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We propose a point-particle model for two-way coupling of water droplets dispersed
in the turbulent flow of a carrier gas consisting of air and water vapour. We adopt an
Euler–Lagrangian formulation based on conservation laws for the mass, momentum
and energy of the continuous phase and on empirical correlations describing
momentum, heat and mass transfer between the droplet phase and the carrier gas
phase. An incompressible flow formulation is applied for direct numerical simulation
of differentially heated turbulent channel flow. The two-way coupling is investigated
in terms of its effects on mass and heat transfer characteristics and the resulting
droplet size distribution. Compared to simulations without droplets or those with
solid particles with the same size and specific heat as the water droplets, a significant
increase in Nusselt number is found, arising from the additional phase changes.
The Nusselt number increases with increasing ambient temperature and is almost
independent of the heat flux applied to the walls of the channel. The time-averaged
droplet size distribution displays a characteristic dependence on position expressing
the combined effect of turbophoresis and phase changes in turbulent wall-bounded
flow. In the statistically steady state that is reached after a long time, the resulting
flow exhibits a mean motion of water vapour from the warm wall to the cold wall,
where it condenses on average, followed by a net mean mass transfer of droplets
from the cold wall to the warm wall.

Key words: condensation/evaporation, drops, turbulence simulation

1. Introduction
Particle-laden turbulent flows can be found in many engineering and natural

processes, such as the formation of aerosols, internal combustion in engines, and
dispersion of pollution in the atmosphere or in oceans Crowe et al. (2011). In the
field of multiphase flows, particle-laden turbulent flow remains a challenging topic
owing to the dynamic nature of particle motion (dispersed phase), which modulates
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the turbulent characteristics of the flow (carrier phase) through two-way coupling.
This means not only that the gas affects the particles but also that it is influenced
by the particles. In this paper, we focus on differentially heated turbulent channel
flow in which the dispersed water droplets have a two-way coupling to the gas
flow incorporating, in addition to momentum transfer, heat and mass transfer. The
consequences for the overall heat transfer, in terms of the Nusselt number, and for the
mass transfer, in terms of the size distribution of the droplets, are studied in detail.

The rapid increase in computing power in the past fifty years has stimulated
research into particle-laden turbulent flows. Particle-laden flows are formed by a
fluid phase and a solid or liquid phase. The fluid phase is the ‘carrier phase’ and
the solid or liquid phase is the ‘dispersed phase’ (Mashayek & Pandya 2003).
The presence of the dispersed phase requires that the flow around each particle is
represented. The most fundamental approach involves full resolution of the flow
around each particle. Despite the enormous progress in computing power, it is still
impossible to simulate millions of particles interacting with a turbulent flow up to
all details of the flow. The computing cost for simulating the flow around each
individual particle is prohibitive if a large number of particles is present (Esmaeeli
& Tryggvason 1998, 1999; Tryggvason, Scardovelli & Zaleski 2011). Therefore, in
the case of turbulent flow with a large number of particles with sizes smaller than
the Kolmogorov scale η, it is common practice to adopt a point-particle approach to
keep the computational cost at acceptable levels (Elghobashi 1994; Marchioli et al.
2008). In this approximation, the motion of a particle is described by the Maxey–Riley
equation, which is based on the well-understood physics of low-Reynolds-number flow
around a small sphere (Maxey & Riley 1983; Rouson & Eaton 2001; Bec et al. 2010).
This approach allows numerical simulations with millions of particles (Elghobashi
1991) and has been used to perform direct numerical simulations (DNS) as well as
large-eddy simulations (LES) in many applications (Miller & Bellan 2000; Ferrante
& Elghobashi 2003; Toschi & Bodenschatz 2009; Balachandar & Eaton 2010).

The coupling between the phases can be classified into three types: (i) ‘one-way
coupling’ if the carrier phase influences the dispersed phase, but the number of
particles and the mass loading are too small to have an effect on the carrier phase;
(ii) ‘two-way coupling’ if the dispersed phase has also a noticeable feedback on the
flow; and (iii) ‘four-way coupling’ when the particle concentration is so large that
direct particle–particle interaction is important as well. In the simulations presented in
this paper, we adopt two-way coupling, characterized by exchange of momentum, heat
and mass with the carrier phase. Generally, for the momentum exchange, one must
account for the drag force, the body force, the added mass force, the lift force, the
pressure drag and the Basset history force. However, the problem can be simplified in
the case of a water–air system. According to Armenio & Fiorotto (2001), for particles
with a large mass density compared to the fluid mass density, all forces except the
Stokes drag force and gravity are negligible.

For point-particle models, the effect of mass and heat transfer in turbulent flows
has hardly been addressed. Up to now, only a few studies have been reported on
the modelling of heat and mass transfer in a point-particle model that is suitable
for numerical computations. In particular, Mashayek (1997) was the first to study
evaporating droplet dispersion in homogeneous turbulence with two-way coupling of
heat and mass transfer, as well as momentum exchange between droplets and fluid.
Miller & Bellan (1999) performed a complete two-way coupled DNS of a temporally
developing mixing layer with one stream laden with evaporating hydrocarbon droplets.
Later, this approach was extended to a reacting mixing layer (Miller 2001) and to
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study the effect of two-way coupling in a spray, including evaporation and combustion
phenomena (Mashayek 2000; Reveillon & Vervisch 2005; Wang & Rutland 2005). In
a recent work, Masi, Simonin & Bédat (2011) used this approach to generate data for
modelling two-phase flows with evaporation using a statistical approach (Mesoscopic
Eulerian formalism).

In the present study, we extend the work of Mashayek (1997) and consider
wall-bounded turbulent flow with evaporation and condensation using DNS. We
consider a channel flow at a frictional Reynolds number of 150 in which one
of the walls is heated while the other is being cooled. This leads to a gradient
of temperature in the wall-normal direction of the channel and hence also to a
non-uniform mean vapour mass fraction. We use a similar point-particle approach for
the droplets as Mashayek (1997), but we adopt an incompressible formulation for
the carrier phase and restrict ourselves to cases where changes in mass density of
the carrier phase due to evaporation and condensation are limited and consistent with
a divergence-free velocity field. The governing equations for the point droplets are
based on conservation laws and empirical correlations for heat, mass and momentum
exchange with the carrier phase.

Moreover, droplet–droplet collisions are ignored because of the small volume
fraction considered in our simulations (Elghobashi 1994). In the present model,
not all mechanisms present in reality have been incorporated. Droplets can grow
unrealistically large and nucleation of droplets is not taken into account. In reality,
large droplets will break up if their diameter exceeds a critical value that depends on
the local shear rate (Hinze 1956; van Wissen, Schreel & van der Geld 2005). The
effect of these limitations on the results is very small. In the simulations presented
here, the largest droplet is still only 35 % larger than the initial diameter. Moreover,
the relative humidity only slightly exceeds 100 %, so that nucleation does not play a
role in the cases considered here.

The aim of this study is to analyse the effects of phase change on the global heat
transfer properties of channel flow and on droplet size distribution and motion. In
power electronics and microelectronics applications, phase change in microchannels
was shown to improve the heat exchange due to the high latent heat of evaporation
(Lenert et al. 2013). Another way to improve the heat transfer is by employing
nanofluids, i.e. a fluid containing nanometre-sized particles. In an earlier study
(Kuerten, van der Geld & Geurts 2011), this result was extended to inertial particles
in wall-bounded flow. It was found that the presence of a large number of inertial
particles significantly increases the effective heat transfer between the channel walls.
The particles studied there had the properties of water droplets, but evaporation and
condensation were not taken into account. In the present study, we investigate to
what extent phase changes affect the heat transfer. This will be quantified by the
Nusselt number, which is the non-dimensional ratio of the temperature gradient at
the walls and the average temperature gradient over the height of the channel. The
Eulerian–Lagrangian model that we adopt allows for the analysis of the effect of
heat transport by droplet transport combined with phase change in wall-bounded flow.
The change in Nusselt number can be quantified, not only in terms of the change
in thermal resistance due to the presence of a dispersed phase, but also by the
dynamic effect of droplets undergoing phase change transported in the channel and
the heat transport associated with them. In order to distinguish between the different
contributions to the Nusselt number, additional simulations with solid particles instead
of droplets and without particles altogether will be included in the analysis. Moreover,
the influence of the mean gas temperature in the channel, the magnitude of the applied
heat flux, the droplet size and volume fraction will be studied.
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The simulations are started from a homogeneous droplet distribution and a relative
humidity of the carrier gas of 100 %. Initially, the droplets will migrate towards the
walls of the channel due to turbophoresis, creating an increase in droplet concentration
in the vicinity of the walls. Simultaneously, evaporation and condensation lead to the
growth of droplets near the cold wall and shrinkage near the warm wall. This also
results in a gradient in water vapour concentration, directed from the cold to the
warm wall. In the resulting statistically steady state, the droplet concentration and
mean droplet size are approximately constant. In that situation, diffusion and turbulent
dispersion of water vapour will lead to a mean flux of water vapour from the warm
to the cold wall. Conservation of water mass shows that this must be compensated for
by a net mass flux of water droplets from the cold to the warm wall. We will analyse
the time needed before this equilibrium state is reached and quantify the magnitude
of these mass fluxes. To the best of our knowledge, this is the first time that such a
water cycle has been studied in a numerical simulation.

The paper is organized as follows. In § 2, we introduce the governing equations
for the air–water vapour carrier phase and the dispersed droplet phase. Section 3
is devoted to a description of the numerical method and the specifications of the
simulations presented in this paper. In § 4, we will present and analyse the results
of the simulations and, in particular, address the effects of the evaporating and
condensing droplets on the heat transfer between the walls of the channel and the
inhomogeneity of droplet size in the wall-normal direction of the channel. In § 5, the
turbulence modulation by evaporating droplets is analysed. Finally, § 6 is devoted to
concluding remarks.

2. Governing equations

In this section, governing equations for the carrier phase and for the droplets are
presented, including the models for momentum, heat and mass transfer between the
two phases. We consider a mixture of air and water vapour, and refer to this carrier
phase as the ‘gas’ in the sequel, while the dispersed phase consists of water droplets.
Henceforth, the terms ‘droplet’ and ‘particle’ will refer to water droplet and solid
particle, respectively. A particle does not exchange mass with the carrier phase, only
energy and momentum. We will first present the equations for the gas phase and then
those for the droplets. Since the equations for the gas phase contain coupling terms
that depend on the properties of the droplets, we will postpone the specification of
these coupling terms to the final part of this section.

2.1. Gas
The gas is considered in an Eulerian way and is assumed to behave as an
incompressible fluid. This means that the gas mass density is constant, ρg =
const. However, it does not mean that the mass densities of air (ρa) and water
vapour (ρv) cannot vary. Indeed, both are functions of position x and time t,
ρg = ρa(x, t)+ ρv(x, t)= const.

In the problems we investigate, the incompressibility assumption is justified for the
following reasons:

(i) The Mach number is much smaller than one.
(ii) The change in mass density due to changes in temperature is of the order of 2 %

or less.
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(iii) In all simulations, the gas is initially saturated, with 100 % relative humidity
everywhere. When the simulation starts, the channel is differentially heated in
such a way that the amount of water vapour condensing in the colder part of the
channel is balanced by evaporation of droplets in the warmer part.

In view of the assumed incompressibility, ρa and ρv vary in time and space during
the transient phase, but their sum remains constant, which means that local variations
of air mass density are balanced by local variations of water mass density, and the
same for local variations in time:

∇ρa =−∇ρv and
∂ρa

∂t
=−∂ρv

∂t
. (2.1a,b)

The model for the motion of the gas consists of the continuity equation for
incompressible flow, which implies a divergence-free flow,

∇ · u= 0, (2.2)

and the Navier–Stokes equations for momentum conservation. We adopt the Navier–
Stokes equation in rotational form,

∂u
∂t
+ω× u+∇P= ν1u+ F

ρg
+ Lu

ρg
, (2.3)

following Kuerten (2006). In (2.3), ω=∇×u is the vorticity, P= p/ρg+ 1
2 u2, ν is the

kinematic viscosity of the gas, p is the static pressure, ρg is the gas mass density, and
F is the driving force necessary to maintain a constant total mass flow rate. Finally,
Lu is the term describing the momentum exchange between the two phases, which
will be specified in § 2.3.

The water vapour is also treated in an Eulerian way. The rate of change of the
vapour mass density is expressed as the sum of transport due to diffusion, convection
and mass transfer between the two phases by evaporation and condensation:

∂ρv

∂t
+∇ · (ρvu)−∇ · (D∇ρv)=Lv. (2.4)

The term Lv represents the mass transfer between the droplets and the water vapour,
which will be specified in § 2.3. We are dealing with a binary system of air and
water vapour for which a single diffusion coefficient D is adequate to represent the
diffusion of one species into the other (Bird, Stewart & Lightfoot 1960, p. 502). This
diffusion coefficient is assumed to be constant in space and time, which is motivated
by the fact that the solute (water vapour) is present at a much lower concentration
than the solvent (air). Hence, under all simulated conditions, the diffusion of water
vapour in dry air will determine the diffusion coefficient D . Moreover, the variations
in temperature in all simulations are sufficiently small to use a constant value of D .

The temperature equation is obtained from the equation expressing the conservation
of internal energy of the two phases. The total internal energy E in a volume 1V can
be written as the sum of the integral of the internal energy density of the gas phase
over the volume and the internal energy of all droplets contained in the volume:

E=
∫
1V
[(ρacv,a + ρvcv,v)Tg + ρv`0] dV +

N∆∑
i=1

Ei. (2.5)

Here ρa (ρv) and cv,a (cv,v) are the mass density and specific heat capacity at constant
volume of the air (vapour) respectively, `0 is the latent heat of water at T = 0 ◦C and
Tg is the gas temperature. Moreover, N∆ is the number of droplets present within 1V
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and Ei is the internal energy of droplet i. The specific heat capacities are assumed
to be independent of temperature. This is an accurate assumption in the temperature
range considered in this paper, since the specific heat capacities of water and air vary
less than 0.1 % in the temperature range of each simulation.

In this work, we will disregard the contribution of the kinetic energy to the total
energy and the work performed by the driving force and by the viscous force. This
is justified since the contribution from kinetic energy is very small (at the typical
bulk velocity of 1 m s−1 that we consider) compared to the internal energy. If all
kinetic energy in the system were to be converted into internal energy, the increase
in temperature would only be approximately 5 × 10−4 ◦C. Conservation of energy is
incorporated by equating the rate of change of the energy E in 1V to the change
in energy through the boundaries of the volume due to convection and due to heat
conduction and diffusion of vapour. After application of Gauss’s divergence theorem,
this leads to

∂

∂t
[(ρacv,a + ρvcv,v)Tg + ρv`0] +∇ · [((ρacv,a + ρvcv,v)Tg + ρv`0)u]
=∇ · (kg∇Tg)+∇ · [((cp,v − cp,a)(Tg − T`0)+ `0)D∇ρv] +LE. (2.6)

The terms on the left-hand side represent the rate of change of internal energy and the
convection of internal energy. The first term on the right-hand side is the change in
internal energy by heat conduction, where we denote the heat conductivity coefficient
of the gas by kg. The second term on the right-hand side represents diffusion arising
from variation in composition, which is the dominant diffusion mechanism in the
case of a water–air system under not so extreme conditions in terms of temperature
and pressure (a review is given in Bird et al. (1960)). Pressure and temperature
gradients are sufficiently small to ignore pressure diffusion and thermal diffusion in
this paper (Bird et al. 1960, p. 566). The quantities cp,a and cp,v denote the specific
heat capacities of air and vapour at constant pressure. The quantity (Tg − T`0) is the
difference between the gas temperature and the temperature at which the latent heat
is evaluated (273.15 K). The last term on the right-hand side describes the internal
energy transfer between the two phases and will be specified below.

Next, substitution of (2.4) and the use of (2.1) and (2.2) results in the following
governing equation for the gas temperature:

(ρacv,a + ρvcv,v)
(
∂Tg

∂t
+∇ · (uTg)

)
= kg∇2Tg +Lwd +Ldiff +L2way. (2.7)

Although, individually, kg and (ρacv,a + ρvcv,v) are functions of the binary mixture
composition, we assume that the heat diffusivity kg/(ρacv,a + ρvcv,v) in (2.7) is
constant. For the small values of the vapour mass fraction considered here, this
assumption appears to be accurate (Turns 2006). Note, however, that the dependence
of kg on ρv is taken into account in the term Lwd in (2.7), which represents the
transport of energy due to diffusion of water vapour and due to the dependence of
the thermal conductivity of the gas on the vapour mass density:

Lwd =
{
∂kg

∂ρv
+D(cp,v − cp,a)

}
∇ρv · ∇Tg. (2.8)

Here, we use ∇kg = (∂kg/∂ρv)∇ρv. The third term on the right-hand side is the
contribution to the temperature change from diffusion of vapour and is equal to

Ldiff = (Ra − Rv)D(Tg − T`0)∇2ρv, (2.9)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

23
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.239


672 E. Russo, J. G. M. Kuerten, C. W. M. van der Geld and B. J. Geurts

where Ra= cp,a− cv,a is the specific gas constant of air and, similarly, Rv = cp,v − cv,v
is the specific gas constant of vapour. Finally,

L2way =LE − ((cv,v − cv,a)Tg + `0)Lv (2.10)

represents the contribution from the coupling between the two phases, which will be
specified in § 2.3.

The time evolution of the gas velocity, gas pressure, gas temperature and water
vapour mass density can be calculated from (2.2), (2.3), (2.7) and (2.4). The two-
way coupling terms in these equations will be specified after the presentation of the
governing equations for the droplets.

2.2. Droplets
In this subsection, the equations of motion, mass and temperature of the droplets are
presented. The droplets are considered in a Lagrangian way. The point-particle
approach is used, implying that we also assume the droplets to have uniform
temperature. The ratio of the heat transfer resistances inside and at the surface of a
droplet can be quantified by the Biot number, which is defined as Bi= hmR/kl, with
hm the convective heat transfer coefficient from gas to droplet, R the typical radius of
a droplet and kl the thermal conductivity of the droplet. For the small droplets that
we consider here, the convective heat transfer coefficient equals hm = kg/R, with kg

the thermal conductivity of the carrier gas. Therefore, the typical value of the Biot
number is equal to the ratio of the thermal conductivities of water and the carrier
gas: Bi= 0.046. This indicates that the typical time scale of heat conduction inside a
droplet is more than 20 times larger than the typical time scale for heat transfer from
the carrier gas to a droplet. Therefore, the assumption of uniform droplet temperature
is justified.

Since the droplets are small and have a much higher mass density than the gas, the
drag force is the dominant force exerted by the gas on a droplet (Armenio & Fiorotto
2001). We do not take gravity into account, but it may be added in the spanwise
direction to reproduce a real test case. However, the settling of droplets is not a focal
point in this study. Therefore, Newton’s law applied to a droplet can be written as

d(mivi)

dt
=mi(u(xi, t)− vi)

(1+ 0.15Re0.687
p )

τp
+ v(xi, t)

dmi

dt
. (2.11)

Here, mi is the mass of particle i, vi is its velocity and τp is the droplet relaxation
time given by τp = ρld2

i /(18µg). Moreover, Rep = |vi − u(xi, t)|di/ν is the Reynolds
number based on the droplet diameter di and the relative velocity between the droplet
and the carrier gas at the droplet position, ρl is the mass density of liquid water and
µg is the dynamic viscosity of the gas. The two terms on the right-hand side are the
drag force, where the standard Schiller–Naumann drag correlation valid for droplet
Reynolds numbers between 0 and 1000 is adopted (Clift, Grace & Weber 1978), and
the change in momentum due to phase change. Equation (2.11) can also be written
in terms of accelerations, yielding the following droplet equation of motion:

dvi

dt
= (u(xi, t)− vi)

(1+ 0.15Re0.687
p )

τp
. (2.12)
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The Lagrangian droplet tracking requires integrating the trajectory equation:

dxi(t)
dt
= vi, (2.13)

in which the particle velocity vi is computed from (2.12).
In order to derive an equation for the droplet temperature that takes into account

the heat and mass transfer to and from the gas, we consider the rate of change of the
internal energy of a droplet:

dEi

dt
= d

dt
(miclTi)= hv

dmi

dt
+ hmAi(Tg(xi, t)− Ti). (2.14)

This equation states that the variation of the internal energy of droplet i is due
to contributions from condensation and evaporation, which change the mass of the
droplet, and due to heat exchanged by convection at the droplet surface. The heat
exchange at the droplet surface is modelled using the heat transfer coefficient hm as
defined by Bird et al. (1960). In a single droplet context, the relevant temperature
difference for convection is that between the surroundings and the droplet surface
temperature. In (2.14), the surface temperature is the same as the droplet temperature
because we assume the droplet temperature to be homogeneous. The temperature of
the surroundings is taken as the temperature of the gas Tg(xi, t) at the location of
droplet i. Finally, Ai is the surface area of droplet i. Kinetic energy is not included
here because it is much smaller than the internal energy: the kinetic energy of a
droplet with a velocity of the order of 1 m s−1 is less than 0.05 % of its internal
energy. In the first term on the right-hand side, hv denotes the specific enthalpy of
water vapour. Denoting the specific enthalpy of water as hl and the droplet volume
by Vi, (2.14) can be rewritten as

ρlclVi
dTi

dt
= (hv − hl)

dmi

dt
+ hmAi(Tg(xi, t)− Ti). (2.15)

Here, we used hl= clT and chose the zero point of enthalpy at T = 0 ◦C in the liquid
water phase: hl(T = 0 ◦C)= 0. Therefore, the water vapour enthalpy is

hv = hv(T = 0 ◦C)+ cp,vTi = hl(T = 0 ◦C)+ `0 + cp,vTi = `0 + cp,vTi. (2.16)

To close (2.15), we need to express hm and dmi/dt in terms of known quantities. We
use correlations from the literature that are applicable to spherical droplets in the range
of Reynolds and Prandtl numbers relevant to our simulations. For forced convection
around a sphere, the heat-transfer correlation is chosen as (Bird et al. 1960)

hmdi

kg
= 2+ 0.6Re1/2

p Pr1/3, (2.17)

where Pr is the Prandtl number of the carrier gas.
For the mass transfer, we also follow Bird et al. (1960), who considered

condensation of a hot vapour on a cold surface in the presence of a non-condensable
gas. This is applicable in the situation that we consider here, since the carrier gas
consists of a mixture of water vapour, which is condensable, and the non-condensable
air. The resulting expression for the mass transfer is

dmi

dt
=− miSh

3τpSc
ln
(

1− xv,δ
1− xv,0

)
, (2.18)
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where the Schmidt number Sc = µg/(ρgD), and xv,δ and xv,0 are the vapour mass
fractions (xv = ρv/ρg) in the surroundings of the droplet and at the surface of the
droplet, respectively. The Sherwood number is given by Sh= 2+ 0.6Re1/2

p Sc1/3 (Bird
et al. 1960).

The driving quantity in (2.18) is the difference xv,δ− xv,0. Since interfacial resistance
is negligible at the droplet surface, we can assume that the air at the droplet surface
is saturated (Popov 2005; Siregar & Kuerten 2013). Therefore, with the ideal gas law,
xv,0 can be written in terms of the particle temperature Ti and the saturation pressure
pv,sat on the droplet surface as

xv,0 = ρv,sat

ρg
= pv,sat

RvTiρg
, (2.19)

where Rv is the specific gas constant of water vapour. The saturation pressure is
calculated using Antoine’s relation (Antoine 1888),

pv,sat(Ti)

pref
= exp

(
A− B

C+ Ti

)
, (2.20)

where Ti is in degrees Celsius, pref is the reference pressure of 105 Pa, and the
coefficients are A= 11.6834, B= 3816.44 ◦C and C= 226.87 ◦C. For xv,δ, we take the
vapour mass fraction of the gas at the position of the droplet, ρv(xi, t).

The time evolution of particle velocity, position, temperature and mass can be
calculated from (2.12), (2.13), (2.15) and (2.18). In the next section, the two-way
coupling terms between the gas phase and the droplets will be specified.

2.3. Coupling terms
The two-way coupling terms in the governing equations for the gas phase satisfy the
requirement that these terms do not change the total water mass, total momentum and
total internal energy in the system. They only transfer mass, momentum and internal
energy from one phase to the other. Moreover, we will assume that the two-way
coupling terms act as a point force in the governing equations for the gas.

Based on these two considerations, the two-way coupling term in the Navier–Stokes
equation for the gas phase (2.3) can be written as

Lu =−
N∑

i=1

d(mivi)

dt
δ(x− xi)=−

N∑
i=1

mi
dvi

dt
δ(x− xi)−

N∑
i=1

vi
dmi

dt
δ(x− xi). (2.21)

The coupling term is split into two contributions representing the momentum transfer
from the droplet to the gas due to acceleration and that due to mass transfer arising
from evaporation or condensation, respectively. The delta-function, δ(x− xi), indicates
that the coupling terms only act at the locations of the droplets.

The two-way coupling term in the water vapour equation (2.4) follows from
conservation of water mass and is given by

Lv =−
N∑

i=1

dmi

dt
δ(x− xi). (2.22)
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The two-way coupling term in the gas temperature equation (2.7) follows from
conservation of internal energy and using (2.15) for the change in particle temperature
can be written as

L2way = −
N∑

i=1

[cp,vTi + (cv,a − cv,v)Tg]dmi

dt
δ(x− xi)−

N∑
i=1

hmAi(Tg − Ti)δ(x− xi)

= Levap +Lconv, (2.23)

where Levap and Lconv represent the gain (loss) of energy for the carrier phase due to
evaporation (condensation) of the droplets, and the convective heat transfer between
fluid and droplets, respectively.

In the next section, the numerical method will be described, including the way in
which the coupling terms are evaluated in the numerical method.

3. Numerical method and set-up of the simulations

In this section, we first sketch the main elements of the numerical approach and pay
special attention to the coupling between the discrete droplet phase and the continuous
gas phase. Next, the geometry of the channel and the applied boundary conditions
are described. Then, the parameters and initial conditions used in the simulations are
presented.

The proposed model for two-way coupling in droplet-laden turbulent flow is
applied in DNS of turbulent channel flow. First, the numerical method adopted for
the continuous phase is described and, after, that for the droplets. Finally, the method
for treating the coupling terms numerically is discussed.

DNS of turbulent channel flow is performed using an extended version of the
pseudo-spectral code as described in Kuerten (2006). The extensions consist of the
incorporation of equations for the water vapour mass density and for the temperature
and of two-way coupling of momentum, vapour mass and internal energy between
the gas and the droplet phase. The application of periodic boundary conditions
in the streamwise and spanwise directions allows the use of a Fourier–Galerkin
approach, whereas, in the wall-normal direction, a Chebyshev collocation method
is used. The time integration method for the gas consists of a combination of a
third-order accurate compact-storage explicit Runge–Kutta method for the nonlinear
terms (including the coupling terms) and the implicit Crank–Nicolson method for
the viscous and pressure terms. The nonlinear terms are computed in physical space
using fast Fourier transform and the 3/2 rule to prevent aliasing errors. The velocity
field is divergence-free within machine accuracy by applying the influence matrix
method. For further details concerning this spectral method for the gas phase, see
Kuerten (2006).

The time integration of the gas phase requires that the coupling terms are computed
at the same times as the other terms in the governing equations of the gas phase.
Since, apart from a minus sign, the same coupling terms are needed in the equations
for the droplets as in the equations for the gas phase, the same Runge–Kutta method
is applied to the governing equations of the droplets. The gas properties (velocity,
temperature and vapour mass density) at the droplet location are calculated by second-
order accurate tri-linear interpolation. It is known from the literature that a fourth-
order interpolation in DNS leads to negligible differences in the statistical particle
properties (Marchioli et al. 2008).
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Warm wall

Cold wall

+H

H
y

z

x
2π

–H
H4π

FIGURE 1. Channel geometry.

The coupling terms of each droplet are computed at the droplet location and
successively distributed to the eight surrounding mesh points using the same weights
as used for the tri-linear interpolation of the gas properties at the droplet positions.
This means that, in this numerical formulation, the delta-function δ(x − xi) is
implemented in such a way that the transfer is spread over the eight grid points
neighbouring the droplet. Subsequently, the two-way coupling terms resulting from
the contributions of all droplets are added to the nonlinear terms in the gas equations
in physical space and transformed to Fourier space. If only a few droplets are
present, this way of calculating the coupling terms may lead to numerical oscillations.
However, the contributions to high wavenumbers caused by the delta-function are, for
a large part, cancelled if the number of droplets is of the same order as the number
of grid points, as in the simulations reported here (Kuerten et al. 2011).

The domain has a size of 4πH in the streamwise direction and 2πH in the spanwise
direction, where H is half the channel height (see figure 1). For the streamwise, wall-
normal and spanwise directions, the notation x, y and z is used, respectively. In both
homogeneous directions (spanwise and streamwise), 128 Fourier modes are used and
129 Chebyshev collocation points are employed in the wall-normal direction. The grid
points are clustered near the walls in order to resolve the boundary layer. Periodic
boundary conditions are applied in the streamwise and spanwise directions and the
no-slip condition is adopted at the walls. On the upper (warm) wall, a uniform and
constant heat flux is supplied to the channel, which is equal to the heat flux extracted
from the lower (cold) wall in order to conserve the total thermal energy of the system.
For the droplets, periodic conditions are applied in the homogeneous flow directions,
which means that, when a droplet leaves the domain in one of these directions, it re-
enters the domain from the other side with the same properties. If a droplet approaches
a wall within a distance of its radius, rules of elastic collision of a hard spherical
particle are applied without heat transfer.

Simulations are performed at a frictional Reynolds number of approximately
Reτ = 150, based on friction velocity uτ =

√
τw/ρg and half the channel height, where

τw = µg(∂〈u〉/∂y)|y=±H is the wall shear stress and 〈u〉 the mean streamwise velocity
component averaged over the two homogeneous directions and time. Marchioli et al.
(2008) also show that the flow at this Reynolds number has reached a state of fully
developed turbulence. The gas parameters are computed using a mass-density weighted
average according to the dry air and water vapour concentrations. The droplets or
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Case Particles Initial temperature (◦C) Heat flux (W m−2)

Reference Water droplets 20 32
High temperature Water droplets 50 34
High heat flux Water droplets 20 160
Bigger droplets Water droplets 20 32
Smaller volume fraction Water droplets 20 32
Solid Solid particles 20 32
No particles — 20 32

TABLE 1. Definition of the test cases.

solid particles have an initial diameter di/H = 3.09 × 10−3, which corresponds to a
Stokes number of St= τ+p = τpu2

τ/ν = 10. This initial droplet size ensures that, during
the simulation, the size of growing particles near the cold wall does not exceed the
Kolmogorov length. On the other hand, smaller particles would result in an attenuated
turbophoresis effect, especially in the warm part of the channel where evaporation
occurs. There are two million droplets or particles, which are initially randomly and
homogeneously distributed over the channel domain. The initial volume fraction is
approximately 2.2× 10−4, which is in the range where droplet–droplet collisions can
be ignored but two-way coupling is relevant (Elghobashi 1994). During the simulation,
particles are clustered near the walls due to turbophoresis. Here, the two-way coupling
formulation still remains valid although the local particle concentration is very close
to the upper bound of the two-way coupling regime. The initial droplet velocity and
temperature are equal to the gas velocity and temperature at the droplet location.

The flow is initialized by a turbulent velocity field in the statistically steady state
of fully developed turbulence obtained from a simulation without droplets at the
same Reynolds and Prandtl numbers. The initial temperature is homogeneous and,
when the simulation starts, a constant heat flux is imposed at both walls to gradually
generate a temperature gradient in the wall-normal direction. The magnitude of the
heat flux is shown in table 1. On the upper wall, the heat flux is positive, while it
is negative on the lower wall. The initial relative humidity φ, which is the ratio of
the partial water vapour pressure and the saturation pressure, equals 100 % all over
the channel. Hence, the air–vapour mixture is saturated. It is noted that this relative
humidity equals ρvTg(x)/ρv,satTi(x) and, apart from the initial condition, is therefore
not equal to the normal relative humidity, which is assessed at identical temperatures:
ρvTg(x)/ρv,satTg(x). In the initial transient phase, the temperature changes because
of the applied thermal boundary conditions. Consequently, the saturation conditions
change according to the local change of the temperature. The applied heat fluxes
lead to evaporation of droplets in the upper half of the channel (warmer part), while
condensation will occur in the lower half (colder part). Using these settings, we
simulate an experiment in which an initially isothermal channel flow with droplets is
heated at the top wall and cooled at the bottom wall.

We investigated seven test cases as described in table 1. In the reference test case,
the initial temperature is 20 ◦C; hereafter we refer to this case as ‘reference’. The
case named ‘solid’ is identical to ‘reference’ but the droplets are replaced by solid
particles so that phase transition between the gas and particle phases is not possible.
The case ‘no particles’ uses the same settings for the boundary conditions and flow
parameters but is without particles. The two cases named ‘high temperature’ and
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‘high heat flux’ serve to investigate the effects of different physical conditions. In the
‘high temperature’ case, the initial temperature is increased from 20 to 50 ◦C, while,
in the ‘high heat flux’ case, the heat flux applied at the walls is five times higher
than in the reference case. In the ‘bigger droplets’ case, the droplet diameter is
twice as big as in the other simulations, corresponding to a Stokes number equal to
40. Finally, the effect of the volume fraction is investigated in the ‘smaller volume
fraction’ case using half the volume fraction of the reference case.

4. Analysis of the effect of phase transition of droplets on turbulent heat transfer

In this section, the simulation results of the test cases will be presented and
analysed. In test cases with water droplets, several phenomena play a role. The
heat flux applied at both walls leads to a non-uniform temperature profile in the
wall-normal direction. Near the warm wall, droplets will evaporate and, near the
cold wall, water vapour will condense. In this way, a non-uniform water vapour
concentration will arise, which leads, on average, to a transport of vapour from the
warm to the cold wall. On a larger time scale, the inhomogeneity of the turbulence
in the wall-normal direction leads to turbophoresis, through which droplets will move,
on average, from the centre of the channel towards the walls, where the temperature
and, hence, the mean droplet size attain different values. This, together with the
turbulent motion of droplets, will lead to a gradually increasing variance of droplet
size. In this section, we will first study the thermal properties of the flow and, in
particular, focus on the heat transfer between the walls quantified by the Nusselt
number. Next, we will consider the droplet size and investigate the mean transport of
water including both droplets and vapour.

In the analysis presented in this section, we make use of quantities averaged
over the homogeneous directions. This averaging is denoted by a bar over the
corresponding variable. When considering the statistically steady state, we also
average over time. Quantities averaged over the two homogeneous directions and time
are denoted by brackets, 〈·〉. We distinguish between gas quantities and quantities
of the dispersed phase. The gas quantities are known in all Chebyshev collocation
points and averaging over homogeneous directions can be easily performed both in
Fourier space and in real space (Eulerian averaging). Quantities of the dispersed
phase are only known at the locations of the droplets or particles. Averages over
homogeneous directions of the dispersed phase are computed by averaging over all
droplets that at some time are contained in a slab parallel to the channel walls
(Lagrangian averaging). Specifically, we divide the channel into uniformly spaced
bins in the wall-normal direction and compute the average profiles using these bins.
We use 40 bins, since that number is sufficiently large to accurately represent the
dependence of the statistical quantities on the wall-normal coordinate and sufficiently
small to minimize statistical errors arising from a too small number of particles in
one bin. For the computation of statistical properties of the two-way coupling terms
in the gas equations and the relative temperature between particles and carrier gas,
the bins defined by the Chebyshev collocation points are used in order to obtain
these quantities at the same points as the other statistical properties of the carrier gas.
It should be noted that, due to their size, no particles can be present in the first two
grid cells neighbouring both walls. Therefore, two-way coupling terms equal zero
there. Since droplets can have an arbitrary size, small droplets could be present in
these cells, but, in the simulations reported here, this has not been observed.
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FIGURE 2. Reference case. Mean gas temperature as a function of the wall-normal
coordinate at several instants of time: t+ = 0 (······); t+ = 400 (– – –); t+ = 800 (–·–);
averaged over a long time interval in the statistically steady state for temperature, 5000<
t+ < 16 000 (——).

4.1. Thermal properties
We consider a channel flow in which we impose a constant heat flux at the walls. This
creates a temperature gradient in the wall-normal direction, which leads to evaporation
(condensation) in warmer (colder) regions, since, initially, the air is saturated. In
figure 2, the fluid temperature of the reference case is shown, averaged over the
homogeneous directions, as a function of the normalized wall-normal coordinate
y/H at several instances in time (t+ is the dimensionless time t+ = tu2

τ/ν). The
figure shows the development of an inhomogeneous temperature profile from the
uniform initial temperature. A steady temperature profile is reached around t+= 5000,
after which the mean temperature exhibits only small fluctuations around the steady
profile. As a consequence of evaporation and condensation induced by the changing
temperature, the mean water vapour mass fraction changes in time, as figure 3 shows.
An inhomogeneous water vapour concentration profile in the wall-normal direction is
seen to develop, which closely resembles the mean temperature profile. Also, for the
water vapour concentration, a steady profile is reached around t+ = 5000.

In the statistically steady state, the difference in temperature between the channel
walls depends considerably on whether or not there are particles present in the flow
and whether or not the particles can undergo phase change. This is illustrated by
a comparison of the reference case (with water droplets) with the case with solid
particles and with the case without particles. The initial and boundary conditions are
the same for the three cases and the properties of the solid particles are the same as
those of the water droplets, with the exception that no evaporation or condensation
can occur. Figure 4 shows the mean temperature profiles for these three cases as
functions of the wall-normal coordinate in the statistically steady state. It can be seen
that the presence of particles has an influence on the heat transfer properties of the
channel, which is in agreement with the results shown in Kuerten et al. (2011). The
temperature difference between the walls reduces considerably when solid particles are
added to a clean single-phase flow. Adding droplets instead of solid particles gives rise
to an even larger decrease in the temperature difference between the walls.

In order to understand the reason for the reduced temperature difference when
droplets are added instead of particles, we focus on the region close to the upper,
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FIGURE 3. Reference case. Vapour mass density normalized by its uniform initial value as
a function of the wall-normal coordinate at several instants of time: t+= 0 (······); t+= 400
(– – –); t+ = 800 (–·–); averaged over a long time interval in the statistically steady state
for vapour mass density, 5000< t+ < 16 000 (——).
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FIGURE 4. Mean gas temperature in the statistically steady state (averaged over 5000<
t+ < 16 000): reference case with water droplets (——); with solid particles (– – –); no
particles (–·–).

warm wall. Similar arguments apply to the lower, cold wall. We will first identify the
terms in the equation for the temperature of the carrier gas that play an important role
in the near-wall region. Then, we will explain the sign of these terms and compare
their magnitude for the reference, solid and no particles cases. Finally, we will use
this to understand the difference in temperature evolution between the three cases.

Figure 5 shows the temperature histories at the warm wall for the three cases:
reference, solid and no particles. The different temperature response seen in the
three cases starts in the early stages of the transient phase. Since, at t+ ≈ 30, the
difference between solid and no particles is easily visible, we analyse the terms in
the energy equation (2.7) at this time. Figure 6 shows the magnitude of the terms
in the energy equation, averaged over the homogeneous directions, in the region
close to the warm wall for the reference case. We distinguish the gas convection
term (−(ρacv,a + ρvcv,v)∇ · (uTg)), the thermal diffusion term (kg∇2Tg), the two-way
coupling term due to phase change (Levap), the two-way coupling term due to

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

23
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.239


Water droplet condensation and evaporation in turbulent channel flow 681

0 2000 4000 6000 8000
18

20

22

24

26

t+

10 20 3020.0

20.5

21.0

21.5
T (°C)

FIGURE 5. Mean temperature history of the warm wall: reference case with water droplets
(——); solid particles (– – –); no particles (–·–).
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FIGURE 6. Terms in the energy equations for the reference case as a function of the
wall-normal coordinate close to the warm wall at t+ = 32: diffusion term kg∇2Tg (——);
gas convection term −(ρacv,a+ρvcv,v)∇ · (uTg) (– – –); convective flux coupling term Lconv
(–·–); evaporation coupling terms Levap (······); Lwd +Ldiff (• • •).

convective heat transfer (Lconv) and the terms due to diffusion of water vapour
(Lwd +Ldiff ). The figure shows that the two-way coupling term due to evaporation
and the terms due to diffusion of water vapour are negligible and that the gas
advection term is small compared to the remaining two terms. In the transient phase,
the thermal diffusion term is not fully balanced by the sum of the gas convection
term and the two-way coupling term, which results in an increasing gas temperature
in the region close to the upper wall.

As can be expected from the shape of the temperature profile, the thermal diffusion
term tends to raise the gas temperature. Since the particles can only be heated by heat
transfer from the gas through two-way coupling, their temperature is lower than the
gas temperature near the warm wall. Therefore, the two-way coupling term tends to
lower the gas temperature. The gas convection term results in a small decrease of the
gas temperature.
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FIGURE 7. Terms in the energy equations as a function of the wall-normal coordinate
close to the warm wall at t+=32, showing diffusive fluxes (top), advection fluxes (middle)
and convection coupling terms (bottom): reference case (——); case with solid particles
(– – –); case without particles (–·–).

Now, we know which terms play a role in the change of the gas temperature in time.
We compare the non-negligible terms, i.e. the gas convection and diffusive terms and
the two-way coupling term due to convective heat transfer between the two phases,
for the reference, solid and no particles cases in figure 7. This figure shows that the
gas convection term is small for all three cases. The absence of the two-way coupling
term in the case without particles explains why the temperature increase in this case is
larger than in the other two cases. In the no particles case, the thermal diffusion term
is smaller than in the reference and solid cases. However, since the two-way coupling
term is absent in the no particles case, the sum of all terms in the gas temperature
equation is larger than in the reference and solid cases and, hence, the increase of the
gas temperature is larger. The difference in temperature between the reference case
with water droplets and the case with solid particles is mainly caused by the two-way
coupling term due to convective heat transfer. This term is larger in magnitude in the
reference case than in the solid case because the evaporation in the reference case
leads to a lower temperature of the dispersed phase. The resulting larger temperature
difference between droplets and carrier gas increases the magnitude of the two-way
coupling term.

The thermal properties of the air–water system depend on the initial temperature
and, via the heat and mass transfer process, on the strength of the thermal forcing
through the walls. This can be observed by comparing the high temperature case and
high heat flux case with the reference case. The results of these two cases show
some differences with respect to the reference case. In particular, the asymmetry in
the mean gas temperature profile of the high heat flux case shown in figure 8 is
due to the convex dependence of the saturation pressure on temperature expressed
by Antoine’s relation (2.20). The asymmetry of the temperature profile is not clearly
visible in the reference and high temperature cases because of the small temperature
difference between the two walls in the statistically steady state. Apparently, a higher
overall temperature does not lead to strongly different normalized temperature profiles.
When the temperature difference between the walls becomes larger, the asymmetry
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FIGURE 8. High heat flux case. Mean gas temperature as a function of the wall-normal
coordinate in the statistically steady state: temperature in the upper half of the channel
(——); mirror temperature in the bottom half of the channel (–·–).

of the temperature profile also becomes visible. This is reflected in the water vapour
mass concentration as well. Apart from this, the results of the high heat flux case are
very similar to those of the reference case. A larger difference in the heat transfer
properties of the channel occurs in the high temperature case, i.e. for a higher initial
temperature, and this will be analysed in the next section.

4.2. Nusselt number
In order to quantify the heat transfer properties in the statistically steady state, we
introduce the Nusselt number, defined as

Nu=

(
d〈Tg〉

dy

∣∣∣∣
wall

)
〈1Tg〉

2H

, (4.1)

where 1Tg is the mean temperature difference between the walls. A larger Nusselt
number implies that the fluid is able to transfer more heat between the walls given the
same wall temperature difference. Such a process is better suited in a heat exchanger.
In the transient regime, we define the Nusselt number as a function of time without
averaging in time:

Nu(t)=

(
dTg

dy

∣∣∣∣
wall

)
1Tg

2H

. (4.2)

In figure 9, Nu(t) is shown for the seven cases. As already explained in the previous
subsection, we observe that the presence of particles or droplets leads to a larger value
of the Nusselt number in the statistically steady state (compare reference, solid and
no particles cases). Moreover, Nu depends on the initial channel temperature (compare
reference and high temperature cases), but very little on the applied heat flux at the
walls (compare reference and high heat flux cases). The droplet size and the volume
fraction also have a direct effect on Nu, which will be analysed in detail.
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FIGURE 9. Nusselt number history for the seven cases: reference case (······); high
temperature case (– – –); high heat flux case (——); bigger droplets case (• • •); smaller
volume fraction case (� � �); solid particles case (–·–); no particles case ( ). The inset
zooms in on the initial behaviour.

Following Kuerten et al. (2011), we quantify the effect of particles and droplets
on Nu by splitting it into various contributions. By averaging equation (2.7) over the
homogeneous directions and over time in the statistically steady state and integrating
the result twice over the wall-normal direction, we obtain the following expression for
Nu:

Nu= 1− 1
αg〈1Tg〉

∫ H

−H
〈u′yT ′g〉 dy+ 1

〈1Tg〉
∫ H

−H

∫ y

−H

〈
Lwd +Ldiff +L2way

kg

〉
ds dy. (4.3)

Here αg= kg/(ρacv,a+ ρvcv,v) is the thermal diffusivity, which is assumed constant in
this paper. Moreover, u′y = uy − 〈uy〉 is the fluctuating wall-normal component of the
velocity of the gas, T ′g= Tg− 〈Tg〉 is the fluctuating gas temperature and 〈1Tg〉 is the
mean temperature difference between the two walls in the statistically steady state.
In (4.3) the contributions from the water vapour diffusion terms Lwd and Ldiff and
from the two-way coupling term due to evaporation Levap appear to be negligible, in
agreement with the results shown in figure 6. For all cases considered, they contribute
less than 0.1 % to Nu.

The contribution from Ldiff can be analysed in more detail by writing it as

(Ra − Rv)D(Tg − T`0)∇2ρv = (Ra − Rv)D∇ρv · ∇(Tg − T`0)

+ (Rv − Ra)D∇ · ((Tg − T`0)∇ρv). (4.4)

The first term on the right-hand side is of the same form and magnitude as Lwd. The
second term can be integrated if the thermal conductivity is assumed constant to give
a contribution to Nu equal to

Nudiff = (Rv − Ra)D

kg〈1Tg〉
∫ H

−H

〈
(Tg − T`0)

∂ρv

∂y

〉
dy. (4.5)

In order to analyse this term further, we write (Tg− T`0)= T0+ T ′′g − T`0 , where T0 is
the constant initial temperature. Since T ′′g is negative in the lower half of the channel
and positive in the other half, while ∂ρv/∂y is positive throughout the channel, it
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can be expected that the term with T ′′g in Nudiff is very small. The numerical analysis
of this term shows that it is three orders of magnitude smaller than Nudiff . The
contribution from (T0 − T`0) can be integrated over y, which results in

Nudiff ≈ (Rv − Ra)D(T0 − T`0)〈1ρv〉
kg〈1Tg〉 , (4.6)

where 〈1ρv〉 is the mean vapour mass density difference between the two walls in
the statistically steady state. For the small temperature differences between the walls
in our simulations, we can write

〈1ρg〉 ≈ ∂ρv,sat

∂T
〈1Tg〉, (4.7)

since deviations from saturation are very small in the statistically steady state. The
result is

Nudiff ≈ ∂ρv,sat

∂T
(Rv − Ra)D(T0 − T`0)

kg
. (4.8)

For the reference case and the high heat flux case, we find Nudiff ≈ 0.003, and for the
high temperature case, the result is Nudiff ≈ 0.03, which shows that this contribution
to the Nusselt number is indeed negligible.

Hence, the Nusselt number can accurately be expressed as Nu = Nulam + Nuturb +
Nupart, where Nulam = 1 is the result for a laminar channel flow without particles,

Nuturb =− 1
αg〈1Tg〉

∫ H

−H
〈u′yT ′g〉 dy (4.9)

is the contribution from turbulent transport and

Nupart = 1
〈1Tg〉

∫ H

−H

∫ y

−H

〈
Lconv

kg

〉
ds dy (4.10)

consists of the effect of the convective heat transfer between the two phases.
Table 2 shows that the presence of particles or droplets with a two-way coupling to

the fluid flow does not significantly reduce the heat transfer due to turbulent transport.
This differs from the results obtained by Kuerten et al. (2011) and can be explained
by the different flow conditions, in particular the much smaller volume fraction of
particles in the present simulations. Comparison of the reference, solid and no particles
cases shows that the presence of particles leads to an increase of the Nusselt number
of around 30 %. If droplets replace particles, the increase in Nusselt number is much
larger: a factor of 3.5. For both droplets and particles, the increase is caused by the
contribution from the convective heat transfer between the two phases, Nupart. The
simplified expression for Nupart (Kuerten et al. 2011),

Nupart ≈−
∫ +H

−H

∫ y

−H

2π〈n(s)di(Tg(xi, t)− Ti)〉
〈1Tg〉 ds dy, (4.11)

helps to understand this. The contribution from the convective heat transfer between
the phases is large if the relative temperature is large in regions of the channel
with a large concentration of the dispersed phase. Therefore, in the following, we

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

23
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.239


686 E. Russo, J. G. M. Kuerten, C. W. M. van der Geld and B. J. Geurts

0.6 0.7 0.8 0.9 1.0

0

0.2

0.4

0.6

0.8

y/H

R
el

at
iv

e 
te

m
pe

ra
tu

re
 (

°C
)

Reference

Solid particles

FIGURE 10. Relative temperature (Tg(xi, t)− Ti) as a function of the wall-normal
coordinate near the warm wall: reference case at t+ = 400 (······); solid particles case at
t+ = 400 (– – –); reference case at t+ = 32 (–·–); solid particles case at t+ = 32 (——).

Case Particles Nu Nulam Nuturb Nupart

Reference Water droplets 15.6 1.0 3.0 11.6
High temperature Water droplets 35.9 1.0 2.5 32.4
High heat flux Water droplets 15.6 1.0 3.0 11.6
Bigger droplets Water droplets 12.2 1.0 2.9 8.3
Smaller volume fraction Water droplets 14.1 1.0 3.1 10.0
Solid Solid particles 5.9 1.0 3.4 1.5
No particles — 4.4 1.0 3.4 —

TABLE 2. Different contributions to the Nusselt number for all test cases.

analyse the temperature difference between the two phases and the concentration of
particles/droplets.

Figure 10 shows the mean temperature difference (Tg(xi, t)− Ti) averaged over the
homogeneous directions near the warm wall at two instances of time for the reference
and solid cases. Note that Tg(xi, t) equals the mean temperature of the gas evaluated at
the particle or droplet position. Since particles and droplets are preferentially located
at locations where the gas temperature differs from its Eulerian mean, this temperature
is not equal to the mean Eulerian gas temperature (Kuerten et al. 2011). The mean
temperature difference near the warm wall is initially large for both the reference and
solid cases. At t+ = 400, the mean temperature difference is much smaller for solid
particles than for droplets because evaporation cools the droplets.

In the statistically steady state, which starts later than the times shown in figure 10,
the mean temperature difference is attenuated by the two-way coupling in both the
reference and solid cases, resulting in the equilibrium mean relative temperature
difference shown in figure 11. With solid particles, 〈(Tg(xi, t) − Ti)〉/1Tg is larger
than with droplets, apart from a small region very close to the walls. The relative
temperature difference is multiplied by the particle concentration in expression (4.11)
for Nupart. Figure 12 shows that, in both cases, the majority of the particles are
located very close to the walls. The integrand of (4.11) is shown in figure 13, where
it appears that, in the vicinity of the wall, the product of particle concentration and
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FIGURE 11. Plot of 〈(Tg(xi, t)− Ti)〉/〈1Tg〉 as a function of the wall-normal coordinate
in the statistically steady state: reference case (–·–); high temperature case (——); solid
particles case (– – –).
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FIGURE 12. Droplet and particle concentration, n(y)/n0, with n0 the initial number of
particles in a bin, as a function of the wall-normal coordinate in the statistically steady
state: reference case (——); solid particles case (• • •).

relative temperature difference is much larger in the reference case than in the solid
case. This is a direct consequence of the phase transition process of water droplets
and it results in the observed eight times larger contribution to the Nusselt number
from Nupart.

The test cases with high temperature and high heat flux demonstrate the effect
of variations in initial temperature and heat flux imposed at the walls on the heat
transfer characteristics. The Nusselt number for the high heat flux case with the same
initial temperature as the reference case but with a five times higher heat flux imposed
at the walls is approximately the same as for the reference case. In contrast, the
case with a high initial temperature results in a much higher Nusselt number. For the
following reason, the rate of mass transfer near the walls is higher with a higher initial
gas temperature. A given temperature change of a drop results in a bigger change
in saturation vapour pressure at a higher gas temperature. The latter is easily seen
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FIGURE 13. Integrand in expression (4.11) for Nupart as a function of the wall-normal
coordinate in the statistically steady state (averaged over 32 000 < t+ < 45 000) with a
close-up view near the walls: reference case (——); solid particles case (–·–).

from the Clausius–Clapeyron equation or from the Antoine relation (2.20). Initially,
in the simulations, the gas near the hot wall is heated by heat diffusion from the
wall. The droplets increase in temperature by convective heat transfer from the gas
and evaporation sets in. The higher the initial temperature, the higher is the rate of
evaporation, for the above reasons. In the statistically steady state, the reference and
high temperature cases have about the same droplet diameters near the walls but the
gas temperature level is higher with a higher initial temperature and, hence, the mass
transfer rate as well. The effective heat transfer rate between the two walls is increased
by this process, and therefore the temperature difference between the two walls is
less in the high temperature case than in the reference case, both cases having the
same imposed heat flux at the walls. This lower temperature difference causes the
higher Nusselt number found. The independence of the Nusselt number on the heat
flux imposed at the walls shows that the temperature difference between the two walls
in the statistically steady state is proportional to the imposed heat flux.

The two last test cases, one with bigger droplets and one with half the volume
fraction of the standard case, serve to study the effect of variations in droplet size and
volume fraction on the heat transfer characteristics. In figure 9, droplets with twice
the diameter and the same volume fraction as the standard (reference) case are seen
to lead to a smaller Nusselt number as compared to the reference case. To better
understand this result, the two contributions, Nupart and Nuturb, given in table 2 are
now analysed.

The simplified expression for Nupart given by (4.11) consists of two quantities:
(i) the temperature difference between droplets and gas; and (ii) the local droplet
number density multiplied by the droplet diameter. These quantities, averaged in
40 bins in the wall-normal direction and over time during the steady state, are
given in figures 14 and 15, respectively. The higher evaporation rate associated with
the bigger droplets leads to a larger mean temperature difference between droplets
and gas near the walls. However, since the volume fraction remains the same as
compared to the reference case, quantity (ii) becomes approximately one-quarter of
the reference case near the warm wall. This indicates that, for a given amount of
water in the system, a value of the droplet diameter that maximizes the value of Nupart
can always be found. The smaller volume fraction case shows that, if the volume
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FIGURE 14. Plot of 〈(Tg(xi, t)− Ti)〉/〈1Tg〉 as a function of the wall-normal coordinate
in the statistically steady state: reference case (——); bigger droplets case (–·–); smaller
volume fraction case ( ).
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FIGURE 15. Plot of 〈n(y)di〉H2 as a function of the wall-normal coordinate in the
statistically steady state near the warm wall: reference case (——); bigger droplets case
(–·–); smaller volume fraction case ( ).

fraction is halved, then quantity (ii) becomes larger than half the corresponding one
of the reference case. This is easily understood from the fact that at lower volume
fractions turbophoresis is more manifest, while the mean temperature difference
between droplets and gas increases, which compensates the decrease of Nupart due to
the smaller number of droplets in the channel. Therefore, for any given initial droplet
diameter, a value of the volume fraction that maximizes the value of Nupart can be
found.

Here Nuturb shows only a small change in both these cases. The largest change
is observed for the high temperature case, which is, for this reason, taken in the
following analysis of Nuturb. Here Nuturb depends on 〈u′yT ′g〉/〈1Tg〉. However, velocity
fluctuations of all test cases show only very small differences. This will be discussed
in more detail later, in § 5. The main effect on Nuturb arises from gas temperature
fluctuations. Figure 16 shows Trms/〈1T〉. At a higher temperature, evaporation rates
are higher and, therefore, more water vapour is added to or taken from the gas,
which attenuates gas temperature fluctuations. The higher evaporation rate of the
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FIGURE 16. Plot of Trms/〈1T〉 as a function of y+ in the statistically steady state:
reference case (——); bigger droplets case (–·–); smaller volume fraction case ( );
high temperature case (······).

bigger droplets decreases Nuturb from 3.0 in the reference case to 2.9 in the bigger
droplets case. Comparison of Trms for the smaller volume fraction case with the
reference case shows larger fluctuations with less droplets in the near-wall region but
not elsewhere. This is easily understood from the fact that two-way coupling effects
associated with mass transfer are less significant than in the reference case.

4.3. Droplet size distribution
In this subsection, we analyse the change in size of the droplets due to the thermal
forcing applied to the channel. In figure 17, the mean droplet diameter history
normalized by its initial value is plotted at three positions in the channel for the
simulation of the reference test case. The three positions are the mid-plane of the
channel and the first bins near the upper and lower walls. Obviously, near the heated
wall the droplets start evaporating, resulting in a decreasing mean diameter, whereas
the droplets near the cooled wall grow due to the condensation of water vapour. In
the middle of the channel, the mean droplet diameter fluctuates around its initial
value. For t+ > 0.5× 104, the mean temperature difference between gas and droplets
(figure 11) and, for t+> 2.0× 104, the droplet number density (figure 18) are constant
in time and depend on the wall-normal coordinate. However, the root-mean-square
(r.m.s.) of the droplet diameter in a certain bin, drms, increases at all times (see
figure 19). If the same droplets were to remain in a bin, drms would not increase.
This implies that there is a continuous inflow and outflow of droplets in a bin, as a
consequence of turbulent transport.

Initially, the variance of the droplet diameter in the middle of the channel is
smaller than near the walls (figure 19). This is caused by the fact that evaporation
and condensation only occur close to the walls. The effect of droplet dispersion
becomes evident in a later stage. The r.m.s. of droplet diameter did not yet saturate
at t+ = 10 × 104. Simulating for an even longer period of time and including the
explicit breakup of droplets that have grown beyond a certain size will clarify this.
In the present work, the simulations have been kept sufficiently short to avoid the
need to model the breakup of droplets.

At the final time of the simulation and close to the wall, the r.m.s. of the droplet
diameter exceeds the change in mean droplet size over time. That implies that the
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FIGURE 17. Reference case. Normalized mean droplet diameter history at three locations
in the channel (d0 = diameter at t+ = 0): near the warm wall (——); mid-plane (······);
near the cold wall (– – –).
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FIGURE 18. Reference case. History of droplet concentration, n(y)/n0, with n0 the initial
number of particles in a bin, near the walls: near warm wall (——); near cold wall (– – –).
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FIGURE 19. History of the droplet diameter r.m.s. at three locations in the channel: near
the warm wall (——); mid-plane (······); near the cold wall (– – –).
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FIGURE 20. Normalized mean droplet diameter history near the cold and warm walls:
reference case (——); high temperature case (– – –); high heat flux case (–·–).

probability density functions of droplet size of both walls overlap. This is a further
illustration of the importance of turbulent transport of droplets through the channel.

Figure 20 shows the mean droplet diameter histories near the two walls for the
reference, high temperature and high heat flux cases. The higher initial temperature
does not affect the droplet mean diameter as much as the higher heat flux. On both
walls, the reference and high temperature cases have an almost equal mean droplet
diameter. In the high heat flux case, evaporation of the droplets near the warm wall
and condensation of vapour on the droplets near the cold wall are enhanced by the
higher temperature difference between the walls. In this case, the increase in mean
droplet diameter near the cold wall is smaller than the decrease near the warm wall.
The main reason for the asymmetry is the asymmetry of the gas temperature profile
shown in figure 8. Figure 21 shows the r.m.s. of droplet diameter near both walls for
the high temperature and high heat flux cases. With a higher heat flux, the r.m.s. near
the cold wall is significantly smaller than near the warm wall but much larger than in
the high temperature case. For a higher initial temperature, this difference is attenuated
since the higher Nusselt number, due to the higher evaporation and condensation rates,
leads to a smaller wall temperature difference.

Figure 17 shows that the mean droplet diameter has become approximately constant
in time after t+ = 3.2× 104. In this time, the mean flow has travelled approximately
250 times the length of the channel. The fact that the droplet concentration near
the wall also is approximately constant for t+ > 20 000 (figure 18) indicates that
equilibrium is established between condensation and evaporation, on the one hand,
and water vapour heat flux across the channel, on the other. We investigate this in
more detail in the next subsection.

4.4. Droplet migration in the statistically steady state
There are three mechanisms by which water can have a mean motion in the wall-
normal direction of the channel: the first is molecular diffusion of water vapour by a
mean concentration gradient, the second is turbulent transport of water vapour, and the
third is mean motion of droplets in the wall-normal direction. In the statistically steady
state, which is reached at t+ ≈ 2.0× 104, the mean droplet size and concentration do
not change any more. Therefore, the three mechanisms should cancel each other out.
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FIGURE 21. History of the droplet diameter r.m.s.: high temperature case near the warm
wall (——); high temperature case near the cold wall (– – –); high heat flux case near the
warm wall (–·–); high heat flux case near the cold wall (······).

Since the water vapour concentration is higher at the warm wall than at the cold
wall, there will be a net molecular diffusion flux of water vapour from the warm
to the cold wall, which at all wall-normal positions in the channel is given by
−D d〈ρv〉/dy. The direction of the turbulent transport flux of water vapour, 〈u′yρ ′v〉,
can be found in the following way. The water vapour concentration is correlated to
the gas temperature (see figures 2 and 3) and, from the fact that Nuturb is positive,
we know that 〈u′yT ′g〉 is negative. Therefore, the flux of water vapour by turbulent
transport is also negative, i.e. directed from the warm to the cold wall. This implies
that, for the three mechanisms to cancel each other out, there must be a net mass
flux of water droplets from the cold to the warm wall, which balances the net mass
flux of vapour from the warm to the cold wall. We write the total mass flux of water
as jwater =−D d〈ρv〉/dy+ 〈u′yρ ′v〉 + jdrops, where jdrops is the mass flux of water droplets,
which can be directly calculated in the Lagrangian tracking of droplets adopted in
our formulation.

Figure 22 shows the mass fluxes for the three mechanisms as functions of the wall-
normal coordinate. The results are averaged over the two homogeneous directions
and time in the statistically steady state. The calculation of jdrops is quite critical, for
two reasons. First, although the droplet concentration near the walls has reached a
statistically steady state at t+≈ 20 000, the fluctuations in time are large. A very long
time average is required to eliminate the effects of these fluctuations on jdrops. Second,
the net mass flux of droplets is small. If only droplets with a positive wall-normal
velocity component are considered, the mass flux is larger by two orders of magnitude.
Hence, there is a very large ‘traffic’ of droplets to and from the walls separately,
balancing almost perfectly and leaving a much smaller jdrops as a result. For these two
reasons, the mass flux of the droplets is still quite irregular. Still, the results indeed
underpin the picture described above. Both vapour mass fluxes are directed from the
warm to the cold wall and are almost constant when added. The molecular diffusion is
dominant in the near-wall regions, whereas the turbulent contribution takes over away
from the walls. The net droplet mass flux is directed from the cold to the warm wall.
This shows that there is a circulation of water. Water vapour moves from the warm
to the cold wall, where it condenses onto droplets. The droplets move from the cold
to the warm wall, where they evaporate again.
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FIGURE 22. Water vapour and droplet mass fluxes as functions of the wall-normal
coordinate in the statistically steady state (averaged over 21 250 < t+ < 85 300) in the
reference case: water vapour mass flux due to Fick’s law (——); water vapour mass flux
due to turbulent diffusion 〈vρv〉 (······); droplet mass flux jdrops (– – –).
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FIGURE 23. Reference case. Relative humidity (φ) history: steady state (averaged over
32 000< t+ < 51 000) (——); t+ = 800 (–·–).

The circulation model for water in the system is further supported by figure 23,
which shows the relative humidity φ as a function of the wall-normal coordinate at
various instances in time. The figure shows that φ is very close to 100 % in the
majority of the channel. Only close to the walls can larger deviations from saturation
be seen. In the transient stage, these deviations are smaller than 1 % and they are
even smaller in the statistically steady state. Nevertheless, near the warm wall, φ
is less than 100 %, so that net evaporation will occur; and close to the cold wall,
the small supersaturation results in a net condensation of water vapour. If the mean
droplet concentration observed in the steady state is constant, then the mean net flux
of droplets measured by the number of droplets moving from one wall to the other
one is zero. However, because droplets migrating from the cold wall to the warm wall
are bigger in size than droplets migrating in the opposite direction, the mean net mass
flux of water droplets cannot be zero and yields the calculated net mass flux.
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FIGURE 24. R.m.s. of the streamwise velocity component in the steady state: reference
case with droplets (······); with solid particles (– – –); without particles (——).
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FIGURE 25. R.m.s. of the wall-normal velocity component in the steady state: reference
case with droplets (······); with solid particles (– – –); without particles (——).

5. Turbulence modulation
In this section, the effect of phase transition on the turbulence of the channel flow

is analysed. We compare the modulation of turbulence caused by the presence of solid
particles or evaporating droplets with the case without particles.

Turbulence modulation by particles is extensively reviewed by Eaton (2009) and
Balachandar & Eaton (2010), with a remark on the limits of the point-particle method
in predicting turbulence modulation when particles are comparable in scale to the
small-scale turbulence. In our simulations, the particle size is smaller than the smallest
Kolmogorov scale, also in the near-wall region. Figures 24–26 show the r.m.s. of the
gas velocity components for the case without particles, the case with solid particles
and the reference case with evaporating droplets. The presence of particles leads
to a decrease of the turbulence kinetic energy. This result is in agreement with the
results of Pan & Banerjee (1996) (in the absence of gravity), who reported attenuated
turbulent intensities and Reynolds stresses for particles smaller than the dissipative
length scale, whereas larger particles augment both intensities and stresses. In the
following, the results of test cases with droplets are not shown since there are
no significant differences between the turbulence modulation by solid particles and
evaporating droplets. The same holds true for different initial temperature or boundary
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FIGURE 26. R.m.s. of the spanwise velocity component in the steady state: reference case
with droplets (······); with solid particles (– – –); without particles (——).

conditions, as in the high temperature case or high heat flux case. This negligible
effect of phase transition is explained in the following analysis of the turbulence
kinetic energy.

The turbulence kinetic energy is influenced by the presence of particles, especially
in the vicinity of the wall where the particle concentration is higher in the steady
state. Two-way coupling of momentum leads to an extra term in the turbulence kinetic
energy (TKE) equation of the gas, associated with Lu in (2.21). In the steady state,
the production of turbulence kinetic energy in the gas is balanced by dissipation and
particle dissipation due to the drag force between particles and gas, Lu:

−
∫ +1

−1
〈u′ju′k〉

∂〈u〉j
∂xk︸ ︷︷ ︸

production

dy=
∫ +1

−1

〈
ν
∂u′j
∂xk

∂u′j
∂xk

〉
︸ ︷︷ ︸

dissipation εk

dy

+
∫ +1

−1

(〈
N∑

i=1

uj
d(mivi,j)

dt
δ(x− xi)

〉
− 〈uj〉

〈
N∑

i=1

d(mivi,j)

dt
δ(x− xi)

〉)
︸ ︷︷ ︸

droplet dissipation

dy.

(5.1)

Other terms in the TKE equation only transport kinetic energy within the channel
and, therefore, their integrals over the wall-normal direction are equal to zero. Note
that the quantity 〈uj〉 in the droplet dissipation term is Eulerian averaged, whereas the
other quantities are Lagrangian averaged. The quantity d(mivi,j)/dt can be split into
two contributions in the same way as (2.21). The contribution due to mass transfer
arising from evaporation or condensation is negligible since the evaporation rate term
is very small, as already shown in the gas temperature budget equation. Other studies,
such as Mashayek (1998) and Wang & Rutland (2006), have shown that evaporation
leads to an increase in the turbulence kinetic energy of the gas due to the transfer
of kinetic energy from particles to gas and attenuation of particle dissipation because
of the smaller mass loading ratio due to evaporation. These effects are important at
high evaporation rates, which occur when starting a simulation from a non-equilibrium
state. In our simulation the air–vapour gas is initially in equilibrium. Therefore, during
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FIGURE 27. Integrands of terms in (5.1) in wall units versus y+: case without particles
(——); case with particle/droplets (– – –); droplet dissipation term (—–).

the simulation of the transient phase, the boundary conditions applied result in small
evaporation and condensation rates with a negligible effect.

In order to analyse the dissipative effect of the particles, the integrands of the
terms in (5.1) are shown as functions of the channel height in figure 27 for the solid
particles and without particles cases. The production and dissipation of turbulence
kinetic energy decrease due to the presence of particles. Owing to the higher particle
concentration, this is clearly visible near the walls. The droplet dissipation term in
(5.1) is small compared to the other terms. The inset shows that this term produces
turbulence kinetic energy near the walls and dissipates it in the core region of the
channel. However, its integral is negative and, therefore, it has a dissipative effect
globally.

The particle dissipation term is not the only cause for the particle dissipative effect
on the gas. In the transient phase, this term is also small compared to the production
and the dissipation terms. However, owing to the turbulence modulation of the
particles, the turbulence kinetic energy production is almost immediately attenuated
while the dissipation is still comparable to the case without particles. In addition,
the droplet dissipation term adds extra dissipation, which yields a decrease in the
turbulence kinetic energy that persists until the steady state is reached. The decrease
of production is an indirect effect of the particle modulation of the gas velocity
field. The mean gas streamwise velocity is accelerated by the presence of particles
modulating ∂〈u〉/∂y and, as already explained at the beginning of this section, also
〈u′w′〉 is modulated. Of these two contributions to the production term, the decrease
of the Reynolds stress by the particles is the more important reason for the turbulence
attenuation by the presence of particles.

6. Discussion and conclusions

In this paper, a numerical simulation method for water droplet-laden turbulent flow
including heat and mass transfer by convection and phase change has been discussed.
The model has been implemented in a pseudo-spectral DNS code for turbulent channel
flow, where the droplets are modelled in a Lagrangian way. The effects of phase
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change have been studied by comparison with results of a simulation in which only
heat transfer between the phases is considered.

The results show that the boundary conditions applied to the initial state lead to
evaporation and condensation. After a longer period of time, an equilibrium state is
reached in which the relative humidity is close to 100 % over the total height of the
channel. In the equilibrium state, the heat transfer between the two walls, quantified by
the Nusselt number, is larger than in the case where the droplets are absent or replaced
by solid particles with the same physical properties. Moreover, a further significant
increase in Nusselt number has been found if the initial temperature of the channel is
increased.

Apart from mean temperature, vapour mass density and relative humidity, the
droplet size distribution has also been analysed. The mean droplet diameter is smaller
near the warm wall than near the cold wall. When the mean diameter near the walls
remains approximately constant in time, equilibrium between the vapour mass flux
and droplet migration is established. The vapour flux from the warm wall to the cold
wall is approximately balanced by droplet migration from the cold to the warm wall.

In the simulations that have been performed, nucleation of droplets and droplet
breakup are ignored. Extension of the model with these mechanisms will be a topic
of future research.
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