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Abstract We compute a presentation of the fundamental group of a higher-rank graph using a coloured
graph description of higher-rank graphs developed by the third author. We compute the fundamental
groups of several examples from the literature. Our results fit naturally into the suite of known geometrical
results about higher-rank graphs when we show that the abelianization of the fundamental group is the
homology group. We end with a calculation which gives a non-standard presentation of the fundamental
group of the Klein bottle to the one normally found in the literature.
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1. Introduction

Higher-rank graphs, or k-graphs, are countable categories Λ equipped with a degree func-
tor d : Λ → N

k which satisfies a certain factorization property. They were introduced in
[11] as a graphical approach to the higher-rank Cuntz–Krieger algebras introduced by
Robertson and Steger in [21]. Since then k-graphs have been studied by many authors
from several points of view (see [1–5,7,10,16,17,20,23], for example). The motivation for
this paper comes from the recent developments of [9,12–14,18], where the geometric nature
of k-graphs has been investigated and then used to construct new families of twisted
k-graph C∗-algebras.

In fact, the geometric aspects of a k-graph have been of interest in their own right.
In [18], the notion of a fundamental group was introduced for a connected k-graph, where
connectivity is defined in the categorical sense (see Definition 5.1). In [9, §4], a connected
k-graph is viewed as a connected k-dimensional CW-complex (and so has a 1-skeleton).
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Computing the fundamental group of a higher-rank graph 651

It was then shown that a k-graph may be realized as a topological space in a way which
preserves homotopy type. It is therefore of interest to provide a facility to compute the
fundamental group of a k-graph in terms of generators and relations. This is the main
purpose of this paper.

To clarify the nature of the fundamental group we wish to compute, we briefly describe
the approach of [9,18] here. We adapt the description of the fundamental group of a
graph as described in [15, Chapter 6] and [22, §2] to our situation. The 1-skeleton SkΛ

of a k-graph Λ is a directed graph, which we then view as a graph Sk+
Λ (the augmented

graph). We may then quotient out the finite path space P(Sk+
Λ) by trivial paths, and

identifications made by the factorization rules in Λ to form the fundamental groupoid
and fundamental group of Λ, see [18, §3] and [9, §4]. To establish notation, we review this
construction in slightly more detail in § 2.

Following [22], the fundamental group of a graph is easy to compute: Given a maximal
spanning tree of the graph, the generators of the fundamental group are indexed by the
edges of the graph which are not in the tree. Furthermore, the group generated is a free
group (see [22, §2.1.8]). We adapt this process to compute the fundamental group of a
k-graph: Take a maximal spanning tree of Sk+

Λ and quotient out the generators of the
fundamental group of SkΛ by the relations coming from the factorization rules in Λ.
Hence, the fundamental group of a k-graph is usually not a free group (see Theorem 5.4
below).

Key to our analysis is the frequent use of coloured graphs to visualize and describe
the structure of a k-graph (for a complete description of how this works, see [8]). Briefly,
the 1-skeleton SkΛ of a k-graph Λ is a directed graph, which together with a colouring
c : Sk1

Λ → {c1, . . . , ck} of the edges forms a k-coloured graph (SkΛ, c), called the skeleton.
As shown in [8], a k-coloured graph does not define, or completely determine a k-graph.
To make a satisfactory correspondence between k-graphs and k-coloured graphs, we need
some additional combinatorial data C, which encodes the natural quotient structure of
Λ. To establish notation, we review the relationship between k-graphs and k-coloured
graphs in slightly more detail in § 3 and § 4.

In § 5, we implement the method described in the third paragraph above to give a
presentation of the fundamental group of a k-graph in terms of the fundamental group
of its 1-skeleton (see Theorem 5.4). To illustrate the efficacy of our result, we give several
computations in Examples 5.5. Finally, in § 6, we show that the abelianization of the
fundamental group of a k-graph agrees with its homology as defined in [12]. Then, in
Example 6.3, we compute the fundamental group of a 2-graph from the Klein bottle
example in [9, Example 3.13] which reveals a non-standard presentation of this group.

2. Conventions

For k ≥ 1, let N
k denote the monoid of k-tuples of natural numbers under addition and

denote the canonical generators by e1, e2, . . . , ek. For m ∈ N
k, we write m =

∑k
i=1 miei

then for m, n ∈ N
k we say that m ≤ n if and only if mi ≤ ni for i = 1, . . . , k.

A directed graph E is a quadruple (E0, E1, rE , sE), where E0 is the set of vertices, E1

is the set of edges, and rE , sE : E1 → E0 are range and source maps, giving a direction
to each edge (if there is no chance of confusion we will drop the subscripts). We follow
the conventions of [19] which are suited to the categorical setting we wish to pursue:
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a path of length n is a sequence μ = μ1μ2 · · ·μn of edges such that s(μi) = r(μi+1) for
1 ≤ i ≤ n − 1. We denote by En the set of all paths of length n, and define E∗ =

⋃
n∈N

En.
We extend r and s to E∗ by setting r(μ) = r(μ1) and s(μ) = s(μn).

To align with the established literature on the fundamental groupoid of a k-graph,
the following definitions are taken from [18, Definition 5.1]: Let E be a directed graph.
For each e ∈ E1, we introduce an inverse edge e−1 with s(e−1) = r(e) and r(e−1) = s(e).
Let E−1 = {e−1 : e ∈ E1} and Eu = E1 ∪ E−1, then E+ = (E0, Eu, r, s) is a directed
graph called the augmented graph of E. Let P(E+) be the path category of E+. If we
set (e−1)−1 = e then e−1 ∈ P(E+) for any e ∈ Eu and by extension λ−1 = λ−1

n · · ·λ−1
1 ∈

P(E+) for any λ = λ1 · · ·λn ∈ P(E+). Elements of P(E+) are called undirected paths in
E, and elements of P(E+) which do not contain ee−1 for any e ∈ Eu are called reduced
undirected paths in E (vertices are reduced paths).

Let E be a directed graph then E is connected if for every u, v ∈ E0 there is α ∈ P(E+)
with u = s(α) and v = r(α). A tree T is a connected directed graph such that the only
reduced α ∈ P(T+) with the same source and range are vertices. Let E be a directed
graph with subgraph T which is a tree, then T is a maximal spanning tree if T 0 = E0.
Every connected directed graph has a (not necessarily unique) maximal spanning tree
(see [22, §2.1.5]).

Remark 2.1. Fix a maximal spanning tree T of a connected directed graph E and
v ∈ E0. For each w ∈ E0, there is a unique reduced path ηw in the augmented graph
T+ from v to w, which is an element of the fundamental groupoid G(E). For λ ∈ P(E+)
define ζλ = η−1

r(λ)ληs(λ) ∈ vP(E+)v. Note that ζ−1
λ = ζλ−1 .

3. Coloured graphs

For k ≥ 1, a k-coloured graph E is a directed graph along with a colour map cE : E1 →
{c1, . . . , ck}. By considering {c1, . . . , ck} as generators of the free group Fk, we may
extend cE : E∗ \ E0 → F

+
k by cE(μ1 · · ·μn) = cE(μ1)cE(μ2) · · · cE(μn). We will drop the

subscript from cE if there is no risk of confusion. For k-coloured directed graphs E and
F , a coloured-graph morphism φ : F → E is a graph morphism satisfying cE ◦ φ1 = cF .

For 2-coloured graphs, the convention is to draw edges with colour c1 blue (or solid)
and edges with colour c2 red (or dashed).

Example 3.1. For k ≥ 1 and m ∈ N
k, the k-coloured graph Ek,m is defined by E0

k,m =
{n ∈ N

k : 0 ≤ n ≤ m}, E1
k,m = {εn

i : n, n + ei ∈ E0
k,m}, with r(εn

i ) = n, s(εn
i ) = n + ei

and cE(εn
i ) = ci. The 2-coloured graph E2,e1+e2 is used often and is depicted below.
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Let E be a k-coloured graph and i �= j ≤ k. A coloured graph morphism φ : Ek,ei+ej
→

E is called a square in E. One may represent a square φ as a labelled version of Ek,ei+ej
.

For instance, the 2-coloured graph below on the left has only one square φ, shown to its
right, given by φ(n) = v for all n ∈ E0

2,e1+e2
, φ(ε0

1) = φ(εe2
1 ) = e and φ(ε0

2) = φ(εe1
2 ) = f .

CE = {φ : Ek,ei+ej
→ E : 1 ≤ i �= j ≤ k} denotes the set of squares in a k-coloured

graph E.
A collection of squares C in a k-coloured graph E is called complete if for each i �= j ≤ k

and cicj-coloured path fg ∈ E2, there exists a unique φ ∈ C such that φ(ε0
i ) = f and

φ(εei
j ) = g. In this case, uniqueness of φ gives a unique cjci-coloured path g′f ′ with

g′ = φ(ε0
j ) and f ′ = φ(εej

i ). We will write fg ∼C g′f ′ and refer to elements (fg, g′f ′) of
this relation as commuting squares.

Example 3.2. For n ≥ 1 define n = {1, . . . , n}. For m, n ≥ 1, let θ : m × n →
m × n be a bijection. Let Eθ be the 2-coloured graph with E0

θ = {v}, E1
θ =

{f1, . . . , fm, g1, . . . , gn}, and colouring map c : E1
θ → {c1, c2} by c(fi) = c1 for i ∈ m

and c(gj) = c2 for j ∈ n. For each (i, j) ∈ m × n, define φ(i,j) : E2,e1+e2 → Eθ by

φ(i,j)(ε0
1) = fi, φ(i,j)(ε

e2
1 ) = fi′ , φ(i,j)(ε0

2) = gj′ , and

φ(i,j)(ε
e1
2 ) = gj , where θ(i, j) = (i′, j′).

As θ is a bijection CEθ
= {φ(i,j) : (i, j) ∈ m × n} is a complete collection of squares.

4. Higher-rank graphs

A k-graph (or a higher-rank graph) is a countable category Λ with a degree functor
d : Λ → N

k satisfying the factorization property : if λ ∈ Λ and m, n ∈ N
k are such that

d(λ) = m + n, then there are unique μ, ν ∈ Λ with d(μ) = m, d(ν) = n and λ = μν.
Given m ∈ N

k we define Λm := d−1(m). Given v, w ∈ Λ0 and F ⊆ Λ define vF :=
r−1(v) ∩ F , Fw := s−1(w) ∩ F , and vFw := vF ∩ Fw. The factorization property allows
us to identify Λ0 with Obj(Λ), and we call its elements vertices.

By the factorization property, for each λ ∈ Λ and m ≤ n ≤ d(λ), we may write λ =
λ′λ′′λ′′′, where d(λ′) = m, d(λ′) = n − m and d(λ′′) = d(λ) − n; then λ(m, n) := λ′′. For
more information about k-graphs, see [8,11,20] for example.

Examples 4.1. (a) Let E be a directed graph. The collection E∗ of finite paths
in E forms a category, called the path category of E, denoted by P(E). The map
d : P(E) → N defined by d(μ) = n if and only if μ ∈ En is a functor which satisfies
the factorization property, hence (P(E), d) is a 1-graph. It turns out that every
1-graph arises in this way (see [11, Example 1.3]).
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(b) For k ≥ 1; let Δk = {(m, n) : m, n ∈ Z
k : m ≤ n}. With structure maps r(m, n) =

m, s(m, n) = n, so that (
, n) = (
, m)(m, n) then Δk is a category. Set d(m, n) =
n − m, then d is a functor and (Δk, d) is a k-graph. The vertices Δ0

k = {(m, m) :
m ∈ Z

k} may be identified with Z
k.

(c) Resuming the notation of Example 3.2 let θ : m × n → m × n be a bijection. Let
F

2
θ be the semigroup with generators {f1, . . . , fm, g1, . . . gn} and relations figj =

gj′fi′ where θ(i, j) = (i′, j′) for (i, j) ∈ m × n. Let d(fi) = e1 for i = 1, . . . , m and
d(gj) = e2 for j = 1, . . . , n then d extends to a functor from F

2
θ to N

2 with the
factorization property, and so F

2
θ is a 2-graph (see [23, §2]).

(d) Recall from [6] that if Λ is a k-graph and α is an automorphism of Λ, then there
is a (k + 1)-graph Λ ×α Z with morphisms Λ × N, range and source maps given
by r(λ, n) = (r(λ), 0), s(λ, n) = (α−n(s(λ)), 0), degree map given by d(λ, n) =
(d(λ), n) and composition given by (λ, m)(μ, n) := (λαm(μ), m + n). In particular
(Λ ×α Z)0 = Λ0 × {0}.

We define the skeleton of a k-graph Λ to be a k-coloured graph. It consists of the
1-skeleton SkΛ of Λ, which is a directed graph given by Sk0

Λ = Obj(Λ), Sk1
Λ =

⋃
i≤k Λei ,

with range and source as in Λ. There is a natural colouring map c : Sk1
Λ → {c1, . . . , ck}

given by c(f) = ci if and only if f ∈ Λei . The skeleton (SkΛ, c) comes with a canonical
set of bi-coloured squares CΛ := {φλ : λ ∈ Λei+ej : i �= j ≤ k}, where the colour-preserving
graph morphism φλ : Ek,ei+ej

→ SkΛ is given by φλ(εn
� ) = λ(n, n + e�) for each n ≤ ei +

ej and 
 = i, j. The collection CΛ is complete by [8, Lemma 4.2].
Conversely, in [8, Theorem 4.4, Theorem 4.5], it is shown that for a k-coloured graph

E with a complete, associative* collection of squares CE determines a unique k-graph
ΛE,CE

.

Examples 4.2. (a) The 2-graph ΛEθ,CEθ
, determined by the 2-coloured graph

(Eθ, c) with squares CEθ
described in Example 3.2 is isomorphic to F

2
θ defined

in Examples 4.1 (c).

(b) Recall the k-graph Δk described in Examples 4.1. Part of the skeleton of Δ3, as
seen from the first octant is shown below:

* The associative condition which only applies if k ≥ 3 is quite complicated, and we will not deal with
it here. For more details, see [8, §3]
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It is straightforward to see that Sk0
Δ3

= Z
3, Sk1

Δ3
= {(m, m + ej) : m ∈ Z

3, 1 ≤ j ≤
3}, r(m, m + ej) = m and s(m, m + ej) = m + ej . The commuting squares are

C = {(m,m + ei)(m + ei,m + ei + ej)

= (m,m + ej)(m + ei,m + ei + ej) : m ∈ Z
3, 1 ≤ i �= j ≤ 3}.

One checks that this collection of squares is complete and associative.

5. Computing the fundamental group of a k-graph

In this section, we define and provide a presentation of the fundamental group of a
k-graph. Kaliszewski, Kumjian, Quigg and Sims show in [9, Corollary 4.2] that the fun-
damental group of a k-graph may be realized as a quotient of the fundamental group of
its skeleton. We provide an alternative proof of this in Theorem 5.4 which yields a natural
presentation of the group. We demonstrate the practical use of our result in Examples 5.5.

Definition 5.1 (Kumjian et al. [12, Definition 2.8]). We say that the k-graph Λ
is connected if the equivalence relation on Λ0 generated by the relation u ∼ v iff uΛv �= ∅
is Λ0 × Λ0.

We review the construction of the fundamental groupoid of a connected k-graph from
[18]. First, we describe the fundamental groupoid G(E) of a directed graph E.

Following [18, p. 197], let E be a directed graph, then a relation for E is a pair (α, β)
of paths in P(E) such that s(α) = s(β) and r(α) = r(β). If K is a set of relations for E,
then P(E)/K is the quotient of P(E) by the equivalence relation generated by K, for
more details, see [18, §2].

As in [18, Definition 5.2], let C = {(e−1e, s(e)) : e ∈ Eu} and call C the set of cancella-
tion relations for E+. The quotient P(E+)/C is then the fundamental groupoid, G(E) of
E. We denote the quotient functor P(E+) → G(E) by qC . Elements of G(E) are reduced
undirected paths in E with composition given by concatenation followed by cancellation.

Now we turn to defining the fundamental groupoid of a k-graph Λ. First, apply the
above construction to form G(E) where E = SkΛ. As in [8,18], let S be the equivalence
relation on P(E) generated by CΛ, the commuting squares in E determined by Λ. That
is, the transitive closure in P(E) × P(E) of

⋃
n≥2{(μ, ν) ∈ En × En : there exists i < n such that

μj = νj whenever j �∈ {i, i + 1} and μiμi+1 ∼CΛ νiνi+1}.
As in [18, Observation 5.3], this relation may be extended uniquely to a relation S+

on P(E+) by adding the relation (f−1e−1, h−1g−1) whenever (ef, gh) ∈ S. This induces
a relation, also called S+, on G(E).

Definition 5.2. Let Λ be a connected k-graph. Then the fundamental groupoid,
G(Λ) is

G(Λ) := G(SkΛ)/S+ = (P(Sk+
Λ)/C)/S+ = P(Sk+

Λ)/(C ∪ S+).

For v ∈ Λ0 the fundamental group based at v ∈ Λ0 is the isotropy group π1(Λ, v) :=
vG(Λ)v.
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The above definition of the fundamental groupoid of a k-graph is consistent with the
one given in [18, Definition 5.6] (see also the accompanying discussion).

Our goal is to obtain a practical way of giving a presentation of π1(Λ, v). First recall
that for a connected directed graph E, the quotient functor qC : P(E+) → P(E+)/C =
G(E) restricts to vP(E+)v and the image is the isotropy group vG(E)v, which is by
definition the fundamental group of E at v, denoted π1(E, v).

The following result is well known (see [22] for instance).

Lemma 5.3. Let E be a connected directed graph, v ∈ E0, and T be a maximal
spanning tree of E. Then π1(E, v) ∼= 〈E1 | T 1〉 := 〈e ∈ E1 | e = 1 if e ∈ T 1〉.

Proof. Suppose e �∈ Tu = T 1 � T−1. With notation as in Remark 2.1, all the edges
of ηr(e), ηs(e) are in Tu, so ζe is reduced undirected path in E and hence qC(ζe) = ζe.
Suppose that e ∈ Tu then ζe is an undirected path in T from v to v and so its reduced
form must be v, hence qC(ζe) = v.

To complete the proof, it suffices to show that {ζe : e ∈ E1\T 1} freely generate
π1(E, v). This is a standard result, see [22, §2.1.7, §2.1.8] for example. � �

Since Lemma 5.3 holds for any choice of maximal spanning tree, it follows that π1(E, v)
does not depend on the choice of basepoint v. We denote the fundamental group of a
graph E by π1(E). Now we turn our attention to computing the fundamental group of
a connected k-graph Λ. Since Λ ∼= P(SkΛ)/S, we expect the relation S to appear in the
description of π1(Λ).

Theorem 5.4. Let Λ be a connected k-graph, v ∈ Λ0 and let T be a maximal spanning
tree for SkΛ. Then π1(Λ, v) ∼= 〈Sk1

Λ | t = 1 if t ∈ T 1, ef = gh if (ef, gh) ∈ S+〉.

Proof. Denote by qS : G(SkΛ) → G(SkΛ)/S+ = G(Λ) the quotient map. With nota-
tion as in Remark 2.1, observe that ζeζf = ζef and ζgζh = ζgh in G(SkΛ). Hence
qS(ζeζf ) = qS(ζgζh) if and only if (ef, gh) ∈ S+. Since taking quotients preserves objects,
π1(Λ, v) = π1(SkΛ)/S+. Then Lemma 5.3 implies that π1(Λ, v) ∼= 〈Sk1

Λ | t = 1 if t ∈
T 1, ef = gh if (ef, gh) ∈ S+〉. � �

Since Theorem 5.4 holds for every choice of T , the group π1(Λ, v) does not depend on
T . We henceforth denote by π1(Λ) the fundamental group of Λ. Theorem 5.4 gives us an
explicit presentation of π1(Λ), as seen in the following examples.

Examples 5.5. 1 Let Σ be the 2-graph, which is completely determined by its
skeleton, shown below. In [9, Example 3.10], it was shown that the topological
realization of Σ is the 2-sphere S2. Let T be the maximal spanning tree for SkΣ

consisting of edges T 1 = {a, b, c, d, e}. The commuting squares in SkΣ are (ga, ce),
(gb, cf), (de, ha) and (df, hb), thus Theorem 5.4 gives

π1(Σ) ∼= 〈Sk1
Σ | t = 1 if t ∈ T 1, ga = ce, gb = cf, de = ha, df = hb〉.
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The first relation forces g = 1, the second g = f , the third h = 1 and the fourth
f = h. Hence all the generators of π1(Σ) are equal to 1. Therefore π1(Σ) is trivial.

2 Consider the 2-graph Π with skeleton SkΠ shown below, with commuting squares
(ga, ce), (gb, df), (hb, cf) and (ha, de). In [9, Example 3.12], it was shown that the
topological realization of Π is the projective plane. Choose spanning tree T of SkΠ

with T 1 = {a, b, c, f}. Then Theorem 5.4 gives

π1(Π) = 〈Sk1
Π | t = 1 if t ∈ T 1, ga = ce, gb = df, hb = cf, ha = de〉.

The relations become g = e, g = d, h = 1 and de = 1. So the fundamental group of
π1(Π) ∼= 〈e | e2 = 1〉 ∼= Z/2Z, the fundamental group of the projective plane.

3 Recall the skeleton of the 2-graph F
2
θ described in Example 3.2. Since F

2
θ has a single

vertex, v, the maximal spanning tree for its 1-skeleton SkF2
θ

is v. The commuting
squares of SkF2

θ
are (figj , gj′fi′) where θ(i, j) = (i′, j′) for (i, j) ∈ m × n. Hence

by Theorem 5.4 the fundamental group of F
2
θ is

〈fi, gj | figj = gj′fi′ where θ(i, j) = (i′, j′)〉.
For different choices of θ, we get quite different fundamental groups:
(a) If m = n = 2 and θ : 2 × 2 → 2 × 2 is the identity map then

π1(F2
θ) ∼= 〈f1, f2〉 × 〈g1, g2〉 ∼= (Z ∗ Z) × (Z ∗ Z) = π1(S1 ∨ S1) × π1(S1 ∨ S1),

where ∗ is the free product, and ∨ is the wedge sum.

(b) If m = n = 2 and θ is given by θ(i, j) = (j, i) then by Theorem 5.4, we have

π1(F2
θ) ∼= 〈f1, f2, g1, g2 | f1g1 = g1f1, f1g2 = g1f2, f2g1 = g2f1, f2g2 = g2f2〉.

The first and fourth relations give f−1
i gi = gif

−1
i for i = 1, 2, then using the

second relation, we have f−1
1 g1 = g2f

−1
2 . Putting these together gives g1f

−1
1 =
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f−1
2 g2, and hence f2g1 = g2f1. So the third relation is redundant and

π1(F2
θ) ∼= (Z2 ∗ Z

2)/〈g1f
−1
1 = g2f

−1
2 〉 = Z

2 ∗Z Z
2,

where {f1, g1} generate the first copy of Z
2 and {f2, g2} generate the second

copy, and the amalgamation over Z is with respect to the identifications of Z

in Z
2 given by 1 �→ gif

−1
i for i = 1, 2. So F

2
θ has the same fundamental group

as the two-holed torus.

4 It would be nice to include more higher-dimensional examples with a significant
geometric content, such as those in [16,17]. However, the computation becomes
difficult to work with as the spanning tree only uses relatively few edges of the
1-skeleton. The following example takes a 3-graph whose geometric realization is a
sphere and adds two extra edges x′

4, y′
4 to make its fundamental group non-trivial

(cf. Example (i) above).

(2)

Corresponding to the relations

y0u1 = x0u0 y0v1 = x0v0

x1u1 = y1u2 x1v1 = y1v2

y2u3 = x2u2 y2v3 = x2v2

x3u3 = y3u4 x3v3 = y3v4

y′
4u0 = x4u4 y4v0 = x′

4v4

y4u0 = x′
4u4 y′

4v0 = x4v4

Choose spanning tree with edges y0, x1, y1, x2, y2, x3, y3, x4, y4, u0, v0. Then by
Theorem 5.4, the fundamental group of the 3-graph shown above is

〈xi, yi, ui, vi, i = 0, . . . , 4, x′
4, y

′
4 : xj = 1, j = 1, . . . 4,

yi = 1, i = 0, . . . , 4, u0 = 1, v0 = 1〉
Applying the relations in the first column, we get x0 = u1 = u2 = u3 = u4 =
y′
4, x′

4u4 = 1, and from the second column, we have x0 = v1 = v2 = v3 = v4 =
y′
4, x′

4v4 = 1. Hence, the fundamental group is 〈x0, x′
4 : x′

4x0 = 1〉 ∼= Z (since the
generating set is redundant, x′

4 = x−1
0 ).
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6. Relationship with first homology group

Full versions of the following definitions may be found in [12, §3]. Let X be a set. We
write ZX for the free abelian group generated by X. For a k-graph Λ, set C0(Λ) = ZΛ0,
C1(Λ) = ZΛe1 ⊕ · · · ⊕ ZΛek and C2(Λ) = ⊕1≤i<j≤kZΛei+ej .

Let ∂Λ
1 : C1(Λ) → C0(Λ) be the homomorphism determined by ∂Λ

1 (λ) = s(λ) − r(λ).
Define ∂Λ

2 : C2(Λ) → C1(Λ) as follows. Suppose λ ∈ Λei+ej where 1 ≤ i < j ≤ k. Factorize
λ = f1g1 = g2f2 where fr ∈ Λei and gr ∈ Λej for r = 1, 2, then set ∂Λ

2 (λ) = f1 + g1 −
f2 − g2 and extend to a homomorphism from C2(Λ) to C1(Λ). Then ∂Λ

2 ◦ ∂Λ
1 = 0, and

H0(Λ) = ZΛ0/ Im ∂Λ
1 , H1(Λ) = ker ∂Λ

1 / Im ∂Λ
2 .

Recall the following definitions from [12, Definition 2.7, Definition 3.10].

Definition 6.1. Given h = hm1
1 · · ·hmn

n ∈ G(Λ), where mi = ±1, define t : G(Λ) →
C1(Λ) by t(h) =

∑n
i=1 mihi ∈ C1(Λ); then t(h) is called a trail. If h is a circuit (that is

r(h) = s(h)) then t(h) is called a closed trail. If h is also simple (that is s(hmi
i ) �= s(hmj

j )
for i �= j),then t(h) is called a simple closed trail.

Proposition 6.2. Let Λ be a connected k-graph. Then the map t defined in Definition
13 induces an isomorphism Abπ1(Λ) ∼= H1(Λ).

Proof. Fix v ∈ Λ0, then π1(Λ) ∼= π1(SkΛ, v)/S+ by [9]. Fix a maximal spanning
tree T ⊂ SkΛ, then π1(SkΛ, v) = 〈ζe | e ∈ E1 \ T 1〉 (see [22] for example). Then t :
π1(SkΛ, v) → C1(Λ) is a homomorphism. Since t sends simple reduced circuits to simple
closed trails, [12, Proposition 3.15] implies that ker(∂Λ

1 ) = t(π1(SkΛ, v)). As t(ζeζf ) −
t(ζgζh) = e + f − g − h ∈ Im ∂Λ

2 whenever if (ef, gh) ∈ S+, t descends to a homomor-
phism t′ : π1(Λ) → H1(Λ) which maps [a] to [t(a)] for a ∈ π1(SkΛ, v). Routine calculation
then shows that ker t′ is the commutator subgroup of π1(Λ), so t is an isomorphism from
Ab π1(Λ), the abelianization of π1(Λ) to H1(Λ). �

Example 6.3. Recall the 2-graph Λ shown below on the right with commuting squares
shown on the on the left from [12, Example 5.7]

which has the same homology as the Klein bottle. However, as we shall see, it does have
the same fundamental group, but with a quite different presentation to the one given in
[9, Example 3.13]. To see this, choose spanning tree T with T 1 = {a, c, g}. By Theorem
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5.4, the fundamental group is generated by Λe1 ∪ Λe2 subject to the relations

a = c = g = 1, gb = ce, ga = df, hb = cf, ha = de,

which simplify to b = e, 1 = df, hb = f, h = de. Eliminating b and simplifying further,
we have

π1(Λ) = 〈e, f, h : fh = e, he = f〉 = 〈e, f : f2 = e2〉, (6.1)

is equal to the fundamental group of the Klein bottle, 〈a, b : aba = b〉. To see this, set
e = ab and f = b, then

e2 = (ab)(ab) = (aba)b = (b)(b) = b2 = f2.

A slightly easier calculation shows that in the case n = 2, the 2-graph in [12, Example
5.1] has the same fundamental group (6.1) as Λ, which is not a surprise as it has the same
topological realization as Λ (see [12, Remark 5.9]). The presentation (6.1) in abelian form
is 〈e, f : 2(f − e) = 0〉.

One sees that the abelianization of π1(Λ) is Z ⊕ Z/2Z, the homology group of the Klein
bottle, as stated in [12, Example 5.7].
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