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Abstract
As a strengthening of Hadwiger’s conjecture, Gerards and Seymour conjectured that every graph with no
odd Kt minor is (t − 1)-colourable. We prove two weaker variants of this conjecture. Firstly, we show
that for each t� 2, every graph with no odd Kt minor has a partition of its vertex set into 6t − 9 sets
V1, . . . ,V6t−9 such that each Vi induces a subgraph of bounded maximum degree. Secondly, we prove
that for each t� 2, every graph with no odd Kt minor has a partition of its vertex set into 10t − 13 sets
V1, . . . ,V10t−13 such that each Vi induces a subgraph with components of bounded size. The second the-
orem improves a result of Kawarabayashi (2008), which states that the vertex set can be partitioned into
496t such sets.

2010 MSC Codes: Primary 05C15; Secondary 05C83

1. Introduction
Every graph in this paper is finite and simple. For a non-negative integer k, a graph G is (properly)
k-colourable if there are k pairwise disjoint sets V1, . . . ,Vk with V(G)= ⋃k

i=1 Vi such that Vi
induces a subgraph of maximum degree 0 for 1� i� k.

In 1943, Hadwiger [11] proposed the following question, which is called ‘Hadwiger’s conjec-
ture’, one of the deepest conjectures in graph theory. For more on this conjecture and its variants,
readers are referred to the recent survey of Seymour [27].

Conjecture 1.1. (Hadwiger [11]). For each integer t� 1, every graph with no Kt minor is
(t − 1)-colourable.

Robertson, Seymour and Thomas [26] proved that the conjecture is true for t� 6, but the
conjecture remains open for t� 7. Kostochka [20, 21] and Thomason [28, 29] proved that graphs
with no Kt minor are O(t

√
log t)-colourable, by showing that these graphs contain a vertex of

degree O(t
√
log t). It is still open whether every graph with no Kt minor is ct-colourable for some

c> 0 independent of t.
Gerards and Seymour (see [15, Section 6.5]) proposed the following odd-minor variant of

Hadwiger’s conjecture.
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Conjecture 1.2. (Gerards and Seymour (see [15, Section 6.5])). For each integer t� 1, every
graph with no odd Kt minor is (t − 1)-colourable.

Catlin [2] proved this conjecture for t = 4, and Guenin [10] announced a proof for t = 5, but
the proof has not been written. Geelen, Gerards, Reed, Seymour and Vetta [8] proved that every
graph with no odd Kt minor is O(t

√
log t)-colourable.

A defective colouring (see [3, 31]) is a colouring that relaxes the degree condition. A graph G
is k-colourable with defect d if there are k pairwise disjoint sets V1, . . . ,Vk with V(G)= ⋃k

i=1 Vi
such that everyVi induces a subgraph of maximum degree at most d. Note thatG is k-colourable if
and only if G is k-colourable with defect 0. A clustered colouring is a colouring that relaxes the size
of monochromatic components. A graphG is k-colourable with clustering M if there are k pairwise
disjoint sets V1, . . . ,Vk with V(G)= ⋃k

i=1 Vi such that every Vi induces a subgraph having no
component with more thanM vertices. For a class C of graphs, the defective chromatic number of
C is the minimum k such that for some d, all graphs in C are k-colourable with defect d. Similarly
the clustered chromatic number of C is the minimum k such that for some M, all graphs in C are
k-colourable with clusteringM.

We present two theorems, both of which are relaxations of Conjecture 1.2 for graphs with no
odd Kt minor. Our first theorem is about defective colouring.

Theorem 1.3. For each integer t� 2, there exists an integer s= s(t) such that every graph G with no
odd Kt minor is (6t − 9)-colourable with defect s.

We remark that the number 6t − 9 of colours cannot be reduced to a number less than t − 1
(see Theorem 2.1).

Our second theorem is about clustered colouring. Kawarabayashi [17] proved that the class of
graphs with no odd Kt minor has clustered chromatic number at most 496t.

Theorem 1.4. (Kawarabayashi [17]). For each integer t� 2, there is an integer C = C(t) such that
every graph G with no odd Kt minor is 496t-colourable with clustering C.

We improve 496t to 10t − 13 as follows.

Theorem 1.5. For each integer t� 2, there exists an integer C = C(t) such that every graph G with
no odd Kt minor is (10t − 13)-colourable with clustering C.

We also remark that 10t − 13 cannot be reduced to a number less than t − 1. Neither
Theorem 1.3 nor Theorem 1.5 can be extended for list-colourings, which we will discuss in
Section 6.

The paper is organized as follows. In Section 2 we review related results on minors, some of
which will be used in our proof. We briefly introduce some basic notions in Section 3, discuss
the structure of graphs with no odd Kt minor in Section 4, and prove Theorems 1.3 and 1.5 in
Section 5. In Section 6, we make some further remarks, including extension of our main results to
a slightly larger class of graphs. The Appendix reviews elementary concepts of signed graphs and
minors.

2. Previous results on improper colouring and forbiddenminors
There are many studies regarding improper colourings of graphs with forbidden minors.
Kawarabayashi andMohar [18] proved that the clustered chromatic number of the class of graphs
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with noKt minor is at most �(31/2)t�. This was improved to �(7t − 3)/2� byWood [30]. Edwards,
Kang, Kim, Oum and Seymour [6] investigated defective colouring of graphs with no Kt minor,
and proved that the defective chromatic number of the graphs with no Kt minor equals t − 1.

Theorem 2.1. (Edwards, Kang, Kim, Oum and Seymour [6]). For each integer t� 1, there exists
an integer s(t)=O(t2 log t) such that every graph G with no Kt minor is (t − 1)-colourable with
defect s(t). Moreover, this is sharp in the sense that we cannot reduce the number t − 1 of colours to
t − 2.

They also proved that the clustered chromatic number of the class of graphs with noKt minor is
at most 4t − 4. Liu and Oum [22] proved that for every graph H, every graph G with no H minor
and maximum degree at most � is 3-colourable with clustering f (H,�) for some function f ,
which generalises the result of Esperet and Joret [7] for graphs embeddable on surfaces of bounded
Euler genus. Combined with Theorem 2.1, this implies that the clustered chromatic number of the
class of graphs with no Kt minor is at most 3t − 3. Van den Heuvel and Wood [13] proved that
every graph with no Kt minor is (2t − 2)-colourable with clustering �(t − 2)/2�, using a different
proof that does not rely on the excluded minor structure theorem. Dvořák and Norin [5] proved
that the clustered chromatic number of the class of graphs with noKt minor and treewidth at most
w is at most t − 1, and announced that the clustered chromatic number of the class of graphs with
no Kt minor equals t − 1.

What happens if the forbidden graphH is not complete? Let It be a graph on t vertices with no
edges, and for graphs G andH, let G+H be a graph obtained from the disjoint union of G and H
by adding an edge between each vertex of G and each vertex of H. For positive integers s and t, let
K∗
s,t be a graph obtained from Ks + It by subdividing every edge joining vertices of the subgraph

Ks once. Recently, Ossona de Mendez, Oum and Wood [25] investigated defective colouring for
various graph classes. One of their results implies the following, which extends Theorem 2.1 to a
larger class of graphs.

Theorem 2.2. (Ossona de Mendez, Oum and Wood [25]). For integers s, t� 1 and real num-
bers δ1, δ2 > 0, there exists M =M(s, t, δ1, δ2) such that every graph G satisfying the following three
conditions is s-colourable with defect M.

(1) G contains no K∗
s,t as a subgraph.

(2) Every subgraph of G has average degree at most δ1.
(3) For every graph H whose 1-subdivision is a subgraph of G, the average degree of H is at

most δ2.

Moreover, this is sharp in the sense that we cannot reduce the number s to s− 1.

Since K∗
s,t is a bipartite Ks + It subdivision, Theorem 2.2 implies that the defective chromatic

number of the class of graphs with no bipartite Ks + It subdivision equals s as follows. (The lower
bound is obtained by Theorem 2.1.)

Corollary 2.3. For positive integers s and t, there is an integer N =N(s, t) such that every graph G
with no bipartite Ks + It subdivision is s-colourable with defect N.

Proof. By [1, 19], there is c0 > 0 such that for each integer p� 1, every n-vertex graph with aver-
age degree at least c0p2 contains Kp as a topological minor. Since G contains no bipartite Ks + It
subdivision, the graph G contains no K∗

s,t as a subgraph, and no bipartite Ks+t subdivision. If there
is a subgraph H of G with average degree at least 2c0(s+ t)2, then let H0 be a bipartite spanning

https://doi.org/10.1017/S0963548318000548 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548318000548


Combinatorics, Probability and Computing 743

subgraph ofH with at least |E(H)|/2 edges. SinceH0 has average degree at least c0(s+ t)2, it follows
that H contains a bipartite Ks+t subdivision, contradicting the assumption on G. Hence every
subgraph of G has average degree at most 2c0(s+ t)2. If there is a graph H whose 1-subdivision is
a subgraph of G, then the average degree of H is at most c0(s+ t)2, because otherwise H contains
Ks+t as a topological minor, and its 1-subdivision is bipartite.

By Theorem 2.2, G is s-colourable with defectM(s, t, 2c0(s+ t)2, c0(s+ t)2).

Since Kt + I1 is isomorphic to Kt+1, Theorem 2.1 can be extended to graphs with no bipartite
clique subdivision.

Corollary 2.4. For each integer t� 1, the defective chromatic number of the class of graphs with no
bipartite Kt+1 subdivision equals t.

Mohar, Reed andWood [23] studied clustered colourings of graphs with no Ck+1 minor, where
Ck+1 denotes a cycle of length k+ 1. They proved that for every integer k� 2, every graph with no
Ck+1 minor is �3 log2 k�-colourable with clustering k, and the number of colours is asymptotically
tight. Norin, Scott, Seymour and Wood [24] proved that for every graph H, the clustered chro-
matic number of the class of H-minor-free graphs is tied to the tree-depth of H, giving a partial
answer to a conjecture in [25].

Liu and Oum [22] proved that for every graph H and every integer �, the class of graphs with
no odd H minor and maximum degree at most � has the clustered chromatic number at most 3.

Theorem 2.5. (Liu and Oum [22]). For every graph H and every integer �� 0, there is C =
C(H,�) such that for every graph G with maximum degree at most� and no odd H minor, there are
pairwise disjoint subsets V1,V2,V3 of V(G) such that V1 ∪V2 ∪V3 =V(G) and every component
of G[Vi] has at most C vertices for i= 1, 2, 3.

3. Preliminaries
We follow the definitions in [4] unless stated otherwise. In this section, G and H always denote
graphs. For each integer N � 0, let [N] be the set {1, . . . ,N}. If N = 0, then [N] is an empty set.
For a graph H, let �(H) be the maximum degree of vertices in H. For S⊆V(H), let H[S] be the
subgraph of H induced by S.

A subset S⊆V(G) is stable if no two vertices in S are adjacent. Let G∪H and G∩H be
graphs (V(G)∪V(H), E(G)∪ E(H)) and (V(G)∩V(H), E(G)∩ E(H)), respectively. A pair (A, B)
of subgraphs of G is a separation of G if G=A∪ B. The order of a separation (A, B) of G is
|V(A∩ B)|. A bipartition {X, Y} of a bipartite graph H is a set of two disjoint stable subsets such
that X ∪ Y =V(G).

Colouring. For a subset S of vertices of G and a set T of colours, a function α : S→ T is a colour-
ing on S. A colour class of a colouring α : S→ T is α−1(i) for some i ∈ T. A subgraph H of G is
monochromatic if every vertex of H has the same α value.

A colouring α on S is proper if α(u) �= α(v) for every uv ∈ E(G[S]); equivalently, every colour
class of α is stable. For a non-negative integer k, a graph G is k-colourable if there is a proper
colouring α :V(G)→ [k]. For integers k, d� 0, a graph G is k-colourable with defect d if there is
a colouring α :V(G)→ [k] such that every colour class induces a graph with maximum degree
at most d, and G is k-colourable with clustering d if there is a colouring α :V(G)→ [k] such
that every colour class induces a subgraph with no connected components having more than d
vertices.
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Paths. A path is a graph that consists of k vertices v1, . . . , vk for some integer k� 1 and k− 1
edges v1v2, . . . , vk−1vk. The vertices v1 and vk are called ends, and all other vertices v2, . . . , vk−1
are called internal vertices.

The path P joins u, v ∈V(G) if u and v are ends of P. For vertices v,w ∈V(P), P(v,w) denotes
the subpath of P with the ends v and w.

A path P joins two sets V1,V2 ⊆V(G) if it joins a vertex in V1 and a vertex in V2. The length of
a path is its number of edges. The parity of a path P is the parity of its length.

Two paths P and Q in G are vertex-disjoint if V(P)∩V(Q)= ∅. They are internally disjoint1 if
every common vertex of P and Q is an end of both P and Q.

For S⊆V(G), an S-path is a path in G that joins two distinct vertices in S. For a colouring
α : S→ {1, 2}, an S-path P from u to v in G is parity-breaking with respect to α if

|E(P)| �≡ α(u)− α(v) ( mod 2).

For a connected bipartite subgraph H of G with a proper colouring β :V(H)→ {1, 2}, a V(H)-
path P in G is parity-breaking with respect to H if P is parity-breaking with respect to β . This is
well-defined since a proper colouring of H is unique up to permuting colours. We will use the
following observation in Section 4.

Observation 3.1.

(1) For S⊆V(G) and a colouring α : S→ {1, 2}, let P, Q be internally disjoint S-paths sharing
precisely one end. Then the S-path P ∪Q is parity-breaking with respect to α if and only if
exactly one of P and Q is parity-breaking with respect to α.

(2) For a connected bipartite subgraph H of G, no path in H is parity-breaking with respect
to H.

Minors. A graphH is aminor ofG if a graph isomorphic toH can be obtained fromG by deleting
vertices or edges and contracting edges. If there are edges wu and wv for some vertex w /∈ {u, v}
and we contract an edge uv, then one of these two edges is removed after contraction to avoid
parallel edges. A graph G contains an H minor (or H as aminor) if H is a minor of G.

Topological minors. An H-subdivision is a graph obtained from H by subdividing edges, where
edges may be subdivided more than once. A graph G contains an H-subdivision (or H as a
topological minor), if G contains a subgraph isomorphic to an H-subdivision.

Since everyH-subdivisionH′ is built fromH by replacing all edges ofH with internally disjoint
paths called the linking paths, there are vertices of H′ that correspond to vertices of H, which we
call branch vertices.

Odd minors. For S⊆V(G) and a colouring α : S→ {1, 2}, an edge uv ∈ E(G[S]) is bichromatic if
α(u) �= α(v) andmonochromatic otherwise.

For graphs G and H, G contains H as an odd minor if there exist vertex-disjoint sub-
graphs {Tu}u∈V(H) in G which are trees, and a colouring α :

⋃
u∈V(H) V(Tu)→ {1, 2} such that

for every u ∈V(H), every edge in Tu is bichromatic, and for every edge vw ∈ E(H), there is a
monochromatic edge e ∈ E(G) that joins V(Tv) and V(Tw).

We will use the following alternative definition in Section 4.

1It is called independent in [4].

https://doi.org/10.1017/S0963548318000548 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548318000548


Combinatorics, Probability and Computing 745

Observation 3.2. For graphs G and H, G contains H as an odd minor if and only if there exist
vertex-disjoint subgraphs {Tu}u∈V(H) in G which are trees, and a colouring α :

⋃
u∈V(H) V(Tu)→

{1, 2} such that:

(1) for every u ∈V(H), every edge in Tu is bichromatic,
(2) there are internally disjoint paths {Pe}e∈E(H) in G,
(3) for every e= vw ∈ E(H), Pe joins V(Tv) and V(Tw), has no internal vertex in

⋃
u∈V(H)

V(Tu), and is parity-breaking with respect to α.

We remark that for two graphs G and H, G contains H as an odd minor if and only if a
signed graph (G, E(G)) contains a signed graph (H, E(H)) as a minor, which we will discuss in
the Appendix.

4. The structure of graphs with no odd clique minor
The proof of Theorem 2.1 is based on the fact that every graph with no Kt minor has a vertex
of degree at most ct for some ct . In contrast to graphs with no Kt minor, graphs with no odd Kt
minor may have arbitrarily large minimum degree; for example, complete bipartite graphs have
no odd K3 minor.

To prove Theorems 1.3 and 1.5, we use the following strategy similar to the one by Geelen,
Gerards, Reed, Seymour and Vetta [8]. If a graph G has no bipartite subdivision of some graph,
then we apply Corollary 2.3. Otherwise, we will show in Theorem 4.5 that G contains a bipartite
block after removing few vertices, which allows us to use precolouring arguments in the following
section.

First of all, we describe how to find an odd Kt minor in a graph G if the graph contains a
bipartite K2t−2 + It subdivision with many vertex-disjoint parity-breaking paths between branch
vertices of the subdivision.

Lemma 4.1. For t� 2, let G be a graph that contains a bipartite K2t−2 + It subdivision H, and let C
be the set of all branch vertices of K2t−2 + It in H. If there are t − 1 vertex-disjoint parity-breaking
C-paths with respect to H, then G contains an odd Kt minor.

Proof. For convenience, we identify each vertex in C with its corresponding vertex of K2t−2 + It .
For a collection Q of paths, let �(Q)= ∑

P∈Q |E(P)|. Let P be a collection of t − 1 vertex-
disjoint parity-breaking C-paths with respect to H, satisfying the following:

(a)
∑

P∈P |E(P) \ E(H)| is minimum, and
(b) subject to (a), �(P) is minimum.

Note that no vertex in C is an internal vertex of a path in P . To see this, if a vertex in C is
an internal vertex of a path Q ∈P , then Q contains a proper subpath Q′ that is a parity-breaking
C-path with respect to H. ForQ:= (P \ {Q})∪ {Q′} it follows that∑

P∈Q
|E(P) \ E(H)|�

∑
P∈P

|E(P) \ E(H)|

and �(Q)< �(P), contradicting our choice of P .
For distinct u, v ∈ C, if uv ∈ E(K2t−2 + It), then let Qu,v be the linking path from u to v in H. If

uv /∈ E(K2t−2 + It), then letQu,v be a graph with two vertices u and v and no edges. Note that there
are 2t − 2 branch vertices that appear in paths in P , and t unused branch vertices. Let C0 ⊆ C be
the set of those unused t branch vertices.
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Claim 1. Let u, v be distinct vertices in C.

(1) If u, v ∈ C0, then no path P ∈P intersects Qu,v.2
(2) If u ∈ C0, then Qu,v intersects at most one path P in P , and if so, then the intersection is a

subpath of both Qu,v and P and contains v.

Proof of Claim 1. We may assume uv ∈ E(K2t−2 + It), otherwise V(Qu,v)⊆ C and the claim
is trivial. Let u ∈ C0, and suppose Qu,v intersects a path in P . Since no path in P inter-
sects u, starting from u and following Qu,v we arrive at the first vertex w ∈V(Qu,v) on some
path P ∈P .

Write P =A∪ B, where A and B are two subpaths of P with the only common vertex w. Since
w ∈V(H), either A or B is parity-breaking with respect to H, and we may assume A is parity-
breaking with respect to H. By Observation 3.1, a path R=A∪Qu,v(w, u) is parity-breaking
with respect to H, and it intersects no path in P other than P. Therefore, we conclude that
(P \ {P})∪ {R} is a set of t − 1 vertex-disjoint parity-breaking C-paths with respect to H. By our
assumption onP , P does not havemore edges not inH than R. This implies E(B)⊆ E(H), and thus
B=Qu,v(w, v) since one of the ends of B is inC and no path inP intersects u. Note thatA intersects
Qu,v only at w, since B=Qu,v(w, v).

Since P and Qu,v share a common subpath from w to v and w is the only vertex that belongs
to both Qu,v(w, u) and some path in P , P is the only path that intersects Qu,v. In particular,
B= P ∩Qu,v is a path that contains v, and v /∈ C0.

Let P = {P1, . . . , Pt−1}, and for 1� i� t − 1, let xi and yi be the ends of Pi. Let C1 =
{x1, . . . , xt−1} and C2 = {y1, . . . , yt−1}.

For v ∈ C, if v corresponds to a vertex in the subgraph K2t−2 of K2t−2 + It , then we call v Type-
A. Otherwise we call v Type-B. Let q be the number of i (1� i� t − 1) such that both xi and yi are
Type-A, and r be the number of i such that exactly one of xi and yi is Type-A, and s= t − 1− q− r.
Then there are (2t − 2)− (2q+ r) vertices of Type-A in C0. Since q+ r + s= t − 1, it follows that
(2t − 2)− (2q+ r)� r + s. Therefore, the number of vertices in C0 of Type-A is at least r + s.
Thus, we choose an ordering z1, . . . , zt of the vertices in C0 such that for 1� i� t − 1 if xi or yi is
Type-B, then zi is a vertex of Type-A.

In summary, zixi, ziyi ∈ E(K2t−2 + It) for 1� i� t − 1. Equivalently, if zi is Type-B, then both
xi and yi are Type-A.

Let β :V(H)→ {1, 2} be a proper colouring of H unique up to permuting colours. In order to
find an odd Kt minor, we now aim to construct vertex-disjoint subgraphsM1, . . . ,Mt in G which
are trees and a colouring α :

⋃t
i=1 V(Mi)→ {1, 2} as in Observation 3.2.

For 1� i� t − 1, letMi = Pi ∪Qzi,yi if zi is Type-A, andMi = Pi ∪Qzi,xi if zi is Type-B. LetMt
be a graph with the only vertex zt . If i< t, then by Claim 1, Pi ∩Qzi,yi or Pi ∩Qzi,xi is a subpath
of Pi and so Mi is a tree with maximum degree at most 3 and at most one vertex of degree 3. We
choose a colouring α :

⋃t
i=1 V(Mi)→ {1, 2} such that

(1) α on V(Mi) is a proper colouring ofMi and α(xi)= β(xi) for all 1� i� t − 1, and
(2) α(zt)= β(zt) if and only if zt is Type-B.

Observation 3.1 implies that, for 1� i� t − 1, α(yi) �= β(yi) since Pi is parity-breaking with
respect to H and α(zi)= β(zi) if and only if zi is Type-B.

For 1� i< j� t, we are now ready to construct a path Pi,j joining V(Mi) and V(Mj) that is
parity-breaking with respect to α and satisfies Observation 3.2. This will show that G contains an
odd Kt minor. The structure of Pi,j depends on the types of zi and zj.

2Two subgraphs intersect if they share at least one common vertex.

https://doi.org/10.1017/S0963548318000548 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548318000548


Combinatorics, Probability and Computing 747

Case 1. Both zi and zj are Type-A.

Following Qzj,xi from zj to xi, we arrive at the first vertex ai,j in V(Pi)∩V(Qzj,xi). By Claim 1,
Qzj,xi and Pi share the subpath from ai,j to xi. Since Pi(xi, ai,j) is in H and α(xi)= β(xi), it fol-
lows that α(ai,j)= β(ai,j) by Observation 3.1. Let us define Pi,j =Qzj,xi(zj, ai,j). Since α(zj) �= β(zj),
α(ai,j)= β(ai,j) and Pi,j is a subpath of Qzj,xi , we conclude that Pi,j is parity-breaking with respect
to α by Observation 3.1.

Case 2. zi and zj are of different types.

Let us define Pi,j:=Qzi,zj . By Claim 1, Pi,j intersects no path in P . Since α(zi)= β(zi), α(zj) �=
β(zj), and Qzi,zj is in H, Pi,j is parity-breaking with respect to α by Observation 3.1.

Case 3. Both zi and zj are Type-B.

Since zi is Type-B, yi is Type-A. Following Qzj,yi from zj to yi, we arrive at the first ver-
tex ai,j in V(Pi)∩V(Qzj,yi). Claim 1 implies that Qzj,yi and Pi share the subpath from ai,j to yi.
Since Pi(yi, ai,j) is in H and α(yi) �= β(yi), it follows that α(ai,j) �= β(ai,j). Let us define Pi,j:=
Qzj,yi(zj, ai,j). Since α(zj)= β(zj), α(ai,j) �= β(ai,j) and Pi,j is inH, Pi,j is parity-breaking with respect
to α by Observation 3.1.

We use the following lemma, which asserts that the family of S-paths of odd length satisfies the
Erdős–Pósa property.

Lemma 4.2. (Geelen, Gerards, Reed, Seymour and Vetta [8, Lemma 11]). Let G be a graph and
S⊆V(G). For every integer �� 1, G contains � vertex-disjoint S-paths of odd length, or there is
X ⊆V(G) with |X|� 2� − 2 such that G \ X contains no S-path of odd length.

Observation 4.3. Let G and H be graphs and X ⊆V(G). If G contains an H-subdivision K, then
G \ X contains anH′-subdivision K ′ such thatH′ =H \ Y for some Y ⊆V(H) with |Y|� |X| and
K ′ is a subgraph of K.

Proof. It is easy to see that ifG has anH-subdivision K and v is a vertex of K, then there is a vertex
w of H such that G \ v has a (H \w)-subdivision.

The following lemma is a variation of [8, Lemma 15].

Lemma 4.4. Let � be a positive integer and G be a graph. Let H be a bipartite Ks + It subdivision
in G for integers s� 2� and t� 1, and C be the set of all branch vertices in H. At least one of the
following holds.

• There exists X ⊆V(G) with |X|� 2� − 2 such that G− X has a bipartite block U that contains
at least s+ t − |X| vertices in C \ X and all linking paths in H between them.

• G has � vertex-disjoint parity-breaking C-paths with respect to H.

Proof. (1)We claim that either there are � vertex-disjoint parity-breaking C-paths in G with respect
to H, or there is X ⊆V(G) with |X|� 2� − 2 such that G \ X contains no parity-breaking C-path
with respect to H.

https://doi.org/10.1017/S0963548318000548 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548318000548


748 D. Y. Kang and S.-I. Oum

Let {L, R} be the unique bipartition of H. Without loss of generality, we may assume that every
linking path corresponding to an edge in Ks + It has even length, because otherwise, for every
branch vertex v ∈ C ∩ L, we subdivide each edge e ∈ E(G) incident with v once. This gives an
H-subdivision H′ and a G-subdivision G′ such that H′ is a bipartite subgraph of G′. We may
assume V(H)⊆V(H′) and V(G)⊆V(G′), and then every vertex in V(G′) \V(G) has degree 2.
Note that all vertices in C are in the same part of the bipartition of H′, and thus every path in H′
between vertices in C has even length. It is easy to check the following.

• A C-path of odd length in G′ corresponds to a parity-breaking C-path in G with respect toH.
• If there is X′ ⊆V(G′) with |X′|� 2� − 2 such that G′ \ X′ contains no C-path of odd length,
then we may assume X′ ⊆V(G) since every vertex in V(G′) \V(G) has degree 2.

Lemma 4.2 claims that either G′ contains � vertex-disjoint C-paths of odd length, or there
is X′ ⊆V(G′) with |X′|� 2� − 2 such that G′ \ X′ contains no C-path of odd length. This
proves (1).

SupposeG contains no � vertex-disjoint parity-breakingC-paths with respect toH. By (1), there
is X ⊆V(G) with |X|� 2� − 2 such that G \ X contains no parity-breaking C-path with respect to
H. For convenience, we identify each vertex in C with its corresponding vertex of Ks + It . For
distinct u, v ∈ C, if uv ∈ E(Ks + It) then let Qu,v be the linking path from u to v in H. If uv /∈
E(Ks + It), then let Qu,v be a graph with two vertices u and v and no edges.
(2)We claim that there is a block U in G \ X containing at least s+ t − |X| vertices in C \ X and all
linking paths in H between them.

By Observation 4.3, G \ X contains a (Ka + Ib)-subdivision K such that Ka + Ib = (Ks + It) \ Y
for some Y ⊆V(Ks + It) with |Y|� |X| and K is a subgraph of H. Let T be the set of all branch
vertices in K, where |T|� a+ b= s+ t − |Y|� s+ t − |X|.

Since a� s− |Y|� 2 and a+ b= s+ t − |Y|� 3, Ka + Ib is 2-connected. Therefore, K is
2-connected and all vertices in T are in the same block of G \ X.
(3)We claim that U is bipartite.

Suppose U contains an odd-length cycle D. For two distinct vertices u, v ∈ C ∩V(U), there are
two vertex-disjoint paths inU joining {u, v} andV(D) byMenger’s theorem. Using these paths, we
obtain both an odd-length path and an even-length path from u to v in U. One of those paths is a
parity-breaking C-path with respect toH, contradicting that G \ X has no parity-breaking C-path
with respect to H.

Now we are ready to prove the main theorem of this section.

Theorem 4.5. Let t� 2 be an integer and G a graph. If G contains no odd Kt minor and contains a
bipartite K2t−2 + It subdivision, then there is X ⊆V(G) with |X|� 2t − 4 such that G \ X contains
a bipartite block U having at least t + 3 vertices.

Proof. LetH be a bipartite K2t−2 + It subdivision of G, and let C = {v1, . . . , v3t−2} be the set of all
branch vertices in H. For convenience, we identify each vertex in C with its corresponding vertex
in V(K2t−2 + It). Let C1 ⊆ C be the set of branch vertices corresponding to vertices in K2t−2, and
let C2 = C \ C1 be the set of branch vertices corresponding to vertices in It .

By Lemmas 4.1 and 4.4, there exists X ⊆V(G) with |X|� 2t − 4 such that G \ X has a bipartite
blockU containing at least (3t − 2)− |X| vertices in C \ X and all linking paths between them. Let
C′ ⊆ C be those (3t − 2)− |X|� t + 2 branch vertices in U, and let H′ be the union of all linking
paths between vertices in C′, which is a subgraph of U.

Recall that we identified C ⊆V(H) with V(K2t−2 + It). Since vertices in C1 form a clique
of K2t−2 + It and |C′ ∩ C1|� |C′| − |C2|� 2, the subgraph of K2t−2 + It induced by C′ is not
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bipartite. To obtain H′ from the induced subgraph of K2t−2 + It , we should subdivide edges at
least once, because H′ is bipartite. Thus H′ contains a vertex other than vertices in C′, implying
|V(U)|� |V(H′)|� |C′| + 1� t + 3.

5. Proofs of Theorems 1.3 and 1.5
For a classF of graphs and an integer d� 0, a graphG has a (d,F)-colouring if there is f :V(G)→
[d] such that G[f−1({i})] is in F for all i ∈ [d]. A class F of graphs is closed under isomorphisms
if, for all G ∈F , every graph isomorphic to G is in F . A class F of graphs is closed under taking
disjoint unions if, for all G,H ∈F , the disjoint union of G and H is in F .

Now we are ready to prove the following lemma, following the idea of Kawarabayashi and
Mohar [18].

Lemma 5.1. Let t� 2 and d� 3 be integers, and let F be a class of graphs closed under
isomorphisms and taking disjoint unions, which satisfies the following.

(i) F contains every graph with at most 4t − 7 vertices.
(ii) If a graph H contains no odd Kt minor and no bipartite K2t−2 + It subdivision, then H has a

(d,F)-colouring.

Then every graph with no odd Kt minor has a (d + 4t − 7,F)-colouring.

Proof. We prove the following stronger claim.

Claim 1. Let G be a graph with no odd Kt minor, Z ⊆V(G) with |Z|� 4t − 7, and let f : Z →
[d + 4t − 7] be a colouring. Then G has a (d + 4t − 7,F)-colouring g that satisfies the following.

(a) For every z ∈ Z, f (z)= g(z).
(b) For every v ∈ Z and its neighbour w /∈ Z, g(v) �= g(w).

Let G be a counter-example with the minimum |V(G)| + |E(G)|. As the claim is true for graphs
with at most 4t − 7 vertices by giving distinct colours to each vertex not in Z, |V(G)|� 4t − 6.

(1) Z is stable.

Suppose there are adjacent z1, z2 ∈ Z. Applying the claim on G′ =G \ z1z2 with the same Z
and f ,G′ has a (d + 4t − 7,F)-colouring g that satisfies the claim.We claim that every component
of G[g−1({i})] for some i ∈ [d + 4t − 7] is in F . Let C be a component of G[g−1({i})] for some
i ∈ [d + 4t − 7]. If V(C)∩ Z �= ∅ then V(C)⊆ Z by (b), implying C ∈F as |V(C)|� |Z|� 4t − 7.
If V(C)∩ Z = ∅ then C is a component of G′[g−1({i})], which implies C ∈F . Therefore, g is a
(d + 4t − 7,F)-colouring of G satisfying (a) and (b), contradicting our assumption.

(2) For every separation (A, B) of order at most 2t − 3, we have either V(A) \V(B)⊆ Z or
V(B) \V(A)⊆ Z.

Suppose G has a separation (A, B) of order at most 2t − 3 such that both V(A) \V(B) \ Z and
V(B) \V(A) \ Z are non-empty. Since |Z| = |V(A)∩ Z| + |(V(B) \V(A))∩ Z|, we may assume
|(V(B) \V(A))∩ Z|� �|Z|/2�� 2t − 4. Note thatV(B) \V(A) \ Z �= ∅ implies that |V(A)∪ Z| <
|V(G)| and we can apply the claim onA∪G[Z] with Z and f . Let g1 be a (d + 4t − 7,F)-colouring
of A∪G[Z] satisfying (a) and (b). Let Z′ =V(A∩ B)∪ (V(B)∩ Z).Since |Z′| = |V(A∩ B)| + |
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(V(B) \V(A))∩ Z|� 4t − 7, we can apply the claim on B with Z′ and g1|Z′ . Let g2 be a (d + 4t −
7,F)-colouring of B satisfying (a) and (b).

Let g be a colouring on V(G) such that for each vertex v of G,

g(v)=
{
g1(v) for v ∈V(A),
g2(v) for v ∈V(B).

This is well-defined since g1 is identical to g2 on Z′. We claim that g is a (d + 4t − 7,F)-colouring
of G satisfying (a) and (b), which contradicts our assumption.

By the definition of g1, it follows that g(z)= g1(z)= f (z) for every z ∈ Z. For every vw ∈ E(G)
with v ∈ Z and w /∈ Z, g(v) �= g(w) since g1(v)= g(v) �= g(w)= g2(w) if w ∈V(A) and g2(v)=
g(v) �= g(w)= g2(w) if w ∈V(B). This verifies (a) and (b).

Let C be a component of G[g−1({i})] for some i ∈ [d + 4t − 7]. If V(C)∩ Z �= ∅ then V(C)∩
(V(A) \ Z)= ∅ by the definition of g1 and (b), andV(C)∩ (V(B) \V(A) \ Z)= ∅ by the definition
of g2 and (b). This impliesV(C)⊆ Z and thusC ∈F as |V(C)|� |Z|� 4t − 7. IfV(C)∩ Z = ∅ and
V(A)∩V(B)∩V(C) �= ∅ then V(C)⊆ Z′ \ Z ⊆V(A)∩V(B) by the definition of g2 and (b). Thus
C is a component of G[g−1

1 ({i})], implying C ∈F . Finally, if V(C)∩ Z = ∅ and V(A)∩V(B)∩
V(C)= ∅, then eitherV(C)⊆V(A) \V(B) \ Z orV(C)⊆V(B) \V(A) \ Z, which implies thatC ∈
F as C is a component of either G[g−1

1 ({i})] or G[g−1
2 ({i})].

(3) G \ Z contains a bipartite K2t−2 + It subdivision.

Since |Z|� 4t − 7, we may assume f (Z)⊆ {d + 1, . . . , d + 4t − 7} by permuting colours.
Suppose G \ Z does not contain a bipartite K2t−2 + It subdivision. Let g0 be a (d,F)-colouring
of G \ Z. Let g :V(G)→ [d + 4t − 7] be a colouring such that for each vertex v of G,

g(v)=
{
g1(v) for every v ∈V(G) \ Z,
f (z) for every z ∈ Z.

We claim that g is a (d + 4t − 7,F)-colouring of G satisfying (a) and (b), which contradicts our
assumption. Let C be a component of G[g−1({i})] for some i ∈ [d + 4t − 7]. Since g is identical
to g1 on V(G) \ Z and g(u) �= g(v) for every u ∈V(G) \ Z and v ∈ Z, C is a component of either
G[g−1

1 ({i})] or G[ f−1({i})]. This implies C ∈F . This proves (3).

Since G contains a bipartite K2t−2 + It subdivision, Theorem 4.5 implies that there exists X ⊆
V(G) with |X|� 2t − 4 such that G \ X admits a block decomposition with a bipartite block U
having at least t + 3 vertices.

(4) Every component of G \ X \V(U) is a subgraph of G[Z].

Let C be a component of G \ X \V(U). Let VC be the set of vertices in U adjacent to a vertex
in C. As U is a block and C is a component of G \ X \V(U), it follows that |VC|� 1. If |VC| = 1
then let vC be the unique vertex in VC. Let AC =G[V(C)∪ X ∪VC] and BC =G \V(C). Note that
V(AC)∩V(BC)= X ∪VC and (AC, BC) is a separation of G of order at most 2t − 3, since |X| +
|VC|� 2t − 3. By (2), either V(AC) \V(BC) or V(BC) \V(AC) is in Z. Since Z is stable, V(U) \
VC ⊆V(BC) \V(AC) and U is 2-connected as |V(U)|� t + 3, V(BC) \V(AC) is not a subset Z.
Therefore, V(AC) \V(BC)=V(C) is a subset of Z. This proves (4).

Since U \ Z is a bipartite subgraph of G, let {X1, X2} be its bipartition. By (4), it follows
that V(G)= Z ∪ (X \ Z)∪ X1 ∪ X2. Let us choose three colours {c1, c2, c3} ⊆ [4t − 4] \ f (Z). Let
g :V(G)→ [4t − 4]⊆ [d + 4t − 7] be a colouring defined as follows:
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g(x)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
f (x) for x ∈ Z,
c1 for x ∈ X \ Z,
c2 if x ∈ X1,
c3 if x ∈ X2.

We claim that g is a (d + 4t − 7,F)-colouring of G satisfying (a) and (b), which contradicts our
assumption.

LetC be a component ofG[g−1({i})] for some i ∈ [d + 4t − 7]. One of the following cases holds:
either V(C)⊆ Z or V(C)⊆ X \ Z or V(C)⊆ X1 or V(C)⊆ X2. Since |Z| and |X| are at most 4t − 7
and both X1 and X2 are stable in G, C is in F .

Now we present proofs of our main theorems.

Proof of Theorem 1.3. Let F be the set of graphs of maximum degree at most max (N(2t −
2, t), 4t − 8) where N is in Corollary 2.3. Corollary 2.3 implies that every graph with no bipartite
K2t−2 + It subdivision has a (2t − 2,F)-colouring. By Lemma 5.1, G has a (6t − 9,F)-colouring,
implying that G is (6t − 9)-colourable with defect max (N(2t − 2, t), 4t − 8).

Proof of Theorem 1.5. Let u(t):= C(t,N(2t − 2, t)) where C is in Theorem 2.5 and N is in
Corollary 2.3. Let F be the set of graphs that every component has at most max (u(t), 4t − 7)
vertices. By Corollary 2.3 and Theorem 2.5, every graph with no odd Kt minor and no bipartite
K2t−2 + It subdivision has a (3(2t − 2),F)-colouring. By Lemma 5.1, G has a (10t − 13,F)-
colouring, implying that G is (10t − 13)-colourable with clustering max (u(t), 4t − 7).

6. Concluding remarks
6.1 List-colouring variant
We may consider a list-colouring variant of defective colouring. For integers s,N � 0, a graph G
is s-choosable with defect N if, for every set of lists {Lv}v∈V(G) with |Lv|� s for every v ∈V(G),
there is a map f :V(G)→ ⋃

v∈V(G) Lv with f (v) ∈ Lv for each v ∈V(G) such that G[ f−1({i})] has
maximum degree at most N for every i ∈ ⋃

v∈V(G) Lv.
As we remarked in Section 1, Theorems 2.1 and 2.2 can be extended for list-colourings. For

instance, Ossona de Mendez, Oum and Wood [25] showed that for integers s, t� 1 and every
graph G with no K∗

s,t subgraph, there isN =N(s, t) such that G is s-choosable with defectN. It fol-
lows that for t� 1, every graph with noKt+1 minor is t-choosable with defectM for some constant
M =M(t), which is also implied by the proof of Edwards, Kang, Kim, Oum and Seymour [6].

Note that every n-vertex graph with no Kt minor contains O(t
√
log t n) edges [20, 21, 28, 29].

In contrast to graphs with no Kt minor, an n-vertex graph with no odd K3 minor may contain
�(n2) edges. For example, complete bipartite graphs have no odd K3 minor.

Theorem 6.1. (Kang [16]). For each integer N � 0, there is a function s= s(d)= (1/2+
o(1)) log2 d as d → ∞ such that if a graph G has minimum degree at least d, G is not s-choosable
with defect N.

By Theorem 6.1, it follows that for integers t� 1 and s,N � 0, there are graphs with no odd Kt
minor not s-choosable with defect N.

6.2 Extending Theorems 1.3 and 1.5
We extend our main results to a slightly larger class of graphs. As we mentioned in Section 3,
G contains H as an odd minor if and only if a signed graph (G, E(G)) contains a signed graph
(H, E(H)) as a minor. We review the concepts of signed graphs and their minors in the Appendix.
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Given � ⊆ E(H), we provide alternative characterization for signed graphs (G, E(G)) contain-
ing (H,�) as a minor. A signed graph (G, E(G)) contains a signed graph (H,�) as aminor if and
only if

(1) there exist vertex-disjoint subgraphs {Tu}u∈V(H) in G which are trees, and
(2) a colouring α :

⋃
u∈V(H) V(Tu)→ {1, 2} such that for every u ∈V(H), every edge in Tu is

bichromatic, and for every edge vw ∈ E(H), there is an edge e ∈ E(G) that joins V(Tv) and
V(Tw) where e is monochromatic if and only if vw ∈ �.

Note that for every� ⊆ E(Kt), a signed graph (K2t , E(K2t)) contains (Kt ,�) as a minor. Replacing
t by 2t, Theorem 1.3 implies that for every t� 2 and every � ⊆ E(Kt), if (G, E(G)) contains no
(Kt ,�) as a minor, then G is (12t − 9)-colourable with defect s(2t). Theorem 1.5 also implies
that for every t� 2 and every � ⊆ E(Kt), if (G, E(G)) contains no (Kt ,�) as a minor, then G is
(20t − 13)-colourable with clustering C(2t).

By modifying the proofs in Section 4, we can improve these bounds further. In the proof
of Lemma 4.1, we join V(Mi) and V(Mj) with a parity-breaking path with respect to α for
1� i< j� t. Because α(xi)= β(xi) and α(yi) �= (yi), we can also join V(Mi) and V(Mj) with a
path that is not parity-breaking with respect to α. In particular, Lemma 4.1 forces not only an odd
Kt minor, but also a signed (Kt ,�) minor for every � ⊆ E(Kt). This extends Theorems 1.3 and 1.5
as follows.

Corollary 6.2. For each integer t� 2, there exists an integer s= s(t) such that for every � ⊆ E(Kt)
and (G, E(G)) with no (Kt ,�)minor, the graph G is (6t − 9)-colourable with defect s.

Corollary 6.3. For each integer t� 2, there exists an integer C = C(t) such that for every � ⊆ E(Kt)
and (G, E(G)) with no (Kt ,�)minor, the graph G is (10t − 13)-colourable with clustering C.

6.3 Upper bound of maximum degree
In Theorem 2.2, the functionM(s, t, δ1, δ2) is defined as follows:

M(s, t, δ1, δ2)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

t − 1 if s= 1,

δ2t(δ1 − 2)
2

+ δ1 if s= 2,

(δ1 − s)
((�δ2�

s− 1

)
(t − 1)+ δ2

2

)
+ δ1 if s> 2.

Therefore, it follows that
N(2t − 2, t)=M(2t − 2, t,O(t2),O(t2))= exp (O(t log t))

in Corollary 2.3. Hence we have the upper bound of s(t)= exp (O(t log t)) in Theorem 1.3.
If one replaces a bipartite K2t−2 + It subdivision of Lemma 4.1 with a bipartite K3t−2 subdivi-

sion, one may set s(t)=O(t4) since N(3t − 3, 1)=O(t4). However, this will increase the number
of colours from 6t − 9 to 7t − 10 of Theorem 1.3, as graphs with no bipartiteK3t−2 subdivision are
defectively coloured with 3t − 3 colours, which is more than 2t − 2 colours in defective colouring
of graphs with no bipartite K2t−2 + It subdivision.
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Appendix: Signed graphs
We review elementary concepts of signed graphs, following definitions in [12] and [14] unless stated
otherwise.

A signed graph (G,�) is a graphG= (V , E) equipped with a signature� ⊆ E. To avoid confusion,
graphs always denote unsigned graphs. Every signed graph is assumed to be simple; parallel edges
and loops are not allowed. If an edge e ∈ E(G) is in �, e is negative. Otherwise, e is positive.

For two sets A and B, A�B denotes the set (A \ B)∪ (B \A). For a graph G and X ⊆V(G), let
δG(X) be the set of edges joining X andV(G) \ X. For a signature�, a re-signing on X is an operation
that replaces � with another signature ��δG(X) for some X ⊆V(G). Note that for X, Y ⊆V(G),
applying re-signing on X and Y is identical to applying re-signing on X�Y . In particular, re-signing
at v is the operation that replaces � with ��δG({v}). Note that applying a re-signing operation on
X is identical to applying re-signing operations at all vertices in X.
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Two signatures� and� ′ are equivalent if� ′ can be obtained from� by re-signing operations;�
and � ′ are equivalent if and only if there is X ⊆V(G) such that � ′ = ��δG(X). Two signed graphs
(G,�) and (G,� ′) are equivalent if � is equivalent to � ′.

A cycle C is called balanced if it contains an even number of negative edges. Two signed graphs
(G,�) and (G,� ′) have the same set of balanced cycles if and only if � and � ′ are equivalent
(see [12]).

A map f :V(G)→V(H) is an isomorphism from (G,�) and (H,� ′) if f is an isomorphism from
G to H, and uv ∈ � if and only if f (u)f (v) ∈ � ′. If there is an isomorphism from (G,�) to (H,� ′),
(G,�) is isomorphic to (H,� ′).

For two signed graphs (G,�) and (H,� ′), (H,� ′) is a minor of (G,�) if a signed graph isomor-
phic to (H,� ′) can be obtained from (G,�) by deleting vertices, deleting edges, applying re-signing
operations, and contracting positive edges.

To avoid parallel edges, if we contract a positive edge uv such that there exists a vertex w /∈
{u, v} and edges wu,wv ∈ E(G) of different signs, then we should remove either wu or wv before
contracting uv.

When applying a series of operations to find minors, we may assume that deleting vertices and
edges always precede re-signing operations; contracting a positive edge uv into a new vertex t and
re-signing at t is identical to re-signing on {u, v} and contracting a positive edge uv into a vertex t.
This implies the following, which can be found in [9].

Lemma A.1. For graphs G, H and a signature � ⊆ E(H), a signed graph (G, E(G)) contains a signed
graph (H,�) as a minor if and only if

(1) there are vertex-disjoint subgraphs {Tu}u∈V(H) of G assigned to vertices in V(H),
(2) for every u ∈V(H), Tu is a tree and has a proper 2-colouring cu :V(Tu)→ {1, 2}, and
(3) for every edge uv ∈ E(H), there is an edge e= ab ∈ E(G) that joins Tu and Tv such that cu(a)=

cv(b) if and only if uv ∈ �.
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