
Robotica (2010) volume 28, pp. 583–596. © Cambridge University Press 2009
doi:10.1017/S0263574709990269

Robust backstepping control of an underactuated one-legged
hopping robot in stance phase
Guangping He†∗ and Zhiyong Geng‡
† Department of Mechanical and Electrical Engineering, North China University of Technology, Beijing 100041,
People’s Republic of China
‡ State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Aerospace Engineering,
Peking University, Beijing 100871, People’s Republic of China

(Received in Final Form: June 24, 2009. First published online: August 11, 2009)

SUMMARY
Exponentially stabilizing a non-Spring Loaded Inverted
Pendulum (SLIP) model-based one-legged hopping robot
in stance phase is studied. Differing from the SLIP model
systems, the hopping robot with non-SLIP model considered
in this paper does not restrict the center of mass of the
robot coinciding to the hip joint. A specific underactuated
one-legged hopping robot with two actuated arms are
selected to investigate the dynamics and control problem.
It is shown that the system holds the essential nonlinear
prosperities of general systems and belongs to a class
of second-order nonholonomic mechanical systems, which
cannot be stabilized by any smooth time-invariant state
feedback. By using a coordinates transform based on the
so-called normalized momentum, a robust backstepping
control method is presented for the specific hopping robot
system. Both theoretical analysis and numerical simulations
show that the robust backstepping controller can stabilize
the underactuated one-legged hopping robot to its balance
configuration as well as a periodic motion trajectory near
to the balance configuration. These results are significative
for designing a new non-SLIP model based hopping robot
systems with more biological characteristics.

KEYWORDS: Hopping robots; Underactuation; Non-
holonomy; Nonlinear control.

1. Introduction
The dynamically stable legged robots are an important class
of biological robot systems, which have been investigated by
many scholars theoretically or practically in the past three
decades. The one-legged hopping robots,1,2 which are the
minimal system for the multi-legged running robots, hold
special importance for developing the dynamic legged robots.
The legged hopping robots that had been fabricated in the
past are mostly concentrated on the Spring Loaded Inverted
Pendulum (SLIP) model-based systems.1−8 The SLIP model
is a point mass attached on a massless spring that is free
to rotate around its point of contacting with the ground,
thus the rotary motion of the body is decoupled from the
telescopic motion of the leg, and the nonlinear dynamics
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coupling between the swing motion of the leg and the rotary
motion of the body can be linearized if the swing angle of
the leg is sufficiently small. In order to satisfy the decoupling
conditions of the dynamics, the leg of the hopping robot
should be sufficiently light compared to the body, and the
center of mass (CM) of the body should be coincident with
the hip joint as possible as ref. [9]. The simple dynamics
of a fully actuated (except for the ankle) SLIP model-based
hopping robot does not require much control effort, as shown
by refs. [4–8], even a linear time-invariant feedback can
stabilize the SLIP robot systems and yield quite natural
running gaits. Nevertheless, the SLIP model-based hopping
robot is far from a biological robot system because that
the CM of animals’ body in the nature is set off the hip
joint (see ref. [9] and the references therein), and even the
position of the CM varies relative to the hip joint when
the animals are running. For instance, swinging arms will
result in the variation of the position of CM of human being,
but the variation of the position of CM can help balance in
walking or running and augments the stride in our intuition.
In the track-and-field sports such as high jump, long jump,
diving, discus, and javelin etc, it is well known that a proper
movement of swinging the arms also effectively affects the
result of the athlete. Therefore, from the point of view of a
biomechanical system, the legged hopping or running robots
should be designed to imitate the skeletal structure of the
animals in the natural, and more importantly, to understand
the principle of locomotion of them, such that a biological
robot designed holds both the best energy-efficiency and
mobility. Nevertheless, the popularity of the SLIP model
systems in dynamic legged robots is just due to the easiness in
designing the control. With considering the unnatural simple
dynamics shown by the SLIP model-based legged robots, one
can conclude that the balance principle and the requirements
for stabilizing the biological legged robot system cannot be
understood adequately through the SLIP model based robot
system.

Of course, a biologically legged robot is anything but
merely showing a variable CM. Nevertheless, this “small”
advancement for the legged robots, as to be shown in
this paper, considerably changes the dynamics and control
problem of the SLIP model-based legged robot systems.
For investigating the feasibility of designing a hopping
robot with more complex nonlinear dynamics than the SLIP
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model-based system has, by a specific hopping robot with
a non-SLIP model that releases the restriction of invariant
CM, the dynamics and the control problem are studied in
this paper. It will be shown that, an important benefit from
the non-SLIP model system is that under certain conditions
this class system can be controlled even the leg of the robot
has more than one passive joint, such that the leg has mass
less. Reducing the mass of the leg can effectively reduce the
energy loss for the hopping/running robots.

So far, there are few of non-SLIP model-based robot
prototype had been fabricated except for the “Kenken”9

and the “Uniroo,”10 and these prototypes are driven by
hydraulic or pneumatic actuators which are not fit for
a long-distance movement. Besides the power problem,
another difficulty for the non-SLIP model-based hopping
robots, comes from the intractable nonlinear dynamics of
the systems. Since the ankle of the hopping robots has no
actuator, in general the hopping robots are second-order
nonholonomic underactuated systems, and the nonholonomic
constraints differential equations of the non-SLIP model
systems are far complex than that of the SLIP model system.
The control problem of the second-order nonholonomic
nonlinear system is generally a difficult task. The essential
progresses of nonlinear control theory in the past decades
mainly come from the developments of geometric control
theory.11,12 The geometric control theory developed in recent
decades shows that some systematic design methodologies
can be applied to control a nonlinear system if the nonlinear
system can be transformed into some special normal form,
such as upper/lower triangular form ref. [11], for the
nonholonomic systems such as the chained form ref. [12].
Many benchmark nonlinear systems13–16 can be stabilized
depends on that a method of transforming the original system
into the upper/lower triangular form has been discovered. It
is unfortunately that there does not exist a general result for
getting the transformation for a specific nonlinear system.
Therefore, the approximate normal form transformation
combining with a robust control maybe a valuable way for
resolving the control problem of a general nonlinear system,
such as the nilpotent approximation combined with iterate
steering scheme suggested by Oriolo et al.17

For controlling the underactuated mechanical systems,
Olfati-Saber13 discovers that the so-called normalized
momentum can be used to transform the system to a special
Byrnes–Isidori normal form, and combining with some
additional conditions, the normal forms can be transformed
into some special triangular forms, such as the strict
feedback forms or feedforward forms. The importance of
the strict feedback normal forms for the nonlinear system
is confirmed by the existence of standard backstepping
procedure.11,13,19,20 The backstepping control technique
has been developed to be a systemic nonlinear control
methodology, which can be used to broad classes of
nonlinear systems including some first-order or second-
order nonholonomic systems. Based on the Olfati-Saber
transformation and backstepping procedure, the control
problem of the non-SLIP model-based hopping robot is
investigated in this paper. The main contribution of the
paper is that a robust backstepping controller is proposed
for a class of second-order nonholonomic underactuated
mechanical systems with nonconstant potential energy. It is

shown that the proposed controller can stabilize the periodic
motion system such as the underactuated hopping/running
robots with a non-SLIP model even the dynamics of the
system has no accurate strict feedback normal form. The
method presented in this paper maybe the first try to invent a
systematic method for designing a control for the non-SLIP
model-based legged robots, which shows more biological
properties than the SLIP model systems in the sense of the
nonlinear dynamics shown by the animalized robot systems.
This result releases the restrictions of designing a SLIP
model legged robot system such that many optimization
methods can be utilized to improve the energy-efficiency
of the legged robots at the stage of mechanical design by
redistributing the mass as well as the inertia of the bodies
of the robot system. Encouraged by the result of this paper,
the energy-efficiency design for the non-SLIP model-based
legged robots is obviously an interesting and important
problem that will be studied in our future.

The paper is organized as follow. In Section 2, the robot
model is introduced and the dynamics of the robot is
analyzed. In Section 3, the approximately strict feedback
normal form with perturbation terms is presented based on
the Olfati-Saber transformation. Since the approximations
introduce unavoidable uncertainties, a robust backstepping
controller is proposed in Section 4. Section 5 presents some
numerical simulation results that verify the scheme suggested
in the former two sections. Finally, we conclude the paper in
Section 6.

2. Dynamics of the Hopping Robot
Figure 1 shows the model of the hopping robot considered
in this paper, of which the single telescopic leg consists of
two segments. One segment of the leg is nonzero mass and
another is massless (this can be effectively approximated by
a careful mechanical design, see ref. [1]). The length of the
segment with nonzero mass is l1 with mass m1, and the CM
of it lies in the middle of the link. The massless segment that
has length l2 is serially connected to the former by a linear

Fig. 1. The mechanism model of the underactuated one-legged
hopping robot.
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spring with the same axis. The stiffness of the linear spring
is k. The physical parameters of the two arms are identical
with length r and mass m2, respectively. The CM of the arm
lies in the end of it. The two arms are hinged to the top of
the nonzero mass segment of the leg. Define the generalized
coordinates of the model to be (x0, z0, l2, ϕ, θ1, θ2), of which
(x0, z0) is the position of the foot toe in the vertical plane, l2
is the length of the massless leg (l2 = l0 when the spring is
free, l2 = l20 when the leg is vertical with static balance.), ϕ

is the angle between leg’s axis line and horizontal plane, θ1

and θ2 are angular variables of the two arms relative to the
leg, respectively. Positive direction of all angles is defined
to be anticlockwise. Since the CM of the robot varies with
respect to the hip joint, it is obvious that the model of the
robot cannot be approximated to a SLIP model system.

The one-legged hopping robot shown in Fig. 1 is designed
to be an underactuated mechanical system, which is four
degrees of freedom (DOF) system in stance phase while ac-
tuated by two arms. Thus the telescopic and swing motions of
the leg have to be actuated by the dynamics coupling from the
two arms indirectly. To understand the characteristics of the
robot, we analyze the dynamics of the robot by Lagrangian
mechanics. The Lagrangian of the robot system has form

L(q, q̇) = K(q, q̇) − V (q) = 1

2
q̇T M(q)q̇ − V (q), (1)

where K(q, q̇) denotes the kinetic energy and V (q) denotes
the potential energy. With considering the coordinates
(x0, z0) are constants and do not appear in the dynamics, the
generalized coordinates in stance phase are reduced and can
be denoted by q = [ l2 ϕ θ1 θ2 ]T. More specifically,
the Lagrangian function (1) can be written as

L(q, q̇) = 1

2

[
q̇p

q̇a

]T [
mpp mpa

map maa

] [
q̇p

q̇a

]
− V (q), (2)

where qp = [ l2 ϕ ]T is the passive generalized coordinates
part, while qa = [ θ1 θ2 ]T is the actuated generalized
coordinates part. Refer to the Appendix A, one can find the
inertia matrix

M(qp, qa) =
[

mpp mpa

map maa

]
(3)

is a matrix of functions about variables (l2, θ1, θ2) merely,
thus the kinetic energy K(q, q̇) is independent of the variable
ϕ. According to Lagrangian mechanics, if the Lagrangian
function L(q, q̇) is independent of a generalized coordinates
qi , then we say the Lagrangian is symmetric with respect
to the generalized coordinates qi , and qi is said to be a
cyclic coordinates. Lagrangian symmetry gives an identical
equation as

∂L(q, q̇)/∂qi = 0. (4)

For a pure mechanics system (without any controls), the
Lagrangian dynamics has an expression

d

dt

∂L(q, q̇)

∂q̇i

− ∂L(q, q̇)

∂qi

= 0. (5)

If Eq. (4) holds, then Eq. (5) indicates

pi = ∂L(q, q̇)/∂q̇i = constant, (6)

this means that pi is a conserved quantity. For the
underactuated hopping robot shown in Fig. 1, one can
verify that the potential energy of the robot system is a
function of all the generalized coordinates such that there
is no symmetry in classical sense (Lagrangian symmetry).
Nevertheless, as shown above, the kinetic energy K(q, q̇) is
symmetric with respect to variable ϕ, thus one has

∂K(q, q̇)/∂ϕ = 0. (7)

Since the robot system considered here has a nonconstant
potential energy, the existence of kinetic symmetry in
presence of nonconstant potential field does not lead to the
existence of conserved quantities. In fact, from the point
view of controlling an underactuated mechanical system,
the existence of the conserved quantities always results in
losing the controllability of the system. For instance, the
Acrobot is a benchmark underactuated mechanical system
with two DOF. The controllability of the Acrobot is similar
to our hopping robot if the leg of our robot has no the
telescopic motion. In gravitational field the Acrobot system is
controllable, whereas in zero gravitational field the Acrobot
system is uncontrollable since there exists a conserved
quantity with respect to the unactuated joint.13 This important
problem is also discussed in the Remark 6 of the next
section.

With considering the kinetic symmetry (7), the Lagrangian
dynamics for the robot shown in Fig. 1 can be expressed
by

d

dt

∂K

∂l̇2
− ∂L

∂l2
= 0, (8a)

d

dt

∂K

∂ϕ̇
+ ∂V

∂ϕ
= 0, (8b)

d

dt

∂K

∂θ̇1
− ∂L

∂θ1
= τ1, (8c)

d

dt

∂K

∂θ̇2
− ∂L

∂θ2
= τ2, (8d)

where τi, i = 1, 2, in the Eqs. (8c) and (8d), are the
joint torques of the two arms. The former two Eqs.
(8a) and (8b) with zero right side, can be regarded
as differential constraints of the actuated part. As
∂L/∂l2 �= 0 and ∂V /∂ϕ �= 0, the second-order differential
Eqs. (8a) and (8b) cannot be integrated to the first-
order differential equations or an algebraic equations,
therefore the system (8) is second-order nonholonomic
system. However, this terminology is somewhat misleading
since the Lagrangian of an underactuated mechanical
system satisfies Euler–Lagrange equations without any
external differential-algebraic constraints that require use of
Lagrangian multiplier in a variational setting as in ref. [21]
for first-order nonholonomic constraints systems. During
the past decade, some researches on the underactuated
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mechanical systems, such as the underactuated ships22

and the underactuated manipulators,23 also confirmed that
the underactuated mechanical systems were second-order
nonholonomic systems generally. In fact, a rigorous proof
for a nonholonomic constraint can be done by the Frobenius
theorem24 though this is a difficult task for a multi-DOF
mechanical system generally. The benefit from regarding
the underactuated mechanical system as a second-order
nonholonomic system is that the motion planning and control
problems for the underactuated system could be dealt with
based on the famous Brockett’s theorem.25

For the purpose of explicitness, we concluded the
properties of the robot model as:

(a) The robot is a non-SLIP model system since the body of
the robot cannot be approximated to a point mass;

(b) The robot is an underactuated mechanical system since
the four DOF mechanical system has only two actuators;

(c) The robot is a second-order nonholonomic system
because of the nonconstant potential field.

(d) The robot has no Lagrangian symmetry but has kinetic
symmetry. This plays a vital role in controllability and
stabilization of the underactuated robot system, as to be
shown in the following sections.

3. Normal Form of the Dynamics
An underactuated mechanical system generally cannot be
globally linearized by static or dynamic feedbacks26 except
for the differentially flat systems,27 therefore the problems
of motion planning or stabilization of the underactuated
mechanical systems are nonlinear in nature. The main
progresses in recent years for the nonlinear control theory
highly depends on the nonlinear systems holding some
special geometric or algebraic structures, such as the strict
feedback normal form refs. [11, 13] or feedforward normal
form refs. [19, 28], the former can be stabilized by the
backstepping procedure and the latter can be stabilized
by state feedback in explicit form as nested saturations.28

For nonholonomic systems, if the control distribution of
the systems has nilpotent property,14 the systems can be
transformed into a triangular normal form. In some special
cases, the nilpotent nonholonomic systems can be further
transformed into the so-called chained form refs. [14–16],
which can be exponentially stabilized. As to the nonlinear
systems without a special normal form, stabilizing the system
is generally an open problem.13 Attracted by the benefits of
the normal forms, in this section, we search a reasonable way
to transform the underactuated system (8) into a normal form
such that the control problem can be resolved effectively.

Specifically, the dynamics (8) can be expressed by

mppq̈p + mpaq̈a + cp(q, q̇) = 0

mT
paq̈p + maaq̈a + ca(q, q̇) = τ

, (9)

where the terms cp(q, q̇) and ca(q, q̇) include the centrifugal,
Coriolis, gravitational, and frictional forces. For the first step,
let’s consider the partial feedback linearization that is due to
Spong,18 by a change of control

τ = (
maa − mT

pam−1
pp mpa

)
q̈a + (

ca − mT
pam−1

pp cp
)

(10)

the system (9) can be transformed into a partial linearization
form

q̇p = yp

ẏp = −m−1
pp cp − m−1

pp mpau

q̇a = ya

ẏa = u

, (11)

where u = q̈a is defined to be a new input. Obviously,
the subsystem (qa, ya) is linearized whereas the subsystem
(qp, yp) is still highly nonlinear, and the new control u
appears in the dynamics of both subsystems. This is one
of the main sources of the complexity of control design for
underactuated systems.

Furthermore, we consider the Olfati-Saber trans-
formation,13 which is a state change based on the normalized
momentum. The main advantage of the Olfati-Saber
transformation is that, under kinetic symmetry properties
of the underactuated system, it is possible to change
the partial linearization form (11) into a special case of
the famous Byrnes–Isidori normal form11 with a double
integrator, such that the control input does not appear in
the unactuated subsystem. This simplifies the control design
for the underactuated system by reducing the control of the
original higher order system into the control of its lower order
nonlinear unactuated subsystem. With different additional
conditions, the normal form can be changed to strict feedback
form or feedforward form. We restate the related notions and
the main theorem provided by Olfati-Saber as following due
to applications in this paper.

Definition 1: (external variables and shape variables) The
variables that appear in the kinetic energy of the mechanical
system with Lagrangian (1) are called shape variables. A
configuration variable is called an external variable, if it does
not appears in the kinetic energy, i.e., ∂K(q, q̇)/∂qi = 0.

Definition 2: (normalized momentum) Consider the
underactuated system (9), we define

πp = m−1
pp

∂L

∂q̇p
= q̇p + m−1

pp mpaq̇a,

πa = m−1
pa

∂L

∂q̇a
= q̇p + m−1

pa maaq̇a,

to be the normalized momentum with respect to the
generalized coordinates qp, qa, respectively.

Definition 3: (strict feedback form) A nonlinear system is
said to be in strict feedback form, if it has the following
triangular structure

ż = f (z, ξ 1)

ξ̇ 1 = ξ 2

. . .

ξ̇m = u

.

Now for the underactuated system (9), we set a proposition
that can be found in the work of Olfati-Saber.13 The
usefulness of the proposition is that it proves a class of
underactuated mechanical system can be transformed into
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the strict feedback normal form, such that the system can be
stabilized by the backstepping procedure.19

Proposition 1. (strict feedback form transformation)
Assume that the unactuated coordinates qp are external
variables and that the actuated coordinates qa are shape
variables, if the normalized momentum πp is integrable,
and the part w = [m−1

pp (qa)mpa(qa)] dqa of πp has the form
w = dγ (qa), then it can be obtained from the Lagrangian of
the system that there exists a global change of coordinates
with the following form

qr = qp + γ (qa)

pr = ∂L/∂ q̇p = mpp(qa)q̇p + mpa(qa)q̇a

(12)

by associating with the control change (10), it transforms the
dynamics of the system (9) into a cascade nonlinear system
in a strict feedback form

q̇r = m−1
pp (qa) pr

ṗr = −∂V (qr − γ (qa), qa)

∂qr
q̇a = pa

ṗa = u

, (13)

where u = q̈a is the new input.

Remark 1: The proof of Proposition 1 is intuitional as
long as substituting Eq. (12) into Eq. (13). As shown by
Olfati-Saber,13 the finding of the integral of the normalized
momentum πp is generally not guaranteed in the multi-DOF
underactuated mechanical systems, except for some simple
two DOF systems. Therefore the searching of a reasonable
approximation for the strict feedback form (13) is crucial
for general underactuated systems, and this is the original
intention of the paper.

Remark 2: The robot system considered in this paper
does not satisfy the conditions of Proposition 1 since the
passive coordinate l2 is not a kinetic symmetrical coordinate.
Whereas, as to be shown by the following two propositions,
the system (8) can be approximated to satisfy the conditions
of Proposition 1.

Proposition 2: (approximate momentum integral)
Consider the dynamics of the underactuated hopping robot
system (8), if the kinetic energy K(l2, θ1, θ2) is approximated
by K̃(l20, θ1, θ2), viz. let the unactuated coordinate l2 ≈ l20.
Then it follows that:

(a) The approximate kinetic energy K̃(l20, θ1, θ2) is
symmetric about the passive coordinates qp = [ l2 ϕ ]T,
and that

(b) If the matrix m̃pp(l20, θ1, θ2) is approximated by
m̃pp(l20, θ

∗
1 , θ∗

2 ), of which θ∗
1 , θ∗

2 are given positions of the
two arms, respectively, then the approximate momentum
part w̃ = [m̃−1

pp (l20, θ
∗
1 , θ∗

2 )m̃pa(l20, θ1, θ2)] dqa is integ-
rable.

Proof:

(a) Referring to the Appendix A, by letting l2 ≈
l20, the approximate kinetic energy K̃(l20, θ1, θ2) is
independent of the passive coordinates qp = [ l2 ϕ ]T,

thus K̃(l20, θ1, θ2) is symmetric about the passive
coordinates qp.

(b) Let m̃pp(l20, θ1, θ2) ≈ m̃pp(l20, θ
∗
1 , θ∗

2 ), referring to the
Appendix A, the approximate momentum part can be
written as

w̃ =
[
m̃−1

pp (l20, θ
∗
1 , θ∗

2 )m̃pa(l20, θ1, θ2)
]

dqa

= m̃−1
pp (l20, θ

∗
1 , θ∗

2 )

[
m13(θ1)dθ1 + m14(θ2)dθ2

m23(θ1)dθ1 + m24(θ2)dθ2

]
,

this is exact one-forms and can be denoted by w̃ =
dγ (l20, θ1, θ2). Then it follows that

γ (l20, θ1, θ2) = m̃−1
pp (l20, θ

∗
1 , θ∗

2 )

×
[

m2r(cos θ1 + cos θ2)

m2r
2(θ1 + θ2) + m2(l1 + l20)r(sin θ1 + sin θ2)

]
, (14)

this complete the proof. �

Remark 3: The proposition 2 shows that the underactuated
hopping robot system (8) can be approximate to satisfy the
conditions of Proposition 1. This is feasible for periodic
motion systems such as the hopping robot system.

Remark 4: When one uses the Propositions 1 and 2 to
transform an underactuated system into the strict feedback
form, the resulted errors of the dynamics model should be
estimated. Consider the Lagrangian (1), since the potential
energy V (q) is just a function of generalized coordinates,
viz. ∂V (q)/∂ q̇ = 0, the generalized momenta can be written
as

∂L(q, q̇)

∂ q̇
= ∂K(q, q̇)

∂ q̇
− ∂V (q)

∂ q̇
= ∂K(q, q̇)

∂ q̇
= M(q)q̇.

(15)
We are interest in the momenta part that is relative to the
passive coordinates, i.e.,

pr = ∂L/∂ q̇p = mpp(q)q̇p + mpa(q)q̇a. (16)

Considering the approximations l2 ≈ l20 and mpp(q) =
mpp(l2, θ1, θ2) ≈ m̃pp(l20, θ

∗
1 , θ∗

2 ), then the approximate
momenta of Eq. (16) can be expressed by

p̃r = m̃pp(l20, θ
∗
1 , θ∗

2 )q̇p + m̃pa(l20, θ1, θ2)q̇a. (17)

The normalized momenta corresponding to Eqs. (16) and
(17) are given by

ψ r = q̇p + m−1
pp (l2, θ1, θ2)mpa(l2, θ1, θ2)q̇a, (18)

ψ̃ r = q̇p + m̃−1
pp (l20, θ

∗
1 , θ∗

2 )m̃pa(l20, θ1, θ2)q̇a. (19)

The errors of the normalized momenta have a form

ψe
r = ψ r − ψ̃ r

= [
m−1

pp (l2, θ1, θ2)mpa(l2, θ1, θ2) − m̃−1
pp

×(l20, θ
∗
1 , θ∗

2 )m̃pa(l20, θ1, θ2)
]
q̇a. (20)
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By the errors analysis, we present the following Proposition,
which shows that the underactuated system (9) can be
transformed into a strict feedback normal form with
perturbation terms such that the nonlinear dynamic system
(9) can be controlled by a robust backstepping procedure.

Proposition 3: (strict feedback form with perturbation
terms) Consider the underactuated hopping robot system
(9), by combining the partial feedback linearization input
change (10) and the following coordinates changes

qr = qp + γ (l20, θ1, θ2)

pr = ∂L/∂ q̇p = mpp(qa)q̇p + mpa(qa)q̇a,
(21)

the system (9) can be transformed into a strict feedback form
with perturbation terms

q̇r = m̃−1
pp (l20, θ

∗
1 , θ∗

2 ) pr + ε1

ṗr = hr(qr, qa) + ε2

q̇a = pa

ṗa = u

, (22)

where

hr(qr, qa) = −∂V (qr − γ (l20, θ1, θ2), qa)

∂qr
,

and the perturbation terms have form

ε1 = p̃r − pr, ε2 =
[

∂K/∂l2

0

]
.

Proof:
By the input change (10), the underactuated system (9) is

transformed to

mppq̈ + mpaq̈ + cp(q, q̇) = 0

q̇a = pa

ṗa = u
. (23)

Thus the last two equations of Eq. (22) are verified.
To proof the first two equations of (22), consider the Eqs.

(8a) and (8b), one has

d

dt

[
∂K/∂l̇2

∂K/∂ϕ̇

]
−

[
∂L/∂l2

−∂V /∂ϕ

]

= mppq̈p + mpaq̈a + cp(q, q̇) = 0. (24)

Since ∂V /∂ q̇p = 0, the left side of Eq. (24) has relationship

d

dt

(
∂L

∂ q̇p

)
=

[
∂K/∂l2

0

]
− ∂V

∂qp
. (25)

Referring to Eqs. (16) and (25) gives

d

dt

(
∂L

∂ q̇p

)
= ṗr = − ∂V

∂qp
+

[
∂K/∂l2

0

]
. (26)

Let

ε2 =
[

∂K/∂l2

0

]
. (27)

From Eqs. (25) and (26), one has that

ṗr = −∂V /∂qp + ε2. (28)

By the first expression of the given coordinates changes (21),
it gives that

− ∂V

∂qp
= −∂V (qp, qa)

∂qp

= −∂V (qr − γ (l20, θ1, θ2), qa)

∂qr

∂qr

∂qp
= hr(qr, qa) × I

= hr(qr, qa),

(29)

where I is an identity matrix. By Eqs. (28) and (29), one
has

ṗr = hr(qr, qa) + ε2. (30)

Then the second equation of Eq. (22) is verified.
The first equation of Eq. (22) can be verified directly by

the given coordinates changes (21), that is,

q̇r = q̇p + d

dt
γ (l20, θ1, θ2)

= q̇p + m̃−1
pp (l20, θ

∗
1 , θ∗

2 )m̃pa(l20, θ1, θ2)q̇a

= m̃pp(l20, θ
∗
1 , θ∗

2 ) p̃r

= m̃pp(l20, θ
∗
1 , θ∗

2 )( pr + ε1),

where

ε1 = p̃r − pr. (31)

This completes the proof. �

Remark 5: Let (z1, z2) = (qr, pr) and (ξ 1, ξ 2) = (qa, pa),
Eq. (22) can be rewritten as a more familiar form

ż = f (z, ξ 1, ε)

ξ̇ 1 = ξ 2

ξ̇ 2 = u

. (32)

The normal form (32) with nonlinear perturbation ε indicates
that a robust controller is expected since the standard
backstepping procedure cannot be used directly.

Remark 6: Referring to Eq. (28), if the passive coordinates
are external variables i.e. ∂K/∂qp = 0, and the generalized
momenta (16) are integrable, then the perturbation ε =
0. Under this case, that the potential force terms satisfy
∂V/∂qp �= 0 is a necessary condition that ensures the
controllability of the system (9). On the contrary, if
∂V/∂qp = 0, then the generalized momenta has a conserved
quantity pr = constant. Obviously, the existence of the
conserved quantity indicates that the underactuated system
(22) as well as its original system (9) cannot be stabilized
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from any initial states if pr(t0) �= 0. This confirms the
conclusion (d) of Section 2.

4. Robust Backstepping Control
The standard backstepping procedure is an effective control
technique especially fitting for the class of nonlinear systems
that are or can be transformed to the strict feedback form. The
standard backstepping control methods and some improved
methods can be found in references.19,20 Some scholars, for
example, Kristić et al.,19 Isidori,11 and Freeman et al.20 have
made significant contributions to the development of this
theory. In this section, we will present a robust backstepping
controller for the system (22). In order that the proposed
controller is fit for both the set-point regulation and trajectory
tracking task, define the transformations z1 = qd

r − qr, z2 =
pd

r − pr, ξ 1 = qd
a − qa, ξ 2 = pd

a − pa, where the superscript
“d” denotes the desired trajectory of corresponding
variables. Then, the system (22) can be transformed into a
form

ż1 = q̇d
r − m̃−1

pp (l20, θ
∗
1 , θ∗

2 )
(

pd
r − z2

) − ε1

ż2 = ṗd
r − hr

(
qd

r − z1, qd
a − ξ 1

) − ε2

ξ̇ 1 = ξ 2

ξ̇ 2 = ṗd
a − u

. (33)

The corresponding unperturbed system of Eq. (33) has
form

ż1 = q̇d
r − m̃−1

pp (l20, θ
∗
1 , θ∗

2 )( pd
r − z2)

ż2 = ṗd
r − hr(qd

r − z1, qd
a − ξ 1)

ξ̇ 1 = ξ 2

ξ̇ 2 = ṗd
a − u

. (34)

In the z subsystem of the system (34), function hr is not affine
with respect to the input variable ξ 1. Though a backstepping
theorem was presented for the nonaffine system in the
literature,11 the theorem contains a necessary condition that
assumes the Lyapunov function H (z) about the z subsystem
can be found. Whereas such knowledge about H (z) is not
always available. Now let’s consider the affine approximation
of the function hr for the specific system (22). Referring to
Eq. (29) and the Appendix A, we have

hr(qr, qa) = −∂V (qp, qa)/∂qp = [h1 h2 ]T, (35)

where

h1 = −(m1 + 2m2)g sin ϕ − k(l2 − l0),

h2 = − [m1(0.5l1 + l2) + 2m2(l1 + l2)] g cos ϕ

− m2gr [cos(ϕ + θ1) + cos(ϕ + θ2)] .

Obviously, the functions h1 and h2 are not affine in variables
ξ 1 = qa = [ θ1 θ2 ]T. We can always consider the swing
angle of the leg of the hopping robots in steady motion to be
small29 since the limit of the actuators must be considered.
Thus the motion of the leg is near to the vertical position

ϕ ≈ 0.5π , viz. sin ϕ ≈ 1, cos ϕ ≈ 0.5π − ϕ, and let l2 ≈ l20

in h2, then h1 and h2 can be approximated by

h̃1 = −(m1 + 2m2)g − k(l2 − l0),

h̃2 = H0g(ϕ − 0.5π) + m2gr(sin θ1 + sin θ2),
(36)

where H0 = m1(0.5l1 + l20) + 2m2(l1 + l20). From Eq. (14)
and the first equation of Eq. (21), we have

q l =
[

l2

ϕ

]
+ m̃−1

pp (l20, θ
∗
1 , θ∗

2 )

[
m2r(cos θ1 + cos θ2)

m2r
2(θ1 + θ2) + m2(l1 + l20)r(sin θ1 + sin θ2)

]
.

(37)

By the Eqs. (36) and (37) with considering the first-order
approximation of cos θi, sin θi, i = 1, 2 at the point (θ∗

1 , θ∗
2 ),

then the affine approximation of function hr can be expressed
by

h̃r = h0(qr, l20, θ
∗
1 , θ∗

2 ) + h1(l20, θ
∗
1 , θ∗

2 )(qd
a − ξ 1). (38)

where

h0(qr, l20, θ
∗
1 , θ∗

2 ) = A + B
(
qr − m̃−1

pp C
)

h1(l20, θ
∗
1 , θ∗

2 ) = D − Bm̃−1
pp E

A =
⎡
⎣ −(m1 + 2m2)g + kl20

−0.5πH0g + m2gr(sin θ∗
1 + θ∗

1 cos θ∗
1 + sin θ∗

2
+ θ∗

2 cos θ∗
2 )

⎤
⎦

B =
[
−k 0

0 H0g

]

C =
[

m2r(cos θ∗
1 − θ∗

1 sin θ∗
1 + cos θ∗

2 − θ∗
2 sin θ∗

2 )

m2(l1 + l20)r(sin θ∗
1 + θ∗

1 cos θ∗
1 + sin θ∗

2 + θ∗
2 cos θ∗

2 )

]

D =
[

0 0

−m2gr cos θ∗
1 −m2gr cos θ∗

2

]

E =
[

m2r sin θ∗
1 m2r sin θ∗

2

m2r
2 − m2(l1 + l20)r cos θ∗

1 m2r
2 − m2(l1 + l20)r cos θ∗

2

]

.

With considering the expression (38), the system (33) can
be rewritten as an affine system in strict feedback form with
perturbation terms

ż1 = q̇d
r − m̃−1

pp (l20, θ
∗
1 , θ∗

2 )( pd
r − z2) − ε1

ż2 = ṗd
r − h0(qr, l20, θ

∗
1 , θ∗

2 ) − h1(l20, θ
∗
1 , θ∗

2 )

× (qd
a − ξ 1) − ε3

ξ̇ 1 = ξ 2

ξ̇ 2 = ṗd
a − u ,

(39)

where ε3 = ε2 + hr − h̃r. Despite that the system (39)
introduces an additional model error hr − h̃r, the following
theorem is readily to be proved for ensuring the perturbations
are bounded.

Theorem 1: (The perturbation terms are bounded) For the
hopping robot illustrated in Fig. 1, the perturbations terms
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ε1 and ε3 in the dynamics (39) of the robot are bounded,
viz. there exist positive constants 	i > 0, i = 1, 2 such that
‖ε1‖ ≤ 	1 and ‖ε3‖ ≤ 	2 are satisfied.

Proof:
The hopping robot system is a periodic motion system, thus

the generalized coordinates q = [ l2 ϕ θ1 θ2 ]T, generalized
velocities q̇ = [ l̇2 ϕ̇ θ̇1 θ̇2 ]T, generalized accelerations q̈ =
[ l̈2 ϕ̈ θ̈1 θ̈2 ]T, and the generalized momenta pr defined by
Eq. (16) are all bounded. Then, any perturbation terms of
the system (39) are bounded, and one has 	1 = max(‖ε1‖),
	2 = max(‖ε3‖). �

For the purpose of clarity, the equations of Eq. (39) can be
rewritten as a more compact form

ż1 = f 1 + g1 z2 − ε1

ż2 = f 2 + g2ξ 1 − ε3

ξ̇ 1 = f 3 + g3ξ 2

ξ̇ 2 = f 4 + g4u

, (40)

where

f 1 = q̇d
r − m̃−1

pp pd
r g1 = m̃−1

pp

f 2 = ṗd
r − h0 − h1qd

a g2 = h1

f 3 = 0 g3 = I

f 4 = ṗd
a g4 = −I

.

I is the identical matrix.
Then, based on the Theorem 1, the following theorem can

be proved. This theorem is the main result of the paper, which
presents a method for stabilizing the non-SLIP model-based
hopping system in stance phase.

Theorem 2: (Robust backstepping) Consider the system
(40), if let ki > 0, i = 1, . . . , 4, ηi > 0, i = 1, 2, 	1 =
max(‖ε1‖), 	2 = max(‖ε3‖), and define some positive
definite function as following

H1(z1) = 1

2
zT

1 z1, H2(z1, z2) =H1(z1) + 1

2
(z2−α1)T(z2−α1)

H3(z1, z2, ξ 1) = H2(z1, z2) + 1

2
(ξ 1 − α2)T(ξ 1 − α2)

H4(z1, z2, ξ 1, ξ 2) = H3(z1, z2, ξ 1) + 1

2
(ξ 2 − α3)T(ξ 2 − α3)

.

Then, the following smooth state feedback

u = g−1
4

[
−k4

(
ξ 2 − α3

) −
(

∂H3

∂ξ 1
g3

)T

− f 4

+ ∂α3

∂ξ 1
( f 3 + g3ξ 2) + ∂α3

∂ z2
( f 2 + g2ξ 1)

+ ∂α3

∂ z1
( f 1 + g1 z2)

]
,

(41)

where

α3(z1, z2, ξ 1) = g−1
3

[
− k3

(
ξ 1 − α2

) −
(

∂H2

∂ z2
g2

)T

− f 3 +∂α2

∂ z2
( f 2+g2ξ 1)+∂α2

∂ z1
( f 1+g1 z2)

]
,

α2(z1, z2) = g−1
2

[
− (k2 + η2	

2
2) (z2 − α1)

−
(

∂H1

∂ z1
g1

)T

− f 2 + ∂α1

∂ z1
( f 1 + g1 z2)

]
,

α1(z1) = g−1
1

[−(k1 + η1	
2
1)z1 − f 1

]
,

renders (z, ξ ) uniformly bounded for the system (40) and,
furthermore, converges to a compact residual set

� = {
(z1, z2, ξ 1, ξ 2) : H (z, ξ ) ≤ σ

}
,

where H (z, ξ ) = H4(z1, z2, ξ 1, ξ 2), and σ is an arbitrary
small positive constant.

Proof:
Consider the z1 subsystem of Eq. (40), select H1(z1) as the

candidate Lyapunov function and assume z2 be the virtual
input for z1 subsystem, then given ∀η1 > 0, by the Young’s
Inequality 2ab ≤ a2 + b2 and Cauchy–Schwarz Inequality
|xT y| ≤ ‖x‖ · ‖ y‖, one has

Ḣ1(z1) = zT
1

[
f 1 + g1 z2 − ε1

]
≤ zT

1

[
f 1 + g1 z2

] + η1

∥∥zT
1

∥∥2 ‖ε1‖2 + 1
/

(4η1)

≤ zT
1

[
f 1 + g1 z2 + η1	

2
1 z1

] + 1
/

(4η1).

Let z2 = α1(z1) = −g−1
1 (k1 + η1	

2
1)z1 − g−1

1 f 1, where
∀k1 > 0, then we obtain

Ḣ1(z1) ≤ −k1 zT
1 z1 + 1/(4η1). (42)

Furthermore, select H2(z1, z2) as the candidate Lyapunov
function for composite subsystems z1, z2, assume that ξ 1
is the virtual input for the same subsystems, and let ez2 =
z2 − α1(z1), then one has

Ḣ2(z1, z2) = Ḣ1(z1) + eT
z2

( ż2 − α̇1(z1))

= ∂H1

∂ z1

[
f 1 + g1(ez2 + α1) − ε1

]
+ eT

z2

[
f 2 + g2ξ 1 − ε3 − ∂α1

∂ z1
( f 1 + g1 z2)

]
= ∂H1

∂ z1

[
f 1 + g1α1 − ε1

]
+ eT

z2

[(
∂H1

∂ z1
g1

)T

+ f 2 + g2ξ 1 − ε3

− ∂α1

∂ z1
( f 1 + g1 z2)

]
.

(43)
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With considering the inequality (42), the Eq. (43) follows
that

Ḣ2(z1, z2) ≤ −k1 zT
1 z1 + eT

z2

[(
∂H1

∂ z1
g1

)T

+ f 2 + g2ξ 1 − ε3

− ∂α1

∂ z1
( f 1 + g1 z2)

]
+ 1

4η1

≤ −k1 zT
1 z1 + eT

z2

[(
∂H1

∂ z1
g1

)T

+ f 2 + g2α2

+ g2(ξ 1 − α2) − ∂α1

∂ z1
( f 1 + g1 z2) + η2	

2
2 ez2

]
+δ,

(44)
where δ = 1/(4η1) + 1/(4η2). Let

α2(z1, z2) = −g−1
2

(
k2 + η2	

2
2

)
ez2 − g−1

2

[(
∂H1

∂ z1
g1

)T

+ f 2 − ∂α1

∂ z1
( f 1 + g1 z2)

]
,

where ∀k2 > 0. From the inequality (44), we have

Ḣ2(z1, z2) ≤ −k1 zT
1 z1 − k2eT

z2
ez2 + ∂H2

∂ z2
g2(ξ 1 − α2) + δ.

(45)

Furthermore, select H3(z1, z2, ξ 1) as the candidate Lyapunov
function for composite subsystems (z1, z2, ξ 1), assume that
ξ 2 is a new virtual input for the subsystems (z1, z2, ξ 1), and
let eξ1 = ξ 1 − α2, then we have

Ḣ3(z1, z2, ξ 1) = Ḣ2(z1, z2) + eT
ξ1

(ξ̇ 1 − α̇2)

≤ = −k1 zT
1 z1 − k2eT

z2
ez2 + eT

ξ1

[(
∂H2

∂ z2
g2

)T

+ f 3 + g3α3 + g3(ξ 2 − α3)

−∂α2

∂ z2
( f 2 + g2ξ 1) − ∂α2

∂ z1
( f 1 + g1 z2)

]
+ δ.

(46)
Let

α3(z1, z2, ξ 1) = −g−1
3

[
k3eξ 1

+
(

∂H2

∂ z2
g2

)T

+ f 3

− ∂α2

∂ z2
( f 2 + g2ξ 1) − ∂α2

∂ z1
( f 1 + g1 z2)

]
,

where ∀k3 > 0. The expression (46) has the form

Ḣ3(z1, z2, ξ 1) ≤ Ḣ2(z1, z2) − k3ξ
T
1ξ 1 + eT

ξ1
g3(ξ 2 − α3) + δ

= −k1 zT
1 z1 − k2eT

z2
ez2 − k3eT

ξ1
eξ1

+ ∂H3

∂ξ 1
g3(ξ 2 − α3) + δ. (47)

Finally, select H4(z1, z2, ξ 1, ξ 2) as the candidate Lyapunov
function for the system (40), and let eξ2 = ξ 2 − α3, then it

follows that

Ḣ4(z1, z2, ξ 1, ξ 2) = Ḣ3(z1, z2, ξ 1) + eT
ξ2

(ξ̇ 2 − α̇3)

≤ −k1 zT
1 z1 − k2eT

z2
ez2 − k3eT

ξ1
eξ1

+ eT
ξ2

[(
∂H3

∂ξ 1
g3

)T

+ f 4 + g4u

− ∂α3

∂ξ 1
( f 3 + g3 ξ 2) − ∂α3

∂ z2
( f 2 + g2 ξ 1)

− ∂α3

∂ z1
( f 1 + g1 z2)

]
+ δ. (48)

Let the actual input for the system (40) be

u = −g−1
4

[
k4eξ2

+
(

∂H3

∂ξ 1
g3

)T

+ f 4 − ∂α3

∂ξ 1
( f 3 + g3ξ 2)

− ∂α3

∂ z2
( f 2 + g2ξ 1) − ∂α3

∂ z1
( f 1 + g1 z2)

]
+ δ, (49)

where ∀k4 > 0. From Eq. (48), it follows that

Ḣ4(z1, z2, ξ 1, ξ 2) ≤ −k1 zT
1 z1 − k2eT

z2
ez2 − k3eT

ξ 1
eξ 1

− k4eT
ξ 2

eξ 2
+ δ. (50)

If let k1 = k2 = k3 = k4 = 0.5λ > 0, the expression (50) can
be rewritten as

Ḣ4 ≤ −λH4 + δ. (51)

Thus

H4(t) ≤ H4(t0)e−λ(t−t0) + (δ
/
λ)(1 − e−λ(t−t0))

≤ H4(t0)e−λ(t−t0) + δ
/
λ

. (52)

Since H4(t) ≥ max{ 1
2 zT

1 z1,
1
2 eT

z2
ez2,

1
2 eT

ξ 1
eξ 1

, 1
2 eT

ξ 2
eξ 2

}, and

lim
t→∞ H4(t0)e−λ(t−t0) = 0, for all δ0 > 0, there exists a constant

T > 0 such that

H4(t0)e−λ(t−t0) < δ0, t > T .

Therefore we have∥∥ρi

∥∥ < 2(δ0 + δ
/
λ), i = 1, 2, 3, 4 , (53)

where ρ1 = z1, ρ2 = ez2 , ρ3 = eξ 1
, and ρ4 = eξ 2

are
considered. By selecting the independent parameters
λ, η1, η2, an arbitrary small positive number σ can always be
found such that

H4(z1, z2, ξ 1, ξ 2) ≤ σ ≤ δ/λ.

This finishes the proof. �
Remark 7: The robust backstepping control (41) depends
on the bounded perturbation terms of the system (40).
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Fig. 2. The sketch of once hop for the one-legged robot.

Thanks to the periodic motion manner of the hopping robots,
the perturbations in system (40) are bounded in principle.
Furthermore, the hopping robot system works near to its
vertical equilibrium configuration, then the bounds of the
perturbation terms are limited to a small level.

5. Numerical Simulations
Figure 2 shows a sketch for understanding the steady motion
of the hopping robot, where xs and T1 denote the moving
distance and the duration in stance phase, respectively, xf

and T2 correspond to the moving distance and the duration
in flight phase, respectively. �ϕ is the swing angle deviating
from the vertical position of the leg (assume that the swing
angle is symmetric about the vertical position in stance
phase).

Here we just give a brief description of the target motion
of the hopping robot in stance phase, for more detailed
contents one can refer to the reference.30 Due to the periodic
motion manner, the telescopic motion of the leg should be
the resonance

ld
2(t) = l20 + A(t) sin(ωnt + βl2 ), (54)

where l20 is the static balance length of the telescopic leg
segment in gravity. A(t) is the desired amplitude of the
telescopic motion of the passive leg. ωn = √

k/m is the
inherent angular frequency of the robot, and βl2 is the phase
angle, which has a formulation30

βl2 = −arcsin(�l2/A(t)), (55)

where 0 < �l2 = l2(t0) − l20 (since l2(t0) ≥ l20 is satisfied
when the robot is free). Similarly, the swing of the leg should
satisfy a formulation given by

ϕd(t) = ϕ0 + �ϕ(t) sin

(
1

2
ωnt + βϕ

)
, (56)

where ϕ0 (= 0.5π) is the vertical position of the leg. �ϕ(t)
is the swing amplitude, and βϕ is the phase angle. As to the
desired motion of the two arms, one cannot give a motion

Fig. 3. The 3D model of the robot prototype.

plan intuitionally except for their equilibrium position

θ∗
i = 1

2

(
θmin
i + θmax

i

) = 0.5π, i = 1, 2 . (58)

The parameters of the robot model are listed in Appendix B.
A 3D model of the robot prototype also is shown in Fig. 3
for helping to understand the structure of the robot.

By the robust controller (41), the first simulation results
are plotted in Fig. 4, which corresponds to a control task
for stabilizing the robot from an initial static configuration
[l2 ϕ θ1 θ2]T(t0) = [l20 + 0.01 m 100◦ 130◦ −110◦]T to the
target configuration [ld2 ϕd θd

1 θd
2 ]T = [l20 90◦ 90◦ −90◦]T

that is the stance balance configuration.
The second simulation results are illustrated in Fig. 5. The

corresponding control task is tracking the trajectory given
by Eqs. (54–58) with the same initial conditions as that in
Fig. 4 while the amplitudes of telescopic motion and swing
motion of the leg are set to A(t) = 0.04 m and �ϕ(t) = 10◦,
respectively. The former value is selected such that the leg
does not leave the ground, while the later value is selected
as a typical small angle of the leg deviating from the vertical
position such that the robot can be stabilized with bounded
inputs. For the purpose of looking into the stabilization of
the closed-loop system, we plot the phase trajectory of the
coordinates l2, ϕ and θ1 by Figs. 6–8, respectively, of which
the data are taken from the last 10 s of Fig. 5. The phase
trajectory of coordinate θ2 is omitted since it is very similar
to that of θ1. Figure 9 shows the first two s torque of Fig. 5 (d)
for clearly, while Fig. 10 redraws the torque of steady
motion of Fig. 5 during two periods of swing of the
leg.

It is worthy to be mentioned that motion planning for
the hopping robot is far from an intuitional task.30,31 For
obtaining an acceptable motion with small control inputs,
the initial state and target state/trajectory of the system must
be selected carefully. For instance, the swing angle of the leg
should be limited to the neighborhood of the vertical position
at start, the vibration amplitude of the spring should not
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Fig. 4. Simulation results of controlling the hopping robot to stance balance.

Fig. 5. Simulation results of controlling the hopping robot to a small-amplitude periodic motion in stance phase.
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Fig. 6. The phase trajectory of variable l2 with the last 10 s data of
Fig. 5(a).

Fig. 7. The phase trajectory of variable ϕ with the last 10 s data of
Fig. 5 (b).

Fig. 8. The phase trajectory of variable θ1 with the last 10 s data of
Fig. 5(c).

Fig. 9. The torque of the actuators with the first 2 s data of Fig. 5(d).

Fig. 10. The torque of the actuators during the steady motion of
Fig. 5.

exceed the telescopic range of the passive leg, and the phase
angle of the vibration of the elastic leg should be selected to
be on the beat in the sense of the resonance of the system.
As shown by Ahmadi and Buehler,31 a rationally planned
motion, such as the passive dynamic motion can considerably
reduce the torque of inputs of the hopping systems. Whereas
this is another complex problem especially for a non-SLIP
model-based underactuated legged robot system.

6. Conclusions
Comparing to the SLIP model hopping robot systems, the
non-SLIP model-based hopping robots release the restriction
that the CM of the system has to be coincident with the hip
joint. This permits one to understand the behaviors of the
nonlinear dynamic coupling and search a reasonable way
to utilizing the inherent properties to improve the energy-
efficiency as well as the mobility of the animalized robot
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systems. Trough a specific hopping system just actuated by
two arms, while it holds a rather general dynamics of the
non-SLIP model systems, it is shown that the underactuated
hopping system can be stabilized in stance phase. We show
that the dynamics of the underactuated hopping robot can
be transformed into a strict feedback form with bounded
perturbation terms based on the Olfati-Saber transformation
if there exists nonconstant potential field, such that the
backstepping control could be used to stabilize the robot
system in stance phase. Since the normalized form is
approximate, we proposed a robust backstepping controller
for stabilizing the robot system. Both theoretical proof and
illustrational numerical simulations verify that the control
scheme presented in this paper is effective for the specific
systems. These results encourage us to invent a new non-
SLIP model-based legged running robot with better energy-
efficiency by some optimization methods in the future, as
well as to develop the applications of robust nonlinear control
techniques in biological mechanical systems with highly
nonlinear dynamics.
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Appendix A. The Inertia Matrix of the Robot
Prototype
The positions of CM of the links for the underactuated one-
legged hopping robot are given as follows:

The CM of the leg

xc1 = (0.5l1 + l2) cos ϕ

zc1 = (0.5l1 + l2) sin ϕ
. (A1)

The first arm

xc2 = (l1 + l2) cos ϕ + r cos(ϕ + θ1)

zc2 = (l1 + l2) sin ϕ + r sin(ϕ + θ1)
. (A2)

The second arm

xc3 = (l1 + l2) cos ϕ + r cos(ϕ + θ2)

zc3 = (l1 + l2) sin ϕ + r sin(ϕ + θ2)
. (A3)

The velocities of the CMs of the links are

ẋc1 = −(0.5l1 + l2)ϕ̇ sin ϕ + l̇2 cos ϕ

żc1 = (0.5l1 + l2)ϕ̇ cos ϕ + l̇2 sin ϕ
, (A4)

ẋc2 = −(l1 + l2)ϕ̇ sin ϕ + l̇2 cos ϕ − r(ϕ̇ + θ̇1) sin(ϕ + θ1)

żc2 = (l1 + l2)ϕ̇ cos ϕ + l̇2 sin ϕ + r(ϕ̇ + θ̇1) cos(ϕ + θ1)
,

(A5)

ẋc3 = −(l1 + l2)ϕ̇ sin ϕ + l̇2 cos ϕ − r(ϕ̇ + θ̇2) sin(ϕ + θ2)

żc3 = (l1 + l2)ϕ̇ cos ϕ + l̇2 sin ϕ + r(ϕ̇ + θ̇2) cos(ϕ + θ2)
.

(A6)

The kinetic energy of the robot system is

K = Kt + Kr, (A7)

where

Kr = 1

2

[
I1ϕ̇

2 + I2(ϕ̇ + θ̇1)2 + I2(ϕ̇ + θ̇1)2
]
,

Kt = 1

2

[
m1

(
ẋ2

c1 + ż2
c1

) + m2
(
ẋ2

c2 + ż2
c2 + ẋ2

c3 + ż2
c3

)]
.

The potential energy of the robot system is

V = m1gzc1 + m2g(zc2 + zc3) + 1

2
k(l2 − l0)2, (A8)

where k is the stiffness of the spring and g is the gravitational
acceleration. Let q = [ l2 ϕ θ1 θ2 ]T, then the kinetic
energy has form

K = 1

2
q̇T M(q)q̇, (A9)

where

M(q) =

⎡
⎢⎢⎢⎣

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

⎤
⎥⎥⎥⎦ ,

m11 = m1 + 2m2

m12 = −m2r (sin θ1 + sin θ2)

m13 = −m2r sin θ1

m14 = −m2r sin θ2

m21 = m12

m22 = m1

(
1

2
l1 + l2

)2

+ I1 + 2m2r
2

+2m2 (l1 + l2)2 + 2m2(l1 + l2)r (cos θ1 + cos θ2)

m23 = m2r
2 + m2(l1 + l2)r cos θ1

m24 = m2r
2 + m2(l1 + l2)r cos θ2

m31 = m13

m32 = m23

m33 = m2r
2

m34 = 0

m41 = m14

m42 = m24

m43 = 0

m44 = m33.

In expression (3), the submatrices are defined by

mpp =
[
m11 m12

m21 m22

]
, mpa =

[
m13 m14

m23 m24

]
,

map = mT
ap, maa =

[
m33 m34

m43 m44

]
.
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Appendix B. The Physical Parameters of the
Robot Prototype
The nature frequency: fn = 2.5 (Hz);
The mass of the model: m1 = 1.2 (kg), m2 = 1.0 (kg);
The stiffness of spring: k = 4π2mf 2

n ≈ 790 (N/m);
The length of massless leg segment: l0 = 0.4 (m);
The length of nonzero mass leg segment: l1 = 0.3 (m);
The length of arms: r = 0.4 (m);
The initial length of spring leg: l20 ≈ l0 − (m1 + 2m2)g/k ≈

0.360 (m).
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