
Using speech to identify gesture pen strokes in collaborative,
multimodal device descriptions

JAMES HEROLD1
AND THOMAS F. STAHOVICH2

1Department of Computer Science and Engineering, University of California, Riverside, California, USA
2Department of Mechanical Engineering, University of California, Riverside, California, USA

(RECEIVED May 10, 2010; ACCEPTED February 14, 2011)

Abstract

One challenge in building collaborative design tools that use speech and sketch input is distinguishing gesture pen strokes
from those representing device structure, that is, object strokes. In previous work, we developed a gesture/object classifier
that uses features computed from the pen strokes and the speech aligned with them. Experiments indicated that the speech
features were the most important for distinguishing gestures, thus indicating the critical importance of the speech–sketch
alignment. Consequently, we have developed a new alignment technique that employs a two-step process: the speech is
first explicitly segmented (primarily into clauses), then the segments are aligned with the pen strokes. Our speech segmen-
tation step is unique in that it uses sketch features for locating segment boundaries in multimodal dialog. In addition, it uses
a single classifier to directly combine word-based, prosodic (pause), and sketch-based features. In the second step, seg-
ments are initially aligned with strokes based on temporal correlation, and then classifiers are used to detect and correct
two common alignment errors. Our two-step technique has proven to be substantially more accurate at alignment than
the existing technique that lacked explicit segmentation. It is more important that, for nearly all cases, our new technique
results in greater gesture classification accuracy than the existing technique, and performed nearly as well as the benchmark
manual speech–sketch alignment.

Keywords: Design Descriptions; Gesture/Object Stroke Classification; Multimodal Dialog; Speech Segmentation;
Speech–Sketch Alignment

1. INTRODUCTION

Designers often communicate design concepts to each other
with informal sketches, speech, and gestures. Although the
importance of such communication has long been recognized
by designers (Ullman et al., 1990), traditional design tools do
not support this in any substantive way. Our long-term goal is
to remedy this by creating computational techniques to enable
collaborative design tools that support natural multimodal
communication.

In previous work (Bischel et al., 2009), we conducted a
study to examine the nature of multimodal communication in
collaborative design. Specifically, we examined how design-
ers use natural free-form sketching and speaking to describe
the structure and behavior of a mechanical device. We found
that both the sketch and speech are essential to such descrip-
tions, and that typically neither modality can be understood
without the other. In addition, the wide variety of information

contained in the sketches makes them particularly challenging
to interpret. Although many of the pen strokes portray device
structure, others are gestures, such as arrows used to indicate
motion, or circles used to single out a component being dis-
cussed. Figure 1a, which depicts a pair of C-clamp vise-grip
pliers, is a typical sketch from the study. Consider the chal-
lenge such a drawing poses for any sketch-understanding soft-
ware. To understand this sketch, it is first necessary to distin-
guish the gesture strokes (Fig. 1b) from the object strokes
representing device structure or handwritten text (Fig. 1c).

Separating strokes in this way is valuable beyond the obvious
purpose of facilitating sketch recognition. Most, if not all, ges-
ture strokes have only temporary value. For example, gestures
resolving deictic references or indicating the motion of a part
may be superfluous once the discussion has moved on to a
new topic. However, over time, such gestures accumulate
(e.g., Fig. 1a), obscuring the sketch and hindering discussion.
Detecting these and removing them from view when they are
no longer needed may enable more efficient communication.

As part of our work in Bischel et al. (2009), we developed a
technique for distinguishing gesture strokes from object

Reprint requests to: James Herold, Department of Computer Science
and Engineering, University of California, Riverside, 3329 Utah Street,
Riverside, CA 92507, USA. E-mail: jhero001@ucr.edu

Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2011), 25, 237–254.
# Cambridge University Press 2011 0890-0604/11 $25.00
doi:10.1017/S0890060411000060

237

https://doi.org/10.1017/S0890060411000060 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060411000060


strokes. The technique employs a statistical classifier that uses
features of both the sketch and speech. The sketch features
compute geometric properties of the strokes, and the spatial
and temporal relationships between them. The speech fea-
tures compute statistical properties of the speech aligned
with each stroke. Experiments with the technique indicated
that the speech modality is more important than the sketch
modality for gesture/object classification: the single most ef-
fective feature for classification was a speech feature.

The importance of speech for gesture/object classification
suggests that the accuracy of the speech–sketch alignment
process is critical to gesture classification. The work in Bis-
chel et al. (2009), used a “3-sec” alignment technique, in which
the speech and sketch input were aligned based on temporal
correlation. Each stroke was associated with the words that at
least partially coincided with a temporal window extending
three seconds on either side of the stroke. Our present work is
focused on measuring the performance of this 3-sec alignment
technique, and developing a new alignment technique to
overcome some of its limitations, thus enabling more accurate
gesture/object classification.

To evaluate the 3-sec alignment technique, we began by
manually aligning the speech and sketch from the study in
Bischel et al. (2009), as illustrated in Figure 2. We did this
by first segmenting the speech primarily into clauses and

then aligning these with the strokes to which they refer. Com-
parison of the 3-sec and manual alignment revealed that the
former has substantial room for improvement. For example,
for 41% of pen strokes, there was no intersection between
the 3-sec alignment and the correct (manual) alignment.

Consequently, we sought to develop an improved align-
ment technique, which we modeled on our manual alignment
process. The new technique employs an explicit speech seg-
mentation process, followed by a segment–stroke alignment
process. Because both processes employ statistical classifiers,
we call our technique “classifier-based alignment” (CBA).
Evaluation of the new technique demonstrated that it produces
considerably more accurate alignment than the 3-sec technique.
It is more important, however, that it results in substantially
better gesture classification accuracy.

This work makes several contributions. First, we developed
a technique for segmenting speech into meaningful clauses.
The technique is well suited to the ungrammatical speech
characteristic of multimodal dialog. The technique is effec-
tive, in part, because it uses information from the sketch input
to help process the speech. Second, we developed a novel
technique for aligning the segmented speech with the pen
strokes to which it refers. These two efforts combine to pro-
duce an effective and accurate speech–sketch alignment tech-
nique for multimodal dialog. Third, we demonstrated that the

Fig. 1. (a) A sketch of C-clamp vise-grip pliers, (b) gesture pen strokes, and (c) pen strokes representing device structure and text. [A color
version of this figure can be viewed online at journals.cambridge.org/aie]
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new alignment technique enables accurate classification of
gesture and object strokes in a multimodal dialog.

The next section places this work in the context of related
work. This is followed in Section 3 by a description of our
study from Bischel et al. (2009) and the gesture classification
technique we developed in that work. Section 4 describes our
manual speech–sketch alignment process and presents an
evaluation of the alignment accuracy of the 3-sec technique.
Next, Section 5 describes our classifier-based speech–sketch
alignment technique, including the speech segmentation
technique it employs. Section 6 presents the gesture classifi-
cation accuracy obtained using the two speech–sketch align-
ment techniques and compares this to the accuracy achieved
via manual alignment. After a discussion of these results in
Section 7, conclusions are presented in Section 8.

2. RELATED WORK

Multimodal systems date back at least to the work of Brown
(1979), with subsequent early multimodal systems incorporat-
ing typed language and pointing with a mouse or light-pen
(Wauchope, 1994; Woods et al., 1979). Bolt’s “put-that-there”
system (Bolt, 1980) was the first to incorporate early speech
and three-dimensional pointing recognizers. Quickset (Cohen
et al., 1997) explores a general architecture for multimodal fu-
sion, but unlike our work, QuickSet is a command-based sys-
tem, that is, the utterances are used as verbal replacements for
mouse or menu commands. The iMap system handles free-
hand gestures in a map–control user interface, using prosody
cues to improve gesture recognition (Krahnstoever et al.,
2002). The system in Johnston et al. (2002) provides a speech
and pen interface to restaurant and subway information for
New York City, but it is not a sketching system and has
only text recognition and basic circling and pointing gestures
for the graphical input modality.

Other applications of speaking and sketching include
an early effort that used a diagram and written English text
(Novak & Bulko, 1993), interesting in part because it used a
blackboard to help establish the reference relationships be-
tween the graphical and text entities. BBN’s Portable Voice
Assistant (Oviatt, 2000) uses pen and voice input to enter
and retrieve information on the Web. Their system integrates
simultaneous speech and gesture inputs using a frame-based
system. The Human-Centric Word Processor (Oviatt et al.,
2000) enables radiologists to use pen-based selection gestures
and command-based speech for postdictation correction of
transcriptions. nuSketch COA Creator (Forbus et al., 2001) is
designed as a general purpose multimodal architecture, allow-
ing users to sketch and talk to add symbols to a military map
using commands like “add severely restricted terrain.” This sys-
tem also uses command-based speech, and is focused on issues
of reasoning about the content of the sketch rather than on recog-
nition: the user assigns symbolic labels to the sketched objects.

Many systems have benefited from the series of empirical
studies of multimodal communication in (Oviatt et al., 1997).
Cassell (1998) was among the first to argue that natural, free-
hand gestures can be relevant to human computer interaction,
and presented a helpful framework for gestural interaction.
Oviatt (1999) has demonstrated advantages of multimodal in-
terfaces, noting that multimodal input simplifies the users’
vocabulary and improves accuracy with accented speakers.

Our work is grounded in insights about how people use
multimodal explanations to describe devices. Ullman et al.
(1990) found that engineers commonly use five different cat-
egories of pen strokes in a sketch. His “support” and “draw”
strokes are analogous to our categories of gesture and object
strokes. Heiser and Tversky (2006) concluded that when there
are numerous arrow gestures in a sketch, students can more
easily understand the functionality of a device, illustrating
the importance of gestures in a design sketch.

Fig. 2. An example of the alignment of strokes with the speech that refers to them. The bold arrows link the word groups with the associated
pen strokes. [A color version of this figure can be viewed online at journals.cambridge.org/aie]
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Much of the previous work in understanding descriptions
of mechanical devices has focused solely on sketching of
structure (e.g., Bloomenthal & Zeleznik, 1998; Masry et al.,
2005). By contrast, GIDeSþþ (Silva & Cardoso, 2004) is a
multimodal system specifically designed to understand de-
scriptions of mechanical devices, but it uses pen strokes to re-
place mouse functionality rather than attempting to maintain a
natural sketching environment. Likewise, ASSISTANCE
(Oltmans, 2000) incorporates spoken behavioral descriptions to
supplement the understanding of mechanical device sketches.
However, it relies on limited vocabularies of speech patterns
that must be explicitly identified in advance, where our sys-
tem can adapt to new patterns via user-provided training data.

Hand and arm gestures have long been a topic of research.
Kendon (1997) provides an overview of the study of gesture,
dating back to work by Quintilianus (circa the first century) in
which he details how an orator ought to use gesture in discourse.
More relevant to our work, Kendon explores the organization of
speech and gestures. He finds that speech is organized into “idea
units” marked by prosodic features, such as pitch level and loud-
ness, rather than by lexical properties. Similarly, gestures are or-
ganized into “gesture units.” This suggests the need to segment
our speech prior to aligning it with pen strokes. However, we
segment speech based primarily on lexical considerations,
and align each pen stroke with at most one speech segment.

Efron (1941) classifies hand and arm gestures across three
dimensions: the trajectory of the gesture, whether the gesture
involves the listener, and whether the gesture inherently con-
tains semantic information. In our domain, gestures do not di-
rectly involve a listener, but they do contain semantic infor-
mation that is frequently conveyed through shape.

We find parallels between the pen stroke gestures consid-
ered in our work and the hand and arm gestures studied by
McNeill (1992). In McNeill’s classification scheme, hand/
arm gestures describing objects or actions are called imagistic,
whereas those that do not evoke imagery are called nonimagis-
tic. Imagistic gestures are further subdivided into iconic or me-
taphoric gestures. The former represent concrete concepts,
such as a speaker illustrating how they threw a baseball by mi-
micking the action of throwing. The latter present abstract
imagery, such as a person balling their fists and then quickly
spreading their fingers to convey a metaphoric “explosion,” il-
lustrating frustration about the topic of discussion (McNeill,
1992). Nonimagistic gestures are also divided into two cate-
gories: deictic and beats. The former are pointing gestures,
whereas the latter are typically involuntary movements of
the hands made while speaking, and which carry no meaning.

Gestures are often understood in the context of accompany-
ing speech. Oviatt et al. (1997) studied humans interacting with
dynamic mapping software, quantifying the likelihood that
speaking or sketching would occur first or that they would start
simultaneously. This work was extended by Adler and Davis
(2007) for design descriptions, who found consistent time de-
lay patterns between when a pen stroke was drawn and when
the related speech was spoken. The 3-sec speech–sketch align-
ment technique in Bischel et al. (2009) builds on this.

The findings of Oviatt et al. (1997) and Adler and Davis
(2007) are at odds with findings of McNeill (1992), which
suggest that speech always co-occurs with its referent gesture.
This discrepancy is likely due to the differences in the do-
mains considered. Oviatt and Adler consider speaking and
drawing, whereas McNeill considers hand and arm gestures
made during typical conversation. Although hand/arm ges-
tures are often made with minimal effort or concentration,
drawing can often require enough concentration so as to inter-
rupt speaking. Likewise, drawing is inherently slower than
hand/arm gesturing, which may contribute significantly to
the differences in gesture/speech alignment between the two
domains.

The work by Chai et al. (2004, 2005) sets interaction in the
context of a dialogue, using context, semantics, and linguistic
principles to resolve gestural references. Our task is different
in that we must differentiate between gesture and object pen
strokes and we consider ungrammatical, disfluent speech,
whereas they assume the speech is unambiguous. Further-
more, they interpret interaction in the context of a predefined
image, whereas we consider an incrementally created sketch
whose meaning is not known in advance.

There have been several prior efforts focused on segment-
ing speech into phrases and sentences. For example, Nakai
and Shimodaira (1994) describe a method that uses prosodic
features to segment speech into accent phrases. A least-
squares approach is used to find the optimum match between
the speech and pitch pattern templates. A 97% segmentation
accuracy is reported for a case in which the 30 best candidate
segmentations are considered.

Most current techniques for identifying sentence bounda-
ries in speech transcriptions are based on a hidden Markov
model (Stolcke & Shriberg, 1996; Stolcke et al., 1998; Gotoh
& Renals, 2000; Hwan Kim & Woodland, 2001). An n-gram
language model is used to describe the joint distribution of
words and sentence boundaries, which are modeled as events
that occur between words. Many methods also use prosodic
features for locating sentence boundaries. For example, Go-
toh and Renals (2000) combine their n-gram language model
with a prosodic model based on pause duration. Likewise,
Hwan Kim and Woodland (2001) use a prosodic model based
on 10 features. Stolcke and Shriberg (1996) included part of
speech information in an n-gram language model, and found
that this improves accuracy. In later work, Stolcke et al.
(1998) augmented their n-gram language model with turn
boundaries (change in speaker) and long pauses. All of these
methods for locating sentence boundaries have been applied
to telephone conversation and news broadcasts, whereas we
consider a multimodal context with both speaking and
sketching. In addition, although these methods classify inter-
word events as boundaries and nonboundaries, we classify
words according to their position in a speech segment. As
described in Section 5.1, this allows us to take advantage of
the frequent occurrence of single-word segments.

Sentence boundary detection methods vary in the way they
combine the language and prosodic models. Stolcke et al.
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(1998) explore a variety of combination techniques including
model interpolation, independent model combination, and
joint modeling. In the latter case, a decision tree is used to
combine posterior probabilities from the language model
with prosodic features. Similarly, Liu et al. (2004) use a max-
imum entropy model to combine prosodic and word-level
features. We do not use an explicit language model, but
instead use a single classifier (Ada-boosted C4.5 decision
tree) to directly combine word-based, prosodic (pause), and
sketch-based features.

Our gesture classifier (Bischel et al., 2009) is related to the
work of Patel et al. (2007) and Bishop, Svensen, and Hinton
(2004) on separating text strokes from nontext strokes. These
works differ from ours in considering only features from the
sketch, where we examine the accompanying speech. In addi-
tion, in their work, text consists of a consistent set of letter and
number glyphs, where the gestures in our domain are often
unique, and frequently have the same shapes as object strokes.

Our gesture classifier also builds on work in shape recog-
nition by using the kinds of features used by feature-based
recognizers, such as in Patel et al. (2007) and Rubine (1991).
Our system relies on some of the features these systems use,
but it also extracts new features to address the special nature
of identifying free-form gestures.

In examining properties of the accompanying speech, our
gesture classifier does not try to understand it but simply
identify it as that which accompanies either a gesture or object
stroke. We do this with Bayesian filters (Graham, 2004) and
Markovian filters (Yerazunis, 2004).

In summary, our work differs from much of the work in
multimodal interfaces in that we consider free-form speech
and sketching, rather than a predefined vocabulary. Similarly,
although most multimodal systems use speech and sketch
input as a substitute for mouse/menu commands, we consider
the task of classifying sketch input as gesture and object
strokes. Although many speech segmentation techniques
exist, ours is novel in that it uses information from the sketch
modality. In addition, it uses a single classifier to directly
combine word-based, prosodic (pause), and sketch-based
features. Finally, our speech–sketch alignment technique is
novel in that it works from segmented speech and uses clas-
sifiers to detect and repair common alignment errors.

3. BACKGROUND: DISTINGUISHING GESTURE
AND OBJECT STROKES

As described in Bischel et al. (2009), we conducted a study to
characterize how designers use natural free-form sketching,
speaking, and gesturing to communicate design descriptions
to each other.1 The study involved descriptions of four de-
vices: C-clamp vise-grip pliers, bolt cutters, an air pump for
inflating balls, and a door lock (Fig. 1, Fig. 2, and Fig. 3).
The participants were 16 graduate and senior undergraduate

mechanical engineering students at UC Riverside. Four
were female. English was the primary language for 9 partic-
ipants, but the speech of 10 participants was indistinguishable
from that of native English speakers. Eleven participants
received their engineering instruction in English. There were
only 4 participants that both did not have English as their pri-
mary language and did not receive engineering instruction in
English. Fourteen participants had previously taken a course
in engineering drawing, and 7 had completed a team-based
project-design course.

Each study session involved a pair of participants placed in
separate rooms and allowed to communicate using tablet PCs,
microphones, and headphones. The tablets provided a shared
drawing environment with a pen, highlighter, and eraser, and
the ability to select from several ink colors. The audio and
drawing were recorded with timestamps.

During a session, one participant was asked to describe a
device to his or her partner, who could ask clarifying ques-
tions. At the end of the description, both participants were
asked survey questions about the structure and behavior of
the device. To motivate effective dialog, the participants
were informed that their compensation would be based on
the accuracy of their answers. (All participants were given
the maximum compensation.) The two participants repeated
this process three times, switching roles, so that each partici-
pant described two devices. In all, a total of 48 device descrip-
tions were collected.

Figures 1, 2, and 3 show typical examples of sketches col-
lected in the study. As discussed above, these sketches contain
two types of pen strokes: object strokes and gesture strokes.
The former depict device structure or comprise text. The latter
can be classified into two categories, adopted from the termi-
nology developed by McNeill (1992). Strokes that demonstrate
an action, such as an arrow illustrating the direction in which
the handles of a pair of vice grips may move, are iconic ges-
tures. Similarly, strokes that resolve deictic references from
the speech modality are deictic gestures. These gestures may
take many forms, such as tapping, circling, highlighting, and
tracing. Object strokes could be considered iconic gestures,
as they provide a representation of an object. However, we dis-
tinguish between object strokes and other iconic gesture strokes
because our goal is to separate the representation of a device’s
structure from the description of its behavior.

3.1. Classifier design

As Figure 1 illustrates, there can be a comparable number of
gesture and object strokes in a sketch, making it challenging
to understand the final image. There is a clear need for tech-
niques to separate the two types of strokes. This would at first
appear to be a shape recognition problem solvable with stan-
dard shape recognizers such as those in Kara and Stahovich
(2005) and Wobbrock et al. (2007). However, this problem
is not amenable to such approaches for several reasons. First,
gesture and object strokes can have arbitrary shapes, but
shape recognizers require a predefined set of shapes. Second,

1 This section presents an overview of work from (Bischel et al., 2009).
For complete details, refer to Bischel et al. (2009).
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gesture and object strokes may be identical, and thus shape
alone does not distinguish between the two classes of strokes.
For example, a common selection gesture consists of tracing
the shape of an object.

For these reasons, the gesture/object classifier described in
Bischel et al. (2009) does not explicitly consider the shape of
the pen stroke. Instead, each pen stroke is represented by fea-
tures that are computed from both the sketch and speech
input. The sketch features describe properties of the pen strokes,
and the spatial and temporal relationships between them. The
speech features describe properties of the speech aligned with
each stroke. These features serve as inputs to a neural network
which classifies a stroke as a gesture or object stroke.

3.1.1. Sketch features

The complete set of sketch features used for gesture/object
classification is listed in Table 1. The first six features concern
individual strokes, where DSL is the length of the pen stroke,
DSED is the distance between its first and last points, DAC is
the sum of the absolute value of the curvature along a stroke,
and DDC is similar to curvature but is biased toward diagonal
drawing directions. The ink density (DID) is a measure of the
compactness of the stroke. The highlighter feature (DHL) has a
value of 1 if the stroke was made with a highlighter rather than
an ordinary pen and is 0 otherwise.

The remaining 10 features describe the temporal and spa-
tial relationships between strokes, in which DDPS and DDNS

are the distance to the previous and next strokes, DTPS and
DTNS are the time between the stroke and the previous and
next strokes, DTCS is the time between the stroke and the clos-
est previously drawn stroke, and DET is the total elapsed
time. The underlying color similarity (DUCS) measures the
extent to which earlier nearby strokes have the same color
as the stroke. Underlying ink density (DUID) is the density
of the ink from other earlier pen strokes in the neighborhood
(expanded bounding box) of the stroke. The two Hausdorff

features (Kara & Stahovich, 2005) measure the extent to
which a stroke traces underlying strokes. For each point on
the stroke, the closest distance to a point on another earlier
stroke is computed. Here, DMHD is the maximum of these
closest distances, and DAHD is the average.

3.1.2. Speech features

To compute the speech features, it was first necessary to
align the speech and sketch input, that is, determine which
words are associated with each pen stroke. The 3-sec alignment
technique presented in Bischel et al. (2009) was grounded in

Fig. 3. Two of the devices from the study: (a) an air pump for inflating balls and (b) a door lock. [A color version of this figure can be
viewed online at journals.cambridge.org/aie]

Table 1. Features for gesture versus object classification

Name Description Units

DSL Stroke length Pixel
DSED Start to end distance Pixel
DAC Total absolute curvature Radian
DDC Diagonally biased curvature Radian
DID Ink density %
DHL Highlighter Boolean
DDPS Distance to previous stroke Pixel
DDNS Distance to next stroke Pixel
DTPS Time to previous stroke ms
DTNS Tme to next stroke ms
DTCS Time to closest prior stroke ms
DET Total elapsed time ms
DUCS Underlying color similarity %
DUID Underlying ink density %
DMHD Max. Hausdorff distance to underlying ink Pixel
DAHD Ave. Hausdorff distance to underlying ink Pixel
WTPS Time to previous speaker ms
WWC No. of words in temporal window Word
WBF Bayesian filter Probability
WTBF Thesaurus Bayesian filter Probability
WMF Markovian filter Probability

Note: Dx, sketch (drawing) feature; Wx, speech (word) feature.
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observations by Adler and Davis (2007) and Oviatt et al.
(1997) suggesting that there is a strong temporal correlation
between speaking and drawing. This technique employs a
temporal window extending 3 s before and after the stroke.
It is assumed that any words falling at least partially within
this window are associated with the stroke. It is possible
that a word may be associated with more than one stroke,
or that a stroke may have no words associated with it.

The speech features associated with a pen stroke (Table 1)
are computed from the speech aligned with it. To avoid inac-
curacies inherent in current state of the art speech to text tools,
the speech was manually transcribed and then Sphinx (Huang
et al., 1993) was used to align the text with the recorded audio
to find time stamps for the words. The words were also
labeled with the identity of the speaker. Using manual tran-
scriptions provides an upper bound on the contribution of
the speech content to gesture classification. However, the
speech may contain other valuable information, such as pro-
sody, which was not considered.

The simplest speech features are the time to the previous
speaker (WTPS) and the number of words aligned with the
stroke (WWC). The other speech features concern the words
themselves. Understanding grammatically correct speech is
difficult enough; the speech considered here is ungrammati-
cal, filled with pauses, repetitions, and disfluencies like
“um” and “ah.” Trying to perform semantic analysis on
such ungrammatical text is intractable at present. As an alter-
native, statistical models are used to predict whether a set of
words corresponds to a gesture or object stroke.

The first statistical speech feature (WBF) is based on a
Bayesian filter, a form of naive Bayesian classifier that has
had some success in spam recognition (Graham, 2004). To
construct the Bayesian filter, it is necessary to learn the con-
ditional probability that a stroke is a gesture, given a specific
word, wi. Pr(Gesture jwi ) can be estimated from training data
using Bayes’ theorem:

pi ¼
Pr(wijGesture) � Pr(Gesture)

Pr(wi)

where Pr(wijGesture) is the conditional probability that word
wi will be observed, given that a gesture stroke is observed;
Pr(Gesture) is the prior probability of observing a gesture;
and Pr(wi) is the prior probability of observing word wi.

Participants in the study used a varied vocabulary to
describe the same objects and gestures. If the Bayesian filter
encounters a word that was not in the training corpus, it is un-
able to produce a probability. The thesaurus Bayesian filter
feature (WTBF) provides a remedy for this situation. It is com-
puted much like WBF, except that a thesaurus is used to gen-
eralize the training data. One strength of these two features is
that they learn which words are most likely to coincide with
gesture or object strokes. However, these features do not con-
sider word order. The Markovian filter feature (MMF) is anal-
ogous to the Bayesian filter features, but considers word
sequences rather than individual words.

3.2. Results: Gesture/object classification accuracy

Bischel et al. (2009) used a form of holdout validation to
evaluate the accuracy of the gesture classifier. The holdout
set comprised 39 randomly selected sketches for training
and 10 for testing. A conventional beam search approach
(Aha & Bankert, 1994; Dash & Liu, 1997; Gupta et al.,
2002) was used to determine which sets of features are the
most effective at classification. To provide additional insights
about which features are the most important, this process was
performed three times: once considering only sketch features,
once considering only speech features, and once considering
both.

The best single sketch feature classifier used DTNS and
achieved 69.5% accuracy. The best sketch-only classifier
achieved 76.2% accuracy using nine features: DSL, DDPS,
DUID, DMHD, DAHD, DHL, DET, DAC, and DDC. The best single
speech-feature classifier used WBF and achieved 77.7%. The
best speech-only classifier achieved 78.2% accuracy using
three features: WBF, WTBF, and WWC. The best classifier con-
sidering all features achieved 81.9% accuracy using six fea-
tures: DTCS, DMHD, DHL, DET, WBF, and WTPS.

In Bischel et al. (2009), this process was actually per-
formed for four holdout sets. For all sets, the results were sim-
ilar: the single best feature in all cases was either WBF or
WTBF. Similarly, for multifeature classifiers employing
speech features, the best feature sets always contained at least
one of these two features.

4. EVALUATION OF 3-SEC TECHNIQUE

As the results in the previous section demonstrate, the speech
modality plays an important role in identifying gestures. For
example, the two Bayesian filter features were the most
important single features for classifying pen strokes as gesture
or object strokes. The importance of speech suggests the need
to examine the validity of the speech–sketch alignment tech-
nique that serves as the foundation for the speech features.

As the name suggests, the 3-sec alignment approach uses
only temporal correlation to align the speech and sketch input.
It is possible for this technique to associate speech with a stroke
that is not logically related to it. To evaluate the performance of
the 3-sec technique, we manually aligned the speech and pen
strokes based on semantic information. We then compared
the resulting alignment with that produced by the 3-sec tech-
nique. We also used the manually aligned speech to compute
the speech features for our gesture classifier to determine if
more accurate alignment would improve classification accu-
racy. The latter results are presented in Section 6.

4.1. Manual alignment

We manually aligned the speech and sketch modalities using
a two-step approach. We first segmented the speech into
small, meaningful statements. We then aligned each state-
ment with the pen strokes, if any, to which it referred. The
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segmentation step proved to be difficult because the speech
was terribly ungrammatical and disfluent, as is commonly
the case in multimodal descriptions (Adler & Davis, 2007).
Because of the nature of the speech, we could not use a simple
segmentation strategy, such as decomposing the speech into
grammatically correct clauses. Oviatt et al. (1997) suggest
that in multimodal interactions, spoken phrases often follow
a subject–verb–object pattern. We used this as the starting
point for developing our manual segmentation approach.
Our approach is similar to the Simple Metadata Annotation
Specification (Strassel, 2004), but considers information
from the sketch input.

Our manual segmentation comprises single “clauses” con-
sisting of a subject, verb, and object; multiple logically re-
lated, sequential clauses; partial clauses; and filled pauses
such as “uh” and “um.” Note that filled pauses are identified
purely on lexical grounds and are not prosodic features of the
speech. Whenever possible, we segmented the speech into
subject–verb–object “clauses.” However, if the speaker
moved on to a new thought before completing a clause, we
segmented the incomplete thought into a partial clause. Like-
wise, a change in speaker before the completion of a clause
also resulted in a partial clause.

Filled pauses could either comprise an entire segment or be
included in a larger clause, depending on the circumstances.
If the filled pause was in the middle of a set of words that
otherwise formed a clause, the pause was grouped with that
set of words. For example, “this handle uh moves here” is
considered a single clause. Likewise, if the filled pause
occurred immediately before the start of a clause, it was
grouped with it. For example, “uh this handle moves here”
would be segmented as a single clause if there were little de-
lay between “uh” and “this.” In all other cases, filled pauses
were considered to form their own segments.

There were two occasional exceptions to our segmentation
strategy. Two or more clauses were joined if they referred to
the same pen stroke. We did this so that each stroke would be
aligned with at most one speech segment. In addition, if a
clause had multiple objects referring to different strokes,
the objects were split into separate clauses. These two cases

are the primary differences between our segmentation ap-
proach and that in Strassel (2004).

Figure 4 shows an example of the manual segmentation re-
sults. The first segment consists of the filled pause “uh.” This
pause was not combined with the subsequent clause because
the time gap was too large. “it’s kind of for cutting stuff” is a
typical clause with subject “it,” verb “is,” and object “for cut-
ting stuff,” “when they uh attach” is also considered to be a
clause with subject “they” and intransitive verb “attach.” In
addition, the filled pause “uh” is included in the segment be-
cause it occurs inside an otherwise valid clause. “Uh huh” is a
segment consisting of two filled pauses in close succession.
The phrase “and so both sides move the” is a partial clause;
the speaker changed thoughts before completing it. The
word “these” is again a partial clause representing a new
idea. Finally, the phrase “this moves” is a clause with a sub-
ject and verb, but no object.

As this example illustrates, manually segmenting the
speech required considerable judgment. The task was per-
formed by two researchers. Each segmented one-half of the
speech and then verified the segmentation accuracy of the
other half. Once the segmentation was completed, the two re-
searchers then manually aligned the segments and pen
strokes. Each stroke was aligned with at most one speech seg-
ment. However, a speech segment could be aligned with mul-
tiple strokes. As with the segmentation, the researchers di-
vided the task and verified each other’s work.

An alternative approach for annotating our data would have
been for each researcher to annotate the entire corpus indi-
vidually and then arbitrate the single, final annotation. This ap-
proach can lead to a more consistent annotation of the corpus
than the cross-validation approach we used (Artstein & Poe-
sio, 2005). We opted for our approach in the interest of expe-
diency, and note that any inconsistencies between the two
halves of the annotation will only hamper the performance
of our statistical classifier.

Table 2 tabulates the results of the manual segmentation
and alignment process. The data from the study contained
34,354 words forming 7454 speech segments. We found
that 78.8% of the 6470 pen strokes were aligned with speech

Fig. 4. Examples of manual segmentation: (left) raw speech and (right) segmented speech.
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segments, but only 22.5% of the segments were aligned with
strokes. On average, there were 4.6 words per speech seg-
ment, but for segments aligned with strokes there was a
much higher average of 8.3 words per segment.

4.2. Alignment accuracy of 3-sec technique

We evaluated the accuracy of the 3-sec alignment technique
by direct comparison with the manual alignment, which con-
stitutes the correct result. Specifically, we compared the set of
words associated with each pen stroke in the two cases. Note
that the 3-sec technique does not have an explicit segmen-
tation step. Rather, any words that fall at least partially within
the 3-sec temporal window of a stroke are associated with it.
Thus, there is no notion of segmentation accuracy, and it is
possible to evaluate accuracy only for those words that are
associated with a pen stroke.

To illustrate the analysis, consider the speech and the ac-
companying gesture in Figure 5. The 3-sec approach has as-
sociated with this stroke the words “faces the other way this is
uh like a.” The correct association determined by the manual
alignment process is “this is uh like a handle.” In this case the
3-sec association begins too early and does not extend long
enough. This situation occurred on average for 6% of the
strokes (the average is computed over the 48 sketches).

There are a total of 14 possible relative arrangements of the
3-sec association and the correct (manual) association as

shown in Figure 6. Each cell in the figure represents one of
the possible arrangements. For example, cell 4 represents
the arrangement from Figure 5. For clarity, the stroke itself
is not represented in the various cells in Figure 6.

Cases 1 through 11 in Figure 6 are all cases in which the 3-
sec approach associates words with strokes that should have
associated words. Case 1 is when the 3-sec association exactly
matches the correct result. This occurred on average for 2% of
the strokes. Cases 2 through 9 are overlapping associations that
do not perfectly match. These cases represent on average 56%
of the strokes. Cases 10 and 11 are cases in which there is no
overlap between the 3-sec association and the correct one.
These cases represent on average 10% of the strokes. Case
12 describes strokes that should have no associated speech,
but the 3-sec approach has made an association. This occurred
on average for 26% of the strokes. Case 13 is the converse case
in which there should be associated speech, but the 3-sec ap-
proach has associated none. This occurred on average for 5%
of the strokes. Finally, case 14 describes situations in which
the 3-sec approach has correctly associated no speech with a
stroke. This case did not occur. On average, the 3-sec approach
achieved the correct answer only 2% of the time (case 1), and
41% of the time the 3-sec association was completely disjoint
from the correct result (cases 10–13).

5. IMPROVED SPEECH–SKETCH ALIGNMENT
TECHNIQUE: CBA

As Figure 6 illustrates, the 3-sec technique does not accu-
rately align the speech and sketch modalities. Consequently,
we sought to develop an improved automatic alignment tech-
nique. We modeled the new technique on our manual pro-
cess: the technique employs an explicit speech segmentation
process, followed by a segment–stroke alignment process.
Because both processes employ statistical classifiers, we
call our alignment technique CBA.

5.1. Speech segmentation

Our approach to automatic segmentation uses a statistical
classifier to classify words according to their position in a
segment. We consider four classes of words: start, middle,
end, and only words. As the names suggest, start and end
words represent the start and end of a clause, respectively.
All words in a clause other than these are defined as middle
words. Only words are segments consisting of a single
word, which is typically a filled pause. Figure 7 shows an ex-
ample of the word classification for a passage of speech.

The word classifications are used to directly construct the
speech segmentation. First, all valid segments are formed.
Specifically, each only word is labeled as a segment. Like-
wise, each sequence of words that begins with a start word,
ends with an end word, and has only middle words (if any)
in between, is labeled as a segment.

Once all valid segments have been formed, a repair process
is used to segment any remaining speech. The first and last

Table 2. Properties of manually aligned
speech from user study

Attribute Count

Words 34,354
Segments 7,454
Strokes 6,470
Words/segment, ave. 4.6
Words/associated segment, ave. 8.3
Segments associated with strokes 22.5%
Strokes associated with segments 78.8%

Fig. 5. A gesture pen stroke and the speech associated with it by the 3-sec tech-
nique (top bar) and the manual alignment process (bottom bar). [A color
version of this figure can be viewed online at journals.cambridge.org/aie]
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words of the speech are always considered start and end words,
respectively. Any unsegmented word immediately after a seg-
ment is treated as a start word, whereas any unsegmented word
immediately before a segment is treated as an end word. A sin-
gle word directly between two valid segments is considered
an only word. After updating the word classifications in this
fashion, any new valid segments are formed. The repair pro-
cess is then repeated until all words have been segmented.

Consider a passage of speech that has been classified as:
start, middle, end, middle, middle, end. In the initial segmen-
tation pass, the first three words will be formed into a valid
segment. Then, during the repair pass, the fourth word will
be treated as a start word so that the last three words form a
segment.

Our segmentation approach is based on four word classes.
Many speech segmentation approaches such as (Stolcke &
Shriberg, 1996; Stolcke et al., 1998; Gotoh & Renals,
2000; Hwan Kim & Woodland, 2001) classify interword

boundaries as segment events or nonsegment events. These
approaches were developed for unimodal dialog such as the
SWITCHBOARD corpus (Godfrey et al., 1992). We consider
multimodal dialog in which the speech is highly disfluent
and filled pauses are common. We designed our four-class
approach to take advantage of the discriminatory power of
single-word segments. This approach is also consistent with
work in Hoffmann et al. (2001) and Luo (2008), suggesting
that for some classification problems, decomposing a class
into subclasses can result in higher accuracy.

5.1.1. Segmentation classifier and features

Our segmentation classifier is an Ada-boosted C4.5 deci-
sion tree computed with WEKA (Hall et al., 2009). Each
word is characterized by 25 features listed in Table 3. (The
classifier considers the features of the word in question, as
well as those of the word on either side.) The simplest feature
is the word itself (Ws). Each word is also characterized by the
parts of speech that it could possibly have in legal English
usage, which is queried from the dictionary in the Stanford
part of speech tagger (Toutanova & Manning, 2000). The ra-
tionale for these features is that different parts of speech may
be more likely to occur in particular locations within a speech
segment. For example, a verb is unlikely to be the first word in
a segment. We define nine Boolean part of speech features in-
dicating if the word could be a coordinating conjunction
(WCCN), determiner (WDET), preposition (WPRP), adjective

Fig. 6. The accuracy of the 3-sec technique. In each cell, the top bar represents the speech associated with a stroke by the 3-sec technique,
and the bottom bar represents the manual (correct) association. Each cell represents a distinct relative arrangement of the associations and
the frequency with which it occurs. The results are averaged over the 48 sketches. Standard deviations are included in parentheses. [A color
version of this figure can be viewed online at journals.cambridge.org/aie]

Fig. 7. The classification of the words in a spoken passage; S, start; M,
middle; E, end; and O, only. [A color version of this figure can be viewed
online at journals.cambridge.org/aie]
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(WADJ), personal pronoun (WPP), adverb (WADV), verb
(WVRB), wh-determiner (WWHD), or wh-adverb (WWHA).
Wh-determiners are the words “what” and “which” used as
determiners. Wh-adverbs are the words “how,” “when,”
“whence,” “where,” and “why” used as adverbs. Note that
we use the possible parts of speech, rather than the actual
part of speech, because the latter is difficult to determine
because the speech is highly ungrammatical and the sentence
boundaries are as yet unknown.

Four of the features compute temporal relationships between
the words. Here, WTNW and WTPW are the time to the next and
previous words, respectively. To obtain a measure of the rela-
tive size of the time gap after a word, we compute the ratio of
WTNW to the sum of the values of WTNW for the word and its
two successors. We call this feature WTNR; WTPR is an analo-
gous feature that concerns the relative size of the gap before the
word. A time gap that is large compared to the neighboring
gaps (i.e., a large ratio) could indicate a segment boundary.

A change in speaker usually corresponds to a new segment.
Thus, two features track changes in the “author” of the
speech: WACN is a Boolean feature that is true only when
there is an author change immediately after the word; sim-
ilarly, WACP is true only when there is an author change im-
mediately before the word.

A novel property of our segmentation technique is that we
use information from the sketch modality. Specifically, we
compute properties of the pen stroke drawn closest in time to

the word. We refer to this as the “coincident stroke,” although
the word and stroke may not actually overlap in time. We char-
acterize this stroke with three intrinsic properties: its arc length
(DSL), start to end distance (DSED), and duration (DDUR). The
first two of these features are the same as those used with the
gesture/object classifier described in Section 3.1.

Four features describe the temporal relationships between
the coincident stroke and the other strokes. These features
are analogous to those used to describe the temporal relation-
ships between the words: DTNS and DTPS are the time to the
next and previous strokes, respectively. Again, to obtain a
measure of the relative size of the time gap after the coinci-
dent stroke, we compute the ratio of DTNS to the sum of the
values of DTNS for the stroke and its two successors. We
call this feature DTNR; DTPR is an analogous feature that con-
cerns the relative size of the time gap before the stroke.

The final two features track changes in the “author” of the
pen strokes. Here, DACN is a Boolean feature that is true only
when there is an author change immediately after the coinci-
dent stroke, and DACP is true only when there is an author
change immediately before it.

5.1.2. Segmentation accuracy

We performed leave one out cross-validation to evaluate
our speech segmenter.2 In each iteration of the cross-valida-
tion, the data from all but one sketch was used to train our
classifier. We then used the trained classifier to predict the
segment boundaries for the remaining sketch. The technique
achieved an average accuracy of 92.7% at classifying words
as start, middle, end, and only words.

To provide a more informative measure of accuracy, we di-
rectly compared our “classifier-based segmentation” with the
manual segmentation. Specifically, we computed the fraction
of the classifier-based segments that matched the manual seg-
ments within a tolerance ranging from zero to three words. The
results are shown in Figure 8. On average, about 33.9% of the
classifier-based segments exactly matched a manual segment,
and about 75.9% matched within three words. In the latter case,
the errors could be distributed on both ends of the segment as
long as the total number of errors did not exceed three. For ex-
ample, compared to the manual segment, the classifier-based
segmentation could be missing one word at the beginning,
and have two extra words at the end, or vice versa.

5.2. Stroke–speech alignment

Once the speech has been segmented, the next step is to align
the segments with the pen strokes. We do this with a two-step
process. First, segments are aligned with strokes based on
simple temporal correlation. Second, we use a classifier to de-
tect and repair two common alignment errors. The initial
alignment borrows from the 3-sec approach. Each stroke is as-
sociated with the segment that has the greatest overlap with

Table 3. Features for speech segmenter

Name Description Units

WTNW Time to next word ms
WTPW Time to previous word ms
WTNR Time to next ratio DQ
WTPR Time to previous ratio DQ
WS The word Text
WCCN Coordinating conjunction Boolean
WDET Determiner Boolean
WPRP Preposition Boolean
WADJ Adjective Boolean
WPP Personal pronoun Boolean
WADV Adverb Boolean
WVRB Verb Boolean
WWHD Wh-determiner Boolean
WWHA Wh-adverb Boolean
WACN Author change next Boolean
WACP Author change previous Boolean
DTNS Time to next stroke ms
DTPS Time to previous stroke ms
DTNR Time to next ratio DQ
DTPR Time to previous ratio DQ
DACN Author change next Boolean
DACP Author change previous Boolean
DSL Stroke length Pixel
DSED Start to end distance Pixel
DDUR Stroke duration ms

Note: Dx, sketch (drawing) feature; Wx, speech (word)
feature; DQ, dimensionless quantity.

2 Cross-validation is a process of partitioning a data set into complemen-
tary training and testing sets. Multiple alternative partitions are considered,
and the results from them are averaged.
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the stroke’s 3-sec temporal window, that is, a window that ex-
tends 3 s before and after the stroke.

Using an analysis similar to that described in Figures 5 and
6, we computed the accuracy of the initial alignment to deter-
mine what improvements are necessary. The results are illus-
trated in Figure 9. The two most frequent problems are case

10 in which the initial association follows the correct associa-
tion, and case 12 in which there is an association when there
should be none. Case 10 occurs on average for 18% of pen
strokes, whereas case 12 occurs for 26%.

Because of the prevalence of these two cases, we devel-
oped classifiers to detect them. The two classifiers are applied
to each initial association. If a case 10 error is detected, the

Fig. 8. Percentage of classifier-based segments matching (correct) manual
segments within a tolerance. The results are averaged over the 48 sketches.
[A color version of this figure can be viewed online at journals.cambridge.org/aie]

Table 4. Features used for segment–stroke
alignment

Name Description Units

DSL Arc length Pixel
DTNS Time to next stroke ms
DDUR Stroke duration ms
SDUR Segment duration ms
SNV Contains noun or verb Boolean
SWC Word count Word
SSC Stroke count Stroke
SSE Stroke start end duration ms
SSS Stroke start start duration ms
STN Time to next segment ms
STP Time to previous segment ms

Note: Dx, sketch (drawing) feature; Sx, feature. To train the case
10 classifier, all of the initial associations in the training set are
labeled with a binary value indicating whether they are a case 10
error. An analogous approach is used to train the case 12 classifier.

Fig. 9. The alignment accuracy after the first step of classifier-based alignment (CBA), that is, before the final processing step. In each cell,
the top bar represents the speech associated with a stroke by the first step of CBA, and the bottom bar represents the manual (correct) as-
sociation. Each cell represents a distinct relative arrangement of the associations and the frequency with which it occurs. The results are
averaged over the 48 sketches. Standard deviations are included in parentheses. [A color version of this figure can be viewed online at
journals.cambridge.org/aie]
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association of the pen stroke is changed to the next earlier seg-
ment. If a case 12 error is detected, the association for the
stroke is removed. In this fashion, the classifiers enable an ef-
ficient approach to improving the initial alignment.

The “case 10” and “case 12” classifiers are Ada-boosted
C4.5 decision trees computed with WEKA (Hall et al.,
2009). They consider features of both the speech segment
and the initially associated pen stroke. There are a total of
11 features that are listed in Table 4.

The number of words in the segment is SWC, and SDUR is its
duration; SSC is the number of strokes associated with the seg-
ment, and the segment may also initially be associated with
other strokes. A Boolean feature indicating if any of the words
in the segment were tagged as a noun or verb by the Stanford
part of speech tagger is SNV (Toutanova & Manning, 2000).3

The intuition is that segments containing no nouns or verbs
are generally uninformative and are unlikely to refer to a
stroke. The initially associated pen stroke is characterized
by its arc length (DSL), duration (DDUR), and the time to the
next stroke (DTNS).

Four other features describe temporal relationships: STN is
the time to the next segment, STP is the time to the previous
one, SSE is the time between the start of the segment and

the end of the associated stroke, and SSS is the time from
the start of the segment to the start of the associated stroke.
Both of these features can have positive or negative values.

5.2.1. Stroke–speech alignment accuracy

To evaluate the performance of our two-step segment–
stroke alignment technique, we again performed a leave one
out cross-validation. In each iteration of the cross-validation,
one sketch with speech was used for testing, whereas the
others were used for training. We averaged the results across
the 48 testing/training combinations.

Figure 10 compares the final alignment to the correct
(manual) alignment. The case 10 and case 12 classifiers
were clearly effective. The case 10 errors have been reduced
from an average of 18% in Figure 9 to an average of only 8%.
Likewise, the case 12 errors have been reduced from an aver-
age of 26% to an average of only 5%. Overall, after the second
step of alignment, an average of 39% of the associations are
perfect (cases 1 and 14). Furthermore, on average, only
29% of the associations are completely disjoint from the cor-
rect associations (cases 10–13).

To provide a more detailed evaluation of the alignment ac-
curacy, we also computed the number of missing and extra
words in each association. Extra words are those associated
with the pen stroke that should not have been. Conversely,
missing words are those that should have been associated

Fig. 10. The accuracy of the classifier-based alignment (CBA) technique. In each cell, the top bar represents the speech associated with a
stroke by CBA, and the bottom bar represents the manual (correct) association. Each cell represents a distinct relative arrangement of the
associations and the frequency with which it occurs. The results are averaged over the 48 sketches. Standard deviations are provided in
parentheses. [A color version of this figure can be viewed online at journals.cambridge.org/aie]

3At this point in the computation, the speech has been segmented into
phrases, thus enabling the part of speech tagger to determine the actual
part of speech of each word.
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but were not. Consider the hypothetical example4 in Fig-
ure 11. The stroke is associated with the words “faces the
other way this is uh like a.” The correct association (as deter-
mined by manual alignment) is the clause “this is uh like a
handle.” In this case, the words “faces the other way” are extra
words, and “handle” is a missing word.

Figure 12 presents the missing/extra accuracy of both the
3-sec and CBA techniques. On average, the 3-sec approach
has about 12 extra words and 2 missing words per stroke,
while our classifier-based approach has only about 2 extra
and 4 missing. Overall, the 3-sec approach has an average

of 14 incorrect (missing plus extra) words per stroke, whereas
our new approach has only 6. This is a 57% reduction in er-
rors.

6. GESTURE/OBJECT CLASSIFICATION
ACCURACY

Our purpose in creating an improved technique for speech–
sketch alignment is to enable more accurate identification
of gesture pen strokes like those in Figure 1b. Thus, to evalu-
ate our CBA technique, we computed the gesture classifica-
tion accuracy using our technique and compared this to the
accuracy achieved with the 3-sec alignment technique. We
also computed the accuracy using manual alignment to obtain
an upper bound on the achievable gesture classification
accuracy.

For this analysis, we used the gesture classifier just as de-
scribed in Section 3.1, except that we used an Ada-boosted
C4.5 decision tree computed with WEKA (Hall et al., 2009)
rather than using a neural network. The sketch features were
computed as before, whereas the speech features were com-
puted using the speech–sketch alignment technique in question.

We computed accuracy via leave one out cross-validation,
with one sketch used for testing and the others used for train-
ing. Our results are the average across the 48 testing/training
combinations. We evaluated classification accuracy for four
sets of features: the thesaurus Bayesian filter feature (WTBF),
the five most important features, the 10 most important features,
and all features. We determined the top 5 and top 10 features
using an information gain algorithm (Dash & Liu, 1997; Xing
et al., 2001) as implemented by WEKA.5 The top 5 features
include the 2 Bayesian filter features (WTBF, WBF), the total
elapsed time (DET), the time to the closest prior stroke
(DTCS), and the time to the next stroke (DTNS). The top 10 fea-
tures in addition include the time to the previous stroke
(DTPS), the distance to previous stroke (DDPS), the distance
to the next stroke (DDNS), the maximum Hausdorff distance
to the underlying ink (DMHD), and the average Hausdorff dis-
tance to the underlying ink (DAHD).

The gesture/object classification results are shown in Fig-
ure 13. [The accuracy in Fig. 13 differs from that in Bischel
et al. (2009) because different classifiers were used, i.e., a neural
network vs. Ada-boosted decision tree.] Typically, for a given
set of features, the CBA resulted in better accuracy than the
3-sec alignment, and the manual alignment resulted in the
best accuracy. Likewise, using more features typically resulted
in better accuracy. There was one exception. The 3-sec approach
achieved nearly its best accuracy when only the thesaurus Baye-
sian filter feature was used. For this single-feature case, the 3-sec
approach actually achieved better accuracy than even the man-
ual alignment. This is discussed in the next section.

Fig. 12. The average number of words incorrectly aligned with each stroke
for the 3-s and classifier-based alignment techniques. Averages are computed
over the 48 sketches. [A color version of this figure can be viewed online
at journals.cambridge.org/aie]

Fig. 11. Missing and extra words in speech aligned with a pen stroke. The
top bar indicates the words actually associated with the pen stroke, and the
bottom bar indicates the words that should have been associated. [A color
version of this figure can be viewed online at journals.cambridge.org/aie]

4 The speech is taken directly from the user study data. The hypothetical
stroke was designed to monotonically increase along the horizontal axis, thus
suggesting a drawing process evolving in time.

5 As discussed in Section 3.2, the work in Bischel et al. (2009) employed a
beam search approach to determine the best features. Although that approach
may be more reliable, here we use information gain in the interest of expe-
diency.
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7. DISCUSSION

Our speech segmenter achieved an average accuracy of 92.7%
in classifying words as start, middle, end, and only words. Al-
though the classification accuracy is high, a more important
measure of accuracy is the segmentation accuracy: on aver-
age, 75.9% of the computed segments matched correct (man-
ual) segments within a three-word tolerance.

Liu et al. (2005) define a per boundary based metric for
speech segmentation accuracy. This is defined as the sum
of the false positive and false negative sentence boundaries
normalized by the total number of interword boundaries.
With their state of the art technique based on a conditional
random field model, they achieve a boundary-based accuracy
of 95.4% on conversational telephone speech. (They achieve
higher accuracy on broadcast news thast is more grammatical
than telephone conversation.) We achieve 86.8% accuracy on
multimodal dialog that includes both speech and sketching.
Our results compare favorably with theirs for several reasons.
Sentence boundaries occur less frequently in their data than in
ours: in their data set only 15.7% of interword boundaries are
actually sentence boundaries, whereas in our data set 21.8%
are. Thus, a naive classifier would perform better on their
data than on ours. In addition, their accuracy is likely to ben-
efit from a greater amount of training data: they trained on
480,000 words, whereas we trained on about 33,000. Finally,
we consider different kinds of speech: theirs is unimodal
whereas ours is multimodal.

Our speech segmentation approach is unique in that it
demonstrates the usefulness of sketch features for locating
segment boundaries in multimodal dialog. In addition, we
use a single classifier to directly combine word-based, proso-
dic (pause between words),6 and sketch-based features. Un-

like many existing approaches (Stolcke & Shriberg, 1996;
Stolcke et al., 1998; Gotoh & Renals, 2000; Hwan Kim &
Woodland, 2001), we use a four-class (start, middle, end,
and only) approach to locating segment boundaries. This ap-
proach was designed to take advantage of the discriminatory
power of single-word segments. In future work, we plan to
compare the performance of this approach to that of a more
traditional approach in which interword boundaries are clas-
sified as either segment boundaries or nonboundaries. In ad-
dition, unlike traditional approaches, we do not explicitly
consider word sequence: we have no n-gram language model.
When processing a given word, our classifier does consider
the previous and next words, but we do not use a Markovian
approach. In future work, we plan to combine our technique
with an explicit language model, but this will likely require a
much larger data set. For example, to provide a benchmark for
our results, we implemented the technique in Stolcke and
Shriberg (1996) using a trigram language model. This ap-
proach performed poorly on our data: of the hypothesized
segment boundaries, on average only 1.3% were true bound-
aries, whereas for our approach 79% were. It is likely that our
corpus containing only about 34,000 words is too small to
train the trigram model.

Our classification-based speech–sketch alignment tech-
nique performed significantly better than the 3-sec technique
as indicated by multiple measures. On average, CBA aligned
only 6 incorrect words (missing plus extra) per pen stroke,
whereas the 3-sec approach had 14. Comparison of Figures
6 and 10 further illustrates the superiority of the CBA tech-
nique. For example, on average, CBA perfectly aligned the
speech (cases 1 and 14) for 39% of pen strokes, whereas
the 3-sec approach did this for only 2% of strokes. Similarly,
for CBA an average of only 29% of the associations were
completely disjoint from the correct associations (cases 10–
13), whereas for the 3-sec approach 41% were. Likewise,
for CBA an average of only 31% of the associations were par-

Fig. 13. The gesture/object classification accuracy versus speech–sketch alignment technique and number of features; THB, thesaurus Bayesian
feature. The results are averaged over the 48 sketches. [A color version of this figure can be viewed online at journals.cambridge.org/aie]

6 The filled pauses discussed in Section 4.1 are not prosodic features but
instead are a lexical concept. The time elapsed between words is the only pro-
sodic feature we use.
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tially disjoint (cases 3–9), whereas for the 3-sec approach
56% were. Note that for some particular completely or par-
tially disjoint cases, the 3-sec approach did have fewer errors
than CBA. However, on the whole, CBA had far fewer com-
pletely and partially disjoint cases, and thus overall is signif-
icantly more accurate than the 3-sec approach.

Leaving aside the case of the single-feature classifier, the
results in Figure 13 support our hypothesis that better
speech–sketch alignment leads to better accuracy for classify-
ing pen strokes as gestures or object strokes. Our classifica-
tion-based alignment technique resulted in much greater ac-
curacy than the 3-sec approach, and performed nearly as well
as the manual alignment.

The single-feature case, however, is an interesting anomaly.
To understand why the 3-sec alignment technique outper-
formed even the manual alignment when the classifier used
only the thesaurus Bayesian filter feature, we examined the
distribution of the values of this feature for the three alignment
methods as shown in Figure 14. Comparatively speaking, the
3-sec alignment results in a bimodal distribution in which
each stroke is either a gesture (feature value of 1) or not (fea-
ture value of 0). The other two methods, by contrast, have a
greater percentage of cases with a probability of 0.5, which in-
dicates that a stroke is equally likely to be a gesture or object
stroke. Thus, with more accurate alignment, the thesaurus
Bayesian filter is able to make predictions about fewer strokes.

Examining Figure 12 gives some additional insight into
this anomaly. The 3-sec alignment technique tends to align
many extra words with each pen stroke. These extra words
may allow the thesaurus Bayesian filter to make predictions
for strokes that do not actually have associated speech. For
strokes that do have associated speech, we would expect
that better alignment would result in better classification ac-
curacy. To test this hypothesis, we evaluated gesture/object
classification accuracy for only those strokes with associated
speech as determined by the manual alignment. Here again,

we computed accuracy via leave one out cross-validation,
with one sketch used for testing and the others used for
training. However, in this case only strokes with associated
speech were included in the testing and training sets.

The results are shown in Figure 15. For strokes with asso-
ciated speech, improved alignment does result in improved
accuracy, even when only the thesaurus Bayesian filter is used.
It appears that the overassociation of words by the 3-sec ap-
proach is useful when only speech is used for gesture/object
classification. However, the benefit is quickly lost as additional
features are used. Apparently, the noise introduced by over-
alignment degrades the performance of the other features.

Currently, our system is designed to be applied once the de-
vice description has been completed. An important next step
will be to adapt our system to work in real time so that strokes
are classified as they are drawn. All of the features used for the
various classifiers can be computed on the fly as they depend

Fig. 14. Histograms of the values of the thesaurus Bayesian filter feature for different alignment techniques. [A color version of this figure
can be viewed online at journals.cambridge.org/aie]

Fig. 15. The gesture/object classification accuracy for strokes known to have
associated speech. Classification is based on only the thesaurus Bayesian filter
feature. [A color version of this figure can be viewed online at journals.
cambridge.org/aie]
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only on prior information. Thus, the primary challenge in creat-
ing a real-time system will be the problem of automatic speech
recognition. The state of the art Sphinx-4 speech recognition sys-
tem (Walker et al., 2004) achieves a word error rate of 7% with a
vocabulary of 5000 words and a word error rate of 19% with a
vocabulary of 60,000 words. The errors inherent in automatic
speech recognition will clearly present challenges. However,
we may be able to compensate for these errors by using addi-
tional prosodic features (we currently use only pause duration).

We evaluated our techniques using a nearly user-indepen-
dent approach. The training data used when testing on a par-
ticular sketch was comprised of 44 sketches by other authors,
and only three sketches from the primary author of the test
sketch. It is likely that increasing the amount of user-specific
training data will increase the accuracy of the system. Such
training data has proven beneficial for other recognition tasks,
such as hand-drawn symbol recognition (Field et al., 2010).

We have developed our techniques within the domain of
collaborative engineering design, but they should generalize
to many other domains. None of the features used by our clas-
sifiers are specific to mechanical devices or the task of design-
ing; thus, we believe our techniques should be suitable for any
domain in which the task involves drawing a sketch or diagram
and explaining its elements. Examples of such domains in-
clude giving driving directions, explaining the solution to a
problem in a physics lecture, and explaining a sports play.

8. CONCLUSION

We have presented a new technique for aligning speech and
sketch input in multimodal dialog. It is designed for use in
classifying pen strokes as gesture and object strokes. The
technique, which we call CBA, employs a two-step process:
the speech is first segmented into meaningful pieces (typi-
cally clauses), then the segments are aligned with pen strokes.
Our speech segmenter uses a statistical classifier to classify
words according to their position in a segment. We consider
four classes of words: start, middle, end, and only words. The
word classifications are then used to form speech segments.
The segment-stroke alignment step initially uses temporal
correlation to align segments with pen strokes. Classifiers are
then used to detect and correct two common alignment errors.

Our classification-based speech–sketch alignment tech-
nique performed significantly better than the existing “3-sec”
alignment technique, which is based solely on temporal cor-
relation and has no explicit segmentation step. On average,
our technique perfectly aligned the speech for 39% of pen
strokes, whereas the 3-sec technique did this for only 2% of
strokes. Furthermore, for our technique the aligned speech
had no overlap with the correct alignment, on average, for
only 29% of strokes. However, for the 3-sec technique there
was no overlap for 41% of strokes. Finally, our technique had
on average only six incorrectly aligned words (missing plus
extra) per pen stroke, whereas the 3-sec approach had 14.

Our alignment technique is novel in that it uses information
from the sketch modality for both the speech segmentation

and alignment steps. Our results demonstrate that features
from the sketch input are valuable for segmenting speech.

Our purpose in developing an effective speech–sketch
alignment technique was to enable accurate identification of
gesture pen strokes in multimodal dialog. Our gesture classi-
fier uses features of the pen strokes and the speech aligned
with them. Experiments with this classifier demonstrated
that, when multiple speech and sketch features are used for
classification, better alignment accuracy does lead to more ac-
curate gesture classification. More precisely, when multiple
features are used, our alignment technique resulted in much
greater gesture classification accuracy than the 3-sec approach,
and performed nearly as well as manual alignment. Inaccurate
alignment was beneficial only when the gesture classifier used
just a single statistical speech feature. In this case, the tendency
of the 3-sec alignment technique to erroneously associate extra
words with pen strokes allowed the gesture classifier to make
predictions about pen strokes that in reality had no associated
speech. Thus, in all but one unusual case, our new alignment
technique enables substantially more accurate gesture classi-
fication than the prior technique.
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