work.

3.3. Pseudo code
Consider Fig. 5, as the 2-D representation of environment or the map. The robot initializes from the
initial position and there is goal position (destination). The blue-coloured regions are the obstacle
regions of the map. Let Br(q(t+1)) be a circle with centre q(t) and radius 2r, given by Eq. (5). Further,
let the line L be defined as a straight line joining the source (qs) to the goal (qg), given by Eq. (6).

Br (q (t + 1)) = {x : d (x, q (t + 1)) ≤ 2r} (8)

L = {
q : λqs + (1 − λ) qg, 0 ≤ λ ≤ 1

}
(9)

We define a term pivot which is a circle around which the next propagating circles rotate in clockwise
and anti-clockwise directions creating two branches. The pseudo code of the approach is given in
Algorithm 1. The algorithm can also be easily understood by the Supplementary video.

Algorithm 1
1 Input: qs = source, qg = goal, rthreshold, α, Output: Set of control points τ

2
3 t = 0, q(t ) = qs, r = rmax, τ = φ

4
5 loop:
6 if r < rthreshold, return φ

7 q(t + 1) = q(t ) + 2r qg−qs

d (qg,qs )
8 Compute Br (q(t + 1))
9 if Br (q(t + 1)) ∩ W obs = φ

10 τ ← τ ∪ q(t+1)
11 else if qg ∈ Br (q(t + 1)) ∧ Br (q(t + 1)) ∩ W obs �= φ

12 t = 0, τ = φ, q(t ) = qs, r ← α × r
13 else if qg ∈ Br (q(t + 1))
14 τ ← τ ∪ q(t+1), break
15 else if Br (q(t + 1)) ∩ W obs �= φ

16 τl = φ, τr = φ, Xl = true, Xr = true, pl = false, pr = false
17 ql = qr = ql p = qr p = q(t + 1), q′

l = q′
r = q′

l p = q′
r p = q(t )
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18 Compute Br (ql p), Br (qr p), Br (q′
l p), Br (q′

r p)
19 loop:
20 if Xl :
21 ql ← ql p.Rz(2r, −π

3 )
22 Compute Br (ql )
23 if ql ∈ τl , Xl = false
24 else if Br (ql ) ∩ W obs �= φ

25 q′
l ← q′

l p, ql p ← ql

26 else if Br (ql ) ∩ W obs �= φ

27 τl ← τl ∪ ql

28 q′
l p ← ql

29 if ql ∩ L �= φ

30 q(t + 1) = q(t ) + 2r qg−qs

d (qg,qs )
31 pl ← true, τl ← τl ∪ ql , break
32 if Xr :
33 qr ← qr p.Rz(2r, π

3 )
34 Br (qr )
35 if qr ∈ τr , Xr = false
36 else if Br (qr ) ∩ W obs �= φ

37 q′
r ← q′

r p, qr p ← qr

38 else if Br (qr ) ∩ W obs �= φ

39 τr ← τr ∪ qr

40 q′
r p ← qr

41 if qr ∩ L = φ

42 q(t + 1) = q(t ) + 2r qg−qs

d (qg,qs )
43 pr ← true, τr ← τr ∪ qr, break
44 if Xl = false ∧ Xr = false
45 r ← α × r, t = 0
46 q(t ) = qs, τ = φ, break
47 if pl = true, τ ← τ ∪ τl

48 else if pr = true, τ ← τ ∪ τr

The pseudo code is given as Algorithm 1. In the proposed algorithm, we assume that we have the
robot’s initial position and we know the goal (destination). In the initialization part, we set the α ratio
factor and the threshold value, and initialize the list to store the control points of the path. Then we
initialize our circle with centre at the source position with maximum possible obstacle free radius as
shown in Fig. 5.

The line joining the source and destination is the shortest possible line. Our circle traverses along
this line (line 7 from Algorithm 1). The new circle is checked—whether it is obstacle free, or if it
contains an obstacle or if it contains the goal. Now if the circle is obstacle-free (line 9), then we append
the new position of the circle and continue with the loop.

If the circle is the repeated circle that has already been traversed or if it contains the goal along
with an obstacle inside it (line 11), then there is no path possible, so we re-position the circle back to
the source with the new radius which is alpha times the previous one. If the circle contains the goal
(line 13) only, then we append the final position and break the loop.

If the circle contains an obstacle (line 15), then we have to go around the obstacle boundary. Thus,
we make the obstacle circle as a pivot, along which the other circle will roll (Fig. 6). We initialize the
two empty lists (line 16) to store the control points from the two different branches. After this, we
loop until there is a path back to the original line or there is no path. For the left branch, we get a new
circle from the left pivot by rolling the previous non-obstacle circle over it in a clockwise direction
(lines 17 and 21, Fig. 6). The same is done with the right pivot in the right branch (lines 17 and 33).

Now the new circle is checked for its status. If there is a repetition, i.e. if it is struck in a loop, then
the branch is terminated (lines 23 and 35). If it contains an obstacle inside it (lines 24 and 36), then
the ball is set as the pivot ball and the previous ball is set as shown in Fig. 4. The other condition is
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Fig. 6. Rotation around the pivot circle. Two branches emanate from the rolling circle in a clockwise and an
anti-clockwise direction.

when the circle is obstacle free (lines 26 and 38), then we append the position of ball to the branch
path list and set the current ball as the pivot’s previous circle (Fig. 6). And the last condition, if the
circle contains the segment of line (joining the source and destination, lines 29 and 41), then the new
position of the ball along the line is calculated, and the loop is broken.

If both the branches fail to find a path (line 44), then we re-initialize the circle from the source
location and change the radius as alpha times the previous radius, remove all positions from the path,
re-initialize it and break the inner loop. Finally, we append any one of the successful path from both
branches, which successfully reached the main original line (joining source and destination, lines
47–48). In any other case, the path is not appended. The loop is terminated if the goal is reached or
if a minimum threshold value of radius is reached. Finally, on successful termination, the path (list)
contains all the control points of the planned path.

3.4. Computational complexity
The complexity of our proposed algorithm can be discussed in the following parts:

We first initialize a maximum clearance circle around the source robot. This is done by constantly
increasing the radius of the propagating circle, and checking for the presence of obstacles on the
circle. The complexity for collision checking at the circle circumference of radius of r is O(r), and
hence the complexity of initial circle generation is O(R2), where R is the maximum radius of the
propagating circle.

As the circle propagates towards the goal, it is constantly checked for collision checking. If r is
the current radius of the propagating circle, the complexity of collision checking is O(r2) .

For every obstacle, a left and a right branch are maintained. Every intersection point of the circle
with the straight line to goal is a valid point to leave. Because the algorithm maintains two branches
and whichever reaches earlier is used for the navigation till the leave point, in the worst case, the path
to overcome an obstacle i has a length of pi travelled collectively by the successful branches. Here,
pi is the perimeter of the obstacle i. Similarly, a length of pi would be travelled collectively by the
unsuccessful branches. Further, a length of D will be traversed in a straight line towards the goal by
the robot, where D is the straight line distance from source to goal. Hence, the total length of the path
traced by the circle, summing up all the branches, in pursuit of a path is D + 2

∑
i

pi .

The collision checking happens at every step of the circle. The circle propagates in steps of size
2r. The complexity for a particular radius r is given by

O

(
D + 2

∑
i pi

2r
.r2

)
= O

((
D + 2

∑
i

pi

)
r

)
(10)

We have initially taken α(< 1) parameter, which defines the ratio of the new radius to the radius in
the previous iteration. Assuming n iterations such that αn+1R < Rthreshold, the total complexity of n
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Table I. Table showing comparison between path length bounds of different algorithms.

Algorithm Lower bound Upper bound

(a) Bug 1 D D+ 1.5
∑

i
pi

(b) Bug 2 D D+ 0.5
∑

i
ni pi

(c) Proposed algorithm D D+ ∑
i

pi

Table II. Table showing comparison between computational time required for path determination of different
algorithms.

Algorithm Lower bound Upper bound

(a) Bug 1 D D+ 1.5
∑

i
pi

(b) Bug 2 D D+ 0.5
∑

i
ni pi

(c) Proposed algorithm D D+ 2
∑
i

pi

iterations is given by Eq. (3)

Complexity =
(

D + 2
∑

i
pi

)
R

(
1 + α + α2 + . . . + αn

)

=

(
D + 2

∑
i

pi

)
R (1 − αn)

1 − α

(11)

Although the number of iterations required in the algorithm depends upon α and the obstacle
resolution, still the iteration parameter n is not large and can be assumed as a constant. A small
tweak is to only check for collisions at the circle boundary instead of the complete circle, assuming
the obstacles to be much larger than the size of the circle. In this case, the radius R gets eliminated
from the complexity.

Further analysis is also done using path length as a metric. Assuming ni, and pi are the number
of intersections and the perimeter of the ith obstacle, respectively. The bounds of path length and the
bounds of computational time for path determination are compiled in Tables I and II, respectively.

3.5. Discussion on completeness
An algorithm is complete if it finds a path in a finite time, under the condition that at least one path
exists, or terminates with failure if no path exists. To prove the completeness of our theorem, we
assume that our robot is a point and there exists a path from start to goal (Fig. 7).

Suppose our algorithm is incomplete, so there exists a path from start to goal which is of a finite
length and intersects obstacles a finite number of times. Under this scenario, since our algorithm is
incomplete, it will be stuck in a loop and will not find a path.

Considering the case that it never terminates, the robot starts from the start position and moves
along the direction of the goal. Let us call this angle as the heading angle. Now it encounters an
obstacle and moves along the boundary. Since the algorithm will never terminate, the robot will be
moving along the boundary forever. Thus, there will be no leaving point, i.e. there will no point on
the obstacle which makes the slope equal to the heading angle with the goal. However, there exists a
hit point on the obstacle that the robot made on contacting the obstacle for the first time. The hit point
of the obstacle has a slope equal to the heading angle.

The moving robot follows a closed loop around the boundary of the obstacle. Since there exists
a hitting point on the obstacle boundary, the line joining the start and goal must also pass through
that. Since the trajectory that the robot is following is closed, the obstacle must also have a closed
boundary. Therefore, any line segment passing through a closed figure, must intersect it at even
number of points (Jordan curve theorem). This contradicts the fact that there was no leaving point
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Fig. 7. Robot starts towards goal and encounters obstacle at hit point.

Fig. 8. Diagram showing the epipolar lines for different perspectives.

on the obstacle. Hence, there exists a leaving point, which proves that robot will never get stuck in a
loop. Thus, our algorithm is complete.

4. Creation of a Test Bed
To verify our algorithm, we created a cost-effective test bed. Our generic test-bed can be used to verify
any general algorithm which follows the constraint of the physical robot. The robot which we have
used is a differential two-wheeled robot, powered by Raspberry Pi. There are no sensors used in the
Robot and the DC motors are used on the wheels as the actuators. There is a fixed external camera
placed globally, which is used to get the feedback for the robot. We have divided our test bed working
in the following four subsections.

4.1. Mapping
The global fixed camera captures the image of the environment. It is assumed that the image is large
enough that contains the robot, source and goal. However, we are required to generate a 2-D map,
as the robot which we are using can travel only in a plane. Therefore, adding the third dimension
is useless and will unnecessary increase the complexity. To convert the camera view to an overhead
projection, we have used a Homography matrix. For this, we calculated a 3×3 Homography matrix
using the projection of an object from one epipolar line and mapping it with the same object along
the other epipolar line shown in Fig. 8.

After the homography matrix is found, we multiply the input image, to get the complete overhead
image. To classify among the robot, obstacle, etc., we have used colour filtering.
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4.2. Localization
The localization of the robot is a difficult challenge in designing of a fully autonomous robot. Even
after we locate our robot in the map using colour filtering, it is still inaccurate. What makes it difficult
is the presence of uncertainty in both controlling and sensing of the robot. For example, sensing of the
robot using a camera might not give the correct value if there is a change in the intensity of light, etc.
Therefore, we use filters to extract the partial information from the sensors and system, and predict
the filtered better path. We have used EKF in our test bed.

The Kalman filter is a technique from the estimation theory that combines the information of
different uncertain sources to obtain the values of variables of interest together with the uncertainty in
these.8,9 The Kalman filter requires a system model and a measurement model, along with the initial
uncertainty present in the variables. Using these two models, the Kalman filter predicts the next state.
However, the Kalman filter is valid only for linear systems and our model is non-linear. Therefore,
we use the EKF, which is applicable for both linear and non-linear systems and works by locally
linearizing the system.

4.2.1. System model. The system model describes how the state of the system changes due to the
dynamics of the guidance system. In our differential two-wheeled robot, we can get the control signals
given for navigation. We can get the approximate velocity by mapping the Pulse Width Modulation
(PWM) signals given to the real coordinate values. Using this, we can get the relative displacement.
Therefore, our model has the previous location value and the current relative displacement, and by
using these, we can have the approximated next state’s value. In the model,26 the state at time k is
given by

xk =
⎡
⎣x[x],k

x[y],k
x[φ],k

⎤
⎦ (12)

where x and y are the coordinate of the centre of robot, and ϕ is the orientation of the robot in the
general coordinate system.

We can get the approximate relative movement of the two wheels. Using these, the relative
displacement at any time k is given by

uk =
[

u[
D],k

u[
φ],k

]
(13)

where 
D and 
ϕ are relative displacement and relative change in orientation. Thus, using the
previous state information and the current relative displacement, the location update equation becomes

xk = f (xk−1, uk−1) =
⎡
⎣ fx (xk−1, uk−1)

fy (xk−1, uk−1)
fφ (xk−1, uk−1)

⎤
⎦ (14)

As shown in Fig. 9, the robot moves from Xk−1 to Xk , along the red line. It can be approximated to
the distance Xk−1Xk for a small time. The state Xk is derived using Eqs. (10)–(12).

x[x],k = fx (xk−1, uk−1) = x[x],k−1 + u[
D],k−1.cos
(

x[φ],k−1 + u[
φ],k−1

2

)
(15)

x[y],k = fy (xk−1, uk−1) = x[y],k−1 + u[
D],k−1.sin
(

x[φ],k−1 + u[
φ],k−1

2

)
(16)

x[φ],k = fφ (xk−1, uk−1) = x[φ],k−1 + u[
φ],k−1 (17)

Since the robot will be disturbed by the external noises, we have modelled for the relative displacement
noise by a random noise vector taken as a Gaussian distribution with zero mean. Similarly, we model
the system noise, which is indirectly related to relative displacement noise. The system noise is also
modelled using a Gaussian distribution.
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Fig. 9. Robot travelling from Xk−1 to Xk along the red line.

4.2.2. Measurement model. We have a fixed camera, which measures the full state of the system.
Thus, the measurement Zk becomes

zk =
⎡
⎣z[x],k

z[y],k
z[φ],k

⎤
⎦ (18)

where x, y and ϕ measures the three states of the system. We model the noise in the measurement
model using a Gaussian noise vector with a zero mean. This makes the measurement vector, Zk , also
Gaussian distributed.

Using the system model and the measurement model, we use the EKF to generate the path of the
robot, which is used for controlling the trajectory of the robot.

4.3. Planning
We have already described the algorithm in the previous section. Our algorithm generates the control
points in the map, which our robot will follow to reach the destination. After getting the path
coordinates, it must be re-sampled. Thus, we interpolate equi-distant points between the control
points.

Since the robot we are using has a linear velocity—angular velocity controller, the path has to
be smooth. Although the circles used in our algorithm naturally smoothens the path, still for better
control, we again smooth it.

To smooth a path, we have to optimize the path based on two criterions—distance between the
original path and the new path, and second, optimizing the distance between the consecutive points
of the path. For this, we use two parameter weights, data-weight and smoothness weight. These two
parameters decide the smoothness of the curve. We iterate in a loop minimizing based on these two
factors, until the curve converges.
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4.4. Control
We have used a Raspberry Pi board in our robot, which generates two independent PWM signals for
the two different wheels of the robots. Using the variation of the PWM signals, we assign different
velocities to the two wheels, which are used by the robot to turn around. Since we have the desired
trajectory, for our robot to move on it, we implant a virtual robot on the trajectory path. The virtual
robot acts like a leader and leads the way. Our physical robot follows the leader robot. The robot
changes its orientation according to the change in the line of sight of the leader robot.

The kinematic equation we are using is given by Eqs. (17) and (18).

v = vleft + vright

2
(19)

ω = vright − vleft

l
(20)

where l is the distance between the wheels, vl and vr are the velocities of the left and right wheels of
the robot. As our robot is guided by the change in orientation, using inverse kinematics, we can get
the Vleft and Vright of the wheels of the robot. For any turn, which requires a turning angle ϕ, we get

vright = vbase + l ∗ ω

2
(21)

vleft = vbase − l ∗ ω

2
(22)

where ω = ϕ/
t and vbase is the base velocity of the robot. The base velocity is the velocity of the
centre of mass of the robot, and it is a function of the distance between the virtual robot and the real
robot. Since our robot has some constraint with respect to the maximum velocity and the minimum
velocity, the base velocity of the virtual robot should not exceed the base velocity of the physical
robot. If the base velocity of the virtual robot is more than the physical robot, then there will be a
gradual increase in the distance between the robots which will accumulate over time, and will lead to
partial or complete missing of trajectory parts. Since we had calculated the Homography matrix, we
already have the scale value between the real-world coordinates and the 2-D map coordinates. Thus,
we adjust the base velocity of the virtual leader robot using that.

For best controlling, we have implemented a PID controller on the change of orientation, ϕ.
The PID consists of three controllers: P (proportional) controller, I (integral) controller and D
(derivative) controller. The proportional controller creates the correction in orientation in proportion
with difference between the current orientation and the desired orientation.

Pt = Kpet (23)

where Pt is the correction by proportional controller, for the error et , produced at time t and Kp is the
proportional gain.

Although using only P controller works fine, still it will cause the system to oscillate, around
the correct trajectory. Thus, to avoid this, we have implemented the D (Derivative) controller. In the
derivative controller, we take the time derivative of the required controlling signal. In our case, we
minimize the difference between the consecutive errors (control signals).

Dt = Kd (et − et−
t ) (24)

where Dt is the correction by the derivative controller, for the error et , where 
t is the frequency of
the control system, and Kd is the derivative gain.

Although the above system works perfectly, but sometimes due to hardware errors, there can be a
drift from the original trajectory. To avoid this, we use an integral controller, which accumulates the
error over time and can correct it when the drift becomes large. The integral coefficient usually has a
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Table III. Table showing comparison between path length ratios of different algorithms.

Algorithm Scenario-1 Scenario-2 Scenario-3

(a) Bug-1 12.84 10.943 6.132
(b) Bug-2 21.18 4.245 2.783
(c) A* 1.74 1.698 1.226
(d) Artificial potential 3.23 2.831 2.028
(e) Proposed algorithm 1.99 2.453 1.462

very small value; thus, it corrects slowly, on large drifts.

It = Ki

∑
t=0

et (25)

where It is the correction by integral controller for the error et produced at time t and Ki is the integral
gain.

Although PID significantly improves the controlling of the system, finding the values of Kp, Kd

and Ki is a very difficult task. It can be found by trial and error method, but that is not a feasible
solution, which can be practically done. To overcome this, we created a simulator, which contains a
differential two-wheeled robot, with features like adding obstacles in it, changing dimensions of the
map, changing physical dimension of the robot, etc. We can give a velocity to the individual wheels
of the robot to move it.

To fetch the PID parameters, the value for the real robot, we scale the simulator map with respect
to the original world coordinate and then scale the simulator robot with respect to the actual robot.
The frequency of the control signal is set the same in the simulator as in the real world. Since now we
have the replica of the physical robot, PID parameter value that we get in the simulator will also be
applicable for the physical robot.

To get the PID parameter values, we then use the technique of twiddle. Twiddle initializes with any
initial set of parameters of PID, and then, it adjusts the parameters one at a time to find an optimal set.
We let the twiddle algorithm converge at a set of parameters, which is a local minima. The parameters
found by using twiddle is applied to the physical robot controller.

5. Results and Discussions
We have tested our proposed algorithm on several different scenarios. The scenarios had many
obstacles, ranging from simple convex to concave polygons. The results are shown in Fig. 10. The
execution time was within a second using Intel core i5 processor. The algorithm is implemented
in python 2.7.5. The simulation results show that our proposed algorithm performs successfully
in configurational space in different scenarios. Figs. 10(c) and 10(e) show that the algorithm
works well for convex obstacles and Fig. 10(d) shows that the algorithm also works perfectly for
mazes.

We have compared our algorithm with A*, Artificial Potential Field, Bug-1 and Bug-2 algorithms.
The performance result of the comparison is shown in Fig. 11. The result of our proposed algorithm
on some extra scenarios is shown in Fig. 12. The algorithms are compared against the path length
ratio metric, as detailed in Table III. The path length ratio is the ratio between the path length and the
Euclidean distance between the source and goal. The lesser the ratio, the better is the path, with the
best value of 1 when the source and goal are directly connected. The choice of algorithms includes
the A* algorithm which will naturally give near-optimal results, better than the proposed algorithm,
however is computationally expensive. The choice of the algorithm was largely to understand if
there is a huge loss in optimality due to limited deliberation in the algorithm. In the implemented
version, no consideration to clearance or smoothness in A* was given, which can be added at some
higher computational cost. Even though A* resulted in better paths (with more computation time), the
difference is not excessive. The difference can be made smaller if the A* algorithm is made clearance
conscious.
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Fig. 10. Simulation results of the proposed algorithm in different configuration spaces.

The other algorithms are more important from a comparison perspective due to their reactive nature,
thus not limited by the computation time. The first two algorithms are the Bug algorithms which were
the motivation behind the work and the choice was more importantly due to the complete nature of the
algorithms. These algorithms clearly perform very poor in terms of path length. The clearance is not
studied as a metric since the clearance for these algorithms is always 0 (or fixed constant). Practically,
a better algorithm is the Artificial Potential Field which results in much better paths. Testing was
done only on the scenarios wherein the Artificial Potential Field Algorithm does not fail or get stuck.
Even for such scenarios, the proposed algorithm performs better using the path length as a metric.
The clearance is stressed as a factor in all these metrics since the actuation and sensing uncertainties
are assumed to be very high due to the low cost of the setup. The factor is not experimentally studied
since none of the algorithms (baring potential field) has clearance has a non-fixed factor.

We have also tested the algorithm on our test bed. Figure 13 shows some of the overhead maps, in
which our robot is located in the white circle. In the figure, the blue points show the trajectory, which
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Fig. 11. (a) Scenario-1 showing start and destination. Comparison between the different algorithms are shown
(b) Bug -1 algorithm. (c) Bug-2 algorithm. (d) A* algorithm. (e) Artificial potential Field algorithm. (f) The
proposed algorithm.

is obtained from the planning algorithm. A virtual leader robot is made to move on the blue points.
The green points show the robot’s position calculated using kinematic equations and the white points
are the measured position/observed position from the external camera. These values are used by the
EKF to predict the position the robot. The red points in the figure is the path predicted by the filter.
During the initial motion, there are some oscillations around the desired path. The oscillations die
after some time when correction from I controller and D controller become effective.

In our testing, the average cross-track error found was of the order of 3–4 cm, keeping the motion
under the physical constraints of the robot. The frame width of the robot is 15 cm and the distance
between the wheels is 13 cm. The minimum clearance given in the map around the obstacle is about
31–32 cm. On an average, the path length which robot followed was about 88 cm with an error margin
of 5% in deviation from the path.
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Fig. 12. Path found after smoothening the control points generated by the proposed algorithm. (a) Scenario-2
and (b) Scenario-3.

Fig. 13. Test bed demonstrating the trajectory following robot. Black covers are used as obstacles. The blue path
is the planned path. White and green paths are the predicted paths from the measurement model and the system
model, respectively, and the red path is the actual travelled path of the robot.

6. Conclusion
In this research, we have developed a new offline path-planning algorithm. The best part of the
algorithm is that it can plan with respect to the physical dimensions of the robot in the workspace
directly, without requiring an explicit conversion into the configuration space for mobile robots. It
finds paths from the region having the maximum clearance. The radius of the final circle depends
upon the minimum clearance available globally in the map. The radius is always greater than half of
the minimum clearance possible. The path generated is in the form of finite control points, which can
be later post-processed17 for getting a simpler trajectory. Since the robots maintain a high clearance
given by the radius of the propagating circle, any deviation produced from the desired trajectory which
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is less than the radius the circle is acceptable. The robot can navigate flawlessly with such an error
margin, as the robot is not perfect with respect to odometry and other sensors.

Apart from the navigation advantages, the processing time of our algorithm is remarkably fast.
Although it depends on the factor α ratio, it is still very fast as compared to the other algorithms.
The algorithm proved to be the best if compared on the parameters of processing time, path length
and clearance, simultaneously. The algorithm is complete and it never gets struck in a loop, unlike
the potential field algorithms. If there exists a path which is in the reach of the robot, the algorithm
guarantees to find it.

Many interesting improvements are still left for future works. Currently, while working on work
space, the algorithm requires the clearance should be at least twice as that of the robot (worst case).
This limit should be improved for more precise robot path planning. Due to small processing time and
finite control points of paths, we can also use it for dynamic planning in case of moving obstacles.
Apart from that, this algorithm can also be extended to 3-D space and faster planning can be done. The
algorithm can be re-worked to generate more nearly optimal paths. There are still lots of improvement
which can be made in our existing model.

Supplementary materials
To view supplementary material for this article, please visit https://doi.org/10.1017/
S0263574718000127.
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