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Abstract

To improve detection performance of passive location system based on troposcatter, we pro-
pose a blind signal detection algorithm. According to our algorithm, complementary ensem-
ble empirical mode decomposition decomposes the received signal into several intrinsic mode
functions (IMFs). To reconstruct the signal and background noises, difference between the
entropy of adjacent IMFs is utilized as a standard. Different IMFs are utilized to estimate
threshold of energy detection algorithm and energy level of received signal. Simulation exam-
ples indicate that the proposed algorithm can blindly and effectively detect the signal.

Introduction

Troposcatter which depends on scattering effect of low troposphere is a promising candidate
for beyond line-of-sight (b-LoS) propagation. Electromagnetic (EM) wave of hostile radar pro-
pagated via troposcatter can be utilized for b-LoS location [1–3]. Priori knowledge of the signal
received by a passive location system is probably absent [4]. EM wave propagated via tropos-
catter will also bear the deficiency of low signal to noise ratio (SNR) [5, 6]. Therefore, excellent
signal detection algorithm is the prerequisite of passive location system based on troposcatter.
Current signal detection mainly focuses on matched filter detection, cyclostationary feature
detection, and energy detection (ED) [7–10]. Demand for priori knowledge of received signal
contributes an evident drawback to matched filter detection. The huge calculation complexity
of cyclostationary feature detection can bring a relatively long running time. Therefore, ED
which has a simple implementation and needs little priori knowledge becomes a preferred can-
didate for passive location system.

Background noises varying with temperature and ambient interference can make the per-
formance of ED get deteriorated [7]. The mobile position of passive location system and low
SNR of signal will aggravate this drawback. Double-threshold ED has been proved an effective
way to reduce the undesirable effect caused by varying noises. However, detection failure will
occur as the energy level lies between two thresholds. Several researches have been committed
to solve this problem. Cooperative signal detection (CSD) has been employed to overcome the
possible failure [8]. Each terminal node sends two bit decision based on quantization when its
observed energy lies within the confused region. Final decision about the presence or absence
of a signal is made at fusion center (FC). A CSD based on weighted combination has also been
proposed to improve the performance of double-threshold ED [9].

Most of above methods require the concrete knowledge of background noises. In [10],
an adaptive signal detection has been proposed with noises variance estimation. Auto-regres-
sive (AR) model is introduced to extract noises contained in the received signal. Similar to AR
model, filtering models such as Kalman, wavelet transform can also effectively extract noises
[11]. Nevertheless, several parameters of those models must be critically assigned, which
severely requests for abundant experience of designers. Especially for the received signal with-
out sufficient priori knowledge, this defect is more prominent. As a result, human intelligence
plays a vital role in running those algorithms.

Considering absent priori knowledge and low SNR of signal received by a passive location
system based on troposcatter, we propose a blind signal detection based on ED and an adaptive
filtering model. The main innovation of this blind algorithm is that threshold of ED is
acquired on the basis of background noises, which are extracted by an adaptive filtering
model. Energy level of received signal is estimated according to the consequence of filtering
model. The detection algorithm can enhance SNR and run without human intervention.
As well, it does not depend on priori knowledge of received signal.

The rest of this paper is organized as follows. ‘Passive location system based on troposcatter’
section presents passive location system based on troposcatter. In ‘Blind signal detection’
section, a blind signal detection based on ED and an adaptive filtering model is introduced.
In ‘Example analysis’ section, several examples are described to indicate the superiority of
proposed signal detection. Finally, the conclusions are drawn in ‘Conclusions’ section.
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Passive location system based on troposcatter

Figure 1 depicts passive location system based on troposcatter,
which can effectively make a b-LoS detection and counter the
anti-radiation missile. To obtain the location of enemy radar, it
has at least three stations [12]. Distributed system has an inherent
superiority at realizing CSD, which can effectively resist the
undesirable shadow and multipath fading.

Only system makes a faultless decision, the next works will be
carried out. In CSD, each node independently detects the signal
and FC makes a global decision based on data fusion or decision
fusion. The former consumes more wireless resources. On the
other hand, performance of the latter could be improved remark-
ably by increasing the number of nodes [13].

As shown in Fig. 2, each terminal node of passive location sys-
tem can be regarded as a FC. Local decision can be delivered by
the reporting channel. According to decision fusion, ui stands
for the decision of node i, here ui = 1 for the signal is present
and ui = 0 for the decision of absent signal. AND-rule and OR-
rule can be adopted for decision fusion, the latter has a good per-
formance and wide application [14]. According to OR-rule, FC
can make global decision under an ideal condition as

QFA = 1− ∏L
i=1

(1− PFA),

QD = 1− ∏L
i=1

(1− PD),

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1)

where QFA stands for the global probability of false alarm, QD the
global probability of detection, L the number of terminal nodes,
PFA the terminal probability of false alarm, PD the terminal prob-
ability of detection. Considering bit error rate (BER) of the report-
ing channel, we can obtain QFA and QD as

QFA = 1− ∏L
i=1

[(1− PFA)(1− Pe) + PFAPe],

QD = 1− ∏L
i=1

[(1− PD)(1− Pe) + PDPe],

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(2)

where Pe refers to the BER. Detection problem can be transformed
into a binary hypothesis test, thus

H0 : r[n] = w[n]
H1 : r[n] = s[n]+ w[n]

n = 0, 1, · · · ,N − 1,
n = 0, 1, · · · ,N − 1,

{
(3)

where H0 refers to the absence of a signal, H1 the presence of a sig-
nal, s[n] the unknown deterministic signal, w[n] the additive white
Gauss noise (AWGN) with zero mean and σ2 variance. According
to ED [15], observed energy of signal can be expressed as

Y = 1
M

∑M
n=1

|r(n)|2 , (4)

where Y denotes the observed energy, M the number of samples
taken under an observation period. If Y > τ, s[n] is present, other-
wise the signal is absent. Here, τ stands for the predefined thresh-
old. PFA and PD can be given as

PFA = Pr(Y . t|H0) = Q
t− s2

s2
					
2/M

√
( )

,

PD = Pr(Y . t|H1) = Q
t/s2 − (1+ g)					

2/M
√ (1+ g)

( )
,

⎧⎪⎪⎨
⎪⎪⎩ (5)

where γ denotes the SNR, Q(.) the Gaussian complement integral
function, which can be given by

Q(x) = 1				
2p

√
∫+1

x
e−u2/2du. (6)

Troposcatter can be approximated as a Rayleigh fading chan-
nel [16], we can acquire the probability distribution function of
average SNR as

f (g) = (1/�g)e−(g/�g), (7)

where �g refers to the average SNR. Therefore, PD can be given by

PD =
∫1
0
Q

t/s2 − (1+ g)					
2/M

√ (1+ g)
( )

f (g)dg. (8)

An unstable environment can lead to varying noises. The
uncertainty parameter of noises is uniformly distributed and
can be expressed as

r = s2
u

s2
[ [10−A/10, 10A/10], A ≥ 0. (9)

Figure 3 shows the principle of double-threshold ED [8, 17],
which is accepted as a viable solution to copying with the defect

Fig. 2. Layout of CSD.

Fig. 1. Passive location system based on troposcatter.
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caused by varying noises. λ1 and λ2 denote two thresholds, which
can be expressed as

l1 =
																	
2
M

Q−1(Pf ) + 1

√( )
1
r
s2

l2 =
																	
2
M

Q−1(Pf ) + 1

√( )
rs2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

. (10)

As equation (10), ρ and σ2 need to be precisely estimated. A
confusion area exists between λ1 and λ2.

Figure 4 shows the PD of CSD with the parameter PFA = 0.01,
A = 0.5, σ2 = 1, Pe = 10−4. It indicates that SNR has a great effect
on signal detection. Meanwhile, large number of terminal nodes
can lead to a better performance.

The main drawback of double-threshold ED is the confusion
area and dependence on knowledge of background noises. Low
SNR can contribute a poor performance to double-threshold
ED. As known, troposcatter has a relatively high propagation
loss and the received signal suffers from low SNR. Therefore, sig-
nal detection with good performance is in urgent need.

Blind signal detection

Filtering model

Empirical mode decomposition (EMD) based on Hilbert–Huang
transform can decompose any complex signal into several
sequences, which can be designated as intrinsic mode functions
(IMFs). Every IMF represents a simple oscillatory mode [18].
Steps are as follows.

Steps of EMD

(1) Set i = 1, r0(t) = x(t).
(2) Identify all extremum of ri−1(t) and connect the sequential local

maxima (minima) via cubic spline to drive maxi−1(t) (mini−1(t)), here
maxi−1(t), mini−1(t) denote the upper and lower envelops, respectively.

(3) Define baseline mi−1(t) as the average of the upper and lower
envelopes, namely mi−1(t) = [maxi−1(t) + mini−1(t)]/2.

(4) Extract local oscillation mode as IMFi(t) = ri−1(t)-mi−1(t). If mean IMFi(t)
is 0, it can be treated as a true IMF, or else repeat steps (1)–(3) until its
mean is 0.

(5) Compute the residue following ri(t) = ri−1(t)-IMFi(t).
(6) i = i + 1, return to step (2) until that the residue is a constant or the

number of extremum is less than three.

The final consequences of EMD can be given by

x(t) =
∑n
i=1

hi(t) + rn(t), (11)

where x(t) denotes the original signal, rn(t) the remainder term,
hi(t) the ith IMF. Each hi(t) has a single frequency. The first m

IMFs with high frequency are usually treated as background
noises. The clean signal f(t) and noises s(t) can be reconstructed as

f (t) = ∑n
i=m+1

hi(t) + rn(t),

s(t) = ∑m
i=1

hi(t),

⎧⎪⎪⎨
⎪⎪⎩ (12)

The primary weakness of EMD is mode mixing, which can be
defined as a single IMF including oscillations of dramatically dis-
parate scales, or a component of similar scale residing in different
IMFs. When a signal is affected by interference, this problem is
more likely to exist. Ensemble EMD (EEMD) can effectively copy
with mode mixing [19]. According to EEMD, white noises are
repeatedly added to the original data. Aim of above step is to hom-
ogenize signal scale in time-frequency space. As usual, variance of
added white noise is 0.2s2

s , here s
2
s is the variance of original data.

Figure 5 shows the process of EEMD, here,
			
N

√ = 0.2s2
s /e. To

regulate the precision and running time, value of e is usually
assigned as 0.01. However, EEMD brings a new problem that
the signal will be inevitably polluted by added white noises.
Complementary EEMD (CEEMD) can reduce the reconstruction
errors caused by the added white noises. According to CEEMD
[20], white noises are added in pairs to the signal. The chief
innovation of CEEMD can be expressed as

r+ij (t) = f (t) + ni(t),
r−ij (t) = f (t) − ni(t).

{
(13)

Above noise-added data are decomposed via EMD. c+ij (t)
(c−ij (t)) represents the jth IMF derived from the ith noise-added
data. The final IMF can be obtained as

IMFj(t) = 1
N

∑N
n=1

[c+i,j(t) + c−i,j(t)]. (14)

As stated above, CEEMD can guarantee relatively actual IMFs.
Then, the main problem is to determine parameter m in equa-
tion (12). To indicate uncertainty of determining m, we employ
Heavysine signal added with different white noises as a reference.
After decomposing signal on the basis of CEEMD, we successively
reconstruct the signal and background noises according to equa-
tion (12). SNR is employed to evaluate the consequence, which is

Fig. 3. Principle of double-threshold ED.

Fig. 4. PD of CSD.
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defined as

SNR = 10 lg

∑M
k=1 s

2
k∑M

k=1 (sk − gk)2
[ ]

, (15)

where sk denotes the original Heavysine signal, gk the recon-
structed signal, M the sampling points. SNR with higher ampli-
tude indicates that the reconstructed signal is more coincident
with original signal. Namely, eliminated noises is more authentic.

Figure 6 displays SNR corresponding to different m. The
respective characteristics of signals lead to different optimal m.
Therefore, determining m is relatively difficult and needs abun-
dant experiment. To accurately recognize IMFs, principal compo-
nent analysis (PCA) is employed [21]. However, complex matrix
operation existing in PCA may lead to a long running time.
Entropy theory is accepted as an effective way to explicitly depict
a signal, which can be expressed as [22]

H(x) = −
∑L
i=1

P(x = ai) log[P(x = ai)], (16)

where P(x = ai) stands for the probability of x = ai. Entropy with a
bigger value indicates that the signal is more unsteady and con-
tains much more noises. The entropy of adjacent IMF is employed
as a standard. Approach to determine m can be presented as
follows.

Approach to determine m

(1) Decompose the received signal on the basis of CEEMD.
(2) Calculate the entropy of each IMF.
(3) Successively calculate the difference of adjacent entropy (ΔH). If β

meets DHb+1 , DH, then m = β.

Here

DH = 1
n− 1

∑n−1

i=1

DHi, DHi = Hi − Hi+1. (17)

Signal detection based on ED and filtering model

Figure 7 shows the process of blind signal detection proposed in
this paper. Firstly, CEEMD adaptively decomposes the signal
received by passive system. Then, entropy theory described by
equations (16) and (17) is used to precisely recognize conse-
quences. IMFs treated as noises can be employed to calculate
threshold of ED. Meanwhile, residual IMFs are used to estimate
the observed energy on the basis of equation (4). In this way,
SNR can be obviously enhanced. Because of CEEMD and entropy
theory, the signal detection proposed in this paper can run

Fig. 5. Process of EEMD.

Fig. 6. SNR of proposed signals.

Fig. 7. Process of blind signal detection.
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without human intervention, threshold can be constantly updated
during the signal detection running. Because complicated matrix
operations do not exist, its complexity can be approved.

To indicate the superiority of improved CEEMD (ICEEMD)
model, a monopulse radar is treated as our target. Pulse wave
added with AWGN is employed as received signal, amplitude
and duty ratio of pulse wave is 2 and 5%, respectively. ICEEMD,
wavelet, and AR models are employed to process the received sig-
nal. SNR described in equation (15) is also treated as a standard.
Parameters of wavelet model have varied styles. After repeated
simulations, model with db5 function, scale 5, and soft threshold
function has the best performance among different wavelet mod-
els. Table 1 shows SNR of original signals and signals processed
by different models. From Table 1, SNR is obviously enhanced
by the filtering models to a certain extent. ICEEMD can most pre-
cisely reconstruct the signal. As well, AR model performs better
than wavelet model.

Example analysis

In this section, above pulse wave with AWGN is also employed to
imitate received signal. Figure 8 displays receiver operating char-
acteristic of different ED with parameters: A = 0.5, σ2 = 1, L = 4,
Pe = 10−4. Abscissa denotes the probability of false alarm; ordinate
denotes the theoretical probability of detection. For conventional

ED, threshold is estimated according to the background noises
extracted by ICEEMD; original received signal is employed to esti-
mate the energy level. For double-threshold ED, A and σ2 are
available. ICEEMD model denotes the blind signal detection pro-
posed in this paper. Because AR model performs better than
wavelet model, we employ it as a reference. Similar to ICEEMD
model, background noises and observed energy are estimated
by the AR model. Figure 9 shows theoretical PD changing with
SNR with the same parameters and PFA = 0.01. Abscissa denotes
the SNR of received signal.

As shown in Fig. 8, ICEEMD model can better improve ED
than AR model. Although double-threshold ED can somewhat
improve the performance of signal detection, knowledge of back-
ground noises must be available.

Figure 9 also indicates the superiority of the blind signal detec-
tion algorithm proposed in this paper. Because ICEEMD and AR
models can enhance the SNR, these two models have better per-
formance with the low SNR than conventional models. During
above simulations, the blind signal detection can run without
priori knowledge and user intervention.

Conclusions

In this work, considering the absent knowledge and low SNR of
received signal, we propose a blind signal detection algorithm to

Fig. 8. ROC of energy detection improved by different models. (a) A = 0.5; (b) A = 1.0; (c) A = 1.5.

Table 1. SNR of original and processed signals.

Variance Signals A = 0.5 A = 1.0 A = 1.5

σ2 = 1.0 Original signal −4.09 −4.51 −4.65

Wavelet model −3.14 −3.51 −3.87

AR model −1.90 −2.32 −2.13

ICEEMD model −0.94 −1.22 −1.35

σ2 = 1.5 Original signal −5.94 −6.16 −6.55

Wavelet model −4.57 −5.53 −6.04

AR model −3.79 −4.07 −4.48

ICEEMD model −2.54 −2.72 −3.25

Fig. 9. SNR of signal processed by different models.

1132 Zan Liu et al.

https://doi.org/10.1017/S1759078718001289 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078718001289


improve the detection performance of passive location system
based on troposcatter. CEEMD improved by entropy theory is
proposed to process the received signal, and ED is operated on
the basis of consequences. This model can run without human
intervention and effectively copy with the varying noises.
Simulation examples indicate that the blind signal detection pro-
posed in this paper can effectively detect the signal. It can also be
employed for the cognitive radio system.

Acknowledgements. The authors declare that there is no conflict of interests
regarding the publication of this paper. This work was supported by the
National Natural Science Foundation of China under grant No. 61671468
and 61701525. It also was supported by Postdoctoral Science Foundation of
China under grant No. 2017M623351.

References

1. Wang Z, Wang M, Wang Q, Cheng Z and Zhang X (2017) Receiving
antenna mode of troposcatter passive ranging based on the signal group
delay. IET Microwaves, Antennas & Propagation 11, 121–128.

2. Wang M, Wang Z, Wang J and Cheng Z (2017) Fading correlation
modelling for troposcatter microwave propagation in array antenna
detection applications. IET Microwaves, Antennas & Propagation 11,
833–843.

3. Wang Q, Wang Z, Cheng Z and Wang M (2014) The troposcatter array
signal receiving model and processing algorithm. 12th International
Conference on Signal Processing (ICSP), Hangzhou, China, pp. 283–287.

4. Yang F, Xu Q and Li B (2017) Ship detection from optical satellite image
based on saliency segmentation and structure-LBP feature. IEEE
Geoscience & Remote Sensing Letters 14, 1–5.

5. Dinc E and Akan OB (2015) A ray-based channel modeling approach for
MIMO troposcatter beyond-line-of-sight (b-LoS) communications. IEEE
Transactions on Communications 63, 1690–1699.

6. Luini L, Riva C, Emiliani L and Capsoni C (2016) Worst-month tropo-
spheric attenuation prediction: application of a new approach. European
Conference on Antennas & Propagation, Davos, Switzerland, pp. 1–5.

7. Bae S, So J and Kim H (2017) On optimal cooperative sensing with
energy detection in cognitive radio. Sensors 17, 1–15.

8. Verma P and Singh B (2016) Overcoming sensing failure problem in
double threshold based cooperative spectrum sensing. Optik 127, 4200–
4204.

9. Liu X, Zhang C and Tan X (2014) Double-threshold cooperative detec-
tion for cognitive radio based on weighing. Wireless Communications
and Mobile Computing 14, 1231–1243.

10. Joshi DR, Popescu DC and Dobre OA (2010) Adaptive spectrum sensing
with noise variance estimation for dynamic cognitive radio systems. 44th
Annual Conference on Information Sciences and Systems, Princeton, USA,
pp. 1–5.

11. Song X, Zhou C, Hepburn DM and Zhang G (2017) Second generation
wavelet transform for data denoising in PD measurement. IEEE
Transactions on Dielectrics & Electrical Insulation 14, 1531–1537.

12. Zhuang M and Wang Z (2017) Troposcatter array signal detection based
on frequency and spatial fading correlation. Electronics Letters 53, 1564–
1566.

13. de Paula A and Panazio C (2014) Cooperative spectrum sensing under
unreliable reporting channels. Wireless Networks 20, 1399–1407.

14. Yue W, Zheng B, Meng Q, Cui J and Xie P (2011) Robust cooperative
spectrum sensing schemes for fading channels in cognitive radio networks.
Science China (Information Sciences) 54, 348–359.

15. Chatziantoniou E, Allen B, Velisavljevic V, Karadimas P and Coon J
(2017) Energy detection based spectrum sensing over two-wave with dif-
fuse power fading channels. IEEE Transactions on Vehicular Technology
66, 868–874.

16. Li C, Chen X and Liu X (2018) Cognitive tropospheric scatter communi-
cation. IEEE Transactions on Vehicular Technology 67, 1482–1491.

17. Ahuja B and Kaur G (2017) Design of an improved spectrum sensing
technique using dynamic double threshold for cognitive radio networks.
Wireless Personal Communications 3, 1–24.

18. Li J, Wang J, Zhang X and Tang W (2017). Empirical mode decompos-
ition based on instantaneous frequency boundary. Electronics Letters 53,
781–783.

19. Liu Z, Cui Y and Li W (2017) A classification method for complex power
quality disturbances using EEMD and rank wavelet SVM. IEEE
Transactions on Smart Grid 6, 1678–1685.

20. Xu Y, Luo M, Li T and Song G (2017) ECG signal de-noising and base-
line wander correction based on CEEMDAN and wavelet threshold.
Sensors 17, 1–16.

21. Sharifi R and Langari R (2017) Nonlinear sensor fault diagnosis using
mixture of probabilistic PCA models. Mechanical Systems & Signal
Processing 85, 511–521.

22. Lim M and Yuen PC (2016) Entropy measurement for biometric verifica-
tion systems. IEEE Transaction on Cybernetics 46, 1065–1077.

Zan Liu received the B.S. and M.S. degrees in
2013 and 2015, respectively, from Air Force
Engineering University, Xi’an. He is currently
working toward the Ph.D. degree in the Air
and Missile Defense College. His research inter-
ests include information theory and passive
radar system.

Xihong Chen received the M.S. degree in commu-
nication engineering from Xidian University,
Xi’an, in 1992 and the Ph.D. degree from Missile
College of Air Force Engineering University
in 2010. He is currently a professor with Air
and Missile Defense College, AFEU, Xi’an. His
research interests include information theory,
information security, and signal processing.

Qiang Liu received the B.S. and M.S. degrees
in 2017 and 2009, respectively, from Air
Force Engineering University, Xi’an. He has
got his Ph.D. degree in 2013, also from the
Air Force Engineering University. His research
interests include information security and sig-
nal processing.

Zedong Xie received the B.S. and M.S. degrees in
2012 and 2014, respectively, from Air Force
Engineering University, Xi’an. He is currently
working toward the Ph.D. degree in the Air
and Missile Defense College. His research inter-
ests include MIMO-OFDM in troposcatter com-
munications and anti-jamming techniques.

International Journal of Microwave and Wireless Technologies 1133

https://doi.org/10.1017/S1759078718001289 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078718001289

	A blind signal detection algorithm for passive location system based on troposcatter
	Introduction
	Passive location system based on troposcatter
	Blind signal detection
	Filtering model
	Signal detection based on ED and filtering model

	Example analysis
	Conclusions
	Acknowledgements
	References


