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Abstract

Product configuration is a major industrial application domain for constraint satisfaction techniques. Conditional con-
straint satisfaction problems (CCSPs) and feature models (FMs) have been developed to represent configuration prob-
lems in a natural way. CCSPs are like constraint satisfaction problems (CSPs), but they also include potential variables,
which might or might not exist in any given solution, as well as classical variables, which are required to take a value in
every solution. CCSPs model, for example, options on a car, for which the style of sunroof (a variable) only makes sense
if the car has a sunroof at all. FMs are directed acyclic graphs of features with constraints on edges. FMs model, for ex-
ample, cell phone features, where utility functions are required, but the particular utility function “games” is optional,
but requires Java support. We show that existing techniques from formal methods and answer set programming can be
used to naturally model CCSPs and FMs. We demonstrate configurators in both approaches. An advantage of these
approaches is that the model builder does not have to reformulate the CCSP or FM into a classic CSP, converting po-
tential variables into classical variables by adding a “does not exist” value and modifying the problem constraints. Our
configurators automatically reason about the model itself, enumerating all solutions and discovering several kinds of
model flaws.
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1. INTRODUCTION

Product configuration has provided constraint programming
with one of its most successful application domains (Sabin
& Weigel, 1998; Junker, 2006). Model-based, particularly
constraint-based, approaches to configuration are the most
successful in practice (http://www.gartner.com), because con-
straint-based product configurators are specified in a highly
declarative formalism.

Configuration presents several modeling and reasoning
challenges. First, it is challenging to maintain consistent inte-
gration between product catalogs and constraint-based con-
figurator models. Second, constraint-based approaches need
to be able to handle taxonomic inheritance among compo-
nents and subsystems. Third, the space of possible configur-
able products is often unbounded but might be subject to re-
source restrictions. Fourth, users have preferences, and full
customization must be possible.

Most configurator engines restrict the configuration process
to some degree. In particular, a configurator will typically con-
figure systems before subsystems. Also, isomorphic configura-
tions provide challenges for the configurator; isomorphic con-
figurations can be regarded as being structurally symmetric.
For this reason, many configurators represent the product being
configured as a set of systems rather than associating each sys-
tem with a variable, which can introduce unnecessary symme-
tries into the configuration space.

Although constraint satisfaction techniques have supported
configuration for many years, they have required extensions to
the basic constraint satisfaction problem. For example, compos-
ite constraint satisfaction (Sabin & Freuder, 1996) has been in-
troduced to handle hierarchical system configuration. Mittal and
Falkenhainer (1990) introduced dynamic constraint satisfaction
to cover problems in which the existence of features depended
on the existence or values of other features; this scheme was
subsequently given a formal logical semantics (Bowen & Bah-
ler, 1991). This work was subsequently extended by other
researchers (Mailharro, 1998; Stumptner et al., 1998). Dynamic
constraint satisfaction has more recently been referred to as
conditional constraint satisfaction (Gelle & Faltings, 2003) to
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distinguish dynamism due to conditional relevance of some
variables and constraints from dynamism due to uncertainty
and environmental change.

Many authors (including Mittal and Falkenhainer) refor-
mulate conditional constraint satisfaction problems (CCSPs)
into classic CSPs by introducing redundant domain values
and augmenting the problem constraints so that some problem
variables take a “not defined” value (Sabin & Gelle, 2006). Al-
though feature models (FMs) appear quite different from
CCSPs, they can also be mapped to CSPs (Benavides et al.,
2005) and other data structures. These reformulations are prob-
lematic. First, they seem unnatural as a modeling technique, es-
pecially for large real-world configuration problems. Second,
they become impractical and difficult to maintain, especially
when the configuration space is extremely large or unbounded.

Our motivation arises from sophisticated tools that the
formal methods community has developed for modelling
and reasoning about complex engineered artifacts that can
be regarded as configuration problems (Hinchey et al.,
2008). Our objective is to study the utility of formal methods
for modeling and reasoning about configuration models. The
two main contributions of this paper are the following:

1. Using well-known examples, we show how to model
constraint-based configuration problems naturally and
concisely in the formal methods package Alloy (Jack-
son, 2002), which is usually used for modeling software
systems, and in the answer-set programming (ASP) lan-
guage lparse (http://www.tcs.hut.fi/Software/smodels/)

2. In addition to providing a natural modeling paradigm,
these approaches are capable of providing reasoning
capabilities that are very appropriate for configuration,
in particular, verifying the specification of the config-
uration problem to ensure that specific flaws are absent,
a problem identified and studied in earlier work (Sabin
& Freuder, 1998). We argue that formalisms such as Al-
loy and lparse provide modeling tools that can be easily
used by nonexperts to model and reason about config-
uration problems directly and naturally.

In Section 2 we informally present conditional constraint
satisfaction, motivated by a well-known configuration prob-
lem, which we use as a running example. We also list some
flaws that can occur in the specification of conditional config-
uration problems. We present both a formal methods ap-
proach (Section 3) and an answer set programming approach
(Section 4) to reasoning about CCSPs. In Section 5 we show
how we can easily identify flaws in CCSPs and demonstrate
that Mittal and Falkenhainer’s benchmark problem exhibits
such flaws. We briefly show how ASP can easily find solu-
tions involving the minimum or maximum number of options
in Section 6. We turn our attention to FMs in Section 7, show-
ing how an ASP approach can reason about these configura-
tion models. In Section 8 we present XML representations for
both CCSPs and FMs and report on our software to apply
ASP methods to the data stored in such XML representations.

Finally, in Section 9 we draw several conclusions and sum-
marize our plans for future study.

2. CONDITIONAL CONSTRAINT
SATISFACTION

Mittal and Falkenhainer (1990) introduced CCSPs. A CCSP
differs from a classical CSP in that some variables are marked
as potential, which means that they need not take a value in
all solutions. CCSPs allow activity constraints that deal with
the existence of potential variables, including the following:

† require variable (RV), which stipulates that under cer-
tain value assignments to other variables, a potential
variable must exist;

† require not variable (RN), which stipulates that under
certain value assignments to other variables, a potential
variable must not exist;

† always require variable (ARV), which stipulates that
the existence of some other variable implies the exis-
tence of a potential variable; and

† always require not variable (ARN), which stipulates
that the existence of some other variable precludes the
existence of a potential variable.

Mittal and Falkenhainer demonstrate these concepts by pre-
senting two examples. In the first, the task is to generate valid
configurations of options for a car. Because we plan to encode
this example for our own purposes, we present it essentially as
Mittal and Falkenhainer do in Figure 1. This small model cap-
tures, among other constraints, that luxury vehicles must have
some sort of sunroof (constraint 1), that any sort of sunroof re-
quires an option for glass (constraint 6), that an sr1 sunroof
has no opener (constraint 10), and that a luxury car may not
have an ac1 air conditioner (constraint 14).

Given such a CCSP, one can pose several queries:

1. Find/count/enumerate solutions to the CCSP. To find is
to compute a single solution; to count is to discover the
number of unique solutions, and to enumerate is to list
all those solutions.

2. Enumerate all variable flaws in the CCSP. A variable
flaw is a potential variable that is present in all solu-
tions, so it is really a classical, not a potential, variable,
or a potential variable that is never present in any
solution.

3. Enumerate all value flaws in the CCSP. A value flaw is
a value for a variable (actual or potential) that is never
achieved by any solution.

4. Find/count/enumerate minimum/maximum solutions to
the CCSP. A minimum (maximum) solution is one
with the fewest (most) potential variables.

5. Find/count/enumerate minimal/maximal solutions to
the CCSP. A minimal (maximal) solution is one in
which removing (adding) any potential variable leads
to a nonsolution.
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3. REASONING ABOUT CCSPS IN ALLOY

Alloy Analyzer 4.0 is a language originally intended to model
design of data structures. Jackson presents the formal seman-
tics of Alloy in a comprehensive manner (Jackson, 2002). Al-
loy has been widely used for modeling large complex engi-
neering systems (http://alloy.mit.edu/community/models). It
provides a way to specify types and constrain their instances.
It can convert those types and constraints into SAT problems
that it then solves, displaying the solutions via a graphical in-
terface. If it fails to find a solution, the specification is most
likely inconsistent, although the solver might not have
searched a large enough population of instances; the specifica-
tion indicates how many instances of each type to generate for
testing purposes. In this sense, Alloy is not a complete solver.

If the graphical representation of the solution seems erro-
neous to the user, new constraints that the user adds to the
specification can prevent the erroneous interpretation.

We find that Alloy is well suited to represent CCSPs. Fig-
ure 2 presents our Alloy representation of part of the car ex-
ample from Figure 1. In Alloy, a sig introduces a type.
These types, something like classes in object-oriented pro-
gramming languages, may be defined to contain members.
To model the car-configuration problem, we introduce a
sig called Car with a member for each variable. During
configuration we define instances of Car.

Each car has required attributes, including a package. The
fact that every instance of a car comprises one of each of these
attributes is specified with the keyword one. These attributes
represent the classical CSP variables of the problem.

A car has additional optional attributes, including a battery
and an air conditioner. These attributes correspond to the po-
tential variables of the problem. We specify them with the
keyword lone to state that each instance of a car may have
at most one instance of each of these attributes. Alloy can
now generate one instance of every classical variable and

Fig. 1. A car-configuration problem based on Mittal and Falkenhainer (1990).
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an optional instance of every potential variable. The particu-
lar instance that Alloy generates captures the CSP idea of a
variable’s value.

We introduce each CCSP variable with an abstract
sig, introducing a type (such as Package) that has no direct
instances. Then we introduce subtypes (such as Luxury).
These subtypes may have at most one instance each.

Constraints are represented inside a fact. RV and ARV
constraints differ in the form of their left-hand side, referring
either to values (like Luxury in constraint 2) or variables
(like sunroof in constraint 6). RN and ARN constraints
(like constraints 13 and 14) differ from RV and ARV con-
straints only in that they have no on the right-hand side.

This representation would lead to a fifth and sixth sort of
constraint not contemplated by Mittal zFalkenhainer, in
which the nonexistence of a potential variable leads to the ex-
istence or nonexistence of another potential variable. We
would model such constraints in Alloy by facts with no
on the left-hand side and either one or no on the right-
hand side.

The Alloy program is executable. It generates the solution
in Figure 3, among others. Unfortunately, Alloy gives us no
way to directly count or enumerate the solutions, short of in-
teracting multiple times with the Alloy Analyzer to request
the next solution.

4. REASONING ABOUT CCSPS IN ASP

To represent CCSPs using ASP, we use the syntax that lparse
recognizes and converts to a form acceptable to solvers such
as smodels (Niemela & Simons 1997), clasp (Gebser et al.,
2007), and Cmodels (which converts lparse into SAT and in-
vokes a SAT solver; Giunchiglia et al., 2004). ASP programs

deal with predicates, which are either true or false. We intro-
duce a predicate for each value of each actual and potential
variable. For instance, the predicate package(luxury)
represents the value luxury for the variable package. In
any given model, this predicate is either true or false.

Many ASP solvers allow cardinality-constrained predi-
cates, in which the number of true predicates in a given list
is bounded above, below, or both. We say

0 { battery(bsmall), battery(bmed),
battery(blarge) } 1

to represent a cardinality-constrained predicate stating that at
least 0 and at most 1 of the three predicates in the list is true.
The car may have no battery at all, but if it has one, the battery
must be one of small, medium, or large. lparse allows a short-
hand for lists of predicates that share the same functor; we can
equivalently write

0 { battery(bsmall; bmed; blarge) } 1

We use ASP implications to represent CCSP constraints:

1 { battery(bsmall; bmed; blarge) }
:- package(luxury).

This implication says that if a car has the luxury package, it
must have at least one of the battery sizes.

Finally, ASP programs have failures,1 indicated by an
empty left-hand side of an implication. The conjunction of

Fig. 2. An Alloy model encoding the car-configuration problem (excerpt).

1 The ASP community calls them constraints, but we avoid that term here
because it conflicts with CSP terminology.
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predicates (some of which may be negated) on the right-hand
side must not be true in any satisfying model. For example,

:- 1 { opener(auto; manual) }, sunroof(sr1) .

specifies that no model may have an sr1 sunroof and have
either an automatic or a manual opener.

An excerpt of the cars specification in lparse syntax is pre-
sented in Figure 4. Although the lparse representation is not
as elegant as the Alloy one, it is not difficult to read. Instead of
one, we bound above and below by 1 (as in the rule for the
classical variable package). Instead of lone, we bound be-
low by 0 and above by 1 (as in the rule for the potential vari-
able battery). Instead of no, we bound a failure below by
1, as in rule 10. We represent constraints that preclude particu-

lar values by failures (rule 13). We represent classical con-
straints that imply particular values by implications (rule 16).

ASP solvers, unlike Alloy, can easily enumerate all solu-
tions. Each solution is an answer set, that is, a set of predicates
that satisfies all the rules in the specification. A few of the 450
solutions to the car configuration specification are presented
in Table 1. One can look through the list of solutions to search
for variable and value flaws. However, one can also generate
them automatically, as we show in the next section.

5. AUTOMATICALLY CHECKING
FOR SPECIFICATION FLAWS

Specifications of CCSPs can contain a variety of flaws that
can be difficult to detect manually (Sabin & Freuder, 1998).

Fig. 3. A car configuration comprising a deluxe package, a sedan frame, a medium engine, a medium battery, sunroof SR2 with untinted
glass, and a manual opener. [A color version of this figure can be viewed online at journals.cambridge.org/aie]

Fig. 4. The car-configuration problem implemented in lparse (excerpt).
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We can apply both the Alloy and ASP approaches to identify
flaws in the constraint specification. In particular, we can dis-
cover that the car-configuration problem exhibits both a vari-
able flaw and a value flaw. As we mentioned earlier, a vari-
able flaw occurs when a potential variable is required in all
models, that is, an option is not really optional. A value
flaw occurs when a value cannot exist in any valid configura-
tion, so it does not represent an option.

5.1. Checking for specification flaws in alloy

We extend the model we presented in Figure 2 to introduce an
abstract type Flaw, with lone subtypes for each category
of flaw for we would like to test. Here are some of the sig
definitions for the possible flaws in our model.

abstract sig Flaw {}
lone sig
noLuxury, noDeluxe, noStandard,
noBSmall, noBMedium, noBLarge, batteryFlaw,
noAC1, noAC2, ACFlaw
} extends Flaw {}

We then introduce constraints that force the existence of flaw
instances, such as one for BatteriesFlaw.

fact { one noBSmall iff no BSmall }
fact { one batteryFlaw

iff (no c: Car| no c.battery) }

Given similar definitions for each flaw, we can run the Alloy
Analyzer requiring no flaws for a large number of cars as fol-
lows:

run {} for 4 but exactly 4 Car, 0 Flaw

This run fails to find an instance; by experiment, we need to
raise the number of flaws to 2 before the analyzer finds a solu-
tion. This solution includes an instance of batteryFlaw (all
cars have batteries: a variable flaw) and noConvertible
(there are no convertibles: a value flaw).

Figure 5 shows the Alloy Analyzer visualization of the
flaws in Mittal and Falkenhainer’s specification from Fig-
ure 1. We clearly see four instances of Car, with links to their
associated components. However, on the far right of the fig-
ure we see an instance of batteryFlaw and of
noConvertible. The fact that we see instances of these

flaws demonstrates that they exist in the specification. The
instance of batteryFlaw indicates the presence of the
variable flaw highlighted above, namely, that batteries are
not optional, despite the fact that the specification sug-
gests the opposite. The presence of the value flaw that no
convertible cars are possible is indicated by the instance of
noConvertible.

We can explain these flaws, once we find them, by refer-
ring to the original specification of Figure 1. Rule 7 forces
a battery in every car that has an engine, and engine is a
classical variable. We might as well call battery a classical
variable as well.

The other, noConvertible, is a value flaw: it is impos-
sible to generate a convertible. This flaw is hidden in the im-
plications of the activity and classical constraints. By con-
straint 11, convertibles do not have sunroofs. By constraints
1 and 3, cars with the luxury and deluxe packages do have
sunroofs, so by elimination, convertibles must have the stan-
dard package. But by rule 15, cars with the standard package
are not convertibles.

5.2. Checking for specification flaws in ASP

We expand the lparse representation for the car CCSP by add-
ing a second, numeric, argument to every predicate. The new
argument represents car number. For example, package
(luxury,4) is a predicate indicating that the fourth car
has a luxury package. Now rules like

1 {opener(auto,N), opener(manual,N)}
:- sunroof(sr2,N) .

are shorthands that lparse expands (in a process called
grounding) to a new rule for each valid value of N. We can
limit any solution to four car designs.

number(1..4).
#domain number(N).

The number 4 is arbitrary; we will use it for the examples to
follow. Next, we introduce new nullary predicates for each
value of each variable (both classical and potential) to indi-
cate the fact that no car at all uses a particular value, such
as in this rule:

noLuxury :- {package(luxury,M):number(M)} 0.

Table 1. A sample of solutions from the ASP model

Pack Frame Engine Battery Sunroof AC Glass Opener

Standard Sedan esmall blarge sr2 — — Auto
Standard Hatch esmall bsmall — — — —
Deluxe Hatch esmall bmed sr1 ac1 Tinted —
Deluxe Hatch esmall bsmall sr2 — Not Manual

Note: ASP, answer-set programming.
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The grounder converts this shorthand into a rule containing a
list of predicates package(luxury,1) to package
(luxury,4). If not a single one of these package predi-
cates is true, which happens if none of the N cars has the lux-
ury package, then noLuxury is true, indicating a possible
value flaw.

For each potential variable, we introduce two rules, like
these:

okSunroof :- {sunroof(sr1,N), sunroof(sr2,N) }0.
sunroofFlaw :- not okSunroof.

The grounder expands the first rule to four rules, one for
each car. If for any car, no sunroof at all is specified, then
okSunroof is asserted. If no car at all asserts okSunroof,
then we have a variable flaw, as evidenced by asserting
sunroofFlaw.

A solution to this expanded program may contain one of
the predicates indicating a flaw for several reasons. One is
that the particular solutions chosen for the N cars may simply
not be the ones that demonstrate the use of each value and the
absence of each potential variable. We deal with this possibil-
ity by asking the solver to minimize the number of such pred-
icates:

minimize { % (excerpt)
noLuxury, noDeluxe, noStandard,
noBSmall, noBMedium, noBLarge, batteryFlaw,
noAC1, noAC2, acFlaw } .

The solver now searches for solutions containing N cars
that have the fewest flaws. If we limit N to 3, for instance,
we find at least four flaws: noLuxury, noConvertible,

batteryFlaw, noManual. Setting N¼ 4 produces the ap-
parent flaws batteryFlaw and noConvertible. No
matter how high we set N, these flaws remain.

When we try the same technique on the second example
that Mittal and Falkenhainer present (we omit the second ex-
ample in the interest of space), we also find both a variable
flaw (can capacity) and a value flaw (the particle-physics
value of the ontology variable).

It is instructive to note that only four cars are needed to
cover the reachable parts of the variable domains; we might
have expected that far more are needed. We can inspect these
cars to verify that all reachable values are covered and that po-
tential variables can be omitted, as in Table 2.

6. OPTIMAL CARDINALITY CONFIGURATIONS

We might often be interested in finding solutions to a set of
conditional constraints that involve the fewest number of
options or the largest number of options. We briefly demon-
strate how such queries can be answered using our ASP model.
We can use the minimize construct of lparse with our
original formulation (before we add the numeric argument)
to find a minimum solution, that is, a solution with the
fewest potential variables. The requirement we add is simply
as follows:

minimize {
battery(bsmall; bmed; blarge),
sunroof(sr1; sr2),
airConditioner(ac1; ac2),
glass(tinted; notTinted),
opener(auto; manual) } .

Fig. 5. The Alloy Analyzer visualization of the flaws in Mittal and Falkenhainer’s (1990) specification from Figure 1. We clearly see four
instances of Car, with links to their associated components. However, on the far right of the figure we see instances of batteryFlaw and
noConvertible. That we see instances of these flaws demonstrates that they exist in the specification. [A color version of this figure can
be viewed online at journals.cambridge.org/aie]
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Using the clasp solver for our lparse model we obtain 18
optimal (minimum) solutions, including those presented in
Table 3. Similarly, by using maximize, we can enumerate
all 176 maximum solutions, such as those also presented in
the table.

7. FMs

We now consider FMs, another form of specification that is
encountered in domains such as software configuration, in
which the architecture of an artifact is represented graphi-
cally. Although FMs appear quite different from CCSPs,
they have very similar purposes and yield to very similar anal-
ysis. FMs are directed acyclic graphs, where nodes are called
features and edges imply various kinds of constraints (Czar-
necki & Eisenecker 2000). A solution is a subset of the fea-
tures that satisfies all of the constraints. If a feature is present
in a solution, then all the features on the path from it to the
root of the tree must also be present. A feature in the tree
may be marked as mandatory, meaning that it must be pre-
sent in any solution if its parent is present; otherwise, it is op-
tional. A feature may indicate that its set of children consti-
tutes an OR set, meaning that if the feature is present, at
least one of the children must be present. Similarly, a feature
may indicate that is set of children constitutes an XOR set,
meaning that if the feature is present, exactly one of its chil-
dren must be present. Additional nontree edges indicate that
if a feature is present, its successor along the edge must
also be present or must not be present.

Figure 6 is based on Segura’s (2008) FM for mobile tele-
phones. Each node in the tree is a feature that might or might

not be included in any model. Filled circles above features in-
dicate that the feature is mandatory if the parent feature is in-
cluded in a model. Open circles indicate optional features.
Filled semicircles under a node indicate an OR set of children;
if the parent is included in the model, at least one of the chil-
dren must be included. Open semicircles under a node indicate
an XOR set of children; if the parent is included in the model,
exactly one of the children must be included. Therefore, the
Media feature is optional, but if it is present, the MP3 subfea-
ture is mandatory. The OS feature requires that exactly one of
its subfeatures, Symbian or WinCE, must be present. The
Messaging feature requires that at least one of its subfea-
tures, SMS and MMS, must be present. The Games feature re-
quires the presence of the Java feature elsewhere in the tree.

FMs are in most ways like CCSPs. Features in FMs are like
variables in CCSPs. These variables have only one possible
value, which we can depict as yes. The mandatory, optional,
and edge constraints are like activity constraints. The OR and
XOR constraints do not map directly to CCSPs, however.

Given these similarities, it is not surprising that representing
FMs in Alloy or ASP is very much like representing CCSPs.
In lparse, for instance, we can indicate the mandatory nature
of Settings and the optional nature of Media this way,
where N refers to the serial number distinguishing phones:

1 {settings(N)} 1 :- mobilePhone(N) .
0 {media(N)} 1 :- mobilePhone(N) .

We specify the constraint that Settings is implied by any
child:

settings(N) :- 1 {os(N), java(N)} .

Table 3. Sample optimum cardinality configurations

Package Frame Engine Battery Sunroof AC Glass Opener

Sample Minimum Cardinality Configurations

Standard Hatch Medium Medium — — — —
Standard Sedan Large Medium — — — —
Standard Hatch Large Large — — — —

Sample Maximum Cardinality Configurations

Standard Hatch esmall bmed sr2 ac1 Tinted Auto
Deluxe Hatch emed blarge sr2 ac2 Tinted Manual
Standard Hatch elarge blarge sr2 ac1 Not Manual

Table 2. A set of configurations covering all reachable values in the domains of each variable

Package Frame Engine Battery Sunroof AC Glass Opener

Standard Sedan elarge blarge sr2 ac1 Tinted Manual
Standard Sedan esmall bsmall — — — —
Deluxe Sedan emed blarge sr2 ac2 Not Auto
Luxury Hatch esmall bmed sr1 ac2 Not —
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We represent the OR and XOR set constraints for the chil-
dren of Messaging and OS:

1 {sms(N), mms(N)} :- messaging(N) .
1 {symbian(N), winCE(N)} 1 :- os(N) .

Finally, the extra edge constraint from Games to Java:

java(N) :- games(N).

FMs are also subject to flaws. If a feature is marked as
optional but exists in all solutions, the FM has a optional-
feature flaw. If a feature is absent in all models, the FM
has a missing-feature flaw. These flaws can result from non-
tree edges. For instance, an edge from AlarmClock to
Symbian in Figure 6 (Segura, 2008) would create a miss-
ing-feature flaw for WinCE. An edge from AlarmClock
to Java would create an optional-feature flaw for Java.

Methods very similar to those we use in CCSPs can dis-
cover these flaws in FMs.

8. XML REPRESENTATIONS

In order to standardize how we represent CCSPs and FMs, we
have designed XML Document Type Definitions (DTDs) for
both, based roughly on XCSP 2.1, the DTD for CSPs (http://
www.cril.univ-artois.fr/CPAI08/XCSP2_1.pdf). We have also
written Perl scripts that accept instances of CCSPs and FMs
obeying these DTDs, generate lparse renditions of the con-
straints, and then apply clasp to count or enumerate solutions,
find minimum and maximum solutions, and detect flaws. In
this way we can automatically generate a formal model of a
configuration problem from a very natural specification.

Figure 7 shows our XML representation of the cars CCSP.
The constraints typically name a variable or value as a condi-

tion and as a result. Either may be negated (as in constraint
10). The XML representation may include the logical connec-
tor and in the condition (constraint 12).

Figure 8 shows our XML representation of the phones FM,
which nests feature nodes to mirror the picture of Figure 6.

9. DISCUSSION

Product configuration is a major industrial application do-
main for constraint satisfaction techniques. CCSPs and FMs
have been developed to represent configuration problems in
a direct and natural way. In this paper we have presented
two alternative approaches to reasoning about specifications
of conditional constraint sets: one approach based on well-es-
tablished formal methods techniques for reasoning about
software specifications, and another based on ASP. The mod-
els of the constraint specification are natural in both cases and
do not require any reformulation of the original CCSP or FM.
We have also shown how we could automate the testing for
variable and value flaws (for CCSPs), and missing-feature
and optional-feature flaws (for FMs), and that it is possible
to find optimal cardinality specifications.

The DTD and Perl script are available from the authors un-
der the GNU General Public License (http://www.gnu.org/
copyleft/gpl.html). We have used this software on the fairly
large “bikes” configuration (http://www.itu.dk/research/cla/
externals/clib/Bike.pm), with 27 variables, some them with
domains of size 14, 16, and 36. Our analyzer sets N to twice
the largest domain size and tries for 10 s to minimize flaws. It
then uses divide and conquer to verify each of the discovered
flaws, which might be false positives due to insufficiently
large N or incomplete minimization within the time limit.
Each verification, however, is very fast and not subject to
false positives. In the “bikes” specification, our analyzer finds

Fig. 6. A feature model for mobile phones based on Segura (2008).
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100 potential flaws in 10 s of minimization and then in an-
other 9 s verifies that 5 are actual value flaws. Finding a solu-
tion with a given variable set to a specific value is quite fast
(about 0.04 s) even in this relatively large specification; ver-
ifying a flaw takes about 0.09 s. We therefore think that the
ASP approach scales well. Alloy also scales well; it is used
routinely for reasoning about large complex industrial speci-
fications (http://alloy.mit.edu/community/).

10. CONCLUSION

Our future work will study three problems.

1. We will generalize constraint-based explanation tech-
niques so we can give advice on resolving flaws in prob-

lem specifications, thus contributing to the emerging
literature on conflict detection in formal specifications
(Torlak et al., 2008).

2. We will apply fault detection to configuration, so fixing
the value of a variable will eliminate all newly unreach-
able values of other variables.

3. We will investigate how to handle nondiscrete vari-
ables, such as real ranges.
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