
J. Fluid Mech. (2020), vol. 897, A4. c© The Author(s), 2020.
Published by Cambridge University Press
doi:10.1017/jfm.2020.380

897 A4-1

On the flow separation mechanism in the inverse
Leidenfrost regime

J. Arrieta1 and A. Sevilla2,†
1Instituto Mediterráneo de Estudios Avanzados, UIB-CSIC, 07190, Esporles, Baleares, Spain

2Grupo de Mecánica de Fluidos, Departamento de Ingeniería Térmica y de Fluidos,
Universidad Carlos III de Madrid. Avda. de la Universidad 30, 28911, Leganés, Madrid, Spain

(Received 14 November 2019; revised 5 May 2020; accepted 7 May 2020)

The inverse Leidenfrost regime occurs when a heated object in relative motion with a
liquid is surrounded by a stable vapour layer, drastically reducing the hydrodynamic
drag at large Reynolds numbers due to a delayed separation of the flow. To elucidate
the physical mechanisms that control separation, here we report a numerical study of
the boundary layer equations describing the liquid–vapour flow around a solid sphere
whose surface temperature is above the Leidenfrost point. Our analysis reveals that
the dynamics of the thin layer of vaporised liquid controls the downstream evolution
of the flow, which cannot be properly described substituting the vapour layer by
an effective slip length. In particular, the dominant mechanism responsible for the
separation of the flow is the onset of vapour recirculation caused by the adverse
pressure gradient in the rearward half of the sphere, leading to an explosive growth
of the vapour-layer thickness due to the accumulation of vapour mass. Buoyancy
forces are shown to have an important effect on the onset of recirculation, and thus
on the separation angle. Our results compare favourably with previous experiments.

Key words: boundary layer structure, multiphase flow, condensation/evaporation

1. Introduction
The reduction of hydrodynamic drag in liquid flows at macroscopic and microscopic

scales is of paramount importance to improve the efficiency of many applications
involving liquid–solid contact. A promising drag-reduction method that has been
extensively studied is the generation of a thin layer of gas or a cloud of bubbles in the
wall region to reduce the shear stress and, in the case of flows around bluff bodies, to
delay flow separation, thereby reducing the pressure drag. The lubricating gas layer
can be produced by different mechanisms, including surface superhydrophobicity
(Rothstein 2010), microbubble injection and supercavitation (Ceccio 2010) or surface
heating (Bradfield, Barkdoll & Byrne 1962; Vakarelski et al. 2011; Vakarelski, Chan
& Thoroddsen 2014; Vakarelski et al. 2016, 2017a), to name a few.

Heating a solid object immersed in a liquid to temperatures above the so-called
Leidenfrost temperature generates a stable vapour layer surrounding its surface,
leading to the film-boiling heat transfer regime. This regime has been the subject
of many investigations, partly due to its relevance during the quenching process in
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nuclear reactors, that is known to be relevant in nuclear accidents. An extensive
review of the most relevant experimental and theoretical aspects of film-boiling heat
transfer can be found in Dhir (1998). Most of the previous theoretical studies were
aimed at obtaining accurate predictions for the heat transfer coefficient, rather than
focusing on the mechanisms associated with hydrodynamic drag reduction. One of the
few exceptions is the work of Bradfield et al. (1962), who studied the flow around
a heated hemisphere-cylinder model and reported an important drag reduction effect
due to the formation of a stable vapour layer around the solid surface. The first
measurement of drag of heated spheres above the Leidenfrost temperature in water
was provided by Zvirin, Hewitt & Kenning (1990), who reported a reduction of
less than 10 %. Furthermore, for ambient liquid temperatures close to the saturation
temperature, Zvirin et al. (1990) observed a slender vapour cavity departing from the
equator of the sphere. Later on, Liu & Theofanous (1996) performed an extensive
characterisation of the film-boiling heat transfer of spheres immersed in water in
natural- and forced-convection regimes. These authors noticed that, under certain
conditions, the liquid–vapour flow remained attached along the whole surface of the
sphere. On the theoretical side, Wilson (1979), Epstein & Hauser (1980) and Bang
(1994) pioneered the study of the forced-convection film boiling regime, but none of
these authors studied the flow around a sphere, nor the effect of the relevant control
parameters on the resulting liquid–vapour flow.

More recently, the film-boiling regime has been extensively studied to explore
its potential application as a method to reduce the drag of bluff bodies (Vakarelski
et al. 2011, 2014, 2016, 2017a). In the latter works, the drag reduction effect
observed under film-boiling conditions was referred to as the inverse Leidenfrost
phenomenon. In particular, Vakarelski et al. (2011) performed experiments with freely
falling heated spheres in a quiescent liquid (FC-72 perfluorohexane), that reached
near-terminal velocities in the large-Reynolds-number regime. The stable vapour layer
that developed around the sphere was shown to reduce the hydrodynamic drag by
over 85 %. This drag reduction effect crucially depends on the separation angle which,
in the aforementioned experiments, was found to be delayed up to 130◦, in contrast
with the much smaller value of approximately 80◦ observed in the case without film
boiling for values of the Reynolds below the drag crisis (Achenbach 1972). Later on,
Vakarelski et al. (2014) performed similar experiments using water as working fluid.
In this case, a drag reduction of more than 75 % was also observed, but only in cases
where the temperature of the ambient liquid was close to the saturation temperature.
A detailed characterisation of the inverse Leidenfrost phenomenon was carried out
by Vakarelski et al. (2016) for different liquids having a wide range of viscosities,
observing drag reduction effects consistent with the previous studies. Interestingly,
when the heated solid sphere is released from the surrounding air atmosphere into a
water tank close to the saturation temperature, its impact on the free surface induces
the formation of a slender cavity that remains attached to the sphere, inducing a giant
drag reduction effect of up to 99 % (Vakarelski et al. 2017b).

Despite the considerable research effort devoted to the study of the flow around
bluff bodies in the inverse Leidenfrost regime, there are still fundamental questions
that remain unanswered. Among these questions, maybe the most important one
concerns the mechanisms that control the separation of the liquid–vapour flow around
the bluff body. Indeed, although several explanations have been proposed to explain
the effect of the vapour layer on the observed drag reduction, none of them are based
on solid hydrodynamic grounds. For instance, Vakarelski et al. (2011) suggested that
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the vapour layer effectively transforms the no-slip boundary condition at the solid wall
into a stress-free boundary condition at the liquid–vapour interface. However, the latter
explanation cannot be correct, since the film-boiling regime would then correspond
to the flow around a spherical bubble studied by Moore (1963), who found, however,
that there is no separation of the flow except in a very small region close to the
rear stagnation point. An alternative explanation was proposed by Vakarelski et al.
(2016) and Berry et al. (2017), who suggested that the presence of the vapour layer
induces an effective slip length at the solid wall. However, in the present work we
demonstrate that, although the vapour layer does indeed induce a certain slip velocity
at the interface, the Navier slip approximation used in previous works is not justified,
since it overlooks the non-trivial mechanics associated with the vapour layer. Here
we show that an appropriate description of the vapour-layer dynamics is essential to
understand the resulting two-phase flow around the solid.

Therefore, the present study aims at providing novel theoretical and numerical
insights into the origin of flow separation in the inverse Leidenfrost regime. The
paper is organised as follows. In the next section the formulation of the problem is
derived. Section 3 is devoted to presenting the mechanisms that control the delay
of the separation of the flow, including the buoyancy-free case and the effect of
buoyancy to compare with previous experimental results. The final section presents
the concluding remarks.

2. Formulation
We consider the unbounded laminar axisymmetric flow around a sphere of radius

R with uniform surface temperature Ts. Far from the sphere, a stream of liquid of
density ρ, viscosity µ, temperature T∞ and saturation temperature Tsat, such that T∞<
Tsat < Ts, moves at constant velocity U∞ against the gravitational acceleration, g =
−gez, ez being the upwards direction, so that the modified pressure, p∗

∞
(z∗) + ρgz∗,

takes the constant value P∞ far from the sphere. The wall temperature, Ts, is assumed
to be constant and above the Leidenfrost point (Quéré 2013), so that the heat released
from the sphere vaporises the surrounding liquid and produces a thin vapour layer
adjacent to the wall, as sketched in figure 1. Thus, the configuration under study here
is equivalent to a solid sphere falling at terminal velocity in the inverse Leidenfrost
regime (Vakarelski et al. 2011; Quéré 2013; Vakarelski et al. 2014, 2016).

2.1. Boundary layer approximation
Before stating the mathematical model, we would like to point out that the physical
properties of the working liquid and its associated vapour have been assumed to
be independent of the temperature. Thus, in writing the conservation equations, the
liquid and vapour densities, ρ and ρv, dynamical viscosities, µ and µv, thermal
conductivities, k and kv, and specific heats at constant pressure, c and cpv, are all
treated as constants that, in all the numerical results reported herein, were evaluated
at the liquid film temperature, (T∞ + Tsat)/2, and at the vapour film temperature,
(Ts + Tsat)/2, respectively. Another noteworthy aspect of the flow under study is
the fact that the boundary layer remains laminar for values of the diameter-based
Reynolds number substantially larger than the canonical value of 3 × 105 of the
single-phase incompressible boundary layer around a sphere (Berry et al. 2017).
Indeed, since the liquid tangential velocity at the liquid–vapour interface experiences
only slight deviations from the potential velocity distribution in the region upstream
of the separation point, the no-slip boundary condition that would apply to the liquid
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Vapour
Liquid

yI(œ)

g

Ts œs

œ

R

y*
z*

P∞ = p∞(z*) + ®gz*

U∞

T∞

FIGURE 1. Sketch of the flow and definition of the main variables. Also shown are the
interface position y∗I (θ) (thick line), and several streamlines corresponding to the liquid and
vapour boundary layers (blue and green lines, respectively), for the case of water with
T∞ = 20 ◦C, Ts = 200 ◦C, in the buoyancy-free limit Fr→∞, obtained by numerically
integrating equations (2.1)–(2.11). Note that, for the vapour and liquid boundary layers
to be observable at the scale of the sphere radius, R, the corresponding radial distances
have been made dimensional assuming Re= 103 and a sphere of radius R= 20 mm. The
onset of vapour-flow reversal at θ = θs ' 125◦ leads to a very fast increase of y∗I (θ), that
induces the appearance of a numerical singularity at a certain angle θf ' 127.2◦ > θs, at
which the downstream marching scheme employed in the present work fails to converge.
It is important to emphasise that the liquid boundary layer shows no sign of recirculation
at θf , indicating that the present separation phenomenon fundamentally differs from the
classical one associated with a solid surface.

in the single-phase case is substituted here by a local effective slip condition that
strongly stabilises the liquid boundary layer, thereby justifying the assumption of
laminar flow.

2.1.1. The boundary layer equations
The Reynolds number, Re = ρU∞R/µ, as well as the Péclet number, Re Pr,

where Pr = µc/k is the liquid Prandtl number, are both assumed to be large. Thus,
sufficiently upstream of the separation point, the liquid–vapour flow around the sphere
can be described, in a first approximation, with use made of the boundary layer form
of the mass, momentum and energy conservation equations in spherical coordinates,
together with far-field and wall boundary conditions, as well as appropriate matching
conditions at the liquid–vapour interface, whose radial position r∗ = R + y∗I (θ) has
to be obtained as part of the solution. As illustrated in figure 1, the origin of
the spherical coordinate system (r∗, θ, ϕ) is placed at the centre of the sphere,
with the unit vector associated with the polar angle, θ , pointing in the direction
of the external stream at θ = 0◦. Note also that we have introduced the wall-normal
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coordinate y∗= r∗−R, appropriate for the boundary layer formulation presented below.
Here, starred variables are used to denote the dimensional variables that will have a
dimensionless counterpart in the following development.

To facilitate the numerical integration, common characteristic scales were used to
non-dimensionalise the conservation equations governing the liquid and the vapour
phases, namely those associated with the mechanical boundary layer of the liquid at
the interface. Note that the relative thickness of the mechanical and thermal boundary
layers is controlled by the liquid Prandtl number, which accomplishes the condition
Pr & 1 for the typical working liquids employed in the experiments. Consequently,
the thickness of the velocity boundary layer is an appropriate length scale to non-
dimensionalise the conservation equations. Specifically, in terms of the wall-normal
coordinate y= y∗

√
Re/R, the liquid and vapour polar velocities (u, uv)= (u∗, u∗v)/U∞,

the corresponding radial velocities (v, vv) = (v∗, v∗v)
√

Re/U∞, the modified pressure
P= (p∗ + ρgz∗ − P∞)/(ρU2

∞
), and the reduced liquid and vapour temperatures, Θ =

(T − T∞)/(Tsat− T∞) and Θv = (Tv − Tsat)/(Ts− Tsat), the mass, polar momentum and
energy conservation equations for the liquid phase reduce to

∂(u sin θ)
∂θ

+
∂(v sin θ)

∂y
= 0, (2.1)

u
∂u
∂θ
+ v

∂u
∂y
=

9
8

sin 2θ +
∂2u
∂y2

, (2.2)

u
∂Θ

∂θ
+ v

∂Θ

∂y
=

1
Pr

∂2Θ

∂y2
, (2.3)

respectively, with the pressure gradient given by the outer potential flow, −∂P/∂θ =
9
8 sin 2θ . Equations (2.1)–(2.3) must be integrated in the domain yI(θ)6 y<∞ with the
boundary conditions u− 3

2 sin θ =Θ=0 at y→∞. The corresponding non-dimensional
equations for the vapour stream read

∂(uv sin θ)
∂θ

+
∂(vv sin θ)

∂y
= 0, (2.4)

ρv

ρ

(
uv
∂uv
∂θ
+ vv

∂uv
∂y

)
=

9
8

sin 2θ +
(

1−
ρv

ρ

)
sin θ
Fr2
+
µv

µ

∂2uv
∂y2

, (2.5)

ρv

ρ

(
uv
∂Θv

∂θ
+ vv

∂Θv

∂y

)
=

1
Prv

µv

µ

∂2Θ

∂y2
, (2.6)

to be integrated in the domain 0 6 y 6 yI(θ), with the wall boundary conditions uv =
vv =Θv − 1= 0 at y= 0. The matching conditions at the liquid–vapour interface are
given by the mass, momentum and energy balances at y= yI(θ), namely

u− uv = 0, (2.7)

v −
ρv

ρ
vv −

(
1−

ρv

ρ

)
u

dyI

dθ
= 0, (2.8)

∂u
∂y
−
µv

µ

∂uv
∂y
= 0, (2.9)

Θ − 1=Θv = 0, (2.10)
Ja
Pr

∂Θ

∂y
−
µv

µ

Jav
Prv

∂Θv

∂y
+
ρv

ρ

(
vv − u

dyI

dθ

)
= 0, (2.11)
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representing the no-slip condition, the interfacial mass balance, the continuity of
tangential stresses, the continuity of temperature and the energy balance between
conductive heat fluxes and heat release due to vaporisation, respectively.

The dimensionless parameters governing the flow are, on the one hand, those related
to the physical properties of the fluid, namely the liquid and vapour Prandtl numbers,
Pr = µc/k and Prv = µvcpv/kv, and their corresponding density and viscosity ratios,
ρv/ρ and µv/µ, respectively. On the other hand, the flow is also controlled by the
subcooling Jakob number, Ja = c(Tsat − T∞)/Lv the superheat Jakob number, Jav =
cpv(Ts − Tsat)/Lv, where Lv represents the heat of vaporisation of the fluid, and the
Froude number, Fr=U∞/

√
gR. It is worth pointing out that, as usual in the boundary

layer approximation, the resulting set of (2.1)–(2.11) is independent of the Reynolds
number, that only acts as a scaling factor in the wall-normal direction. In particular,
our boundary layer model predicts that the separation angle should not depend on
the Reynolds number, provided that the interaction of the separated flow with the
boundary layer is weak.

2.1.2. Buoyancy forces and saturation temperature
Note that we have neglected buoyancy forces in the liquid momentum equation (2.2),

since the Archimedes number, Ar = Rgβ(Tsat − T∞)/U2
∞
= Gr/Re2

� 1, where β is
the coefficient of thermal expansion of the liquid and Gr=R3gβ(Tsat − T∞)/ν2 is the
liquid Grashof number. Indeed, in the particular case of a sphere with R = 10 mm
(Vakarelski et al. 2014), and assuming that T∞= 20 ◦C, the Grashof number takes the
value Gr' 1.1× 106. Since Re& 104 in the examples considered in the present work,
the condition Ar � 1 is always satisfied, and thus liquid buoyancy effects can be
neglected in a first approximation. In contrast, the buoyancy force has been retained
in the vapour momentum equation (2.5), an effect that will be shown to play an
important role under most realistic circumstances.

It should also be noted that the temperature of saturation Tsat has been assumed to
remain constant along the liquid–vapour interface. Indeed, Tsat is given as a function
of pressure by the Clausius–Clapeyron equation, from which it is deduced that,
whenever P∞ & ρU2

∞
, as corresponds to all the cases considered herein, the relative

change in Tsat along the interface is 1Tsat/Tsat∼RvTsat∞/Lv, where Tsat∞ represents the
temperature of saturation at ambient pressure and Rv = R0/W is the vapour constant,
with R0 representing the universal gas constant and W the molecular weight of the
vapour. In the particular case of water, and assuming Tsat∞ = 100 ◦C, the parameter
RvTsat∞/Lv takes the values 0.077, and the variations of Tsat can be neglected in a
first approximation.

2.1.3. Validity of the boundary layer approximation
Apart from the validity conditions Re� 1 and Re Pr� 1, that are common to all

boundary layer analyses, the problem at hand presents specific aspects that must be
carefully considered to ensure the slenderness of the two-phase flow around the sphere,
and the assumption of negligible transverse pressure gradients. Indeed, one possible
limitation of the classical boundary layer equations (2.1)–(2.6) may arise from the
radial pressure variations induced by the vapour intake into the inner layer due to
the liquid vaporisation at the interface. The latter transverse pressure variations must
be compared with the polar pressure variations induced by the acceleration of the
external liquid stream. Note that the radial pressure increment is especially relevant
in cases where the temperature of the liquid is close to the saturation temperature,
since most of the thermal energy released by the sphere wall is employed to vaporise
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the surrounding liquid, leading to the largest vapour intakes. Hence, to assess the
validity of the boundary layer approximation, an order of magnitude analysis has
been carried out to estimate the characteristic transverse pressure variations in the
vapour stream when the liquid temperature is close to its saturation value. At leading
order, both the non-dimensional characteristic thickness of the vapour layer, δ∗v/R,
and the ratio of the characteristic radial-to-polar pressure variations, 1p∗y/1p∗θ , can be
estimated by combining the following facts: (i) The balance of vaporisation enthalpy
and heat flux coming from the vapour in the interfacial energy equation (2.11), which
yields kv(Ts − Tsat)/δ

∗

v ∼ ρvLvv
∗

v,c, where v∗v,c is the characteristic radial velocity of
the vapour stream. (ii) The balance between the outer pressure gradient and the
radial diffusion of vapour momentum in the polar momentum equation (2.5), namely
ρU2
∞
/R ∼ µvu∗v,c/δ

∗2
v , where u∗v,c is the characteristic polar velocity of the vapour

stream. (iii) The vapour continuity equation (2.4), providing v∗v,c/δ
∗

v ∼ u∗v,c/R. (iv) The
balance of transverse pressure gradient and radial diffusion of radial momentum in the
radial vapour momentum equation, providing 1p∗y/δ

∗

v ∼µvv
∗

v/δ
∗2
v . The combination of

these four balances yields the estimations

(
1p∗y
1p∗θ

)1/2

∼
δ∗v

R
∼

[
Jav
Prv

ρ

ρv

(
µv

µ

)2
]1/4

1
√

Re
. (2.12)

For the temperature range 300 < Ts < 700 ◦C employed by Vakarelski et al. (2014),
the prefactor of Re−1/2 in equation (2.12) varies from 1.06 to 1.91, which ensures the
validity of the boundary layer approximation at high Reynolds numbers.

2.1.4. Numerical method
The parabolic free-boundary problem given by (2.1)–(2.11) was numerically

integrated using a front-fixed method (Crank 1984). In short, equations (2.1)–(2.11)
were rewritten in terms of the normalised variable Y = y/yI(θ), and integrated making
use of a second-order implicit finite-difference scheme adapted from that proposed
by Anderson, Tannehill & Pletcher (1984). The radial position of the liquid–vapour
interface, yI(θ), is obtained as part of the solution.

2.2. Stagnation-point flow
The initial conditions for the integration of (2.1)–(2.11) were obtained using their
self-similar form near the forward stagnation point, θ � 1 (Epstein & Hauser 1980),
according to the expansion u= F(y)θ +O(θ 2), uv = Fv(y)θ +O(θ 2), v= V(y)+O(θ),
vv = Vv(y)+O(θ), p=− 9

8θ
2
+O(θ 4), yI = YI +O(θ 2), with the constant YI obtained

as part of the solution. Using the latter expansion, the leading-order conservation
equations for the liquid phase reduce to

V ′ + 2F= 0, (2.13)
F2
+ VF′ = 9

4 + F′′, (2.14)
Pr VΘ ′ =Θ ′′, (2.15)

with the boundary conditions F − 3
2 = Θ = 0 at y→∞, while the vapour flow is

governed by the system

V ′v + 2Fv = 0, (2.16)
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ρ

ρv
(F2

v + VvF′v)=
9
4
+

1
Fr2

(
1−

ρv

ρ

)
+
µv

µ
F′′v , (2.17)

Prv
ρ

ρv
VvΘ ′v =

µv

µ
Θ ′′v , (2.18)

subjected to the boundary conditions Fv = Vv = Θv − 1 = 0 at y = 0. Finally, the
matching conditions at y= YI take the simplified leading-order form

F− Fv = V −
ρv

ρ
, (2.19)

Vv =
µ

µv
F′ + F′v, (2.20)

Θ − 1= 0, (2.21)
Θv = 0, (2.22)

Ja
Pr
Θ ′ +

ρv

ρ
Vv =

µv

µ

Jav
Prv

Θ ′v, (2.23)

where primes denote derivatives with respect to y. To determine the solution
of (2.13)–(2.23), use was made of the normalised variable Y = y/YI , and the same
spatial discretisation employed for the downstream evolution problem was used to
obtain the solution of the stagnation-point flow.

2.2.1. Characteristic vapour-layer thickness
The stagnation-point flow provides a useful way to estimate the vapour layer

thickness, and to compare its characteristic value with those reported by Vakarelski
et al. (2014). To that end, a parametric sweep of the self-similar problem (2.13)–(2.23)
was performed using water as working liquid, two values of the Froude number, and
temperature ranges Ts ∈ [400, 800] ◦C and T∞ ∈ [50, 100] ◦C. Figure 2 shows contours
of the dimensional vapour-layer thickness, y∗I =YIR/Re1/2, assuming values of Re=105

and R= 10 mm, which are typical values of the experiments reported by Vakarelski
et al. (2014). The values of the Froude number are Fr= 1 in figure 2(a) and Fr→∞
in figure 2(b). These plots reveal that the thickness of the vapour layer increases
monotonically with the wall and free-stream temperatures. Moreover, it is deduced
that buoyancy facilitates the downstream transport of vapour, resulting in slightly
smaller thicknesses for the case with Fr= 1 (figure 2a), compared with the case with
Fr→∞ (figure 2b), with a maximum relative variation .10 % between both cases.
For the less sub-cooled cases, the vapour-layer thicknesses displayed in figure 2 are in
good agreement with the experiments of Vakarelski et al. (2014) who, in the particular
case of a quiescent sphere, reported values in the range 50 µm. δ∗v .150 µm. Indeed,
note that the vapour layer is expected to be thicker for a quiescent sphere, since in
the latter case the thickness results from a balance between buoyancy and viscous
forces, whereas in the mixed-convection case considered herein the outer pressure
gradient enhances the downstream transport of vapour, reducing the thickness of the
vapour layer with respect to the natural convection case considered by Vakarelski
et al. (2014).

3. Results
3.1. The buoyancy-free limit

The present section is devoted to study the buoyancy-free limit, Fr → ∞, and
to explain the flow separation mechanism. For a given working fluid, the only
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FIGURE 2. The thickness of the vapour layer at the forward stagnation point, y∗I =
YIR/
√

Re for Re = 105 and R = 10 mm (Vakarelski et al. 2014). Here, YI was obtained
by integrating the self-similar system of (2.13)–(2.23) for (a) Fr= 1 and (b) Fr→∞.

dimensionless parameters appearing in (2.1)–(2.11) are the subcooling and superheat
Jakob numbers, Ja and Jav, respectively. Note that water will be considered as the
working fluid in the remainder of the manuscript, since the properties of both its
liquid and vapour states are known with high precision. In contrast, we were unable
to find the properties of the vapour state for the perfluorohexane fluid employed by
Vakarelski et al. (2011).

3.1.1. Description of the flow evolution
The downstream development of the flow is illustrated in figures 3(a) and 3(c),

which show the interface position, yI(θ) (thick solid black line), together with several
vapour and liquid streamlines (green and blue lines, respectively), resulting from the
integration of the system (2.1)–(2.11) with T∞= 50 ◦C and Ts= 500 ◦C in figure 3(a),
and T∞ = 75 ◦C and Ts = 500 ◦C in figure 3(c). In addition, figures 3(b) and 3(d)
display the function yI(θ) (thick solid black line) and several radial profiles of polar
velocity (green and blue lines for the vapour and the liquid, respectively) at three
different positions along the sphere indicated by vertical dash-dotted lines. These
results reveal that the thickness of the vapour layer increases monotonically along
the sphere until a certain angle θf is reached beyond which convergence cannot
be achieved, at least with our numerical method. In particular, θf = 103.7◦ for
T∞= 50 ◦C and θf = 95.7◦ for T∞= 75 ◦C. Notice from figures 3(b) and 3(d) that the
liquid velocity profile is almost uniform along the entire sphere and close to the value
of the outer potential flow, represented by thick dashed lines at the corresponding
station, indicating that the relative velocity increments in the liquid boundary layer
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FIGURE 3. Downstream evolution of the two-phase boundary layer in the buoyancy-free
limit, Fr→∞. (a,c) Streamlines of the liquid and vapour boundary layers (blue and green
lines, respectively for the cases (a) T∞= 50 ◦C (Ja= 0.093) and Ts= 500 ◦C (Jav = 0.356),
and (c) T∞= 75 ◦C (Ja= 0.046) and Ts= 500 ◦C (Jav = 0.356). The effect of condensation
is illustrated by grey streamlines that attach to, and depart from the interface in the vapour
and liquid streams, respectively. (b,d) Green solid lines represent radial profiles of vapour
polar velocity, uv(y), 0 6 y 6 yI , while u(y), y > yI is represented by blue solid lines at
the downstream positions θ = 12.5◦, θ = 45◦ and θ = 77.5◦ for the same parameters as
panels (a) and (c), respectively. The polar velocity of the outer flow at the aforementioned
positions is represented with black dashed lines in panels (b) and (d). The onset of vapour
recirculation takes place at θ = θs ' 103.4◦ in panels (a) and (c), while θs ' 95.1◦ in
panels (b) and (d). A detail of the onset of this recirculation is shown in the insets of
panels (a) and (d), with the dividing streamline that separates the forward and backward
flow plotted as a black solid line. In the four plots, the position of the interface, yI(θ), is
plotted with a thick black line.

due to the shear stress exerted by the vapour are small in both cases. In contrast,
the velocity of the vapour stream is strongly affected by the degree of subcooling.
As the free-stream liquid temperature becomes closer to the saturation temperature,
the mass of vapour produced is larger, increasing the thickness of the vapour layer.
The increased vapour mass flux also affects the shape of the vapour velocity profiles,
which become parabolic for the less subcooled case (figure 3d). Moreover, in this
case the mean velocity of the vapour stream, and in particular the velocity at the
liquid–vapour interface, are both larger than the liquid velocity outside the boundary
layer.

The increasingly larger adverse pressure gradient for θ > 90◦ strongly decelerates
the vapour stream, until an angle θs is reached where ∂uv/∂y = 0, indicating the
onset of a vapour recirculation bubble. In particular, vapour recirculation starts

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

38
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.380


Flow separation in the inverse Leidenfrost regime 897 A4-11

at θs ' 103.4◦ < θf for T∞ = 50 ◦C, and θs ' 95.1◦ < θf for T∞ = 75 ◦C, as shown
in the insets of figures 3(a) and 3(c). From these figures it is also deduced that
the vapour-layer thickness grows very quickly just after the onset of recirculation,
leading to the separation of the two-phase boundary layer. In particular, the departing
angles of the dividing streamlines represented by the black solid lines in the insets
of figures 3(a) and 3(c) are 74◦ and 76◦, respectively. The appearance of reverse flow
in the vapour stream leads to numerical difficulties in the integration of the boundary
layer equations (2.1)–(2.6), which preclude the downstream marching and explain the
numerical singularity encountered at θf .

3.1.2. The flow separation mechanism
In view of the previous observations, the mechanisms that lead to the explosive

growth of the vapour-layer thickness past the angle θs can be understood by taking
into account the effect of the longitudinal pressure gradient, imposed by the outer
potential flow on both the liquid and the vapour boundary layers, together with simple
considerations based on the energy balance at the interface. Indeed, equation (2.11)
indicates that the energy that arrives at the interface by conduction from the wall is
employed to heat the liquid up to the saturation temperature, Tsat, and the excess heat
is responsible for the liquid–vapour phase change as shown in figures 3(a) and 3(c)
by the streamlines that emerge from the interface due to liquid vaporisation, thus
contributing to the injection of fresh fluid into the vapour boundary layer. Since the
thickness of the vapour stream increases monotonically due to the accumulation of
vaporised liquid, the heat flow towards the liquid continually decreases downstream.
Eventually, a certain angle is reached where the energy supplied by the hot wall
is only able to increase the temperature of the liquid up to Tsat, and downstream
from this point the energy required for the liquid to reach Tsat is supplied by vapour
condensation, as illustrated in figures 3(a) and 3(c) by the vapour streamlines that
reattach to the interface close to θf , and by the liquid streamlines that depart from
the interface, both plotted in grey. Although condensation removes vapour from the
inner layer, and therefore tends to decrease the slope of the interface, the latter
effect is counterbalanced by the adverse pressure gradient associated with the outer
potential flow, together with the reduced area per unit streamwise length, both effects
contributing to the fast increase of the interface slope past the angle θ = 90◦. Indeed,
since both the density and the dynamic viscosity of the vapour are much smaller
than the corresponding values for the liquid phase, the pressure gradient has a much
stronger effect on the vapour flow than on the liquid flow, eventually leading to the
onset of vapour recirculation at a certain angle θs. Moreover, for θ > 90◦, the area per
unit streamwise length decreases due to the geometry of the sphere, thus hindering
the downstream transport of the evaporated liquid. These two effects provide the
explanation for the fast increase of the interfacial slope, that eventually leads to the
separation phenomenon observed in the experiments (Vakarelski et al. 2011, 2014,
2016).

It should be highlighted that the separation mechanism explained in the previous
paragraph fundamentally differs from that proposed by Vakarelski et al. (2011), where
the interface was assumed to behave as a shear-free layer due to the smallness of
the vapour-to-liquid density and viscosity ratios. However, our numerical results show
that the viscous shear stress does not vanish at the interface, as can be appreciated in
figure 3(b) and 3(d). Moreover, the growth of the recirculation bubble in the vapour
stream forces the interface slope to increase very quickly to enable the downstream
transport of the accumulated vapour, whereas the liquid boundary layer remains almost
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unaffected by the effect of the pressure gradient imposed by the outer potential flow
and the growth of the vapour-layer thickness. In fact, the liquid flow shows no sign
of recirculation near separation, in contrast with the classical separation scenarios
associated with a solid wall (Goldstein 1948; Schlichting & Gersten 2001) or a
stress-free interface (Leal 1989; Blanco & Magnaudet 1995).

3.1.3. Effective slip length
Recent attempts to understand the observed drag reduction have studied the flow

around a sphere replacing the no-slip boundary condition by an effective slip velocity,
uI , that depends on an arbitrarily defined slip length λ = λ∗

√
Re/R, and the radial

gradient of the polar velocity at the interface (Vakarelski et al. 2016; Berry et al.
2017)

uI = λ
∂u
∂y

∣∣∣∣
y=yI

, (3.1)

where the value of λ is arbitrarily chosen. This approach, that has been used in
the study of the flow around superhydrophobic surfaces (McHale, Flynn & Newton
2011; Gruncell, Sandham & McHale 2013), completely overlooks the dynamics of
gas phase. However, here we demonstrate that, at least in the case of the inverse
Leidenfrost regime, the dynamics of the vapour stream is essential, in that it controls
the explosive growth of the interface leading to flow separation. In particular, the
degree of liquid subcooling strongly affects the vaporisation rate. Indeed, the amount
of vapour produced increases as the ambient liquid temperature approaches the
saturation temperature, since most of the thermal energy coming from the wall is
employed in vaporisation. Consequently, the mean velocity of the gas stream, and
in particular the velocity at the interface, may become larger than the velocity of
the outer potential flow, as was already mentioned in § 3.1. The latter effect can be
appreciated in figure 4(a), where the difference between the interfacial velocity and
the outer potential velocity is represented for the same cases shown in figure 3. In
the less subcooled case (solid line), the difference is positive, since the interface is
accelerated by the large amount of vapour injected to the inner layer. This effect
can also be appreciated in the velocity profiles plotted in figure 3(d) at θ = 45◦ and
θ = 77.5◦, where it is seen that the slope of the liquid stream is slightly negative
and the velocity at the interface is slightly larger than the corresponding value of the
outer flow, represented by the thick dashed lines.

Figure 4(b) shows the downstream evolution of the slip length as a function of the
polar angle. The dashed line corresponds to the case with Ts= 500 ◦C and T∞= 50 ◦C,
whereas the solid line was computed for Ts = 500 ◦C and T∞ = 75 ◦C. Unsurprisingly,
the value of the slip length is not constant along the sphere, since the dynamics
of the vapour layer modifies both the slip velocity and the interfacial shear stress
in a non-trivial way. In particular, the large vapour velocities associated with small
degrees of subcooling impose a negative value to ∂u/∂y at the interface, thereby
leading to negative values of the slip length. Furthermore, at the downstream position
where the liquid slope becomes zero, the slip length becomes infinite, as can be
seen in figure 4(b) for the case Ts = 500 ◦C, T∞ = 75 ◦C (solid line). The latter facts
highlight the importance of studying the dynamics of the gas phase in two-phase
drag reduction configurations, which cannot be properly described using a constant
effective slip length, as already pointed out by Berry et al. (2017).
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FIGURE 4. (a) The difference of the velocity at the interface, uI and the liquid velocity
outside the boundary layer, 3/2 sin θ , for a wall temperature Ts = 500 ◦C, and free-stream
temperatures of T∞= 50 ◦C (dashed line) and T∞= 75 ◦C (solid line). (b) The slip length,
λ, defined as the ratio of the velocity at the interface, uI , and the slope of the velocity at
the interface, ∂u/∂y|yI , for Ts= 500 ◦C and T∞= 50 ◦C (dashed line) and T∞= 75 ◦C (solid
line). The location where the slip length becomes infinite is represented by the vertical
dotted line.

3.2. The effect of buoyancy
The configuration considered herein has been extensively employed in the past
to study both natural- and forced-convection film-boiling regimes. However, most of
these studies were mainly focused on the measurement of the heat transfer coefficient,
and only a few authors paid attention to the separation phenomenon with the level of
detail needed for a reliable quantitative comparison with the results presented herein.
In particular, Zvirin et al. (1990) performed experiments with water under different
conditions observing two different regimes, either the formation of a vapour wake
that separates from the sphere near its equator, or the formation or microbubbles. Liu
& Theofanous (1996) also performed experiments with water where they observed
that, under certain conditions, the vapour layer remained attached along the whole
sphere surface. More recently, Vakarelski et al. (2014) have carried out experiments
with solid spheres falling in water. Since in all these studies the values of the Froude
number are moderately large, we will devote the remainder of this section to discuss
the effect of buoyancy on the separation of the flow.

To determine the numerical angle of separation with a unique criterion that covers
all the cases explored, we decided to use the angle θs at which the vapour shear
stress vanishes at the wall. Indeed, it was observed that, depending on the values
of the vapour-to-liquid density and viscosity ratios, the relative importance of the
convective acceleration compared with the viscous force in the vapour boundary
layer can be small enough to allow the numerical computation of a substantial
region of the recirculating vapour bubble. In the latter cases, the vapour stream
behaves as a lubrication layer with small convective inertia. However, in other cases,
the convective and viscous terms become of the same order near θs, leading to a
numerical singularity that prevents the computation of the vapour recirculation bubble.
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FIGURE 5. Separation angle, θs, as a function of the Froude number, Fr, computed
by integrating the boundary layer equations (2.1)–(2.11). (a) T∞ = 50 ◦C and wall
temperatures of Ts= 400 ◦C (solid line), Ts= 500 ◦C (dashed line) and Ts= 600 ◦C (dotted
line). (b) T∞ = 75 ◦C and wall temperatures of Ts = 400 ◦C (solid line), Ts = 500 ◦C
(dashed line) and Ts = 600 ◦C (dotted line). The inset of panel (b) represents the drag
coefficient as a function of the separation angle, CD(θs), where symbols are experimental
values extracted from Vakarelski et al. (2011), while the solid line represents the function
9/8 sin4 θs, obtained by integrating the pressure distribution of the outer potential flow, and
assuming that the pressure remains constant downstream of the separation point.

Nevertheless, it should be kept in mind that the actual separation angle, θf , is
only slightly larger than θs due to the explosive increase of the interfacial slope
past θs, which is therefore an appropriate measure of the separation angle in a first
approximation.

When the liquid flow is opposite to gravity, as assumed in the present work,
buoyancy forces tend to accelerate the vapour stream along the entire sphere. More
specifically, equation (2.5) indicates that the buoyancy force acting on the vapour
stream is O[(ρ/ρv)Fr−2

], while the pressure force is O(ρ/ρv), indicating that Fr−2

measures the relative importance of buoyancy forces compared to pressure forces.
These two forces contribute to accelerate the vapour stream in the region 0◦6 θ 6 90◦,
but they have opposite effects in the rearward half of the sphere. Indeed, the
competition between the buoyancy force and the adverse pressure gradient is expected
to play a significant role in delaying separation which, as discussed in § 3.1.2, is
mostly controlled by the onset of vapour recirculation. The function θs(Fr) plotted
in figure 5 reveals that, for Fr . 1, the buoyancy force overcomes the deceleration
caused by the adverse pressure gradient, and avoids the formation of a vapour
recirculating bubble, except in a very small region surrounding the rear stagnation
point, θ = 180◦. As the Froude number increases, separation takes place upstream of
the rear stagnation point at an angle θs(Fr) that decreases with increasing Fr, until
an asymptotic angle is reached corresponding to the limit of negligible buoyancy
forces discussed in § 3.1. As previously mentioned, the experiments show a giant
drag reduction effect associated with the delayed separation. To derive a minimal
model for the dependence of the drag coefficient, CD, on the separation angle, θs,
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Reference Ts (◦C) T∞ (◦C) Fr θs (deg.) θ exp
s (deg.)

Zvirin et al. (1990) 640 97.5 5.8 92.1 92.5
Zvirin et al. (1990) 579 70 6.14 95.12 97.8
Zvirin et al. (1990) 695 61.5 6.49 94.8 119.1
Liu & Theofanous (1996) 293 91.5 1.47 103.11 —
Liu & Theofanous (1996) 328 91.3 2.11 96.68 —
Liu & Theofanous (1996) 426 90.9 4.56 91.65 —
Vakarelski et al. (2014) 300 95 12.14 90.79 —
Vakarelski et al. (2014) 500 85 11.18 91.15 —

TABLE 1. Summary of the experiments performed with water in the inverse Leidenfrost
regime around a sphere at high Reynolds numbers. The value of θs was obtained from the
numerical integration of (2.1)–(2.11). The values of θ exp

s were estimated from photographs
reported by Zvirin et al. (1990).

we assume that the pressure distribution along the sphere is given by the potential
flow solution for 0 6 θ 6 θs, and that it remains constant and equal to its value at
θ = θs for θs 6 θ 6 π. The latter assumptions, which are admittedly very strong,
yield the result CD = 9/8 sin4 θs, represented in the inset of figure 5 together with
several experimental results extracted from Vakarelski et al. (2011). Although the
model captures the strong dependence of the drag reduction on the separation angle,
it overestimates the experimental drag coefficient by a factor of almost 3. The latter
discrepancy is probably due to the fact that the pressure in the recirculating vapour
region is larger than the potential value assumed in the model.

Finally, to compare our model predictions with experimental measurements of
the separation angle, we have performed numerical integrations using the working
conditions of Zvirin et al. (1990), Liu & Theofanous (1996) and Vakarelski et al.
(2014), obtaining the results shown in table 1. In all these cases, the numerical
onset of the vapour recirculating bubble occurs at an angle slightly larger than 90◦,
in reasonable quantitative agreement with the experiments of Zvirin et al. (1990).
Indeed, these authors reported close-up photographs of the sphere showing a large
vapour wake departing from an angle that we estimated by image analysis. A similar
vapour cavity was also reported by Vakarelski et al. (2017a) following the impact
of a sphere at a temperature above the Leidenfrost point into water at 95 ◦C. Liu
& Theofanous (1996) also observed a long vapour wake departing from the equator
when water was close to the saturation temperature. All these observations of the
detachment of the vapour cavity close to the equator of the sphere are consistent with
the numerical results summarised in table 1, where the onset of vapour recirculation
takes place close to θ > 90◦. Unfortunately, the rapid downstream growth of the
vapour bubble, and the resulting non-slender, unsteady two-phase wake cannot be
described using our boundary layer formulation. An appropriate theoretical and
numerical description of such flow seems a formidable task beyond the scope of the
present contribution.

4. Conclusions

The significant drag reduction effect in the flow of cold liquids around solid spheres
heated above the Leidenfrost point has been linked to a delay of the separation angle
with respect to the case without a lubricating vapour layer surrounding the sphere,
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causing a decrease in the form drag (Vakarelski et al. 2011, 2014). In the present
work, with the aim at explaining the experimental findings of Vakarelski et al. (2011,
2014, 2016), we have studied the flow in the high-Reynolds-number regime making
use of boundary layer theory. Our results indicate that the tentative explanation
provided by Vakarelski et al. (2011), whereby the presence of the vapour layer
effectively transforms the no-slip boundary condition at the wall into a stress-free
boundary condition, does not explain the observed separation behaviour. Indeed, the
hypothesis of an effectively stress-free interface reduces the problem to the flow
around a spherical bubble at high Reynolds numbers, in which there is no boundary
layer separation except in a very small region close to the rear stagnation point
(Moore 1963). Our findings, as pinpointed by Vakarelski et al. (2016) and Berry
et al. (2017), reveal the central dynamical role played by the vapour layer in the
rapid growth of the interface and the formation of a vapour wake. As a consequence,
the use of an effective slip length (Vakarelski et al. 2016; Berry et al. 2017) is not a
good approximation to the actual flow, since the slip length does not remain constant
along the sphere. Moreover, under realistic parameter combinations, we have shown
that the effective slip length may become locally negative, or even singular.

In contrast with the prevailing explanations, we have revealed that the separation of
the flow in the inverse Leidenfrost regime is profoundly affected by the thin vapour
layer surrounding the sphere. In particular, we have identified two key mechanisms
that hinder the downstream transport of vapour, and force the vapour layer to grow
explosively past the sphere equator. Indeed, for θ > 90◦, the area per unit streamwise
length is reduced as the rear stagnation point is approached. In addition, the adverse
pressure gradient decelerates the vapour stream, eventually leading to the appearance
of a recirculation bubble that forces the liquid–vapour interface to move away from
the wall due to vapour mass conservation. Although condensation also takes place at
the interface when the vapour layer becomes thick enough, the condensation rate is
not enough to overcome both the geometric blocking effect and the adverse pressure
gradient, eventually leading to the separation of the flow from the wall. For sufficiently
small values of the Froude number, buoyancy forces can overcome these effects, and
avoid the formation of the recirculation bubble, whereas for moderately large values
of the Froude number, typical of most experimental conditions, buoyancy forces are
only able to delay the onset of recirculation up to a certain angle θs(Fr) < 180◦. Our
numerical results compare favourably with the experiments of Zvirin et al. (1990), Liu
& Theofanous (1996) and Vakarelski et al. (2011). Nevertheless, new experiments are
needed for a more precise measurement of the separation angle, and for a systematic
exploration of buoyancy effects.

We would finally like to point out that future mathematical models aimed at
describing the inverse Leidenfrost regime with a higher fidelity than the one reported
herein, should contemplate the fact that the downstream evolution of the vapour
layer must be obtained as part of the solution, coupling its governing equations with
those of the liquid. In the present work, the vapour flow is described with the full
boundary layer equations, including the vapour convective inertia which requires
a numerical solution to the problem. Inertial effects in the vapour stream become
especially important in the region of backflow, where the vapour-layer thickness
experiences a large increase. However, in cases where separation does not take place
until the rear stagnation point is reached, like those shown in figure 5 for small
enough values of the Froude number, it might well be the case that a simplified
description of the vapour layer, in which convective inertia is neglected, provides a
good leading-order description. Note that, under the latter approximation, the vapour
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flow would be described as a linear lubrication layer, which can be explicitly solved
as the addition of a Couette flow induced by the polar velocity at the interface, and
a Hagen–Poiseuille flow induced by the pressure gradient of the outer potential flow
(Liu & Theofanous 1996). This simplification would avoid the need for a numerical
calculation of the vapour flow, and only the liquid stream would have to be computed
numerically. However, it must be emphasised that the latter simplified description is
probably not valid to account for separation.
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