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Microstructure of strongly sheared suspensions
and its impact on rheology and diffusion
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The effects of Brownian motion alone and in combination with an interparticle force
of hard-sphere type upon the particle configuration in a strongly sheared suspension
are analysed. In the limit Pe → ∞ under the influence of hydrodynamic interactions
alone, the pair-distribution function of a dilute suspension of spheres has symmetry
properties that yield a Newtonian constitutive behaviour and a zero self-diffusivity.
Here, Pe = γ̇a2/2D is the Péclet number with γ̇ the shear rate, a the particle radius,
and D the diffusivity of an isolated particle. Brownian diffusion at large Pe gives
rise to an O(aPe−1) thin boundary layer at contact in which the effects of Brownian
diffusion and advection balance, and the pair-distribution function is asymmetric
within the boundary layer with a contact value of O(Pe0.78) in pure-straining motion;
non-Newtonian effects, which scale as the product of the contact value and the
O(a3Pe−1) layer volume, vanish as Pe−0.22 as Pe →∞.

If, however, particles are maintained at a minimum separation of 2b, with b > a,
by a hard-sphere force there is also a boundary layer of thickness of O(aPe−1), but
the asymmetry of the pair-distribution function for this situation is O(Pe), with an
excess of particles along the compressional axes. The product of the asymmetric
pair-distribution function and the thin boundary layer volume is now O(1) (with
dependence on b/a) as Pe → ∞, thus yielding non-Newtonian rheology with normal
stresses scaling as ηγ̇, where η is the fluid viscosity. For a dilute suspension without
hydrodynamic interactions in a general linear flow, the bulk stress resulting from pair
interactions is proportional to ηγ̇φ2

b(a/b), where φb = 4
3
πb3n is the thermodynamic

volume fraction. Including hydrodynamic interactions, the hydrodynamic normal
stress differences are O(ηγ̇φ2). The O(φ2) hydrodynamic contribution to the viscosity
due to the boundary layer is shear-thickening. The broken symmetry and boundary-
layer structure also yield a shear-induced self-diffusivity of O(γ̇a2φ) as Pe →∞.

At higher concentrations the boundary-layer structure is the same, with the pair-
distribution function outside the boundary layer changed from its dilute value
to a concentration-dependent function g∞(r;φ), which must be determined self-
consistently; the function g∞(r;φ) is not determined here. The appropriate Péclet
number at high concentration is based on the concentration-dependent short-time self-
diffusivity P̄e = γ̇a2/2Ds

0(φ). The stress contributions from the boundary layer scale
as ηγ̇φ2g∞(2;φ)D/Ds

0(φ), where g∞(2;φ) is the pair-distribution function at contact,
and are argued to be dominant at high concentrations. The long-time self-diffusivity
arising from the boundary-layer structure is predicted to scale as γ̇a2φg∞(2;φ).

† Present address: School of Chemical Engineering, Georgia Institute of Technology, Atlanta,
GA 30332, USA.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

97
00

63
20

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112097006320


104 J. F. Brady and J. F. Morris

1. Introduction
This work addresses the microstructure of low-Reynolds-number suspensions in

strong shearing flow where the influence of Brownian motion is weak. We have
analysed the pair-distribution function under the combined influence of weak Brow-
nian motion and an interparticle force of hard-sphere type. The study is motivated
by a number of observations in strongly sheared suspensions. When particles are
added to a Newtonian solvent, the suspension is often non-Newtonian, and thus the
particles cause a more striking alteration of rheological properties than the simple
and familiar increase in the effective viscosity. The effects in suspensions of spherical
particles include normal stress differences, which have been observed experimentally
(Gadala-Maria 1979) and in simulations (Phung, Brady & Bossis 1996; Phung 1993),
and a contribution to the isotropic stress (or particle pressure), which has been de-
scribed and determined in simulation (Jeffrey, Morris & Brady 1993). It is therefore
generally inappropriate to apply Newtonian constitutive relations in modelling sus-
pension flows, as this can yield predictions of velocity and particle fraction fields in
disagreement with experiment for flows far from equilibrium. Far from equilibrium
here implies large values of the Péclet number, Pe = γ̇a2/2D, which is a measure
of the relative strength of shear to Brownian forces. Here, γ̇ is the magnitude of
the shear rate, a the particle size, and D = kT/6πηa is the diffusivity of an isolated
particle with thermal energy kT in a fluid of viscosity η. Constitutive modelling of
suspensions for arbitrary flows requires understanding the microscopic basis for bulk
rheological behaviour at all values of Pe. It is the goal of this work to analytically de-
termine the microstructure of a strongly sheared suspension and demonstrate certain
consequences of the microstructure for suspension rheology and self-diffusivity.

The rheology of suspensions is related to the spatial distribution of particles, or the
microstructure, and qualitative features of the rheology may be ascribed to symmetry
properties of the microstructure. For a suspension of purely hydrodynamically inter-
acting spheres in the limits of Pe = 0 and Pe−1 = 0, the pair-distribution function
possesses ‘fore-aft’ symmetry. Fore-aft symmetry is characterised by equal probability
of a second particle lying on a trajectory where it is approaching (fore) or receding
(aft) relative to a reference particle, and is relevant for flows in which the approach-
ing and receding portions of the purely hydrodynamic pair trajectory are mirror
images. This is true of simple-shear and planar (two-dimensional) extensional flow. If
fore-aft symmetry of g(r) holds, the rheology is Newtonian in the sense that normal
stress differences and the suspension pressure are zero. This work will demonstrate
how the combined effects of Brownian motion and an interparticle force give rise
to the microstructural asymmetry necessary to yield non-Newtonian behaviour at
large Pe. Broken fore-aft symmetry at Pe−1 = 0 is also reflected in a finite long-
time self-diffusivity, which we calculate using the theory of self-diffusivity in sheared
suspensions developed in Morris & Brady (1996).

The analytical study of the pair-distribution function in flowing suspensions was
initiated by Batchelor & Green (1972b) who showed that under the action of hy-
drodynamic interactions alone in pure straining flow, at Pe−1 ≡ 0, g(r) is spherically
symmetric. This is a remarkable symmetry considering the angular dependence of
the relative velocity of two particles, whereas isotropic microstructure at equilibrium,
Pe ≡ 0, is expected. In simple-shear flow there is a region of closed trajectories,
and therefore one cannot conclude that g(r) is isotropic, although this is a possible
structure. At finite Pe, flow distorts g from spherical symmetry as shown by Batchelor
(1977) in his study of a weakly strained (Pe � 1) suspension, although his determina-
tion of g to O(Pe) was insufficient to calculate non-Newtonian effects. To determine
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Microstructure of strongly sheared suspensions 105

the effect of flow upon the normal stresses requires the next correction to g, which is
O(Pe2) (Brady & Vicic 1995). Numerous studies of the pair-distribution function at
small Pe have followed Batchelor’s (1977) work, most with the aim of incorporating
many-body effects present in suspensions at higher concentrations.

At equilibrium, the probability of a particular configuration is proportional to the
Boltzmann factor exp[−V ], where V is the potential energy for the configuration
made dimensionless by the thermal energy kT . In a flowing suspension, however, the
interplay of Brownian motion, interparticle forces, and hydrodynamic interactions
leads to a non-equilibrium microstructure that can only be determined analytically by
solution of the Smoluchowski equation governing the configurational probability. The
primary factor determining the microstructure in a flowing suspension is the relative
strength of the shear-driven flux to the diffusive Brownian flux, i.e. Pe. Suspended
particles are often of micron size or larger, which for typical shear rates yields
Pe > O(1), and the microstructure is determined predominantly by hydrodynamic
effects.

The effect of flow at large Péclet number upon the pair-distribution function has
been demonstrated by experiment and simulation. Figure 1, adapted from Phung
(1993), and figure 2, reproduced from Parsi & Gadala-Maria (1987), are plots of
the steady g(r) found at large values of Pe. Phung determined g from Stokesian
Dynamics (Brady & Bossis 1988) simulation of a suspension in shear flow ux = γ̇y;
the projections of g onto the plane of shear, x, y, and the plane perpendicular to the
flow, y, z, are shown. These were fully three-dimensional simulations at zero Reynolds
number of a monodisperse suspension of spheres at a particle volume fraction of
φ = 0.45; there were no interparticle forces. The pair-distribution function from near-
equilibrium, Pe = 0.01, is presented for purposes of comparison with that for Pe = 104.
At Pe = 104, there is narrowing of the nearest-neighbour ring in both projections
relative to that at Pe = 0.01, and an obvious distortion of this ring from circular in the
plane of shear. Parsi & Gadala-Maria (1987) performed simple-shear flow experiments
with a suspension of polystyrene spheres of radius 20–25 µm in silicone oil at φ = 0.4,
Pe = 3.0×105 and Re = 3.2×10−7. Colloidal forces are typically considered negligible
for particles of this size. The pair-distribution function, determined by analysis of video
images of particle positions, is illustrated by the projection of g in the plane of shear
in figure 2. The pair-distribution functions determined by Parsi & Gadala-Maria and
Phung have the common feature of an excess of particle pairs along the compressional
axes and relatively small values in the extensional quadrants. With flow reversal, the
compressional and extensional quadrants are interchanged and, as demonstrated by
the results of Parsi & Gadala-Maria, the fore-aft asymmetry is reversed after a period
of microstructural rearrangement that scales with the applied strain.

Normal stress differences resulting from the asymmetry of g(r) have been observed
in strongly sheared suspensions both experimentally by Gadala-Maria (1979) and
in Stokesian Dynamics simulation by Phung et al. (1996) and Phung (1993). In
a parallel-plate geometry using suspensions identical to those of Parsi & Gadala-
Maria (1987), Gadala-Maria found normal stress differences that scaled roughly as
ηγ̇ for φ = 0.3–0.5. In suspensions of Brownian particles interacting only through
hydrodynamics, Phung et al. reported normal stress differences for a suspension
of φ = 0.45 at values of Pe up to 105, and again the stress differences scaled
hydrodynamically as ηγ̇ for large Pe. Since interparticle forces are absent in these
simulations, the results demonstrate that residual Brownian diffusion creates sufficient
microstructural asymmetry to yield measurable non-Newtonian effects for Pe � 1.
Further experimental evidence of the asymmetry of g(r) at large Pe is given by the
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106 J. F. Brady and J. F. Morris

g(x, y)

Pe = 0.01

g(z, y)

Pe =104

Figure 1. Projections of the pair-distribution function g onto the (x, y)- and (y, z)-planes for a
monodisperse suspension at φ = 0.45 in simple shear, ux = γ̇y, simulated by Stokesian Dynamics.
Light regions are high probability and dark low. There are 64 particles in the unit cell. Note the
distortion in the nearest-neighbour ring in the (x, y)-plane and the narrowing of this ring in both
the (x, y)- and (y, z)-planes for Pe = 104 relative to Pe = 0.01. From Phung (1993).

work of Gadala-Maria & Acrivos (1980), where for suspensions of φ > 0.3 the torque
required to generate an oscillatory torsional flow in a parallel-plate viscometer went
through a marked transient before reaching steady state at each reversal of the flow
direction.

These examples are evidence of non-Newtonian behaviour in suspensions at large
Péclet number, and what is very surprising is that the asymmetry persists at very high
Pe where one would expect the effects of Brownian motion to be weak. Further, when
Brownian motion and interparticle forces vanish, it has been shown analytically for
dilute suspensions that the microstructure is symmetric and the rheology Newtonian.
Considering only Stokes flow, we shall term the condition where Brownian motion
and interparticle forces are absent the ‘pure-hydrodynamic limit’. A simple argument
based upon the reversibility of Stokes flow requires that fore-aft symmetry hold also
for non-dilute suspensions in the pure-hydrodynamic limit. Thus, the experimental
and simulation results seem to contradict the analytical reasoning.
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g(x, y)

1.30 ! g(r)

1.15! g(r)%1.30

1.00! g(r)%1.15

0.85! g(r)%1.00

0.70! g(r)%0.85

0.70! g(r)%0.70

x1

x2

v1= γ
.x2

v2= v3= 0

(a) γ. > 0, steady state (b) γ. < 0, steady state

Figure 2. Pair-distribution function g in the plane of shear for a suspension of polystyrene spheres in
silicone oil at particle volume fraction φ = 0.4 in simple shear at Pe = 3.0×105 and Re = 3.2×10−7.
The shear rate is opposite in the two plots. Note the fore-aft asymmetry of the pair distribution and
the reversal of the asymmetry for reversal of the shear rate. From Parsi & Gadala-Maria (1987).

To clarify this situation and to predict the rheology of non-colloidal suspensions,
we have analysed the pair-distribution function of a monodisperse suspension of
spheres for weak Brownian motion (Pe � 1). Under these conditions, there is a
balance between advection and Brownian diffusion in a narrow O(aPe−1) boundary
layer at minimum separation, analogous to boundary layers encountered in heat or
mass transfer from surfaces, and it is within the boundary layer that the symmetry
properties of g are determined. Two cases distinguished by the minimum separation
of a pair of particles, denoted 2b so that b is the effective radius of a particle,
have been studied. In the first case, a repulsive force of hard-sphere type maintains
a minimum separation of 2b > 2a. In the second case, the particles interact only
hydrodynamically, and the minimum separation is at actual contact, i.e. b = a.

We first study the steady pair equation for dilute concentrations considering only
pair interactions. In §3 and §4, we analyse the influence of a repulsive interparticle force
of hard-sphere type by considering particles maintained at a minimum separation
2b > 2a. Fundamental features of the microstructure are the same regardless of
whether the particles interact hydrodynamically: the radial balance between advection
and Brownian diffusion yields an asymmetric g(r) of O(Pe) within the boundary
layer, and in the limit Pe → ∞, the product of the O(Pe) asymmetry and the
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108 J. F. Brady and J. F. Morris

O(a3 Pe−1) boundary-layer volume is finite, yielding non-Newtonian rheology that is
independent of Pe. To demonstrate most clearly the boundary-layer balance, we first
present the analysis neglecting hydrodynamics in §3. The non-Newtonian behaviour
of the suspension is illustrated by dilute-limit calculations of normal stress differences,
Trouton ratio, and suspension pressure for simple-shear and several pure straining
flows. We also show that the same qualitative and quantitative features are obtained
with a repulsive hard-sphere force and shearing flow, but in the complete absence
of Brownian motion; the thin diffusive boundary layer is replaced by a surface of
discontinuity, which leads to the same results as obtained with a small but finite
amount of Brownian motion. Thus, the conclusions we reach are valid whether one
considers the asymmetry to be caused by a small amount of Brownian motion, or by
some other non-thermal effect.

Analysis including pair hydrodynamic interactions, presented in §4, shows that non-
Newtonian effects scale as (b/a − 1)0.22 as b − a → 0. Extensions of the analyses for
b > a to non-dilute φ are presented for the cases with and without hydrodynamics in
§3.3 and §4.3, respectively. In each case, the boundary-layer structure remains the same
at larger φ, but the pair-distribution function must asymptote to a concentration-
dependent and self-consistently determined value g∞(r;φ), rather than to its dilute
value, outside the layer. (We have not analysed g∞.) Furthermore, the appropriate
Péclet number is that based on the short-time self-diffusivity at the conditions of
interest: P̄e = γ̇a2/2Ds

0(φ).
To understand the approach to the symmetric microstructure and Newtonian

rheology of the pure-hydrodynamic limit, we have analysed the pair-distribution
function with hydrodynamics and weak Brownian motion, but no interparticle forces
(b ≡ a) (§5). Once again, there is a boundary layer of O(aPe−1) thickness in which g(r)
is asymmetric, and under these conditions, the boundary-layer equation governing g
for the case of pure straining flow is solved by similarity reduction to find g(2) =
O(Pe0.78), where g(2) is the contact value of g(r). Thus, we find that non-Newtonian
effects scale as O(Pe−0.22) as Pe → ∞. The exponent −0.22 arises from a grouping of
the contact values of hydrodynamic functions that also yields the (b/a− 1)0.22 scaling
for short-ranged repulsive forces.

The asymmetry in the boundary-layer solution for b > a is also reflected in an O(φ)
cross-stream self-diffusivity in simple shear, which we calculate in §6 for the case of
hard spheres with and without hydrodynamics. We also show that the diffusivity may
be interpreted as a mobility times an ‘osmotic’ pressure gradient driving force. At
high concentrations we predict that the long-time self-diffusivity scales as γ̇a2g∞(2;φ).
Finally, we discuss the implications of this work for the rheological and diffusive
behaviour of suspensions and possible extensions of this work to other situations.

2. Governing equations
2.1. Smoluchowski equation

We consider a suspension of N identical spheres homogeneously dispersed in a
Newtonian fluid. The suspension is subjected to a linear incompressible flow with
constant velocity-gradient tensor Γ̇. The probability distribution function for the
N-particle configuration, xN , is denoted PN(xN, t) and satisfies the Smoluchowski
equation

∂PN

∂t
+

N∑
α=1

∇α · jα = 0, (1)
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Microstructure of strongly sheared suspensions 109

with the flux of particle α given by

jα = U αPN −
N∑
β=1

DαβPN · ∇β(lnPN + V ), (2)

where U α is the hydrodynamic velocity, V is the potential energy made dimensionless
with kT , and the Brownian diffusivity is given by Dαβ = kTMαβ , where Mαβ is the
hydrodynamic mobility of particle α due to a force exerted on particle β. We take V
to be an interparticle potential depending only upon the relative configuration of the
particles. A potential dependent upon absolute position, and hence the influence of
particle buoyancy, for example, may be included without altering the basic formula-
tion; the flux from such a potential is appropriately grouped with the hydrodynamic
velocity because both generate a non-equilibrium microstructure.

Equation (1) is integrated with respect to the centre-of-mass coordinate of a pair of
particles and the positions of the remaining N − 2 particles to arrive at the equation
for P1|1(r), the probability distribution for finding a particle at r given that a particle
lies at the origin:

∂P1|1

∂t
+ ∇r · (〈U〉2P1|1)− ∇r ·

[
P1|1〈D · ∇r(lnPN + V )〉2

]
−∇rP1|1 ·

∫
P3|2(x3|r)〈(D13 − D23) · ∇3(lnPN + V )〉3dx3 = 0, (3)

where ∇r = ∇2 = −∇1, and P3|2 is the probability of finding a third particle at x3

given the positions of two particles. In (3), the relative velocity and relative diffusivity
are given by

U = U 2 −U 1, and D = D11 − D12 − D21 + D22,

respectively, and 〈 〉2 indicates a conditional average with two particles fixed.

To make analytical progress, we consider dilute particle volume fraction, φ =
4πna3/3 � 1, with n the number density of particles. Thus, with an O(φ) error
the nonlinear averages and integral over the position of a third particle in (3) are
neglected. Quantities are made dimensionless by scaling as

r ∼ a, U ∼ γ̇a, D ∼ 2D, and t ∼ γ̇−1,

where γ̇ is a characteristic magnitude of the velocity gradient tensor Γ̇, and the
scaling of the relative diffusivity is with its far-field asymptotic value of 2D, with
D = kT/6πηa the diffusivity of an isolated particle of radius a and thermal energy
kT in a fluid of viscosity η. The Péclet number is defined by

Pe ≡ γ̇a2

2D
=

3πηa3γ̇

kT
. (4)

In order to investigate the behaviour under the action of interparticle forces, we
consider a simple hard-sphere interparticle force at a variable distance r = 2b. This
force may be incorporated through a no-flux condition rather than in the flux itself.
Thus, the dimensionless equation and associated boundary conditions governing the
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110 J. F. Brady and J. F. Morris

pair-distribution function g(r), defined by P1|1(r) = n g(r), are

∂g

∂t
+ ∇ · (Ug) − Pe−1∇ · (D · ∇g) = 0, (5a)

r̂ · (j2 − j1) = 0 at r = 2b/a, (5b)

g ∼ 1 as r →∞, (5c)

where r̂ = r/r is the unit vector projecting from particle 1 to particle 2. To simplify
notation in (5a) and hereafter, we write ∇ for ∇r and the angle brackets indicating
averaging are omitted. Setting b ≡ a corresponds to no interparticle forces, and we
shall refer to this case as ‘pure hydrodynamics’.

We are interested in the limit Pe � 1, for which the steady solution of (5a–5c) over
most of the domain is well-approximated by the solution to

∇ · (Ug) = 0, (6)

with the far-field condition of

g ∼ 1 as r →∞. (7)

Neglecting the highest derivative in (5a) does not permit applying the no-flux bound-
ary condition at contact. Batchelor & Green (1972b) solved (6) with (7), demonstrating
that when the trajectory of the second sphere relative to the reference sphere comes
from infinitely far away, where it is assumed that all positions of the second sphere
are equally likely, g is a function of scalar separation only. The pair distribution
under these conditions, denoted g(r) = p(r), is

p(r) =
1

1− A exp

[∫ ∞
r

3(B − A)

r(1− A)
dr

]
. (8)

The scalar functions A(r) and B(r) specify the radial dependence of the disturbance
of the relative velocity from Γ̇ · r due to pair hydrodynamic interactions (Batchelor
& Green 1972a),

U − Γ̇ · r = −r · Ê · [A(r)r̂r̂ + B(r)(I − r̂r̂)] ,

where Ê is the dimensionless rate-of-strain tensor. The functions A and B may be
expressed in terms of the standard mobility and resistance functions (see Kim &
Karrila 1991, pp. 276–277). Beyond its purely radial dependence, the main feature
of note regarding p is that it diverges at particle contact, as (r/a − 2)−0.78 with a
logarithmic correction (Batchelor & Green 1972b; see (40) below). This divergence
is sufficiently weak that, while p is not forced to satisfy the no-flux condition at the
inner boundary, for pure hydrodynamics (b ≡ a) it nevertheless does so because the
radial velocity is linear in r/a− 2 and thus Urp vanishes at contact.

The spherically symmetric solution for the pair-distribution function is only strictly
valid when all particle trajectories come from infinity, as is the case in pure straining
flow. In simple-shear flow, there are regions of closed trajectories, and there is no
guarantee that g(r) = p(r) in this region. Thus, the familiar problem of simple-shear
flow requires special treatment. With repulsive interparticle forces of sufficient range
(b/a − 1 > 10−4), however, the closed streamline region is destroyed. The work of
Smart & Leighton (1989) on the influence of surface roughness suggests that b/a− 1
should be larger than 10−3 in most practical situations.
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2.2. Bulk stress

We shall also need to compute the particle contribution to the bulk stress given by
(Brady 1993a)

〈Σp〉 = −nkT I + n(〈SB〉+ 〈SP 〉+ 〈SH〉), (9)

where nkT I is the familiar kinetic contribution that yields the dilute osmotic pressure,
and

〈SB〉 = −kT 〈∇·(RSU · R−1
FU)〉, (10a)

〈SP 〉 = −〈(xI + RSU · R−1
FU) · F P 〉, (10b)

〈SH〉 = −〈RSU · R−1
FU · RFE − RSE〉:〈E 〉, (10c)

are, respectively, expressions for the Brownian, interparticle force, and hydrodynamic
stresslets. The particle stress may be recast as

〈ΣP 〉 = −nkT I − nkTa
∮
r=2a

r̂r̂P1|1(r)dS − n〈xF P 〉

−n〈RSU · R−1
FU · RFE − RSE〉:〈E 〉+ nkT 〈RSU · R−1

FU · ∇[V + lnPN]〉, (11)

by decomposing 〈SB〉 into the contact integral and the final term involving ∇ lnPN .
In (11), the subscripts on the resistance tensors RFU and RSE denote the relation of
force to velocity and stress to rate of strain, respectively, and the others should be
clear from these.

The bulk stress of the entire suspension – particles plus fluid – is

〈Σ〉 = −〈p〉fI + 2η〈E 〉+ 〈Σp〉,
where 〈p〉f is the average pressure in the fluid phase, which for an incompressible
fluid is arbitrary.

3. Interparticle forces, no hydrodynamics
3.1. Pair-distribution function without hydrodynamics

The singular nature of the high-Pe limit is most easily seen when hydrodynamic
interactions are neglected. This corresponds to the case b � a, i.e. particles interacting
by long-range repulsive forces of hard-sphere type. In the absence of hydrodynamic
interactions, U = Γ̇ · r and the pair diffusivity is a constant equal to 2D. The
hydrodynamic radius, a, does not enter explicitly, and we scale distances with b and
define a new Péclet number

Peb = γ̇b2/2D = 3πab2/kT ,

in which the residual dependence on a arises because the particle diffusivity is sensitive
to the actual, or hydrodynamic, radius.

The pair-distribution function is governed by

∇2g − PebΓ̇ · r · ∇g = 0, (12a)

∂g

∂r
= 2Pebγrg at r = 2, (12b)

g ∼ 1 as r →∞. (12c)

At large Péclet number, except near contact, (12a) reduces to Γ̇ · r · ∇g = 0, i.e. on
a streamline g is a constant, which (12c) dictates to be unity. (Note that this is the
solution of (8) in the absence of hydrodynamic interactions, A = B = 0.)
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This constant solution does not satisfy the no-flux condition at contact where
there is a boundary layer in which the effects of Brownian motion balance those of
advection. Thus, near contact we stretch r as

y = Peb(r − 2).

The governing equation and boundary conditions for g in the stretched coordinates
are

∂2g

∂y2
− 2γr

[
1− 1

2γr
Pe−1

b +
1

2
Pe−1

b y

]
∂g

∂y
= Pe−1

b

[
γθ
∂g

∂θ
+

γϕ

sin θ

∂g

∂ϕ

]
+ O(Pe−2

b ), (13a)

∂g

∂y
= 2γrg at y = 0, (13b)

g ∼ 1 as y →∞. (13c)

We take θ as the azimuthal angle measured from the x3-axis, and ϕ as the polar angle
measured from the x1-axis. In (12a)–(13b) γr, γθ , and γϕ are defined by

γr = r̂ · Γ̂ · r̂ = r̂ · Ê · r̂, γθ = θ̂ · Γ̂ · r̂, γϕ = ϕ̂ · Γ̂ · r̂, (14)

where θ̂ and ϕ̂ are the unit vectors in the θ- and ϕ-directions, respectively, and Γ̂ is
the non-dimensional velocity gradient tensor.

At leading-order in Pe−1
b we have the balance

∂2g

∂y2
− 2γr

∂g

∂y
= 0,

with general solution

g(y) = 1 + constant ×
∫ ∞
y

eγrzdz,

which asymptotes to unity as y → ∞. However, this solution does not satisfy the
boundary condition at y = 0, and thus terms of O(Pe−1

b ) must be retained in the
equation for g. This failure may be explained by noting that the leading-order
governing equation is the radial derivative of the boundary condition at y = 0, so
that either the equation or the boundary condition is redundant.

It is the competition between radial advection and diffusion that generates the
large gradients in g characteristic of the boundary layer, which prompts us to retain
only those terms of O(Pe−1

b ) that appear in the divergence of the radial flux. That is,
we solve the ‘radial balance’ obtained by discarding the right-hand side of (13a). The
solution,

g(y) =

1 + 2γr

∫ y

0

es(z)dz

1 + 2γr

∫ ∞
0

es(z)dz

, (15)

where s(z) is given by

s(z) = 2γr

[(
1− 1

2γr
Pe−1

b

)
z + 1

4
Pe−1

b z
2

]
, (16)

is valid only for γr < 0. In the ‘extensional quadrants’, where γr > 0, g remains O(1);
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there is no boundary layer. Rewriting g as

g(y) = g(0)

[
1 + 2γr

∫ y

0

es(z)dz

]
,

with

g(0) = − 4
3
Pebγr + O(1) as Peb →∞, (17)

shows that there is an O(Peb) excess of particles in the ‘compressional quadrants’.
Physically, the hard-sphere repulsion at r = 2b acts as a strainer for particle centres,

but permits the fluid to pass through unimpeded. On the compressive side the fluid
velocity is directed radially inward (γr < 0) and a large O(Peb) buildup of particles
occurs so that the outward diffusive flux can balance the inward advective flux. On
the extensional side (γr > 0), the advective flux is directed radially outward, particle
centres are not strained by the hard-sphere force, and no buildup occurs, i.e. there is
no boundary layer and the variation in g(r) remains O(1). The situation is similar to
heat transfer at high Péclet number with suction (γr < 0) or injection (γr > 0) at the
boundary.

3.2. Macroscopic stress without hydrodynamics

The large O(Peb) buildup of particles in the thin O(Pe−1
b ) boundary layer leads to

both shear and normal stresses that are independent of Peb in the limit Peb → ∞.
The influence of a hard-sphere force for arbitrary b > a is given by a ‘contact’ integral
identical in form to that in (11) with b replacing a; the hard-sphere force is a delta
function at r = 2b. For b > a, or for b = a without hydrodynamics, this integral
represents the non-hydrodynamic hard-sphere stress, rather than a hydrodynamic
Brownian stress. In the absence of hydrodynamics, 〈ΣP 〉 reduces to

〈ΣP 〉 = −nkT
[
I + φb

3

π

∮
r̂r̂g(2br̂)dΩ

]
+ 5ηφ〈E 〉, (18)

where 5ηφ〈E 〉 = 2ηE〈E 〉 is the shear stress due to the Einstein viscosity correction,
ηE = 5

2
ηφ.

The particle pressure is defined mechanically as

Π = − 1
3
I :〈ΣP 〉,

so that in equilibrium (18) yields the familiar hard-sphere fluid equation of state (see
e.g. Hansen & McDonald 1986),

Π

nkT
= 1 + 4φbg(2b).

We shall denote as Σ′ the extra stress due to particle interactions over and above the
equilibrium osmotic pressure and the Einstein viscosity. Inserting the contact value
of g(r) given by (17) into (18) yields

〈Σ′〉 = ηγ̇φ2
b

a

b

9

π

∫
γr<0

r̂r̂γrdΩ + O
(
ηγ̇φ2

b

a

b
Pe−1

b

)
, (19)

for a dilute suspension.
The boundary-layer analysis and (19) apply for any linear flow; because we have

retained only the radial balance, only the rate-of-strain tensor appears in γr and
〈Σ′〉. As examples, we evaluate (19) for several basic flows. The first is simple-shear
flow with velocity in the 1-direction and velocity gradient in the 2-direction, i.e.
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Eij = 1
2
γ̇(δi1δj2 + δi2δj1), which is also the rate of strain in planar extensional flow.

The relative shear viscosity is

ηr = 1 + 5
2
φ+ 6

5
φ2
b

a

b
,

the second normal stress difference is

N2 = 〈Σ ′22 − Σ ′33〉 = −ηγ̇φ2
b

a

b

12

5π
,

and the osmotic pressure contribution from the flow is

Π ′ = ηγ̇φ2
b

a

b

4

π
.

Because of the symmetry along the compressional axes, the first normal stress differ-
ence, N1 = 〈Σ ′11 − Σ ′22〉, vanishes.

In uniaxial extensional flow along the 3-direction, i.e. Eij = ε̇(δi3δj3 − 1
2
δi1δj1

− 1
2
δi2δj2), where ε̇ is the extension rate, we have

〈Σ ′33〉 = −ηε̇φ2
b

a

b

4

5
√

3
,

and the osmotic pressure is

Π ′ = ηε̇φ2
b

a

b

4√
3
.

The 11 and 22 stresses are equal, and the Trouton ratio is given by

〈Σ ′33〉 − 1
2
(〈Σ ′11〉+ 〈Σ ′22〉) = ηε̇φ2

b

a

b

24

5
√

3
.

The stresses for equi-biaxial extension are just twice those for uniaxial extension.
In both shear and extensional flows the high-Péclet-number viscosities are less than

the corresponding viscosities at low Péclet number – the suspension shear thins. The
low-shear-rate stress behaviour is Newtonian, and the viscosity from pair hard-sphere
interactions in the absence of hydrodynamics is given by (Russel, Saville & Schowalter
1989)

ηHS (Peb = 0) = ηφ2
b

a

b

12

5
.

Thus, in simple-shear flow the shear viscosity falls to half, while in extensional flow
the Trouton ratio falls to 2/3

√
3, of their zero-shear-rate values.

In obtaining (15), we have neglected the O(Pe−1
b ) terms on the right-hand side

of (13a) while retaining terms of the same magnitude in the radial balance on
the left-hand side. This is generally not valid, and the right-hand side does af-
fect the angular structure of g(2). The O(Peb) magnitude of g(2) is not affected,
however. We have not been able to find a similarity transformation that would re-
duce (13a) to a set of ordinary differential equations. Solving the boundary-layer
equation numerically is actually more difficult than solving the full equation for
arbitrary Péclet number, as (13a) must be solved for large values of Peb. Recent
unpublished work by J. F. Brady & M. A. Vicic (1997) solving (12a) for all Peb
shows the boundary-layer structure exhibited by (15). The stress predictions from
the radial balance for simple-shear flow are within 9% for all quantities except the
first normal stress difference. The precise symmetry about the compressional axis
is broken by the rotation of the simple-shear flow, 〈Σ′11〉 increases (becomes less
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negative), and finite positive (N1 ≈ − 1
2
N2) first normal stress differences occur as

Peb →∞.
Although we have considered a small amount of Brownian motion to generate an

asymmetric structure in the limit of Pe → ∞, we would now like to show that the
same results apply even in the complete absence of any thermal effects. Consider the
case of two particles in simple-shear flow without hydrodynamics interacting through
a repulsive force that gives an excluded shell at r = 2b, as discussed in Russel et al.
(1989). On the compressive axes γr < 0, the magnitude of the repulsive force must
balance the advective radial velocity so that there is no flux at contact, i.e.

F = −6πηγ̇ar̂ ·Ê ·r̂ r at r = 2b; (20)

on the extensional axes there is no repulsive force. Without Brownian motion the
excluded shell generates a discontinuity in the pair-distribution function at contact
such that

g(r) = H(r − 2b) +
2b

3
δ(r − 2b), γr < 0, r → 2b, (21)

where H is the Heaviside function and δ the delta function. Using this distribution and
the force at contact from (20) in the expression for the stress from interparticle forces,
and noting that the delta-function contribution gives 1/2 because it is evaluated at
the end point†, we obtain precisely (19) from the stress due to the excluded shell.
Thus, whether the asymmetry is broken by Brownian motion or a repulsive force
and no thermal effects, the results are the same. Brownian motion is the proper
way to smooth out the discontinuous distribution given by (21). It should also be
clear that the same qualitative results would be obtained if the repulsive forces were
long-ranged, as opposed to hard-sphere like.

3.3. Extension to higher concentrations

Since the important physics that breaks flow reversal symmetry and leads to finite O(1)
stresses at infinite Péclet number occurs in a thin boundary layer at particle contact,
the analysis above can be extended to all concentrations. The only change is that
rather than the pair-distribution function approaching unity outside the boundary
layer, it must now asymptote to the surface value of the concentration-dependent pair-
distribution function obtained by solving the purely advective problem, i.e. setting
Pe−1

b ≡ 0 and ignoring the no-flux boundary condition at particle contact. We denote
this distribution function by g∞(r). It is not known how this function depends on
φb. For example, the equilibrium pair-distribution function at contact, geq(r = 2b, φb),
diverges in the disordered state as (1 − φb/φbm)−1 as φb → φbm, where φbm ≈ 0.64
(Hansen & McDonald 1986). One might expect a similar divergence in g∞ from
the geometric constraint of packing particles, but perhaps at a different maximum
concentration. Nevertheless, the proceeding analysis applies, and in place of (19) we
have, in the radial balance approximation,

〈Σ′〉 = ηγ̇φ2
b

a

b

9

π

∫
γr<0

r̂r̂g∞(2b; φb)γrdΩ + O(ηγ̇Pe−1
b ). (22)

The argument leading to (22) only considers the contribution from the asymmetric
structure in the boundary layer. It is likely (if not certain) that there will be ‘wake’
regions originating at ‘separation’ points near the axes at which the radial velocity

† Russel et al. (1989) have twice the value given here because they did not take into account this
endpoint effect.
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vanishes (γr = 0) that will advect the boundary-layer structure into the bulk of the
suspension, rendering the structure asymmetric outside the boundary layer, much
like boundary-layer separation in high-Reynolds-number flows transports vorticity
throughout the fluid. Indeed, in figures 1 and 2 one can see that the asymmetric
structure is present at O(1) distances from particle contact. This transport throughout
the bulk takes place in a time of order 1/γ̇, which can be viewed either as the advective
time or, perhaps more appropriately, as the diffusive time for the structure to develop
on the length b with the shear-induced diffusivity that scales hydrodynamically
as γ̇b2 (cf. §6). The time scale for the boundary layer to develop is the diffusive
time in the boundary layer b2(Pe−1

b )2/D ∼ (Peb)
−1/γ̇. Thus, the boundary-layer very

rapidly develops an asymmetric structure and then the slower process of advection
or shear-induced diffusion transports this asymmetric structure throughout the bulk.
This effect on the bulk in turn influences the boundary-layer structure through the
matching condition, so that a self-consistent structure independent of the initial state
is reached in a time of O(1/γ̇). Thus, (22) should only be viewed as an estimate of
the stress at high volume fractions.

As a final remark, we note that although the stress contribution at high Pe is
from interparticle forces, the suspension will not display measurable viscoelastic
phenomena. When flow is stopped for example, the structure in the boundary layer
relaxes rapidly in a time of O(Pe−1

b /γ̇), and thus the Weissenberg (or Deborah)
number given by the ratio of the time for material relaxation to the time scale of
the bulk flow scales as Pe−1

b ; a vanishing Weissenberg number corresponds to no
viscoelasticity. Since motion has ceased, advection within the bulk will not occur, and
any asymmetry at O(1) particle separations will remain essentially frozen, ultimately
relaxing on the Brownian diffusion time a2/D. If flow is restarted in the same
direction, only the boundary-layer asymmetry needs to be recreated, which appears
to be instantaneous on the flow time scale. If the flow direction is reversed, then a
new (reversed) asymmetric structure on O(1) length scales must be created, which
takes the advective time γ̇−1. The predictions of this analysis are in agreement with
the observations of Gadala-Maria & Acrivos (1980), although it should be noted
that the predicted boundary-layer thickness for the 25 µm particles used is only
10 Å and such continuum analyses may no longer apply. For all practical purposes,
the only important time scale at high Peb is the inverse of the shear rate. We note
that the experiments of Gadala-Maria & Acrivos involved suspensions in which
hydrodynamic interactions were important. The microstructure of hydrodynamically
interacting suspensions is analysed in the following two sections and the above
conclusions are unchanged.

4. Interparticle forces, pair hydrodynamics
4.1. Pair-distribution function with hydrodynamics

The relatively simple analysis without hydrodynamics showed that there is a large
O(Pe) excess of particle pairs along the compressional axes, leading to non-Newtonian
rheology in the limit Pe → ∞. We now include hydrodynamic interactions and show
that a similar microstructure is found for all non-zero b − a. The solution depends
on b from the evaluation of the hydrodynamic functions at r = 2b used in the
boundary-layer equation, and thus we are able to determine the manner in which the
rheology approaches the pure-hydrodynamic limit of b/a − 1 → 0. Since we wish to
consider all b > a, we scale all lengths with a, applying this scaling also to b and
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denoting the dimensionless effective radius b̂ ≡ b/a. The Péclet number is now based
on the length a, Pe = γ̇a2/2D.

When hydrodynamics are included, the outer solution for dilute φ is p(r), and as
in §3, we stretch the radial coordinate near contact as

y = Pe(r − 2b̂).

Expanding the hydrodynamic functions to linear terms about their values at r = 2b̂,
we find the equation for g in the stretched coordinates,

(1 + α1Pe−1y)
∂2g

∂y2
− α2γr(1−

α3

γr
Pe−1 + α4Pe−1y)

∂g

∂y

= α5Pe−1γrg + Pe−1 (1− B̄)

2Ḡ

[
γθ
∂g

∂θ
+

γϕ

sin θ

∂g

∂ϕ

]
+ O(Pe−2), (23a)

∂g

∂y
= α2γrg at r = 2b̂ (23b)

g ∼ p̄ as y →∞, (23c)

where

p̄ = p(2b̂).

In (23a) and (23b), α1–α5 are given by

α1 =
Ḡ′

Ḡ
, α2 =

2b̂(1− Ā)

Ḡ
, α3 =

Ḡ′ + Ḡ/b̂

2b̂(1− Ā)

α4 =
1− Ā− 2b̂Ā′

2b̂(1− Ā)
, α5 =

W̄

Ḡ
,

 (24)

where overbars are used to denote the hydrodynamic functions evaluated at r = 2b̂,

e.g. Ḡ = G(2b̂). Note that the αi are positive and independent of Pe. The hydrodynamic
functions G(r) and W (r) give the relative radial mobility of two particles and the
divergence of the relative velocity, respectively (Batchelor 1977).

We divide (23a) by (1 + α1Pe−1y), discarding terms of O(Pe−2) and the entire
right-hand side to yield the radial balance

∂2g

∂y2
− α2γr

[
1− α3

γr
Pe−1 + (α4 − α1)Pe−1y

]
∂g

∂y
= 0. (25)

As in the problem without hydrodynamics, a solution satisfying the leading-order
balance and the boundary conditions does not exist, making it necessary to retain the
O(Pe−1) terms in (25) to obtain a solution. The solution is

g = p̄

 1 + α2γr

∫ y

0

eS(z)dz

1 + α2γr

∫ ∞
0

eS(z)dz

 , γr < 0,

where

S(z) = α2γr

[(
1− α3

γr
Pe−1

)
z +

(α4 − α1)

2
Pe−1z2

]
,
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and

g(0) = −α∗γrp̄Pe as Pe →∞, (26)

with

α∗(b/a) =
α2

α4 + α2α3 − α1

. (27)

Again, the deviation of the pair-distribution function from the spherically symmetric
p is O(Pe) in the compressional quadrants, and there is no solution to (25) for γr > 0.

As in the case without hydrodynamics, the O(Pe−1) terms neglected, including the
velocity divergence term, α5Pe−1g, affect the precise value of g at contact, but do not
affect the scaling with Pe.

4.2. Macroscopic stress with hydrodynamics

The particle stress is evaluated using (9)–(11). With hydrodynamics included, there are
several contributions of O(ηγ̇) as Pe →∞. First, we note that since ∇ · (RSU · R−1

FU) is
O(1) everywhere and the product of g(r) and the boundary-layer volume is also O(1),
the Brownian stress (10a) remains O(kT/a3), in agreement with the simulations of
Phung et al. (1996) and Phung (1993). Both the hydrodynamic and interparticle-force
stress contributions are O(ηγ̇), however. For the hydrodynamic stress this is obvious,
while for the interparticle-force contribution we note that the hard-sphere force is
F P = 1

2
kT r̂δ(r−2b), with the 1

2
kT amplitude necessary to give the correct equilibrium

osmotic pressure. Hence, in dimensional form

n〈SP 〉 = −n2kT

∮
r=2b

(b r̂r̂ + RSU · R−1
FU · r̂)g(r)dS, (28)

and because g(2b) is O(Pe), this ‘contact’ integral will give an O(ηγ̇) contribution to
the stress. Making use of the known hydrodynamic functions, (28) can be rewritten
as

n〈SP 〉 = −n2kT b(1− A)

∮
r=2b

r̂r̂g(r)dS. (29)

Using (26) for g(0), the interparticle-force contribution to the stress becomes

n〈SP 〉 = ηγ̇φ2

(
b

a

)3

(1− A)α∗p̄
27

4π

∫
γr<0

r̂r̂γrdΩ.

Note that the dependence on flow type is the same as in the absence of hydrodynamics;
only the coefficient is modified by hydrodynamics.

In the limit of large b/a, the interparticle-force stress reduces to (19), the result
found in the absence of hydrodynamics. For b/a near unity we can estimate the
limiting behaviour by noting that

(1− A) ∼ (b/a− 1), α∗ ∼ (b/a− 1), and p̄ ∼ (b/a− 1)−0.78 as b/a→ 1,

so that

n〈SP 〉 ∼ ηγ̇φ2(b/a− 1)1.22

∫
γr<0

r̂r̂γrdΩ as b/a→ 1.

Thus, the interparticle force contribution to the stress vanishes with an exponent of
1.22 as the pure hydrodynamic limit is approached.

Unlike n〈SP 〉, where the integration is restricted to the boundary layer on the
compressive axes, the hydrodynamic stress n〈SH〉 is always O(ηγ̇) and contributions
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arise from the whole domain r > 2b. Thus, we cannot make general statements
about the form of the hydrodynamic stress with regard to the asymmetry caused
by the boundary layer because there is presumably an O(1) angular variation on
the extensional axes that we have not determined. Nevertheless, we can illustrate
the consequences of the interparticle forces in creating an asymmetric structure by
computing the second normal stress difference and viscosity for planar extensional
flow from the compressional quadrant only. Batchelor & Green (1972b) showed that
for b ≡ a, the hydrodynamic stress associated with the spherically symmetric p(r)
is Newtonian; despite the divergence of p at r = 2a, the viscosity is finite and the
symmetry of the microstructure leads to zero normal stress differences.

The second normal stress difference from the hydrodynamic stresslet, NH
2 , is given

by

NH
2 = 〈ΣH

22 − ΣH
33〉 = ηγ̇φ2 15

4π
I2(b/a,Pe),

where the dimensionless integral I2 is given by

I2(b/a,Pe) =

∫
(ŜH22 − ŜH33)g(ρ)dρ,

and ρ = r/a is used to emphasize the non-dimensionality. The hydrodynamic stresslet
has been made non-dimensional by the isolated-particle value 20πηa3γ̇/3. In fig-
ure 3(a), I2(1.025,Pe) is plotted, showing that it becomes independent of Pe as
Pe → ∞, with an asymptotic value of the stress difference reached when Pe ≈ 103.
Variation of NH

2 with b/a is demonstrated in figure 4 by plotting I2(b/a, 106) against
b/a − 1. For b/a − 1 → 0, NH

2 vanishes as (b/a − 1)0.22 because g is proportional
to (b/a − 1)0.22. This slow decay as b → a suggests that even for very short-ranged
forces, the normal stress differences of a non-colloidal suspension should be measur-
able.

At large b/a, the predominant hydrodynamic particle stress is given by the Einstein
viscosity correction (5φ/2)ηE . Interestingly, the two stress differencesNP

2 and NH
2 scale

differently as b/a→∞: NH
2 ∼ ηγ̇φ2 and NP

2 ∼ ηγ̇φ2(b/a)5. The lack of dependence of
NH

2 upon b/a is surprising, but results simply from the fact that the boundary-layer
volume is proportional to b3 while the stress experienced by one particle due to the
straining field of a second scales as (a/b)3.

While, as noted, general statements about the viscosity cannot be made because
of the possible O(1) variation of g(r) along the extensional axes, it is nonetheless of
interest to evaluate the influence of the boundary-layer structure of g(r) upon the
hydrodynamic contribution to the viscosity. The bulk hydrodynamic stress due to
pair interactions is given in terms of the average stresslet experienced by a particle as

n(〈SH〉 − S0) = n2

∫
(〈SH (r)〉2 − S0)g(r)dr

= n2

∫
(〈SH (r)〉2 − S0)p(r)dr + n2

∫
(〈SH (r)〉2 − S0)[g(r)− p(r)]dr, (30)

where S0 = 20πηa3〈E 〉/3 is the stresslet of an isolated sphere and gives the Einstein
viscosity correction. The first integral in the second line of (30) would yield the
dilute-limit 6.95φ2η contribution to the viscosity determined by Batchelor & Green
(1972b) if the full range of integration r > 2a were allowed. Since r is restricted to
r > 2b, the coefficient depends on b/a and is reduced from its pure-hydrodynamic
value. For example, at b/a = 1.025 the coefficient is 5.1.
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Figure 3. The dimensionless integrals (a) I2 and (b) Iη specifying the hydrodynamic second normal
stress difference, NH

2 = (15/4π)ηγ̇φ2 I2, and viscosity, η+ = (15/4π)ηφ2 Iη, contributions as a function
of Pe for b/a = 1.025.

The boundary-layer contribution to the stress is given by the final integral of (30).
In the dilute limit, the hydrodynamic contribution to the shear stress is conveniently
expressed in terms of an additional O(φ2) viscosity which we denote as η+:

η+γ̇ = n2

∫
(〈SH12(r)〉2 − S0,12)[g(r)− p(r)]dr.
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Figure 4. The dimensionless integrals I2 and Iη specifying the hydrodynamic second normal stress
difference, NH

2 = (15/4π)ηγ̇φ2 I2, and viscosity, η+ = (15/4π)ηφ2 Iη, contributions as a function of
b/a− 1 for Pe = 106.

Using g as given by (26), and scaling the stresslet as before with the isolated particle
value, we write

η+ =
15

4π
φ2ηIη,

where

Iη(b/a,Pe) =

∫
(ŜH12(ρ)− Ŝ0,12)[g(ρ)− p(ρ)]dρ. (31)

Evaluation of Iη for b/a = 1.025 shows that η+ grows with Pe as illustrated in
figure 3(b), reaching an asymptotic value at Pe ≈ 104. Hence, the hydrodynamic
boundary-layer contribution to the viscosity is shear thickening. In figure 4, we see
that η+ approaches zero in the same fashion as NH

2 as b → a. Recent unpublished
numerical calculations of Brady & Vicic (1997) have shown that with the inclusion of
hydrodynamics the suspension viscosity in simple-shear flow shear thins at low Péclet
number owing to the loss of the Brownian contribution to the stress, and then shear
thickens at high Péclet number owing to this boundary-layer phenomenon.

In figure 4 the magnitudes of I2 and Iη are seen to go through maxima larger than
the value obtained by extending their asymptotes for b/a− 1→ 0. This results from
the fact that p(r) varies less rapidly as r increases and thus I2 or Iη are underpredicted
by the form used in obtaining the asymptotic results. Note that the slope with which
I2 approaches zero differs by about 10% from 0.22 due to the influence of the
logarithmic factor in p(r) (cf. (40)).

4.3. Extension to higher concentrations

Because the origin of the asymmetry comes from the residual effects of Brownian
motion in the boundary layer, we can extend these results to higher concentration
by considering two factors. First, as discussed in §3.3, the pair-distribution function
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asymptotes to g∞(2b̂;φ) rather than to 1 outside the boundary layer, and the discussion

in §3.3 applies, although now g∞(2b̂;φ) must be determined self-consistently including
hydrodynamic interactions. Note also, that because the hydrodynamic contribution

to the stress occurs throughout the entire volume r > b̂, the behaviour of g∞(r;φ) for
all r is needed; the relative importance of the contributions from these two regions is
not known, however, but it is likely that the boundary-layer contribution dominates.

The second effect we must consider is a rescaling of the Péclet number when
hydrodynamics are included. The boundary layer results from a balance between
Brownian diffusion, D · ∇g, and advection, Ug, and thus the relevant Péclet number
should be P̄e = (γ̇a2/2D)× |Û |/|D̂|, where Û and D̂ are the nondimensional relative
velocity and diffusivity, respectively, and | | signifies the magnitude. We now wish

to argue that the ratio |Û |/|D̂| scales roughly as 1/D̂s
0(φ), where D̂s

0(φ) is the non-
dimensional short-time self-diffusivity, or just the relative mobility, at the volume
fraction and flow conditions of interest, and thus the appropriate Péclet number is

P̄e =
γ̇a2

2Ds
0(φ)

. (32)

Although we need to examine the behaviour near contact, let us first consider the
average relative motion of two widely separated particles. In this case, we know that
the relative diffusivity asymptotes to 2Ds

0(φ), rather than to the infinite dilution value
2D; a particle’s short-time mobility is hindered due to hydrodynamic interactions
with its neighbours. We also know that the relative velocity of the pair is still
that of the imposed linear shear flow Γ̇ · r. Thus, at large distances from contact,
the appropriate Péclet number is P̄e. In addition to affecting a particle’s mobility,
hydrodynamic interactions also increase the shearing force exerted on a particle:
since a particle’s mobility has been reduced, the shearing force must increase by the
same factor so that the relative velocity remains Γ̇ ·r. One can view this increased
shear force as the imposed shear rate acting through the ‘effective viscosity’ of the
suspension. This effective viscosity is the high-frequency dynamic viscosity for the
given microstructure. Indeed, the available experimental and theoretical data (at least
for equilibrium microstructures, Brady 1994) shows that the high-frequency dynamic
viscosity is inversely proportional to the short-time self-diffusivity.

Now, as two particles approach contact, their relative motion is resisted by the
solvent (as opposed to the suspension) viscosity, and thus the relative mobility
vanishes linearly (for b/a − 1 � 1) as (r − 2) with the same slope as if the two
particles were alone in the fluid; the lubrication behaviour of D is unaffected by
concentration. The relative mobility measures the response to a unit force, and since
only the solvent can exist between two nearly touching particles, the relative mobility
remains the same. Thus at high concentration, the relative mobility should vanish at
contact in the same manner as at infinite dilution and asymptote to the short-time
self-diffusivity at large distances. The Stokesian Dynamics simulations of a monolayer
at areal fraction 0.45 reported by Bossis, Brady & Mathis (1988) show precisely this
behaviour.

As particles approach one another, the relative velocity due to shearing flow also
vanishes linearly with surface separation as the lubrication interactions require, but
now with a concentration-dependent slope that is enhanced over its infinite dilution
value. The reason for this altered slope is that, while the relative mobility is the same
as at infinite dilution, the hydrodynamic shearing force is enhanced by the effective
viscosity, just as was the case when the particles were widely separated. Particles are
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being driven together by the high-frequency dynamic viscosity, but the resistance to
this motion is by the fluid viscosity. This enhancement of the slope of the relative
velocity near contact was observed in the simulations of Bossis et al. mentioned above
and in the simulations of Brady & Bossis (1985) at an areal fraction of 0.4. Indeed,
the results of Bossis et al. show that the ratio (〈U · r̂〉2/〈D · r̂〉2)/(U · r̂/D · r̂) is, to
a good approximation, independent of r. Here, 〈 〉2 denotes the conditional average
with two particles fixed in the concentrated suspension, while U is the relative velocity
of two particles alone in the fluid.

Thus, we take as an estimate that near contact

|Û |/|D̂| ≈ D/Ds
0(φ),

and that the rescaled Péclet number should be as given in (32). Alternatively, noting
that 1/Ds

0(φ) ≈ 6πη′∞(φ)a/kT , where η′∞(φ) is the high-frequency dynamic viscosity,
reflecting the fact that the shearing force is enhanced, the appropriate Péclet number
can also be written as

P̄e =
γ̇a2

2Ds
0(φ)

=
3πη′∞(φ)γ̇a3

kT
.

Clearly, a complete determination of the conditionally averaged hydrodynamic in-
teractions between two particles in a concentrated suspension is needed in order to
substantiate this scaling estimate. It is worth noting that Brady (1993b) showed that
(32) was the appropriate rescaled Péclet number for near-equilibrium suspensions,
P̄e → 0, and now we see that it also appears to be the appropriate Péclet number as
P̄e →∞. It is natural to suppose, therefore, that P̄e is the appropriate rescaled Péclet
for all Péclet numbers, and such a rescaling can be used to collapse viscosity data for
all shear rates (Brady & Vicic 1997, unpublished).

With this rescaled Péclet number, the hydrodynamic contribution to the stress from
the boundary layer, which is dominant because of the additional factor of (b/a− 1)
in the interparticle-force contribution, should scale as

|n〈SH〉|bl ∼ ηγ̇
[
(b/a− 1)0.22φ2g∞(2b̂;φ)/D̂s

0(φ)
]
× an O(1) function of φ, (33)

at high concentrations. Both g∞(2b̂;φ) and 1/D̂s
0(φ) should diverge as maximum

packing is approached. For equilibrium suspensions we know both diverge as (1 −
φ/φm)−1 as φ → φm, with φm ≈ 0.64, but at what volume fraction and with what
exponent the divergence occurs at infinite Péclet number is unknown. The scaling in
(33) can be interpreted physically as follows: there are n particles per unit volume

each contributing an average stresslet that is proportional to (b/a− 1)0.22φg∞(2b̂;φ),

from the number of contacting pairs in the boundary layer, and to ηγ̇a3/D̂s
0(φ), from

the stress due to the enhanced shearing force ηγ̇a2/D̂s
0(φ).

The scaling of the boundary-layer stress in (33) has a number of important im-
plications. First, we note the residual dependence on the interparticle forces through
(b/a−1)0.22. Thus, effects such as interparticle forces and small-scale surface roughness
should be manifest in viscosity measurements (as well as in normal stress differences)
at high Péclet number. This may explain why the experimental data at high concentra-
tions for non-Brownian suspensions do not collapse onto a single curve (the variation
at a given volume fraction is an order of magnitude), even though the measurements
of an individual researcher are very reproducible (Thomas 1965). Second, (33) sug-
gests that the divergence in the stress with volume fraction should be the same for all
suspensions, which is also in keeping with correlations for non-Brownian suspensions,
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which show a divergence with an exponent near 2. This last point supposes that the
contribution to the hydrodynamic stress from the volume outside the boundary layer
is no more singular than the boundary-layer contribution, an assertion that needs to
be tested.

The last issue we need to address is whether the exponent 0.22 of the dependence
on (b/a − 1) is affected by the rescaled hydrodynamics in concentrated suspensions.
The exponent 0.22 comes from the singular behaviour of the pure-hydrodynamic
pair-distribution function p(r) scaling as (r−2)−0.78 near contact. As will become clear
in the next section, the exponent on p(r), which we shall call δ, is given in terms of
the contact values of hydrodynamic functions:

δ =
1

2

W (2)

A′(2)

.
= −0.78. (34)

Here, W is the divergence of the relative velocity and is given by W (r) = 3(B−A)−rA′,
where A and B give the relative radial and tangential velocity due to the imposed
linear flow. Thus, W should scale with the effective suspension viscosity in the same
manner as the relative velocity, and to a first approximation δ should be unaffected by
concentration. It would be interesting to see if this is borne out by the conditionally
averaged hydrodynamic interactions.

Finally, it is worth noting that the relaxation time in the boundary layer now

becomes (aP̄ e−1)2/D(2b̂) ∼ γ̇−1P̄ e−1/Ḡ, scaling with P̄ e and with Ḡ, the relative

mobility of two particles along their line of centres at the minimum separation 2b̂;
for b/a ≈ 1, Ḡ ∼ 2(b/a− 1).

5. Pure hydrodynamics
We saw in the previous section that the effects of the boundary layer all vanish as

the pure-hydrodynamic limit, b ≡ a, is approached. To understand why this occurs,
and why the pure-hydrodynamic limit is a singular case within the singular problem
as Pe → ∞, we consider the dilute limit of two particles in a pure straining motion.
In pure straining motion there are no regions of closed streamlines and therefore
the spherically symmetric g(r) = p(r) applies at infinite Pe. The vanishing of the
relative velocity at contact results in a boundary layer on both the compressional and
extensional sides. The divergence of the pure-hydrodynamic pair-distribution function
as p(r) ∼ (r−2)−0.78, which comes from the hydrodynamic functions in (34), results in
an O(Pe0.78) buildup of particles in the boundary layer. Although this accumulation
is large, its influence vanishes in the pure-hydrodynamic limit: the O(Pe0.78) buildup
occurs in the O(a3 Pe−1) volume of the boundary layer and thus there is not an O(1)
asymmetry in microstructure as Pe →∞. The suspension is therefore Newtonian, and
approaches this limit as Pe−0.22.

The steady pair equation in spherical coordinates is

1

r2

∂

∂r

[
r2G(r)

∂g

∂r

]
+

H

r2 sin θ

[
∂

∂θ
sin θ

∂g

∂θ
+

1

sin θ

∂2g

∂ϕ2

]
−Pe

[
Ur

∂g

∂r
+
Uθ

r

∂g

∂θ
+

Uϕ

r sin θ

∂g

∂ϕ
+ g∇ ·U

]
= 0.

The components of the relative velocity are

Ur = r [1− A(r)] γr, Uθ = r [1− B(r)] γθ, and Uϕ = r [1− B(r)] γϕ,
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and the divergence of U is

∇ · U = W (r)γr.

The hydrodynamic functions G(r) and H(r) give the relative diffusivity parallel and
perpendicular to the line of centres, respectively.

In the boundary layer the radial coordinate is stretched according to

y = Pe(r − 2),

and the diffusivity and velocity are approximated by Taylor expansions to linear terms
about their values at r = 2. At leading order in Pe the governing equation for g in
the boundary layer and the accompanying boundary conditions are

y
∂2g

∂y2
+
[
1+γrA

′(2)y
]∂g
∂y
−
[

1
2
(1−B(2))

(
γθ
∂g

∂θ
+

γϕ

sin θ

∂g

∂ϕ

)]
+ 1

2
W (2)γrg=0, (35a)

y
∂g

∂y
= 0 at y = 0, (35b)

g ∼ p as y →∞, (35c)

where a prime denotes differentiation of a hydrodynamic function with respect to
r, and we have used A(2) = 1, G(2) = 0, and G′(2) = 2. Values of other quantities
appearing in (35a) are

A′(2) = −4.08, B(2) = 0.406, and W (2) = 6.38.

The system of equations (35a)–(35c) admits the similarity transformation

g(y, θ, ϕ) = u(ξ)h(θ, ϕ), where ξ = y/Y (θ, ϕ),

and u is governed by

ξu′′ + (1 + αξ)u′ − δu = 0, (36a)

ξu′ = 0 at ξ = 0, (36b)

uh ∼ p(r) as ξ →∞. (36c)

The equations governing Y and h are

γθ
∂Y

∂θ
+

γϕ

sin θ

∂Y

∂ϕ
+ γr

4A′(2)

1− B(2)
Y =

4α

1− B(2)
, (37)

and

γθ
∂h

∂θ
+

γϕ

sin θ

∂h

∂ϕ
+ γr

2W (2)

1− B(2)
h =

4δh

Y (1− B(2))
. (38)

Without loss of generality† we set α = 1, while δ is determined by matching uh to p,
a condition which requires the angular dependence of uh to vanish at large ξ. With
α = 1, (36a) shows that

u ∼ constant× ξδ as ξ →∞. (39)

Near particle contact, Batchelor & Green (1972b) determined

p ∼ 0.234(r − 2)−0.78[log(r − 2)−1]−0.29 as r → 2, (40)

† A study of (37) shows that α must be positive, but is otherwise arbitrary, in order that Y
(and hence the boundary-layer thickness) be positive. At the stagnation points in the compressional
quadrants, e.g. θ = π/2 and ϕ = 3π/4, both γθ and γϕ vanish while γr < 0. Thus, at the stagnation
point Y = α/A′(2)γr , and because A′ < 0 we must have α > 0.
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and up to a weak logarithmic error, matching of the radial dependence of u and p is
accomplished by taking δ = −0.78. This value of δ also satisfies the requirement of
vanishing angular dependence of the product uh, as is verified by inserting h = Y δ

into (38), which yields an equation identical to (37) when we choose

δ =
1

2

W (2)

A′(2)

.
= −0.78,

previously given by (34), which shows the origin of the divergence in p in terms of
hydrodynamic functions.

The details of the similarity solution are given in the Appendix. The final form and
Pe-dependence of the pair-distribution function in the boundary layer are given by

g = k(θ, ϕ)

[
Pe

Y (θ, ϕ)

]0.78

M(0.78, 1,−y/Y (θ, ϕ)), (41)

where M is the confluent hypergeometric function. The weak logarithmic dependence
of the outer solution p is neglected in writing (41), but may be included in the
angularly dependent coefficient k(θ, ϕ) if matching is performed. Matching to p
occurs at different r for varying θ and ϕ, and thus the magnitude of k will vary with
angular position so that the logarithm may be absorbed.

The normal stress differences for purely hydrodynamically interacting hard spheres
scale as the boundary-layer volume O(a3 Pe−1) times g(2) (cf. equation (11)), and
thus non-Newtonian effects scale as Pe−0.22 as Pe → ∞. This slow decay suggests
measurable normal stress differences may be expected even at large Pe. Ultimately,
however, as Pe → ∞ the structure becomes symmetric and the rheology Newtonian.
Although we have carried out a detailed analysis for planar extensional flow only, we
expect the same conclusion to hold for general linear flows.

The relatively weak O(Pe0.78) buildup of particles in the boundary layer is directly
related to the singular behaviour of p(r) near contact. From the discussion in §4.3
concerning the behaviour of the exponent δ in (34), it seems unlikely that δ will
decrease sufficiently (it needs to be −1) with increasing φ to result in an O(1)
asymmetry as Pe →∞. The pure-hydrodynamic limit is expected to remain a special,
singular, case.

It is also interesting to note that the relaxation time in the boundary layer now
changes its scaling. Since the boundary layer exists all the way up to contact, the rela-
tive diffusivity in the boundary layer is proportional to the boundary layer thickness,
and the relaxation time in the boundary layer now scales as (aPe−1)2/DPe−1 ∼ γ̇−1,
showing that the only time scale operative in the pure-hydrodynamic limit is the
inverse shear rate.

6. Shear-induced self-diffusivity of hard spheres
A theory to describe the self-diffusivity of a sheared suspension at arbitrary φ, Pe,

and lengthscale of the particle-fraction disturbance has been developed by Morris &
Brady (1996). The theory is based upon the experimental technique of dynamic light
scattering (Berne & Pecora 1976) and amounts to a study of the Fourier-transformed
equation governing the configurational transition probability. This method has been
extensively used in the evaluation of diffusion in quiescent colloidal dispersions (Jones
& Burfield 1982; Rallison & Hinch 1986; Pusey 1991; Brady 1994). Here we apply the
theory to the determination of the self-diffusivity of a sheared suspension for Pe � 1,
a phenomenon first noted by Eckstein, Bailey & Shapiro (1977).
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We first outline those aspects of the theory necessary for the present calculation. The
self-diffusivity is determined from the temporal evolution of the spatial correlation of
particle positions. The self-intermediate scattering function, Fs, which represents the
Fourier transform of the spatial autocorrelation function, is given by

Fs = 〈eik·[x1(t)−x1(0)]〉

=

∫ ∫
eik·[x1(t)−x1(0)]PN(xN(t)|xN(0))P 0

N(xN(0))dxN(t)xN(0),

where k is the wavevector of the scattered light, PN here denotes the probability
for the configuration to undergo the transition from xN(0) to xN(t), and P 0

N is the
probability distribution for the configuration at the initial time, which we take to be
the steady distribution at the conditions of interest.

For arbitrary flow conditions, the self-diffusivity may be defined as the limit as
k → 0 of the −k2 coefficient in the derivative

∂ lnFs
∂t

≡ ˙(lnFs).

In the general case, ˙(lnFs) is given by

˙(lnFs) = k · Γ̇ · ∇k lnFs + ik · 〈U 1〉0 − k · 〈D11〉0 · k

−k ·
∫

(D11 − 〈D11〉0) · kfNP 0drN + ik ·
∫
U ′1fNP

0drN

−ik ·
∫ N∑

α=2

[
(D1α − D11) · ∇αfN + (D1α − D11)fN · ∇α(lnP 0 + V )

]
P 0drN, (42)

where rN is the vector giving the positions of the other particles relative to particle
1, which lies at the origin, and P 0 = P 0

N−1|1 is the probability for the relative initial

configuration. Also, 〈U 1〉0 is the average velocity of the reference particle, and

U ′1 = U 1 − Γ̇ · x1 − 〈U 1〉0

is the hydrodynamic disturbance velocity relative to the bulk flow (uniform plus
shear) of the tagged particle. The scalar function fN , which describes the perturbation
to the microstructure caused by the motion of a tagged particle, is central to the
theory of the long-time self-diffusivity because the difference between the short-time
self-diffusivity, kT 〈M11〉, and the long-time self-diffusivity is due to the correlation of
the flux of the tagged particle with fN .

In the general case, fN is governed by a complex integro-differential equation (see
equation (26) of Morris & Brady 1996), which we do not reproduce here. For the
long-time self-diffusivity, the steady fN for small k is sufficient, allowing considerable
simplification:

Pe g〈U · ∇fN〉02 − g〈D · ∇V̄ · ∇fN〉02 − ∇ · g〈D · ∇fN〉02 − ∇ · g
∫
P 0

3|2〈D23 · fN〉03dr3

= 1
2
ik · {−Pe g〈U ′〉02 + ∇ · g〈D〉02 + g〈D · ∇V̄ 〉02}+ o(k),

where 〈 〉02 stands for the conditional average over the initial distribution with two
particles fixed, P 0

3|2 is the conditional probability for finding a particle at r3 given two
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particles fixed, and V̄ = lnP 0
N + V . The boundary condition at contact is

r̂ · [〈D · ∇fN〉02 + 〈[D · ∇V̄ ]fN〉02 +

∫
〈D23 · ∇3fN〉03P 0

3|2dr3 − Pe〈UfN〉02]

= − 1
2
r̂ · 〈D〉02 · ik at r = 2,

and the perturbation decays at large distances.

6.1. Self-diffusion: no hydrodynamics

For a dilute suspension of hard spheres with no hydrodynamics, the general equation
for fN is reduced to that governing the steady pair perturbation f2. Recognizing the
linearity of the problem in ik, we write f2 as

f2(r) = ik · d ,

thus defining a wavevector-independent ‘displacement’ field d . The steady equation
and boundary conditions for d are

∇2d − (PebΓ̇ · r − 2∇ ln g) · ∇d = −∇ ln g, (43a)

r̂ · ∇d = − 1
2
r̂ at r = 2, (43b)

d ∼ 0 as r →∞. (43c)

Here, all lengths have been made dimensionless with b. Using d , the expression for
the long-time self-diffusivity of hard spheres can be expressed simply as

Ds∞ = DI − Dφb
3

π

∮
r=2

r̂dgdΩ.

Only the contact value of d is needed for the evaluation of the hard-sphere diffusivity.
The steady g(r) for hard spheres at Peb � 1 was determined in §3 by a boundary-

layer analysis, and there is a similar boundary-layer problem for d . Only the radial
portion of d is forced in (43a) and we write in the radial-balance approximation

d = d(r)r̂,

where d(y) is governed by

∂2d

∂y2
−
[
2γr

(
1− Pe−1

b

2γr
+

1

2
Pe−1

b y

)
− 2

∂ ln g

∂y

]
∂d

∂y
= −Pe−1

b

∂ ln g

∂y
,

∂d

∂y
= − 1

2
Pe−1

b at y = 0,

d ∼ 0 as y →∞.

and y = Peb(r − 2). The solution to this system is

d(y) = Pe−1
b

∫ ∞
y

[
1

2

g2(0)

g2
es(z) +

es(z)

g2

∫ z

0

e−s(x)g2(x)
d ln g

dx
dx

]
dz,

where we recall that s(z) was defined previously by (16). For the determination of Ds∞,
we need only the contact value of d, which upon evaluation of the integrals yields

d(0) = − 1
3

+ O(Pe−1
b ).

Hence, recalling that g(0) = − 4
3
Pebγr , the long-time self-diffusivity is given in dimen-
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sional form by

Ds∞ = DI − γ̇b2φb
2

3π

∫
γr<0

r̂r̂γrdΩ. (44)

In simple-shear flow U1 = γ̇x2, we have as Peb →∞

D11 = D22 = 2D33 =
16

45π
γ̇b2φb;

the self-diffusivity in the vorticity direction is half that in the velocity gradient
direction.

A comparison of (44) and (19) shows that Ds∞ may be expressed in terms of Σ′ as

Ds∞ = −b
2

η

b

a

1

φb

2

27
Σ′ = −b

2

η

b

a

1

27

∂

∂φb
Σ′, (45)

a form that is of interest because it agrees with the idea of self-diffusion being driven
by the osmotic, or partial, pressure: the self-diffusivity is the product of the particle
mobility, which is 1 to O(φ), and the osmotic pressure gradient ∂Σ′/∂φ.

6.2. Self-diffusion: pair hydrodynamic interactions

With pair hydrodynamic interactions the governing equation for d in the boundary
layer is

∂2d

∂y2
− α2γr

[
1− α3

γr
Pe−1 + (α4 − α1)Pe−1y − 2

∂ ln g

∂y

]
∂d

∂y
=

1

2
Pe−1

(
Ū ′r
Ḡ
− 2

∂ ln g

∂y
r̂

)
,

∂d

∂y
= − 1

2
Pe−1r̂ at y = 0,

d ∼ 0 as y →∞,
where we have neglected the angular derivatives and all lengths have been scaled by
a. The velocity fluctuation Ū ′ is given by

Ū ′ = −2b̂[r̂ · 〈E 〉 · r̂r̂Ā+ r̂ · 〈E 〉 · (I − r̂r̂)B̄].

The expression for the long-time self-diffusivity now becomes

Ds∞ = DI − Dφb̂2Ḡ
3

π

∮
r=2b̂

r̂ d g dΩ

+Dφb̂2 3

π

∫ ∞
0

∮
r=2b̂

(
Pe−1[Ḡ′ +

2

r
(Ḡ− H̄)]r̂ − 1

2
Ū ′
)
d g dΩ dy. (46)

The components of d in the radial balance approximation are

dr(y) = Pe−1

∫ ∞
y

eS(z)

g2(z)

[
1
2
g2(0) +

∫ z

0

g2(x)e−S(x)

(
− Ū

′
r

2Ḡ
+

d ln g(x)

dx

)
dx

]
dz, (47)

dθ,ϕ(y) = −Pe−1
Ū ′θ,ϕ

2Ḡ

∫ ∞
y

eS(z)

g2(z)

∫ z

0

g2(x)e−S(x)dxdz. (48)

And their values at y = 0 are, to leading order in Pe,

dr(0) = Pe−1 g(0)

p̄

[
1

2α2γr
− Ū ′r

2Ḡ

1

(α2γr)2

]
∼ − Ā

2(1− Ā)

α∗

α2
2

,
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dθ,ϕ(0) = Pe−1
Ū ′θ,ϕ

2Ḡ

g(0)

p̄

1

(α2γr)2
∼ −γθ,ϕ

γr

B̄

2(1− Ā)

α∗

α2
2

,

with α∗ given by (27). The displacement field d is independent of both Pe and (b̂−1);

the latter may be seen by noting that 1− Ā ∼ (b̂− 1) and α∗ ∼ (b̂− 1), while both B̄
and α2 are O(1).

Carrying out the volume integration with respect to y in (46), noting that Ū ′ is
constant to leading order in Pe, and inserting d(0), we have

Ds∞ = γ̇a2φ p̄ b̂2 3

4π

(
α∗
α2

)2(
−2b̂(1− Ā)

∮
γr<0

r̂ r̂ γr dΩ +

∮
γr<0

r̂ U ′ dΩ

− 1

2Ḡα2

∮
γr<0

Ū ′Ū ′γ−1
r dΩ

)
+ O(D ln Pe); (49)

the O(D ln Pe) error is from the volume integration. Of the three contributions to
the long-time self-diffusivity in (49), the first two result from the first integral of

(46), and scale respectively as (b̂ − 1)2.22 and (b̂ − 1)1.22. Comparing (49) with (44),
we see that the first of these contributions yields the diffusivity in the absence of

hydrodynamics. The third contribution to Ds∞ scales as (b̂ − 1)0.22 and is therefore
dominant for short-ranged forces. This final contribution has a form suggestive of
the standard view of the self-diffusivity as Ds∞ ∼ U ′U ′τ, where τ is the time scale over
which the velocity fluctuation is correlated. With this interpretation, τ is apparently
proportional to 1/γ̇γr .

We evaluate the long-time self-diffusivity predicted by (49) for the common ex-
ample of simple-shear flow, U1 = γ̇x2. For this case, the final term of (49), con-
taining the factor of γ−1

r in the integrand, results in divergent values of the 11
and 22 diffusivity components when applied directly. This can be explained by not-
ing that the radial-balance approximation for g (and hence for d) is not valid
for γr → 0; in particular, the balance predicts that the asymmetric g extends
arbitrarily far from contact as γr vanishes. While a solution for g (and subse-
quently d) including the angular terms would resolve the divergence, we simply
cut off the integration slightly short of the divergent endpoint, appealing to the
argument that, in (23a), the angular terms are comparable to the terms main-
tained in the radial-balance approximation for γr ∼ O(Pe−1/2). The corresponding
physical justification for our ad hoc removal of the singular point is this: near
γr → 0, angular transport transports pairs efficiently and there is not a long resi-
dence time here (i.e. τ does not diverge) as predicted by the radial-balance approxi-
mation.

In figure 5, the long-time self-diffusivity components (scaled by γ̇a2φ) for a dilute
suspension in simple-shear flow are plotted. For ease of comparison with the results
of a calculation of the self-diffusivity in a sheared suspension of rough spheres by
da Cunha & Hinch (1996), the diffusivity components are plotted against 2(b/a− 1)
rather than against b/a − 1 as was the case for the stress components in figures 3
and 4. In figure 5(a), D22 is plotted, and we note that D11 = D22; the two curves of
figure 5(a) show results for two cut offs to remove the singularity in the ϕ integration,
the upper curve for 10−6π removed from the ϕ integration, and the lower with 10−4π
removed. Figure 5(b) displays D33. In figure 5(c), we plot −D12. This is the only
non-zero ‘off-diagonal’ diffusivity component and is negative; the components Di3
and D3i, i 6= 3, are zero as may be seen from general symmetry considerations.
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Recently, da Cunha & Hinch (1996) performed pair trajectory calculations to eval-
uate both the shear-enhanced self- and down-gradient diffusivities in a dilute sheared
suspension of spheres with small-scale surface roughness. Particle roughness results in
actual surface contact, thereby breaking the symmetry of the hydrodynamic trajectory
of the pair much like the short-ranged repulsive force assumed in our study, and hence
giving rise to a shear-enhanced self-diffusivity scaling as γ̇a2φ in the dilute limit. In
the study of da Cunha & Hinch, full pair hydrodynamics were employed, and the
change in the displacement in the velocity gradient–vorticity plane over the entire pair
interaction, and from this the diffusivity, was computed. The particle motion for the
period of contact was determined for two models of the interaction at contact: in one
model the particles rotated as a locked pair and in the other there was simultaneous
rotation and slippage. Like the present work, da Cunha & Hinch determined the
shear enhancement of the diffusivity as a function of the minimum separation, and
showed that it vanishes as b − a → 0, using our notation. However, the manner in
which Ds∞ vanishes is apparently different from our result Ds∞ ∼ (b/a − 1)0.22. Our
results are only approximate because we used the radial-balance approximation for
both g and d , while da Cunha & Hinch have studied the actual pair trajectory and
therefore, in principle, have determined the correct diffusivity. Nevertheless, the mag-
nitude of the predicted diffusivities in the vorticity direction, D33, are very similar for
short-ranged interparticle forces and roughness, and both studies find the diffusivity
in the velocity gradient direction, D22, to be much larger than D33. Because D12 was
not considered in the trajectory analysis, we cannot make a comparison for this
component.

6.3. Extension to higher concentrations

In order to estimate the scaling of the self-diffusivity at higher concentrations, the be-
haviour of d must be determined for large φ. While many-particle effects undoubtedly
have a quantitative influence on d , it is possible to follow the same line of reasoning
based on an effective pair interaction as we used in determining the stress scaling to
estimate the φ-dependence of Ds∞.

We first note that the self-diffusivity is given by the correlated product of the velocity
fluctuation × the displacement in an encounter; the d-field is the displacement. If
there were no singular boundary layer, the velocity fluctuation would integrate to zero
owing to the symmetry of the infinite-Péclet-number encounter (actually O(kT/ρa3)1/2

due to thermal effects).
Within the boundary layer the velocity fluctuation is O(γ̇a), the displacement during

an encounter is O(a), and the probability density of encounters × the boundary-layer
volume is O(φ), yielding the O(φγ̇a2) shear-induced self-diffusivity at low concentra-
tions.

At higher concentrations in the absence of hydrodynamic interactions, the velocity
fluctuation in the boundary layer remains O(γ̇a) – the ‘velocity fluctuation’ is due to the
hard-sphere force arresting relative motion at the contact radius b. The displacement
also remains O(a), while the number of encounters is enhanced by the pair-distribution
function at contact g∞(2;φ). That is, the only change in solving (43a) for d in the
boundary layer is that g must asymptote to g∞(2;φ) rather than to 1. Thus, we expect
Ds
∞(φ) ∼ γ̇a2φg∞(2;φ) for all concentrations.
With hydrodynamic interactions, scaling all diffusivities with 2Ds

0(φ) in the expres-
sion (42) for Ds∞ and the governing equation (43) for d results in the Péclet number
P̄e used in the analysis of the stress at large φ, and the boundary-layer thickness
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Figure 5(a, b). For caption see facing page.

for both d and g is O(aP̄e
−1

). Third-particle effects will have a quantitative, but not
qualitative, influence on the structure of the boundary layer at large φ. Thus, the
boundary-layer problem is essentially the same as in the dilute case, with P̄e replacing

Pe, and g asymptotically approaching g∞(2b̂;φ). Hence, d will be O(1) with respect

to both (b̂− 1) and P̄e at large φ. From the expression (42) for Ds∞, and keeping only
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Figure 5. The long-time self-diffusivity components scaled by γ̇a2φ: (a) the diffusivity component
in the velocity-gradient direction, D22, for 10−4π (open symbols) and 10−6π (filled symbols) removed
from the polar integration at the divergent endpoint; (b) the diffusivity component in the vorticity
direction, D33; and (c) the off-diagonal diffusivity component D12. Note that D11 = D22, and that
D12 is negative and is plotted as −D12. The components Di3 and D3i, i 6= 3, are zero.

the dominant contribution in (b̂− 1) from the dilute analysis, we have

Ds∞ ∼ −Ds
0(φ)φb̂2 3

2π

∮
r=2b̂

(∫ ∞
0

U ′dgdy

)
dΩ

∼ γ̇a2(b/a− 1)0.22φg∞(2b̂;φ). (50)

Provided there is microstructural asymmetry, we see that even with hydrodynamic
interactions the displacement in an encounter is still O(a), and the velocity fluctuations
remain O(γ̇a). The number of asymmetric encounters giving rise to a net random

displacement is now (b̂− 1)0.22g∞(2b̂;φ), showing that in the pure hydrodynamic limit
the long-time self-diffusivity is, in the absence of any other symmetry-breaking effect,
O(kT/ηa). The similarity of the expressions for the long-time self-diffusivity with and
without hydrodynamic interactions rests in the geometric similarity of the particle
encounters in the two cases. The fact that the displacement in an encounter remains
O(a) independent of φ is clearly seen in figures 1 and 2. There are no particle pairs at
contact in the extensional quadrants of the flow: a particle colliding with a reference
particle always departs with an O(a) displacement even in a concentrated suspension.

Owing to boundary-layer separation, asymmetry in the microstructure will be
present throughout the bulk, and there will be O(1) contributions to the random
displacement of a particle from encounters that do not lie in the boundary layer.
Unless these displacements are negatively correlated with those in the boundary layer,
so as to decrease the boundary-layer contribution, they will only add to the diffusion.

It is unlikely that these ‘bulk’ contributions diverge faster than g∞(2b̂;φ) at high
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concentrations, so that the boundary-layer estimate should give the correct scaling
for the self-diffusivity for all concentrations.

This scaling result predicts that the long-time self-diffusivity diverges as g∞(b̂;φ)
as the maximum volume fraction associated with g∞ is approached. A Ds∞ that grows
with concentration is unusual, but results here from the fact that regardless of the
concentration, relative shearing motion takes place at a constant shear rate (although
requiring an increasing shear stress to sustain the motion) driving particle encounters
with an O(γ̇a) velocity fluctuation and an O(a) displacement; the frequency of such
encounters increases with increasing concentration and gives rise to the increasing
long-time self-diffusivity. The available experimental data on the shear-induced self-
diffusivity of non-Brownian particles (Phan & Leighton 1997; Phung 1993) show a
self-diffusivity that is O(φ) for small concentrations and increases with increasing
φ. However, the simulation and experimental data show a self-diffusivity that is
approximately independent of φ for 0.3 < φ < 0.5, with a value between 0.05 and 0.1
γ̇a2, in disagreement with our prediction. For the numerical results this difference may
be due to the fact that the simulations are of Brownian hard spheres for increasing
Pe, and the infinite-Pe limit may not have been reached. According to our analysis
of the pure-hydrodynamic limit the diffusive motion should scale as kT/ηa rather
than as γ̇a2, and the ‘constant’ values reported by Phung (1993) for Pe ≈ 104 may
represent a turnover from a growing γ̇a2 diffusivity to a shear-enhanced Brownian
diffusivity. Recent simulations of non-Brownian particles with repulsive interparticle
forces (Yurkovetsky 1996) do show a shear-induced self-diffusivity that continues to
grow up to φ = 0.5, the largest volume fraction simulated.

From (50) and (33), we see that the predicted divergence of Ds0 as φ → φm is
smaller than that of the hydrodynamic stress by a factor of Ds

0(φ) ≈ (1−φ/φm). This
is in keeping with the idea of diffusion due to stress gradients. As we remarked at the
end of §6.1, the diffusivity can also be viewed as the product of the particle mobility
times the osmotic pressure gradient force. The pressure gradient scales as g∞/D̂s

0,

while the relevant mobility is proportional to the short-time self-diffusivity D̂s
0. It is

the short-time self-diffusivity because the test particle is subjected to an infinitesimal
force (compared to the shearing force) and does not disturb the microstructure as it
moves down its concentration gradient.

7. Summary and concluding remarks
We have analysed the influence of weak Brownian motion and repulsive interparticle

forces of hard-sphere type on the pair-distribution function in a suspension. In strong
flow, i.e. at Pe � 1, g varies rapidly in a narrow O(aPe−1) boundary layer near
particle contact. In the case of hard spheres subject only to hydrodynamic interactions,
Brownian motion renders the contact value of g finite, with g(2) = O(Pe0.78). Despite
the fact that this large g lacks fore-aft symmetry, its magnitude is not quite large
enough to generate normal stress differences in the pure-hydrodynamic limit because
the product of g(2) and the O(a3Pe−1) boundary-layer volume is O(Pe−0.22) and thus
vanishes as Pe →∞.

When the effective radius of a particle is b > a, as when particles interact by a
strong repulsive force, we have shown through a boundary-layer analysis that g(r) is
O(Pe) in the compressional quadrants and O(1) in the extensional quadrants. Thus,
the product of the asymmetry and the boundary-layer volume is finite as Pe →∞, and
normal stress differences scaling as ηγ̇φ2 and a shear-induced self-diffusivity scaling
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as γ̇a2φ are predicted in this limit. We find that as b/a − 1 → 0, the asymmetric
portion of g depends on the separation as (b/a− 1)0.22, and hence the normal stress
differences vanish as expected when b ≡ a. The exponents of (b/a− 1)0.22 and Pe−0.22

are given by a combination of the contact values of hydrodynamic functions,

1 +
W (2a)

2A′(2a)
= 1 + δ = 0.22,

where δ arose in the solution of the similarity problem for g in the case b ≡ a.
The results of our analysis help to explain the observation of non-Newtonian

behaviour in non-colloidal suspensions. Abundant evidence, some of which is detailed
in the Introduction, that the microstructure at large Pe is markedly asymmetric in
sheared suspensions may now be understood in qualitative and quantitative terms.
Both of the cases studied show a large asymmetry, and the slow decay of the influence
of this asymmetry upon the rheology, either as Pe → ∞ for b ≡ a or as b/a− 1→ 0
for Pe−1 = 0, indicates that, due to the always-present weak Brownian motion and
irreversible surface interactions caused by roughness or a finite-ranged force, we may
expect to find measurable non-Newtonian effects.

Colloidal dispersions of particles interacting as hard spheres or through repul-
sive interparticle forces have a low-shear-rate Newtonian viscosity followed by a
region of shear thinning before attaining a second, high-shear-rate, viscosity plateau
at Péclet numbers of O(100). For hard spheres, the low-shear-rate viscosity is ob-
served to diverge with increasing volume fraction as (1−φ/φm)−2, with the maximum
packing corresponding to random close packing φm ≈ 0.64 (Russel et al. 1989). As
shown by Brady (1993b), this divergence is due to the Brownian contribution to
the stress, which scales as ηγ̇φ2geq(2;φ)/D̂s

0(φ); geq(2, φ) arises because of the con-

tact integral of the Brownian stress (equation (11)), and D̂s
0(φ) appears because the

appropriate Péclet number is P̄e. At the high-shear-rate viscosity plateau the vis-
cosity is also observed to diverge as (1 − φ/φm)−2, but now at a larger maximum
packing fraction of φm ≈ 0.71 (Russel et al. 1989). The form of this divergence is

suggested by our boundary-layer analysis, (33), with both g∞(2b̂;φ) and 1/D̂s
0(φ)

diverging at the higher volume fraction. Note however, that in order for this diver-
gence to occur there must be interparticle forces. In the pure-hydrodynamic limit
the Brownian stress remains O(kT/a3) and the hydrodynamic stress in this limit
does not diverge with an exponent of −2. The Stokesian Dynamics simulations
of Phung et al. (1996) for hard spheres show this second viscosity plateau with
the viscosity arising from the hydrodynamic stress; this hydrodynamic viscosity is
equal to the high-frequency dynamic viscosity, which diverges with an exponent of
−1.

At Péclet numbers greater than O(100) colloidal dispersions are observed to shear
thicken. This thickening may also be understood from our boundary-layer analysis.
We saw in §4.2 that the hydrodynamic contribution to the stress from the boundary
layer shear thickens as the boundary layer thins and the O(Pe) number of particles are
pushed closer to contact. Indeed, even in the complete absence of interparticle forces
at O(φ2) the shear thickening is evident: at low shear rates the hydrodynamic stress
is determined with g(r) = 1 and gives a viscosity contribution of 5φ2. The Brownian
viscosity contribution is approximately 0.91φ2. As the Péclet number increases the
suspension first shear thins as the Brownian viscosity decreases, and then the pair-
distribution function evolves to that given by p(r), with its singular value at contact
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(ignoring the difficulty of regions of closed streamlines), which gives a hydrodynamic
viscosity of 6.95φ2.

Although this shear thickening is definitely present at the level of two particles,
it may not be sufficient to explain the shear thickening seen experimentally. It has
been proposed (Bossis & Brady 1989) and observed experimentally (D’Haene, Mewis
& Fuller 1993; Bender & Wagner 1995) that shear thickening is associated with the
formation of large aggregates or clusters of particles. The hydrodynamic stress of an
aggregate grows as its size cubed, and as the Péclet number increases the aggregate
size increases leading to shear thickening. The buildup of particles in the boundary
layer near contact is a form of hydrodynamic clustering, but precisely how this two-
particle phenomenon is related to the formation of large clusters and their resultant
contribution to the stress is not immediately clear. The common link may be through
the increased relative radial velocity at contact and the unknown contact value of

g∞(2b̂;φ), problems that remain to be solved.
This contact value of the pair-distribution function was also seen to play an

important role in determining the shear-induced long-time self-diffusivity, as it gives
the number of particle encounters with velocity fluctuation γ̇a and displacement a;

i.e. Ds
∞ ∼ γ̇a2(b̂ − a)0.22φg∞(2b̂;φ). Furthermore, the hard-sphere repulsive force and

singular influence of Brownian motion are critical for obtaining a diffusive behaviour
– they are the underlying origin of irreversibility.

It should also be evident from this boundary-layer phenomenon at high Péclet
number that the numerical simulation of suspension behaviour for Péclet numbers
in excess of several thousand is a very difficult problem. In order to properly resolve
the boundary layer, exceedingly small time steps will be necessary to faithfully follow
particle trajectories near contact and resolve the dominant physics occurring there.

Although we have only considered a repulsive force of hard-sphere type, this was
done for convenience in formulating the boundary-value problems to be solved. The
same behaviour will be obtained with a repulsive force of extended (but short) range,
even in the complete absence of Brownian motion as shown in §3.2. A boundary layer
at ‘contact’ whose thickness will depend on the ratio of the amplitude of the shear
to repulsive forces will be set up at high shear rates with the same structure and
consequences as that studied here.

The results presented here for the presence of normal stresses as Pe → ∞ may
be important in understanding the phenomena of shear-induced particle migration
in inhomogeneous shear flows. Nott & Brady (1994) have advanced the theory
that normal stresses, rather than variations in shear rate, cause migration. They
showed that no migration would occur in torsional flow, as is found experimentally
(Chow et al. 1994), if 2Σrr = Σθθ . Interestingly, the normal stresses predicted in
§3.2 show precisely this relationship. Further, we have shown here that the shear-
induced diffusive motion can be directly related to stress driving forces, a result
postulated by Nott & Brady (1994). Finally, the singular nature of the boundary-
layer problem is responsible for the microstructural asymmetry that underlies the
form of the constitutive equations postulated by Nott & Brady (1994), and the results
of this analysis can be used to determine the volume-fraction dependence of these
constitutive equations.

Although the present study is devoted to microstructure in linear flows, it is worth
noting that the high-Péclet-number boundary-layer problem was suggested in a study
by Batchelor (1982) of the microstructure of sedimenting particles. Batchelor & Wen
(1982) applied the theory of Batchelor (1982) to numerically evaluate g(r) in a dilute
large-Pe sedimentation problem. These authors did not resolve the solution for g
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up to contact and thus were unable to determine the manner in which the singular
contact value of g is made finite by Brownian motion. It would be of interest to apply
the methods described here to the sedimentation problem.

This work was supported in part by grant No. CTS-9420415 from the National
Science Foundation and by grant No. N00014-95-1-0423 from the Office of Naval Re-
search. The authors wish to thank Francis Gadala-Maria for providing figure 2. J.F.B.
wishes to thank the Isaac Newton Institute for Mathematical Sciences, Cambridge
University, for their hospitality during the writing of this paper.

Appendix. Similarity solution: no interparticle forces
A change of variables in (36a) to ζ = −ξ yields the governing equation for u(ζ),

ζu′′ + (1− ζ)u′ + δu = 0,

the standard form which has the general solution (Abramowitz & Stegun 1972,
chap. 13)

u(ζ) = λ1M(−δ, 1, ζ) + λ2U(−δ, 1, ζ),
where M and U are confluent hypergeometric functions, and λ1 and λ2 are arbitrary
constants. For second argument of unity, U is logarithmically singular at ζ = 0 and
is therefore discarded. The argument ζ is negative, and

M(−δ, 1, ζ) ∼ K(−ζ)δ = Kηδ as η →∞,

with K a constant. This far-field form of M agrees with the asymptotic form of u given
by (39) that was shown to satisfy the boundary condition (36c) of matching the radial
dependence of p. The condition (36b) at contact is satisfied because M ′(−δ, 1, 0) = −δ
and thus the product ζM ′(−δ, 1, ζ) vanishes at ζ = 0.

To complete the solution for g within the boundary layer, we determine the
scaling function Y (θ, ϕ), which has the physical meaning of a variable boundary-
layer thickness. It is sufficient, due to symmetry of the pair configuration and bulk
flow, to determine Y in the restricted domain 0 < θ < π/2 and 3π/4 < ϕ < 5π/4.
The solution elsewhere may be obtained from the symmetry relations

Y (π − θ, ϕ) = Y (θ, ϕ), Y (θ, ϕ) = Y (θ, ϕ+ π), and Y (θ, ϕ) = Y (θ, 3π/2− ϕ).

Two conditions on Y are required, which we choose to be finiteness of Y at ϕ = 3π/4
and ∂Y /∂θ = 0 at θ = π/2.

The solution to (37) is found by the method of characteristics (Carrier & Pearson
1988). Rewriting (37) as

∂Y

∂ϕ
+ v(θ, ϕ)

∂Y

∂θ
= w(Y , θ, ϕ),

where

v(θ, ϕ) =
γθ

γϕ
sin θ, and w(Y , θ, ϕ) = 4

sin θ

γϕ

1− γrY
1− B(2)

,

we may interpret w as the complete derivative w = dY /ds with dϕ/ds = 1 and
dθ/ds = v. For ϕ = 3π/4, (37) reduces to

dY (θ, 3π/4)

dθ
+ (k1 tan θ)Y = −k2 sec θ cosec θ,
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with solution

Y (θ, 3π/4) = k2(cos θ)k1

∫ π/2

θ

(cos x)−(1+k1) cosec x dx,

where

k1 =
2A′(2)

1− B(2)
≈ −13.7, and k2 =

4

1− B(2)
≈ 6.7.

Similarly, for θ = π/2, (37) reduces to

dY (π/2, ϕ)

dϕ
+ (k1 tan 2ϕ)Y = k2 cosec 2ϕ,

with solution

Y (π/2, ϕ) = k2(cos 2ϕ)k1/2

∫ ϕ

3π/4

(cos 2x)−(1+k1/2)dx.
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