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Abstract

We consider fibrewise singly generated Fell bundles over étale groupoids. Given a
continuous real-valued 1-cocycle on the groupoid, there is a natural dynamics on the cross-
sectional algebra of the Fell bundle. We study the Kubo–Martin–Schwinger equilibrium
states for this dynamics. Following work of Neshveyev on equilibrium states on groupoid
C∗-algebras, we describe the equilibrium states of the cross-sectional algebra in terms of
measurable fields of states on the C∗-algebras of the restrictions of the Fell bundle to the
isotropy subgroups of the groupoid. As a special case, we obtain a description of the trace
space of the cross-sectional algebra. We apply our result to generalise Neshveyev’s main the-
orem to twisted groupoid C∗-algebras, and then apply this to twisted C∗-algebras of strongly
connected finite k-graphs.

2010 Mathematics Subject Classification: 46L05 (Primary); 46L55 (Secondary)

1. Introduction

The study of KMS states of C∗-algebras was originally motivated by applications of
C∗-dynamical systems to the study of quantum statistical mechanics [2]. However, KMS
states make sense for any C∗-dynamical system, even if it does not model a physical system,
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and there is significant evidence that the KMS data is a useful invariant of a dynamical
system. For example, the results of Enomoto, Fujii and Watatani [4] show that the KMS
data for a Cuntz–Krieger algebra encodes the topological entropy of the associated shift
space. And Bost and Connes showed that the Riemann zeta function can be recovered from
the KMS states of an appropriate C∗-dynamical system [1]. As a result there has recently
been significant interest in the study of KMS states of C∗-dynamical systems arising from
combinatorial and algebraic data [1, 3, 7, 15, 20]. In particular, there are indications of
a close relationship between KMS structure of such systems, and ideal structure of the
C∗-algebra [6, 13, 22].

Our original motivation in this paper was to investigate whether the relationship, discov-
ered in [6], between simplicity and the presence of a unique KMS-state for the C∗-algebra
of a strongly connected k-graph persists in the situation of twisted higher-rank graph
C∗-algebras. The methods used to establish this in [6] exploit direct calculations with the
generators of the C∗-algebra. Unfortunately, a similar approach seems to be more or less
impossible in the situation of twisted k-graph C∗-algebras, because the twisting data quickly
renders the calculations required unmanageable.

Instead we base our approach on groupoid models for k-graph C∗-algebras and their ana-
logues. Building on ideas from [10], Neshveyev proved in [15] that the KMS states of a
groupoid C∗-algebra for a dynamics induced by a continuous real-valued cocycle on the
groupoid are parameterised by pairs consisting of a suitably invariant measure μ on the unit
space, and an equivalence class of μ-measurable fields of states on the C∗-algebras of the
fibres of the isotropy bundle that are equivariant for the natural action of the groupoid by
conjugation. Though Neshveyev’s results are not used directly to compute the KMS states
of k-graph algebras in [6], it is demonstrated in [6, section 12] that the main results of that
paper could be recovered using Neshveyev’s theorems.

Every twisted k-graph algebra can be realised as a twisted groupoid C∗-algebra [11],
and simplicity of twisted k-graph algebras can be characterised using this description [12].
Twisted k-graph C∗-algebras are in turn a special case of cross-sectional algebras of Fell
bundles over groupoids. Since the latter constitute a very flexible and widely applicable
model for C∗-algebraic representations of dynamical systems, we begin by generalising
Neshveyev’s theorems to this setting; though since it simplifies our results and since it covers
our key example of twisted groupoid C∗-algebras, we restrict to the situation of Fell bun-
dles whose fibres are all singly generated. Neshveyev’s approach relies heavily on Renault’s
Disintegration Theorem [17], and we likewise rely very heavily on the generalisation of the
Disintegration Theorem to Fell-bundle C∗-algebras established by Muhly and Williams [14].

Our first main theorem, Theorem 3·4, is a direct analogue in the situation of Fell bun-
dles of Neshveyev’s result. It shows that the KMS states on the cross-sectional algebra of
a Fell bundle B with singly generated fibres over an étale groupoid G are parameterised
by pairs consisting of a suitably invariant measure μ on G(0) and a μ-measureable field of
states on the C∗-algebras C∗(Gx

x ,B) of the restrictions of B to the isotropy groups of G
that each centralise the fibre of B over the corresponding unit, and that satisfy a suitable
G-invariance condition. By applying this result with inverse temperature equal to zero, we
obtain a description of the trace space of C∗(G,B).

Given a continuous T-valued 2-cocycle σ on G, or more generally a twist over G in the
sense of Kumjian [8], there is a Fell line-bundle over G whose cross-sectional algebra coin-
cides with the twisted C∗-algebra C∗(G, σ ) (see Lemma 4·1). We apply Theorem 3·4 to
such bundles to obtain a generalisation of Neshveyev’s results [15, theorems 1·2 and 1·3] to
twisted groupoid C∗-algebras (see Corollary 4·2).
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We next consider a strongly connected k-graph � in the sense of [9]. There is only one
probability measure M on the unit space G(0)� =�∞ that is invariant in the sense described
above [6, lemma 12·1]. Given a cocycle c on �, Kumjian, Pask and the second author intro-
duced a twisted C∗-algebra C∗(�, c) and showed that the cocycle c induces a cocycle σc on
the associated path groupoid G� such that the C∗-algebras C∗(�, c) and C∗(G�, σc) are iso-
morphic [11, corollary 7·9]. The cocycle σc determines an antisymmetric bicharacter ωc on
Per� (see [16] or [12, proposition 3·1]). The trace simplex of C∗(Per�, σc) is canonically
isomorphic to the state space of the commutative subalgebra C∗(Zωc) of the centre of the
bicharacter ωc (see Lemma 2·1). Conjugation in the line-bundle associated to σc determines
an action of the quotient H� of G� by the interior of its isotropy on �∞ × Ẑωc . Kumjian,
Pask and the second author showed that C∗(�, c) is simple if and only if this action is min-
imal. Here we prove that the KMS states of C∗(�, c) are parameterised by M-measurable
fields of traces on C∗(Zωc) that are invariant for the same action of H�. Unfortunately, how-
ever, we have been unable to prove that minimality of the action implies that it admits a
unique invariant field of traces.

We begin with a section on preliminaries. We show if σ is a 2-coycle on a finitely
generated free abelian group, and if Zω is the centre of the corresponding antisymmetric
bicharacter, then the trace spaces of C∗(P, ω) and C∗(Zω) are isomorphic. In Section 3,
we prove our main theorems about the KMS states on the cross-sectional algebra of a Fell
bundle. In Section 4, we construct a Fell bundle from a cocycle on a groupoid, and use our
results in Section 3 to obtain a twisted version of Neshveyev’s results in [15]. Section 5
contains our results about the preferred dynamics on the twisted C∗-algebras of k-graphs.
We finish off by posing the question whether simplicity of C∗(�, c) implies that it admits a
unique KMS state.

2. Preliminaries

Throughout this paper, T is regarded as a multiplicative group with identity 1.

2·1. Groupoids

Let G be a locally compact second countable Hausdorff groupoid (see [17]). For each
x ∈ G(0), we write Gx = r−1(x), Gx = s−1(x) and Gx

x = Gx ∩ Gx . The set Iso(G) := ⋃
x∈G(0) Gx

x

is called the isotropy of G, and the groups Gx
x are called the isotropy subgroups of G. We say

G is étale if r and s are local homeomorphisms. A bisection of G is an open subset U of G
such that r |U and s|U are homeomorphisms.

A continuous T-valued 2-cocycle σ on G is a continuous function σ : G2 →T such
that σ(r(γ ), γ )= σ(γ, s(γ ))= 1 for all γ ∈ G and σ(α, β)σ (αβ, γ )= σ(β, γ )σ (α, βγ )

for all composable triples (α, β, γ ). We write Z 2(G,T) for the group of all continuous
T-valued 2-cocycles on G. Let b : G →T be a continuous function such that b(x)= 1 for all
x ∈ G(0). The function δ1b : G × G →T given by δ1b(γ, α)= b(γ )b(α)b(γ α) is a continu-
ous 2-cocycle and is called the 2-coboundary associated to b. If b is continuous, then δ1b is
a T-valued 2-cocycle on G. Two continuous T-valued 2-cocycles σ, σ ′ are cohomologous if
σ ′σ = δ1b for some continuous b. A continuous R-valued 1-cocycle D on G is a continuous
homomorphism from D to R.

Given σ ∈ Z 2(G,T), the space Cc(G) is a ∗-algebra with the involution and multiplication
defined by

f ∗(γ ) := σ(γ, γ −1) f (γ −1) and

( f g)(γ ) :=
∑
αβ=γ

σ (α, β) f (α)g(β).
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We denote this ∗-algebra by Cc(G, σ ). The formula

‖ f ‖I := max
(

sup
x∈G(0)

∑
λ∈Gx

| f (λ)|, sup
x∈G(0)

∑
λ∈Gx

| f (λ)|
)

determines a norm on Cc(G, σ ). By a ∗-representation of Cc(G, σ ), we mean a
∗-homomorphism from Cc(G, σ ) to the bounded operators on a Hilbert space. The twisted
groupoid C∗-algebra C∗(G, σ ) is the completion of Cc(G, σ ) in the universal norm

‖ f ‖ := sup{‖L( f )‖ : L is a ∗ -representation of Cc(G, σ )}.
A measure μ on G(0) is called quasi-invariant if the measures ν, ν−1 on G given by∫

f dν =
∫
G(0)

∑
γ∈Gx

f (γ ) dμ(x) and
∫

f dν−1 =
∫
G(0)

∑
γ∈Gx

f (γ ) dμ(x)

are equivalent. We write �μ := dν/dν−1 for the Radon–Nikodym derivative of ν with
respect to ν−1. We will call �μ the Radon–Nikodym cocycle of μ. Given a bisection U
and x ∈ G(0), let U x := U ∩ r−1(x). Define TU : r(U )→ s(U ) by T (x)= s(U x). To see that
a measure μ is quasi-invariant it suffices to show that∫

r(U )
f (TU (x)) dμ(x)=

∫
s(U )

f (x)�μ(Ux) dμ(x)

for all bisections U and all f : s(U )→R.

2·2. Fell bundles

Let C, D be C∗-algebras. A C–D bimodule Y is said to be a C–D-imprimitivity bimodule
if it is a full left Hilbert C-module and a full right Hilbert D-module, and for all y, y′, y′′ ∈ Y ,
c ∈ C and d ∈ D, we have

C〈y · d, y′〉 = C〈y, y′ · d∗〉, 〈 c · y, y′〉D = 〈y, c∗ · y′〉D and

C〈y, y′〉 · y′′ = y · 〈y′, y′′〉D. (2·1)

Let G be a locally compact second countable Hausdorff étale groupoid. Suppose that
p :B → G is a separable upper-semicontinuous Banach bundle over G (see [14, defini-
tion A·1]). Let

B(2) := {(a, b) ∈B ×B : (p(a), p(b)) ∈ G(2)}.
Following [14], we say B is a Fell bundle over G if there is a continuous involution a �→
a∗ :B →B and a continuous bilinear associative multiplication (a, b) �→ ab :B(2) →B
such that:

(F1) p(ab)= p(a)p(b);
(F2) p(a∗)= p(a)−1;
(F3) (ab)∗ = b∗a∗;
(F4) for each x ∈ G(0), the fibre B(x) is a C∗-algebra with respect to the ∗-algebra structure

given by the above involution and multiplication; and
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(F5) for each γ ∈ G, B(γ ) is a B(r(γ ))–B(s(γ ))-imprimitivity bimodule with actions
induced by the multiplication and the inner products

B(r(γ ))〈a, b〉 = ab∗ and 〈a, b〉B(s(γ )) = a∗b. (2·2)

For x ∈ G(0), we often write A(x) for the fibre B(x) to emphasise that these fibres are
C∗-algebras between which the various Bγ are imprimitivity bimodules. Given a Fell bundle
B over G, we say the fibre B(γ ) is singly generated if there exists an element 1γ ∈ B(γ )
such that

A(r(γ ))〈1γ , 1γ 〉 = 1γ1∗
γ = 1A(r(γ )), 〈1γ , 1γ 〉A(s(γ )) = 1∗

γ1γ = 1A(s(γ )) and

B(γ )= A(r(γ ))1γ = 1γ A(s(γ )).

In particular, for x ∈ G(0), the fibre A(x) is singly generated if and only if it is a unital
C∗-algebra, and we can then take 1x = 1A(x).

A continuous function f : G →B is a section if p ◦ f is the identity map on G. A section
f vanishes at infinity if the set {γ ∈ G : ‖ f (x)‖ ≥ ε} is compact for all ε > 0. We write
0(G;B) for the completion of the set of sections which vanishes at infinity with respect to
the norm ‖ f ‖ := supγ∈G ‖ f (γ )‖. The space 0(G;B) is a Banach space (see for example
[21, proposition C·23]).

A Fell bundle B over G has enough sections if for every γ ∈ G and a ∈B(γ ), there is a
section f such that f (γ )= a. If G is a locally compact Hausdorff space, then p :B → G has
enough sections, see [5, appendix C].

The space c(G;B) of compactly supported continuous sections is a ∗-algebra with
involution and multiplication given by

f ∗(γ ) := f (γ −1)∗ and (2·3)

f ∗ g(γ ) :=
∑
αβ=γ

f (α)g(β) for f, g ∈ c(G;B). (2·4)

The I -norm on c(G;B) is given by

‖ f ‖I := max
(

sup
x∈G(0)

∑
λ∈Gx

‖ f (λ)‖, sup
x∈G(0)

∑
λ∈Gx

‖ f (λ)‖
)
.

A ∗-homomorphism L : c(G;B)→ B(HL) is an I -norm decreasing representation if
span{L( f )ξ : f ∈ c(G;B), ξ ∈HL =HL} and if ‖L( f )‖ ≤ ‖ f ‖I for all f ∈ c(G;B). The
universal C∗-norm on c(G;B) is

‖ f ‖ := sup{‖L( f )‖ : L is an I -norm decreasing representation}
and C∗(G,B) is the completion of c(G;B) with respect to the universal norm.

Let F be a closed subgroupoid of G. Then B|F is a Fell bundle over F . We write c(F;B)
in place of c(F;B|F ) and we denote the completion c(F;B) in the universal norm by
C∗(F ,B).

Suppose that each fibre in B is singly generated. Fix x ∈ G(0). For u ∈ Gx
x and a ∈ B(u),

let a · δu ∈ c(Gx
x ;B) be the section given by

a · δu(v)=
{

a if u = v

0 otherwise.
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Then

C∗(Gx
x ,B)= span{a · δu : u ∈ Gx

x , a ∈ B(u)}.
In particular C∗(Gx

x ,B) is a unital C∗-algebra with 1C∗(Gx
x ,B) = 1x · δx .

2·3. Representations of Fell bundles and the Disintegration Theorem

Let p :B → G be a Fell bundle over a locally compact second countable Hausdorff
étale groupoid G. Suppose that G(0) ∗H is a Borel Hilbert bundle over G(0) as in [21,
definition F·1]. Let

End(G(0) ∗H) := {(x, T, y) : x, y ∈ G(0), T ∈ B
(H(y),H(x))}.

Following [14, definition 4·5], we say a map π̂ :B → End(G(0) ∗H) is a ∗-functor if
each π̂(a) has the form π̂(a)= (r(p(a)), π(a), s(p(a))) for some π(a) :H(s(p(a)))→
H(r(p(a))) such that the maps π(a) collectively satisfy:

(S1) π(λa + b)= λπ(a)+ π(b) if p(a)= p(b);
(S2) π(ab)= π(b)π(a) whenever (a, b) ∈B(2); and
(S3) π(a∗)= π(a)∗.

A strict representation of B is a triple (μ, G(0) ∗H, π̂) consisting of a quasi-invariant
measure μ on G(0), a Borel Hilbert bundle G(0) ∗H and a ∗-functor π̂ :B → End(G(0) ∗H).
For such a triple, we write L2(G(0) ∗H, μ) for the completion of the set of all Borel sections
f : G(0) → G(0) ∗H with

∫
G(0)〈 f (x), f (x)〉H(x) dμ(x) <∞ with respect to

〈 f, g〉L2(G(0)∗H,μ) =
∫
G(0)

〈 f (x), g(x)〉H(x) dμ(x).

Let �μ(u) be the Radon–Nikodym cocycle for μ. Given a strict representation (μ, G(0) ∗
H, π̂), proposition 4·10 of [14] gives an I -norm bounded ∗-homomorphism L on L2(G(0) ∗
H, μ) such that

(
L( f )ξ

∣∣η) =
∫
G(0)

∑
u∈Gx

(
π( f (u))ξ(s(u))

∣∣ η(r(u)))�μ(u)
− 1

2 dμ(x). (2·5)

We call L the integrated form of π . The Disintegration Theorem [14, theorem 4·13] shows
that every nondegenerate representation M of C∗(G,B) is equivalent to the integrated form
of a strict representation.

2·4. Cocycles and bicharacters on groups

Let F be an abelian group. Viewing F as a groupoid with the discrete topology, we write
Z 2(F,T) for the set of T-valued 2-cocycles on F . Given σ ∈ Z 2(F,T), define σ ∗(p, q)=
σ(q, p). Proposition 3·2 of [16] implies that σ, σ ′ ∈ Z 2(F,T) are cohomologous if and only
if σσ ∗ = σ ′σ ′∗.

Given σ ∈ Z 2(F,T), the C∗-algebra C∗(F, σ ) is the universal C∗-algebra generated by
unitaries {Wp : p ∈ F} satisfying WpWq = σ(p, q)Wpq for all p, q ∈ F . A standard argu-
ment shows that if σ and σ ′ are cohomologous in Z 2(F,T), say σ = δ1bσ ′, then the map
Wp �→ b(p)Wp descends to an isomorphism from C∗(F, σ ) onto C∗(F, σ ′), see for example
[19, proposition 3·5].
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A bicharacter on F is a function ω : F × F →T such that the functions ω(·, p) and
ω(q, ·) are homomorphisms. A bicharacter ω is antisymmetric if ω(p, q)=ω(q, p). Each
bicharacter is a T-valued 2-cocycle. If F is a free abelian finitely generated group, then
[16, proposition 3·2] shows that every T-valued 2-cocycle σ on F is cohomologous to a
bicharacter: Let q1, . . . , qt be the generators of F . Define a bicharacter ω : F × F →T on
generators by

ω(qi , q j )=
{
σ(qi , q j )σ (q j , qi ) if i > j
1 if i ≤ j.

(2·6)

Then ωω∗ = σσ ∗ and by [16, proposition 3·2], ω is cohomologous to σ .
Given σ ∈ Z 2(F,T), the map p �→ (σσ ∗)(p, ·) is a homomorphism from F into the

character space of F . Let

Zσ := {p ∈ F : σσ ∗(p, q)= 1 for all q ∈ F}
be the kernel of the this homomorphism, so Zσ is a subgroup of F . If ω is a bicharacter
cohomologous to σ , then Zω = Zσ .

Given a unital C∗-algebra A, we write Tr(A) for the simplex of tracial states of A.

LEMMA 2·1. Suppose that F is a finitely generated free abelian group. Let σ ∈ Z 2(F,T)
and let ω be the bicharacter defined in (2·6). Then

Tr(C∗(F, σ ))∼= Tr(C∗(F, ω))∼= Tr(C∗(Zω))∼= Tr(C∗(Zσ )).

Proof. The first and third isomorphisms are clear. So we prove the second isomorphism. We
first claim that for every ψ ∈ Tr(C∗(F, ω)), we have

ψ(Wp)= 0 for all p /∈ Zω.

To see this, fix p /∈ Zω. There exists at least one generator qi ∈ F such that (ωω∗)(p, qi ) �= 1.
Since ψ is a trace and ω is a bicharacter, we have

ψ(Wp)=ψ(W ∗
qi

WpWqi ) = ω(p, qi)ω(qi
−1, pqi )ψ(Wp)

= ω(p, qi)ω(q
−1
i , p)ω(q−1

i , qi )ψ(Wp)

= ω(p, qi)ω(qi , p)ω(q−1
i , qi )ψ(Wp)

= (ωω∗)(qi , p)ω(q−1
i , qi )ψ(Wp).

The formula (2·6) for ω says that ω(q−1
i , qi )= 1. Since (ωω∗)(qi , p) �= 1, the above

computation shows that ψ(Wp)= 0.
Next define a linear map ϒ : C∗(F, ω)→ C∗(Zω) on generators by

ϒ(Wp)=
{

Wp if p ∈ Zω
0 if p /∈ Zω.

This induces a map � : Tr(C∗(Zω))→ Tr(C∗(F, ω)) by �(ψ)=ψ ◦ϒ . The map � is
clearly a continuous and affine map. The embedding ι : C∗(Zω)→ C∗(F, ω) induces a map
ι̃ : Tr(C∗(F, ω))→ Tr(C∗(Zω)) with ι̃(ψ)=ψ ◦ ι. A quick computation shows that ι̃ and �
are inverses of each other and therefore � is an isomorphism.
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2·5. KMS states

Let τ be an action of R by automorphisms of a C∗-algebra A. We say an element a ∈ A
is analytic if the map t �→ αt(a) is the restriction of an analytic function z �→ αz(a) on C.
Following [2, 6, 15], for β ∈R \ {0}, we say that a stateψ of A is a KMSβ state (or KMS state
at inverse temperature β) if ψ(ab)=ψ(bαiβ(a)) for all analytic elements a, b. It suffices to
check this condition (the KMS condition) on a set of analytic elements that span a dense
subalgebra of A. By [2, propositions 5·3·3], all KMSβ states for β �= 0 are τ -invariant in the
sense that ψ(τt(a))=ψ(a) for all t ∈R and a ∈ A. For β = 0, the KMS condition reduces
to the tracial condition φ(ab)= φ(ba), but does not automatically imply τ -invariance. We
define the KMS0 states for τ to be the τ -invariant traces of A.

3. KMS states on the C∗-algebras of Fell bundles

In [15, theorems 1·1 and 1·3], Neshveyev described the KMS states of C∗-algebras of
locally compact second-countable Hausdorff étale groupoids. Here, we generalise his results
to the C∗-algebras of Fell bundles over groupoids. Our proof follows Neshveyev’s closely.

Let μ be a probability measure on G(0). A μ-measurable field of states is a collec-
tion {ψx}x∈G(0) of states ψx on C∗(Gx

x ,B) such that for every f ∈ c(G;B) the function
x �→ ∑

u∈Gx
x
ψx( f (u) · δu) : G(0) →C is μ-measurable. Given a μ-measurable field � :=

{ψx}x∈G(0) of states we define

[�]μ = {
ϕ : ϕ is a μ-measurable field of states and ϕx =ψx for μ-a.e. x ∈ G(0)}.

Given a state ψ on a C∗-algebra A, the centraliser of ψ is the set of all elements a ∈ A such
that

ψ(ab)=ψ(ba) for all b ∈ A.

We say thatψ centralises a ∈ A if a belongs to the centraliser ofψ ; we say thatψ centralises
a subalgebra A0 of A if it centralises every element of A0.

THEOREM 3·1. Let p :B → G be a Fell bundle with singly generated fibres over a locally
compact second-countable Hausdorff étale groupoid G.

(i) Let μ be a probability measure on G(0) and let � := {ψx}x∈G(0) be a μ-measurable
field of states ψx : C∗(Gx

x ,B) such that each ψx centralises A(x). Then the formula

f �−→
∫
G(0)
ψx

(
f |Gx

x

)
dμ(x)=

∫
G(0)

∑
u∈Gx

x

ψx

(
f (u) · δu

)
dμ(x) (3·1)

extends to a state �(μ, �) of C∗(G,B) that centralises 0(G(0);B).
(ii) States �(μ, �) and �(ν, � ′) obtained from part (i) are equal if and only if μ= ν

and [�]μ = [� ′]μ.
(iii) The map � of part (i) is a surjection onto the space of states of C∗(G,B) that

centralise 0(G(0),B).

The following lemma will establish part (ii) of Theorem 3·1.

LEMMA 3·2. Let p :B → G be a Fell bundle with singly generated fibres over a locally
compact second countable Hausdorff étale groupoid G. If μ is a probability measure on
G(0) and � := {ψx}x∈G(0) and � ′ := {ψ ′

x}x∈G(0) are μ-measurable fields of states such that
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ψx and ψ ′
x centralise A(x) for each x, and such that ψx =ψ ′

x for μ-almost every x, then
the functions �(μ, �) and �(μ, � ′) given by (3·1) agree. If ψ is a state of C∗(G,B) that
centralises 0(G(0);B), then there is at most one pair

(
μ, [�]μ

)
consisting of a probability

measure μ on G(0) and a μ-equivalence class [�]μ of μ-measurable fields of states on
C∗(Gx

x ,B) such that �(μ, �)=ψ .

Proof. The first statement is immediate from the definition of μ-equivalence.
Now fix a state ψ of C∗(G,B) that centralises 0(G(0);B). Suppose that μ, μ′ are proba-

bility measures on G(0) and that � = {ψx}x∈G(0) and � ′ = {ψ ′
x}x∈G(0) are μ-measurable fields

of states satisfying �(μ, �)=ψ =�(μ′, � ′). For each f ∈ C0(G(0)), there is a section
f̃ ∈ c(G,B)⊆ C∗(G,B) such that

f̃ (γ )=
{

f (x)1x if γ = x ∈ G(0)
0 if γ /∈ G(0).

So (3·1), shows that∫
G(0)
ψx( f̃ (x)) dμ(x)=ψ( f̃ )=

∫
G(0)
ψ ′

x( f̃ (x)) dμ′(x).

Since each f̃ (x)= f (x)1x , and since each ψx and each ψ ′
x is a state, we have

ψx( f̃ (x))= f (x)=ψ ′
x( f̃ (x)) for all x . Hence

∫
G(0) f dμ=ψ( f̃ )= ∫

G(0) f dμ′. So the
Riesz Representation Theorem shows that μ=μ′.

To see thatψ andψ ′ agree μ-almost everywhere, we suppose to the contrary thatψx �=ψ ′
x

for all x in some set V ⊆ G(0) with μ(V ) �= 0 and derive a contradiction. Since B has enough
sections, there is a countable family F ⊆ c

(
Iso(G);B)

such that for each γ ∈ Iso(G), we
have span{ f (γ ) : f ∈F} =B(γ ). So there is at least one f ∈F and V ′ ⊆ V of nonzero
measure such that

ψ
(

f |Gx
x

) =
∑
u∈Gx

x

ψx( f (u) · δu) �=
∑
u∈Gx

x

ψ ′
x( f (u) · δu)=ψ ′( f |Gx

x

)
for all x ∈ V ′.

For each l ∈N, let V ′
l := {

x ∈ V ′ : ∣∣ψx

(
f |Gx

x

) −ψ ′
x

(
f |Gx

x

)∣∣> 1
l

}
. So there is l ∈N such that

μ(V ′
l ) > 0. Now for 0 ≤ j ≤ 3, let

V ′
l, j :=

{
x ∈ V ′

l : Arg
(
ψx

(
f |Gx

x

) −ψ ′
x

(
f |Gx

x

)) ∈
[

j
π

2
, ( j + 1)

π

2

]}
.

Then there is j such that μ(V ′
l, j ) > 0. Then

�
(

e−i (2 j−1)π
4

∫
Vl, j

(
ψx

(
f |Gx

x

) −ψ ′
x

(
f |Gx

x

))
dμ(x)

)
≥μ(V ′

l, j )
1

l
√

2
> 0,

which is a contradiction.

Proof of Theorem 3·1. (i) Fix a probability measure μ on G(0) and a μ-measurable field
� = {ψx} of states ψx : C∗(Gx

x ,B)→C such that each ψx centralises A(x). For each
x ∈ G(0), define ϕx : c(G;B)→C by

ϕx( f )=
∑
u∈Gx

x

ψx

(
f (u) · δu

)
.
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Sinceψx is a state, ϕx is norm-decreasing, and so extends to C∗(G,B). We claim that each ϕx

is a state of C∗(G,B) that centralises 0(G(0);B). For this, fix x ∈ G(0) and let (Hx , πx , ζx)

be the GNS-triple corresponding to ψx . Let Y (x) be the closure of c(Gx;B) under the
C∗(Gx

x ,B)-valued pre-inner product

〈 f, g〉 = f ∗ ∗ g.

Then Y (x) is a right Hilbert C∗(Gx
x ,B)-module with right action determined by multi-

plication (see [18, lemma 2·16]). Also C∗(G,B) acts by adjointable operators on Y (x)
by multiplication. By [18, proposition 2·66] there is a representation Y (x)-Ind(πx) :
C∗(G,B)→L(

Y (x)⊗C∗(Gx
x ,B) Hx

)
such that

Y (x)-Ind(πx)( f )(g ⊗ k)= ( f ∗ g)⊗ k.

We define θx := Y (x)-Ind(πx). Let hx = 1xδx = 1C∗(Gx
x ,B). We take f ∈ c(G;B) and

compute: (
θx( f )(hx ⊗ ζx)

∣∣ (hx ⊗ ζx)
) = (

( f ∗ hx)⊗ ζx

∣∣ hx ⊗ ζx

)
= (

πx(〈hx , f ∗ hx〉)ζx

∣∣ ζx

)
= ψx

(〈hx , f ∗ hx〉
)
. (3·2)

For each u ∈ Gx
x , we have

〈hx , f ∗ hx〉(u)= (h∗
x ∗ f ∗ hx)(u)=

∑
αβγ=u

hx(α
−1)∗ f (β)hx(γ ).

Each summand vanishes unless α−1 = γ = x and β = u. Therefore

〈hx , f ∗ hx〉(u)= 1∗
x f (u)1x = f (u),

and hence 〈hx , f ∗ hx〉 = f |Gx
x
. Putting this in (3·2), we get(

θx( f )(hx ⊗ ζx)
∣∣ (hx ⊗ ζx)

) =ψx

(
f |Gx

x

) =
∑
u∈Gx

x

ψx

(
f (u) · δu

) = ϕx( f ).

Also since 〈hx , hx〉 = 1x · δx ,

‖hx ⊗ ζx‖ = (
hx ⊗ ζx

∣∣hx ⊗ ζx

) = (
πx〈hx , hx〉ζx

∣∣ζx

) =ψx

(〈hx , hx〉
) =ψx(1x · δx)= 1.

Now since f �→ (
θx( f )(hx ⊗ ζx)

∣∣ (hx ⊗ ζx)
)

is a state, ϕx is a state as well.
To see that ϕx centralises 0(G(0);B), fix f ∈ 0(G(0);B) and g ∈ C(G,B). Using at the

second equality that f (v)= 0 for v ∈ Gx
x \ {x}, and at the third equality that ψx centralises

f (x) · δx ∈ A(x), we see that

ϕx( f ∗ g) =
∑
u∈Gx

x

ψx(( f ∗ g)(u) · δu)=
∑
u∈Gx

x

ψx(( f (x) · δx)(g(u) · δu))

=
∑
u∈Gx

x

ψx((g(u) · δu)( f (x) · δx))= ϕx(g ∗ f ).

We have now proved that ϕx is a state of C∗(G,B) that centralises 0(G(0);B) as claimed.
Since x �→ ϕx(b) from G(0) to C is μ-measurable for each b ∈ C∗(G,B), there is a positive

functional ψ : C∗(G,B)→C such that ψ(b)= ∫
G(0) ϕx(b) dμ(x). Since μ is a probability
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measure and each ϕx is a state, ψ is a state of C∗(G,B). This ψ is given by (3·1) by
construction, and it centralises 0(G(0);B) because each ϕx does.

(ii) The first assertion of Lemma 3·2 gives the “if” implication. Part (1) shows that
each ψ =�(μ, �) is a state that centralises 0(G(0);B), and so the second assertion of
Lemma 3·2 gives the “only if” implication.

(iii) Fix a state ψ of C∗(G,B) that centralises 0(G(0);B). We must construct a pair
(μ, �) as in (i) such that ψ =�(μ, �). Let (H, L , ξ) be the GNS-triple corresponding
to ψ . Applying the Disintegration Theorem (see [14, theorem 4·13]) gives a strict represen-
tation (λ, G(0) ∗H, π̂) of B such that L is the integrated form of π on L2(G(0) ∗H, λ). By
[14, lemma 5·22], there is a unitary isomorphism from H onto L2(G(0) ∗H, λ). We identify
H with L2(G(0) ∗H, λ) and view ξ as a section of the bundle G(0) ∗H. Let μ be the measure
on G(0) given by dμ(x) := ‖ξ(x)‖2dλ(x). For each x ∈ G(0), define ψx : C∗(Gx

x ,B)→C by

ψx(a · δu)= ‖ξ(x)‖−2
(
π(a)ξ(x), ξ(x)

)
, (3·3)

where u ∈ Gx
x and a ∈ B(u). We first show that ψx is a state on C∗(Gx

x ,B).
Fix u ∈ Gx

x and a ∈ B(u). A computation using the multiplication and the involution
formulas (2·4) and (2·3) shows that for v ∈ Gx

x and b ∈ B(u) we have

(a · δu) ∗ (b · δv)= ab · δuv and (a · δu)
∗ = a∗ · δu−1 . (3·4)

Therefore using (S1) and (S2) at the final equality we see that

ψx

(
(a · δu) ∗ (a · δu)

∗) =ψx

(
aa∗ · δuu−1

) = ‖ξ(x)‖−2
(
π(aa∗)ξ(x)

∣∣ξ(x)) ≥ 0.

Since π̂ is a ∗-functor, (S1)–(S3) imply that π(1x)= 1B(H(x)). Now the computation

ψx(1x · δx)= ‖ξ(x)‖−2
(
π(1x)ξ(x)

∣∣ξ(x)) = 1

implies that ψx is a state on C∗(Gx
x ,B).

We claim that the pair
(
μ, {ψx}x∈G(0)

)
satisfies the equation (3·1). By (2·5) for all

f ∈ c(G;B) we have

ψ( f )= (
L( f )ξ

∣∣ ξ) =
∫
G(0)

∑
u∈Gx

(
π( f (u))ξ(s(u))

∣∣ ξ(x))�λ(u)
− 1

2 dλ(x). (3·5)

To prove (3·1), it suffices to show that for λ-almost every x ∈ G(0) we have∑
u∈Gx \Gx

x

(
π( f (u))ξ(s(u))

∣∣ ξ(x))�λ(u)
− 1

2 = 0.

Equivalently, it suffices to show that for λ-almost every x ∈ G(0), for each bisection
U ⊆ G \ ⋃

x∈G(0) Gx
x such that u ∈ Gx ∩ U , and for each a ∈ B(u), we have(

π(a)ξ(s(u))
∣∣ ξ(x)) = 0. (3·6)

Fix a bisection U ⊆ G \ ⋃
x∈G(0) Gx

x and g ∈ c(U ;B)with supp g ⊆ U . Since r(γ ) �= s(γ )
for γ ∈ supp g ⊆ U , and since supp g is compact, we can cover supp g by finitely many
open sets Ui ⊆ U such that r(Ui)∩ s(Ui)= ∅. Choose hi ∈ C0(r(Ui), [0, 1])⊆ c(G(0);B)
such that

∑
i h2

i is identically 1 on r(supp g). Then each s((supp hi )U )∩ supp hi ⊆ r(Ui)∩
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s(Ui)= ∅. Since each hi is centralised by ψ , we then have

ψ(g)=
∑

i

ψ(h2
i ∗ g)=

∑
i

(hi ∗ g ∗ hi)= 0.

Define q : G(0) →C by

q(x)=
∑
u∈Gx

(
π(g(u))ξ(s(u))

∣∣ ξ(x))�λ(u)−
1
2 .

Since ψ(g)= 0, we have ψ(q(x)g)= 0 for all x ∈ G(0). Applying (3·5) for ψ together with
(S1) for the ∗-functor π̂ gives

0 = ψ(q(x)g)=
∫
G(0)

q(x)
∑
u∈Gx

(
π(g(u))ξ(s(u))

∣∣ ξ(x))�λ(u)
− 1

2 dλ(x)

=
∫
G(0)

∣∣∣ ∑
u∈Gx

(
π(g(u))ξ(s(u))

∣∣ ξ(x))�λ(u)
− 1

2

∣∣∣2
dλ(x). (3·7)

Thus
∑

u∈Gx

(
π(g(u))ξ(s(u))

∣∣ ξ(x))�λ(u)−
1
2 = 0 for λ-almost every x ∈ G(0).

Since B has enough sections, we can fix a countable set {gn} of elements of c(U ;B) such
that for each u ∈ U , the set {gn(u) : n ∈N} is a dense subset of B(u). For each n ∈N, let

Xn :=
{

x ∈ U :
∑

u∈Gx ∩U

(
π(gn(u))ξ(s(u))

∣∣ ξ(x)) �= 0
}

and let X :=
⋃
n∈N

Xn.

Equation (3·7) implies that λ(X)= 0. For any x ∈ r(U ) the set U ∩ Gx is a singleton; we
write ux for the unique element of U ∩ Gx . Then for x ∈ U \ X and n ∈N, we have(

π(gn(u
x))ξ(s(ux))

∣∣ ξ(x)) =
∑

u∈Gx ∩U

(
π(gn(u))ξ(s(u))

∣∣ ξ(x)) = 0.

By choice of gn , the set {gn(ux) : n ∈N} is a dense subset of B(ux). It follows that(
π(a)ξ(s(ux))

∣∣ ξ(x)) = 0 for all a ∈ B(ux), giving (3·6). So ψ is given by (3·1).
To see that each ψx centralises A(x), note that since ψ centralises 0(G(0);B), the

formula (3·1) implies that∫
G(0)

∑
u∈Gx

x

(
π

(
( f ∗ g)(u)

)
ξ(x)

∣∣ ξ(x))�λ(u)
− 1

2 dλ(x)

=
∫
G(0)

∑
u∈Gx

x

(
π

(
(g ∗ f )(u)

)
ξ(x))

∣∣ ξ(x))�λ(u)
− 1

2 dλ(x)

for all f, g ∈ 0(G(0);B). Therefore for λ-almost every x ∈ G(0), we have∑
u∈Gx

x

(
π

(
( f ∗ g)(u)

)
ξ(x))

∣∣ ξ(x)) =
∑
u∈Gx

x

(
π

(
(g ∗ f )(u)

)
ξ(x))

∣∣ ξ(x)). (3·8)

Fix a ∈ A(x), v ∈ Gx
x and b ∈ B(v) so that a · δx and b · δv are typical spanning elements of

A(x) and C∗(Gx
x ,B) respectively. Choose f ∈ 0(G(0);B) such that f (x)= a and choose a

bisection V ⊆ G containing v and an element g ∈ c(V,B)⊆ c(G,B) such that g(x)= b.
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For this f, g the sums on both sides of (3·8) collapse and we get

(
π(ab)ξ(x)

∣∣ξ(x)) = (
π(ba)ξ(x)

∣∣ξ(x)) for λ-a.e. x ∈ G(0).

Since (a · δx) ∗ (b · δv)= ab · δv, the formula (3·3) for ψx implies that

ψx

(
(a · δx) ∗ (b · δv)

) =ψx

(
(b · δv) ∗ (a · δx)

)
.

Thus ψx centralises A(x).

Definition 3·3. Theorem 3·1(ii) allows us to use the map � of Theorem 3·1(i) to define a
map �̃ from the collection of pairs (μ,C) consisting of a probability measure μ on G(0) and
a μ-equivalence class of fields of states of the C∗(Gx

x ,B) centralising the A(x); specifically,

�̃(μ, [�]μ)=�(μ, �) for all (μ, �).

THEOREM 3·4. Let p :B → G be a Fell bundle with singly generated fibres over a locally
compact second countable Hausdorff étale groupoid G. Suppose that γ �→ 1γ : G →B is
continuous. Let D be a continuous R-valued 1-cocycle on G and let τ be the dynamics
on C∗(G,B) given by τt( f )(γ )= eit D(γ ) f (γ ). Let β ∈R. Then �̃ restricts to a bijec-
tion between the simplex of KMSβ states of (C∗(G,B), τ ) and the pairs

(
μ, [�]μ

)
as in

Definition 3·3 such that.

(i) μ is a quasi-invariant measure with Radon–Nikodym cocycle e−βD; and
(ii) for μ-almost every x ∈ G(0), we have

ψs(η)(a · δu)=ψr(η)

(
(1ηa1

∗
η) · δηuη−1

)
for u ∈ Gx

x , a ∈ B(u) and η ∈ Gx .

Remark 3·5. In principal, the condition in Theorem 3·4(ii) depends on the particular rep-
resentative � = {ψx}x∈G(0) of the μ-equivalence class [�]μ. But if � = {ψx}x∈G(0) and � ′ =
{ψ ′

x} represent the same equivalence class, then ψx =ψ ′
x for μ-almost every x , and so �

satisfies (ii) if and only if � ′ does.

Before starting the proof, we establish some notation. Let U be a bisection. For each
x ∈ G(0), we write U x := r−1(x)∩ U and Ux := s−1(x)∩ U . The maps x �→ U x : r(U )→ U
and x �→ Ux : s(U )→ U are homeomorphisms and we can view them as the inverses of
r and s respectively. We also write TU : r(U )→ s(U ) for the homeomorphism given by
TU (x)= s(U x).

Proof. Suppose that ψ is a KMSβ state on (C∗(G,B), τ ). Since D|G(0) = 0, the KMSβ con-
dition implies that 0(G(0);B) is contained in the centraliser of ψ . By Theorem 3·1 there is a
pair

(
μ, [�]μ

)
, consisting of a probability measureμ on G(0) and aμ-equivalence class [�]μ

ofμ-measurable fields of statesψx on C∗(Gx
x ,B) that centralise the A(x), that satisfies (3·1).

We claim that μ and {ψx}x∈G(0) satisfy (i) and (ii).
First note that for a bisection U , f ∈ c(U ;B) and g ∈ c(G;B), the multiplication

formula in c(G;B) implies that

f ∗ g(γ )=
∑
αβ=γ

f (α)g(β)=
{

f (U x)g((U x)−1γ ) if x = r(γ ) ∈ r(U )
0 if r(γ ) /∈ r(U ).
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Similarly

g ∗ τiβ( f )(γ ) =
{

e−βD(Ux )g(γ (Ux)
−1) f (Ux) if x = s(γ ) ∈ s(U )

0 if s(γ ) /∈ s(U ).

Since ψ is a KMSβ state, we have ψ( f ∗ g)=ψ(g ∗ τiβ( f )). Formula (3·1) for ψ gives us∫
r(U )

∑
u∈Gx

x

ψx

(
f (U x)g((U x)−1u) · δu

)
dμ(x)

=
∫

s(U )
e−βD(Ux )

∑
u∈Gx

x

ψx

(
g(u(Ux)

−1) f (Ux) · δu

)
dμ(x). (3·9)

To see (i), fix a bisection U and let q ∈ Cc(s(U )). Since B has enough sections, we can
define h : U →B by h(γ )= q(s(γ ))1γ . Since γ �→ 1γ is continuous, h extends to a contin-
uous section h̃ on G. Now we apply (3·9) with f := h̃ and g := h̃∗. The sums in both sides
collapse to the single term u = x . Since U x = UTU (x), we have∫

r(U )
ψx

((|q(TU (x))|21x1
∗
x

) · δx

)
dμ(x)=

∫
s(U )

e−βD(Ux )ψx

(
(|q(x)|21x1

∗
x) · δx

)
dμ(x).

Note that (λa) · δ = λ(a · δ) for all λ ∈C and 1x1∗
x = 1A(x) = 1x . Since 1x · δx = 1C∗(Gx

x ,B)
and ψx is a state on C∗(Gx

x ,B), we have∫
r(U )

∣∣q(TU (x))
∣∣2

dμ(x)=
∫

s(U )
e−βD(Ux )|q(x)|2 dμ(x).

Thus μ is a quasi-invariant measure with Radon–Nikodym cocycle e−βD .
For (ii), let x ∈ G(0), u ∈ Gx

x , a ∈ B(u) and η ∈ Gx . Let ã ∈ c(Gx;B) such that ã is sup-
ported in a bisection U and ã(u)= a. Since U is a bisection, it follows that ã(v)= 0 for all
v ∈ Gx \ {u}. Fix a bisection V containing η such that s(V )⊆ s(U ). Fix q ∈ Cc(G(0)) such
that q ≡ 1 on a neighbourhood of x and supp q ⊆ s(V ). Define h ∈ c(G;B) by

h(γ )=
{

q(s(γ ))1γ if γ ∈ V
0 otherwise.

Since ψ is a KMSβ state, we have

ψ((ã ∗ h∗) ∗ h)=ψ(h ∗ τiβ(ã ∗ h∗)). (3·10)

We compute both sides of (3·10). For the left-hand side, we first apply the formula (3·1)
for ψ to get

ψ((ã ∗ h∗) ∗ h)=
∫
G(0)

∑
v∈G y

y

ψy

(
(ã ∗ h∗ ∗ h)(v) · δv

)
dμ(y). (3·11)

Since h is supported on the bisection V , h∗ ∗ h is supported on s(V ) and we have

(ã ∗ h∗ ∗ h)(v)=
∑
αβ=v

ã(α)(h∗ ∗ h)(β)= ã(v)(h∗ ∗ h)(s(v)).
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Since ã is supported in U ,

∑
v∈G y

y

ψy

(
(ã ∗ h∗ ∗ h)(v) · δv

) =
∑

v∈G y
y ∩U

ψy

((
ã(v)(h∗ ∗ h)(s(v))

) · δv
)

= ψy

((
ã(Uy)(h

∗ ∗ h)(y)
) · δUy

)
.

Putting this in (3·11) and applying the definition of h, we get

ψ((ã ∗ h∗) ∗ h) =
∫

s(V )
ψy

((
ã(Uy)(h

∗ ∗ h)(y)
) · δUy

)
dμ(y)

=
∫

s(V )
|q(y)|2ψy

(
ã(Uy) · δUy

)
dμ(y). (3·12)

For the right-hand side, we start by applying the formula (3·1) for ψ :

ψ
(
h ∗ τiβ(ã ∗ h∗)

) = ∫
G(0)

∑
w∈Gz

z
ψz

(
(h ∗ τiβ(ã ∗ h∗))(w) · δw

)
dμ(z).

Two applications of the multiplication formula in c(G;B) give

ψ
(
h ∗τiβ(ã ∗ h∗)

) =
∫

r(V )

∑
w∈Gz

z

ψz

((
h(V z)τiβ(ã ∗ h∗)((V z)−1w)

) · δw
)

dμ(z)

=
∫

r(V )
e−βD

(
UTV (z)(V

z)−1
)
ψz

((
h(V z)ã

(
UTV (z)

)
h(V z)∗

) · δV zUTV (z)(V
z)−1

)
dμ(z)

=
∫

r(V )
e−βD

(
UTV (z)(V

z)−1
)∣∣q(TV (z))

∣∣2
ψz

((
1V z ã(UTV (z))1

∗
V z

) · δV zUTV (z)(V
z)−1

)
dμ(z).

Since for each z ∈ r(V ), we have V z = VTV (z) and z = r
(
VTV (z)

)
, the variable substitution

y = TV (z) gives

ψ(h ∗ τiβ(ã ∗ h∗))=
∫

s(V )
|q(y)|2ψr(Vy)

(
(1Vy ã(Uy)1

∗
Vy
) · δVyUy(Vy)−1

)
dμ(y). (3·13)

Putting y = x in (3·13), we have Uy = u and Vy = η. Since |q(x)|2 = 1, condition (ii) now
follows from (3·12) and (3·13).

For the other direction, suppose that
(
μ, [�]μ

)
satisfies (i) and (ii). The formula (3·1)

in Theorem 3·1 gives a state ψ :=�(μ, �) on C∗(G,B). We aim to show that ψ is a
KMSβ state. It suffices to show that for each bisection U , each f ∈ c(U ;B), and each
g ∈ c(G;B) we have

ψ( f ∗ g)=ψ(g ∗ τiβ( f )). (3·14)

Fix a representative {ψx}x∈G(0) ∈ [�]μ. The left-hand side of (3·14) is

ψ( f ∗ g)=
∫

r(U )

∑
u∈Gx

x

ψx

((
f (U x)g((U x)−1u)

) · δu

)
dμ(x). (3·15)
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To compute the right-hand side, we start with the multiplication formula in c(G;B) and
the formula (3·1) for ψ :

ψ(g ∗ τiβ( f )) =
∫

x∈G(0)

∑
u∈Gx

x

ψx

(
(g ∗ τiβ( f ))(u) · δu

)
dμ(x)

=
∫

x∈s(U )

∑
u∈Gx

x

e−βD(Ux )ψx

((
g(u(Ux)

−1) f (Ux)
) · δu

)
dμ(x).

Since μ is quasi-invariant with Radon–Nikodym cocycle e−βD , the substitution x = TU (y)
gives

ψ(g ∗ τiβ( f ))=
∫

r(U )

∑
u∈GTU (y)

TU (y)

ψTU (y)

((
g(u(UTU (y))

−1) f (UTU (y))
) · δu

)
dμ(y).

Since UTU (y) = U y , we obtain

ψ(g ∗ τiβ( f ))=
∫

r(U )

∑
u∈GTU (y)

TU (y)

ψTU (y)

((
g(u(U y)−1) f (U y)

) · δu

)
dμ(y).

Applying the identity GTU (y)
TU (y)

(U y)−1 = (U y)−1G y
y , we can rewrite the sum as

ψ(g ∗ τiβ( f ))=
∫

r(U )

∑
v∈G y

y

ψTU (y)

((
g((U y)−1v) f (U y)

) · δ(U y)−1vU y

)
dμ(y). (3·16)

To simplify further, fix v ∈ G y
y . Using that 1U y1∗

U y = 1y , equation (3·4) gives

ψTU (y)

((
g((U y)−1v) f (U y)

) · δ(U y)−1vU y

)
= ψTU (y)

((
g((U y)−1v)1U y1∗

U y f (U y)
) · δ(U y)−1vU y(U y)−1U y

)
= ψTU (y)

(((
g((U y)−1v)1U y

) · δ(U y)−1vU y

)((
1∗

U y f (U y)
) · δ(U y)−1U y

))
.

Since
(
1∗

U y f (U y)
) · δ(U y)−1U y ∈ A(TU (y)), which is in the centraliser of ψTU (y), we have

ψTU (y)

((
g((U y)−1v) f (U y)

) · δ(U y)−1vU y

)
= ψTU (y)

(((
1∗

U y f (U y)
) · δ(U y)−1U y

)((
g((U y)−1v)1U y

) · δ(U y)−1vU y

))
= ψTU (y)

((
1∗

U y f (U y)g((U y)−1v)1U y

) · δ(U y)−1vU y

)
by (3·4).

We apply (ii) with η= U y . Recall that TU (y)= s(U y) and so r(η)= y. So for μ-almost
every y, we have

ψTU (y)

((
g((U y)−1v) f ( U y)

) · δ(U y)−1vU y

)
= ψy

((
1U y1∗

U y f (U y)g((U y)−1v)1U y1∗
U y

) · δv
)

= ψy

((
f (U y)g((U y)−1v)

) · δv
)
.
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Substituting this in each term of (3·16) gives

ψ(g ∗ τiβ( f ))=
∫

r(U )

∑
v∈G y

y

ψy

((
f (U y)g((U y)−1v)

) · δv
)

dμ(y)

which is precisely (3·15). So (3·14) holds, and ψ is a KMSβ state for τ .

By specialising our arguments to β = 0, we can use our results to describe the trace space
of the cross-section algebra of a Fell bundle with singly generated fibres. This is particularly
important given the role of the trace simplex of a simple C∗-algebra in Elliott’s classification
program.

COROLLARY 3·6. Let p :B → G be a Fell bundle with singly generated fibres over a
locally compact second-countable Hausdorff étale groupoid G. Then �̃ restricts to a bijec-
tion between the trace space of (C∗(G,B), τ ) and the pairs

(
μ, [�]μ

)
consisting of a

probability measure μ on G(0) and a μ-equivalence class [�]μ of μ-measurable fields of
states ψx of C∗(Gx

x ,B) that centralise the A(x) such that:

(i) μ is a quasi-invariant measure with Radon–Nikodym cocycle 1;
(ii) for μ-almost every x ∈ G(0), we have

ψs(η)(a · δu)=ψr(η)

(
(1ηa1

∗
η) · δηuη−1

)
for u ∈ Gx

x , a ∈ B(u) and η ∈ Gx .

Proof. The KMS condition at inverse temperature 0 reduces to the trace property. So we just
need to observe that the proof of Theorem 3·4 does not require the automatic τ -invariance
of KMS states for τ .

4. KMS states on twisted groupoid C∗-algebras

To apply our results to twisted groupoid C∗-algebras, we recall how to regard a twisted
groupoid C∗-algebra as the cross-sectional algebra of a Fell bundle with one-dimensional
fibres. This is standard; we just include it for completeness.

LEMMA 4·1. Let G be a locally compact second countable Hausdorff étale groupoid, and
let σ ∈ Z 2(G,T). Let B := G ×C and equip B with the product topology. Define p :B → G
by p(γ, z)= γ . Then:

(i) p :B → G is a Fell bundle with respect to the multiplication and involution given by

(γ, z)(η, w)= (γ η, σ (γ, η)zw) and (γ, z)∗ = (γ −1, σ (γ, γ −1)z); (4·1)

(ii) for each γ ∈ G, the fibre B(γ ) is singly generated by 1γ := (γ, 1). The map γ �→
1γ : G →B is continuous;

(iii) there is an injective ∗-homomorphism � from Cc(G, σ ) onto c(G, B) such that

�( f )(γ )= (γ, f (γ )) for all f ∈ Cc(G, σ ) and γ ∈ G;
This homomorphism extends to an isomorphism � : C∗(G, σ )→ C∗(G, B);

(iv) for each x ∈ G(0), there is an isomorphism ϒ : C∗(Gx
x , σ )→ C∗(Gx

x ,B) such that

ϒ(Wu)= (u, 1) · δu for all u ∈ Gx
x .
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Proof. For (i), since C is a Banach space, B is the trivial upper-semi continuous Banach
bundle. We check (F1)–(F5): The conditions (F1) and (F2) follow from (4·1) easily. To
see (F3), let a := (γ, z) and b := (η, w). An easy computation using (4·1) shows that

(ab)∗ = (
(ηγ )−1, σ (γ η, η−1γ −1)σ (γ, η)zw

)
, and

b∗a∗ = (
(ηγ )−1, σ (η−1, γ −1)σ (η, η−1)σ (γ, γ −1)zw

)
.

Two applications of the cocycle relation give us

σ(η−1, γ −1)σ (γ η, η−1γ −1)σ (γ, η) = σ(γ η, η−1)σ (γ, γ −1)σ (γ, η)

= σ(η, η−1)σ (η, r(η))σ (γ, γ −1)

= σ(η, η−1)σ (γ, γ −1).

Therefore (ab)∗ = b∗a∗. For (F4), let x ∈ G(0). Since x−1 = x = x−1x , the operations (4·1)
make sense in the fibre B(x) and turn it into a ∗-algebra. Also for a = (x, z) ∈ B(x), we have
‖aa∗‖ = |c(x−1, x)zz| = |z|2 = ‖a‖2. Thus B(x) is a C∗-algebra. For (F5), note that each
fibre B(γ ) is a full left Hilbert A(r(γ ))-module and a full right Hilbert A(s(γ ))-module.
Equations (2·1) and (2·2) follow from (4·1).

Part (ii) is clear. To see (iii), note that the multiplication and involution formulas in
Cc(G, σ ) and c(G;B) show that� is a ∗-homomorphism. Since each section g ∈ c(G;B)
has the form g(γ )= (γ, zg,γ ) for some zg,γ ∈C, we can define �̃ : c(G;B)→ Cc(G, σ ) by
�̃(g)(γ )= zg,γ . An easy computation shows that �̃ is the inverse of � and therefore � is
a bijection. For each I -norm-decreasing representation L of c(G;B), the map L ◦� is a
∗-representation of Cc(G, σ ). Therefore

‖�( f )‖c(G;B)
= sup{‖L(�( f ))‖ : L is an I -norm decreasing representation of c(G;B)}
≤ sup{‖L ′( f )‖ : L ′ is a ∗-representation of Cc(G, σ )}
= ‖ f ‖Cc(G,σ ).

Thus � is norm decreasing and therefore extends to an isomorphism of C∗-algebras.
For (iv), take Wu,Wv ∈ Gx

x . We have

ϒ(Wu Wv)= σ(u, v)ϒ(Wuv)= σ(u, v)((uv, 1) · δuv).

To compare this with ϒ(Wu)ϒ(Wv), we calculate, applying (3·4) in the second equality:

ϒ(Wu)ϒ(Wv)=
(
(u, 1) · δu

) ∗ (
(v, 1) · δv

) = (u, 1)(v, 1) · δu,v = σ(u, v)((uv, 1) · δuv).

Thus ϒ is a ∗-homomorphism. The map ϒ̃ : C∗(Gx
x ,B)→ C∗(Gx

x , σ ) given by ϒ̃((u, z) ·
δu)= zWu is an inverse for ϒ , so ϒ descends to an isomorphism of C∗-algebras.

In parallel with Section 3, we say that a collection {ψx}x∈G(0) of states ψx on C∗(Gx
x , σ ) is

a μ-measurable field of states if for every f ∈ Cc(G, σ ), the function

x �→
∑
u∈Gx

x

f (u)ψx(Wu)

is μ-measurable.
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We apply Theorem 3·4 to the Fell bundle of Lemma 4·1 to compute the KMS states of
C∗(G, σ ). The key point is that for this Fell bundle, each A(x)=C1C∗(Gx

x ,σ )
⊆ C∗(Gx

x , σ )=
C∗(Gx

x ,B) is central. Thus every state ψx of C∗(Gx
x ,B) centralises A(x).

COROLLARY 4·2. Let G be a locally compact second-countable Hausdorff étale
groupoid, and let σ ∈ Z 2(G,T). Let D be a continuous R-valued 1-cocycle on G and let
τ̃ be the dynamics on C∗(G, σ ) given by τ̃t( f )(γ )= eit D(γ ) f (γ ). Take β ∈R. There is a
bijection between the simplex of KMSβ states of

(
C∗(G, σ ), τ̃) and the pairs

(
μ, [�]μ

)
con-

sisting of a probability measure μ on G(0) and a μ-equivalence class [�]μ of μ-measurable
fields of states on C∗(Gx

x , σ ) such that:

(i) μ is a quasi-invariant measure with Radon–Nikodym cocycle e−βD;
(ii) for each representative {ψx}x∈G(0) ∈ [�]μ and for μ-almost every x ∈ G(0), we have

ψx(Wu)= σ(ηu, η−1)σ (η, u)σ (η−1, η)ψr(η)

(
Wηuη−1

)
for u ∈ Gx

x , and η ∈ Gx .

The state corresponding to the pair
(
μ, [�]μ

)
is given by

ψ( f )=
∫
G(0)

∑
u∈Gx

x

f (u)ψx(Wu) dμ(x) for all f ∈ Cc(G, σ ). (4·2)

Proof. Lemma 4·1 yields a Fell bundle B over G, an isomorphism � : C∗(G, σ )→
C∗(G,B), and an isomorphism ϒ : C∗(Gx

x , σ )→ C∗(Gx
x ,B). The isomorphism � inter-

twines the dynamics τ̃ and τ induced by D on C∗(G, σ ) and C∗(G,B). We aim to apply
Theorem 3·4.

Let ψ be a KMSβ state of
(
C∗(G, σ ), τ̃). Then ϕ :=ψ ◦�−1 is a KMSβ state on(

C∗(G,B), τ) and Theorem 3·4 gives a pair
(
μ, {ϕx}x∈G(0)

)
of a probability measure μ on

G(0) and a μ-measurable field of states on C∗(Gx
x ,B) satisfying (i) and (ii) of Theorem 3·4.

Let ψx := ϕx ◦ϒ . For each f ∈ Cc(G, σ ), the function x �→ ∑
u∈Gx

x
f (u)ψx(Wu)=∑

u∈Gx
x
ϕx((u, f (u)) · δu) is μ-measurable. Therefore {ψx}x∈G(0) is a μ-measurable field of

states on C∗(Gx
x , σ ).

To see that {ψx}x∈�∞ satisfies (ii), let u ∈ Gx
x and η ∈ Gx . A computation in G ×C shows

that

1η(u, z)1∗
η = (η, 1)(u, 1)(η, 1)∗ = (

ηuη−1, σ (ηu, η−1)σ (η, u)σ (η−1z, η)
)
.

Now applying part (ii) of Theorem 3·4 to {ϕx}x∈�∞ with η and a = (u, 1) we get

ψx(Wu) = ϕx

(
(u, 1) · δu

)
= ϕr(η)

((
ηuη−1, σ (ηu, η−1)σ (η, u)σ (η−1, η)

) · δηuη−1

)
= σ(ηu, η−1)σ (η, u)σ (η−1, η)ϕr(η)

(
(ηuη−1, 1) · δηuη−1

)
= σ(ηu, η−1)σ (η, u)σ (η−1, η)ψr(η)

(
Wηuη−1

)
.

To see (4·2), fix f ∈ Cc(G, σ ). Applying the formula (3·1) for ϕ we have

ψ( f ) = ϕ(�( f ))=
∫
G(0)

∑
u∈Gx

x

ϕx(�( f )(u) · δu) dμ(x)

=
∫
G(0)

∑
u∈Gx

x

f (u)ϕx((u, 1) · δu) dμ(x)=
∫
G(0)

∑
u∈Gx

x

f (u)ψx(Wu) dμ(x). (4·3)
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So the KMSβ state ψ yields a pair
(
μ, [ψ]μ

)
satisfying (i) and (ii), and ψ is then given

by (4·2).
For the converse, fix

(
μ, {ψx}x∈G(0)

)
satisfying (i) and (ii). Let ϕx =ψx ◦ϒ−1. For g ∈

c(G;B) and u ∈ G(0), let zg,u ∈C be the element such that g(u)= (u, zg,u). The func-
tion x �→ ∑

u∈Gx
x
ϕx(g(u) · δu)= ∑

u∈Gx
x

zg,uψx(Wu) is μ-measurable. Therefore {ϕx}x∈G(0) is
a μ-measurable field of states on C∗(Gx

x ,B). Each ϕx centralises A(x) because A(x)=
C1C∗(Gx

x ,B) is central in C∗(Gx
x ,B). By (ii) we have

ϕx((u, z) · δu) = ψx ◦�−1
(
(u, z) · δu

)
= ψx(zWu)

= zσ(ηu, η−1)σ (η, u)σ (η−1, η)ψr(η)

(
Wηuη−1

)
= ψr(η)

(
zσ(ηu, η−1)σ (η, u)σ (η−1, η)Wηuη−1

)
= ϕr(η)

((
ηuη−1, zσ(ηu, η−1)σ (η, u)σ (η−1, η)

) · δηuη−1

)
= ϕr(η)

(
(1η(u, z)1∗

η) · δηuη−1

)
.

Thus
(
μ, {ϕx}x∈G(0)

)
is a pair as in Theorem 3·4. Therefore there is a KMSβ state ϕ :=

�(μ, �) on C∗(G,B) satisfying (3·1). Now ψ = ϕ ◦� is a KMSβ on C∗(G, σ ) and by (4·3)
ψ satisfies (4·2).

Remark 4·3. Corollary 4·2 applied to the trivial cocycle σ ≡ 1 recovers the results of
Neshveyev in [15, theorem 1·3].

5. KMS states on the twisted C∗-algebras of higher-rank graphs

5·1. Higher-rank graphs

Let � be a k-graph with vertex set �0 and degree map d :�→N
k in the sense of [9].

For any n ∈N
k , we write �n := {λ ∈� : d(λ)= n}. A k-graph � is said to be finite if �n is

finite for all n ∈N
k . Given u, v ∈�0, we write u�v := {λ ∈� : r(λ)= u and s(λ)= v}. We

say � is strongly connected if u�v �= ∅ for every u, v ∈�0. A k-graph � has no sources if
u�n �= ∅ for every u ∈�0 and n ∈N

k and it is row finite if u�n is finite for all u ∈�0, and
n ∈N

k .
A T-valued 2-cocycle c on � is a map c :�(2) := {(λ, μ) ∈�×� : s(λ)= r(μ)} →T

such that c(r(λ), λ)= c(λ, s(λ))= 1 for all λ ∈� and c(λ, μ)c(λμ, ν)= c(μ, ν)c(λ, μν)
for all composable triples (λ, μ, ν). We write Z 2(�,T) for the group of all T-valued
2-cocycles on �.

Let �k := {(m, n) ∈N
k ×N

k : m ≤ n}. Then �k is a k-graph with r(m, n)= (m,m),
s(m, n)= (n, n), (m, n)(n, p)= (m, p) and d(m, n)= n − m. We identify �0

k with N
k by

(m,m) �→ m. The set

�∞ := {x :�k →� : x is a functor that intertwines the degree maps}
is called the infinite-path space of �. For l ∈N

k , the shift map σ l :�∞ →�∞ is given by
σ l(x)(m, n)= x(m + l, n + l) for all x ∈�∞ and (m, n) ∈�k .

Let � be a strongly connected finite k-graph. The set

Per� := {m − n : m, n ∈N
k, σm(x)= σ n(x) for all x ∈�∞} ⊆Z

k

is subgroup of Zk and is called periodicity group of � (see [6, proposition 5·2]).

https://doi.org/10.1017/S0305004119000379 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004119000379


KMS states 241

5·2. The infinite-path groupoid

Suppose that � is a row finite k-graph with no sources. The set

G� := {(x, l, y) ∈�∞ ×Z
k ×�∞ : l = m − n,m, n ∈N

k and σm(z)= σ n(z)}
is a groupoid with (G�)(0) = {(x, 0, x) : x ∈�∞} identified with �∞, structure maps
r(x, l, y)= x , s(x, l, y)= y, (x, l, y)(y, l ′, z)= (x, l + l ′, z) and (x, l, y)−1 = (y,−l, x).
This groupoid is called infinite-path groupoid. For λ, μ ∈� with s(λ)= s(μ) let

Z(λ, μ) := {(λx, d(λ)− d(μ), μx) ∈ G� : x ∈�∞ and r(x)= s(λ)}.
The sets {Z(λ, μ) : λ, μ ∈�, s(λ)= s(μ)} form a basis for a locally compact Hausdorff
topology on G� in which it is an étale groupoid (see [9, proposition 2·8]).

Let � s∗s � := {(μ, ν) ∈�×� : s(μ)= s(ν)}. Let P be a subset of � s∗s � such that

(μ, s(μ)) ∈P for all μ ∈�, and G� =
⊔

(μ,ν)∈P
Z(μ, ν). (5·1)

There is always such a P [11, lemma 6·6]. For each α ∈ G�, we write (μα, να) for the ele-
ment of P such that α ∈ Z(μα, να). Let d̂ : G� →Z

k be the function defined by d̂(x, n, y)=
n. Given a 2-cocycle c on�, [11, lemma 6·3] says that for every composable pair α, β ∈ G�
there are λ, ι, κ ∈� and y ∈�∞ such that

ναλ=μβι, μαλ=μαβκ, νβι= ναβκ, and

α = (μαλy, d̂(α), ναλy), β = (μβιy, d̂(β), νβιy) and αβ = (μαβκy, d̂(αβ), ναβκy).

Furthermore, the formula

σc(α, β)= c(μα, λ)c(να, ι)c(μβ, ι)c(νβ, ι)c(μαβ, κ)c(ναβ, κ)

is a continuous 2-cocycle on G� and does not depend on the choice of λ, ι, κ . Theorem 6.5
of [11] shows that continuous 2-cocycles on G� obtained from different partitions P,P ′ are
cohomologous.

Let � be a strongly connected finite k-graph and take c ∈ Z 2(�,T). Let P ⊆� s∗s � be
as in (5·1). For each x ∈�∞, define σ x

c : Per�→T by σ x
c (p, q) := σc((x, p, x), (x, q, x)).

Clearly σ x
c ∈ Z 2(Per�,T). By [12, lemma 3·3] the cohomology class of σ x

c is indepen-
dent of x . So by the argument of Section 2·4 there is a bicharacter ωc on Per� that is
cohomologous to σ x

c for all x ∈�∞.

5·3. KMS states for the preferred dynamics on a twisted k-graph C∗-algebra

Given a finite k-graph � and given 1 ≤ i ≤ k, let Ai ∈ M�0 be the matrix with entries
Ai (u, v) := |u�eiv|. Writing ρ(Ai ) for the spectral radius of Ai , define D : G� →R by
D(x, n, y)= ∑k

i=1 ni ln ρ(Ai ). The function D is locally constant and therefore it is a con-
tinuous R-valued 1-cocycle on G�. Lemma 12·1 of [6] shows that there a unique probability
measure M on�∞ with Radon–Nycodym cocycle eD . This measure is a Borel measure and
satisfies

M
(
x ∈�∞ : {x} × Per�× {x} �= Gx

x }) = 0. (5·2)
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Given σ ∈ Z 2(G�,T), D induces a dynamics τ on C∗(G�, σ ) such that τt( f )(x,m, y)=
eit D(x,m,y) f (x,m, y). Following [6] we call this dynamics the preferred dynamics.

COROLLARY 5·1. Suppose that � is a strongly connected finite k-graph. Let c ∈
Z 2(�,T) and let P be as in (5·1). Suppose thatωc ∈ Z 2(Per�,T) is a bicharacter cohomol-
ogous to σ x

c (p, q)= σc((x, p, x), (x, q, x)) for all x ∈�∞. Let τ be the preferred dynamics
on C∗(G�, σc). Let M be the measure described at (5·2). There is a bijection between the
simplex of KMS1 states of

(
C∗(G�, σc), τ

)
and the set of M-equivalence classes [�]M of

fields {ψx}x∈�∞ of tracial states ψx on C∗(Per�, ωc) such that for all Wp ∈ Per� and
η := (y,m, x) ∈ (G�)x , we have

ψx(Wp)= σc

(
η, (x, p, x)

)
σc

(
(y,m + p, x), η−1

)
σc(η−1, η)ψy(Wp). (5·3)

The state ψ corresponding to the class [�]M satisfies

ψ( f )=
∫
G(0)

∑
p∈Per�

f (x, p, x)ψx(Wp) d M(x) for all f ∈ Cc(G, σ ).

Proof. To prove the result, we first establish a bijection between the KMS1 states and the
fields of states ψx satisfying (5·3). We will then show that if ψ is a KMS1 state then in the
corresponding field of states, M-almost all of the ψx are tracial.

Fix x ∈�∞ such that {x} × Per�× {x} = Gx
x . Let δ1b be the 2-coboundary such

that ωc = δ1bσ x
c . Composing the isomorphism Wp �→ b(p)Wp of C∗(Per�, ωc) onto

C∗(Per�, σ x
c ) and the isomorphism Wp �→ W(x,p,x) : C∗(Per�, σ x

c )→ C∗(Gx
x , σc), we

obtain an isomorphism � : C∗(Per�, ωc)→ C∗(Gx
x , σc) such that

�(Wp)= b(p)W(x,p,x) for all p ∈ Per�.

Since M is the only probability measure on �∞ with Radon–Nikodym cocycle eD , by
Corollary 4·2 it suffices to show that there is a bijection between the fields of states
on C∗(Per�, ωc) satisfying (5·3) and the M-measurable fields of states on C∗(Gx

x , σc)

satisfying Corollary 4·2(ii).
Let {ϕx}x∈�∞ be an M-measurable field of states on C∗(Gx

x , σc) satisfying
Corollary 4·2(ii). Then clearly {ϕx ◦�}x∈�∞ is a field of states on C∗(Per�, ωc). Applying
Corollary 4·2(ii) with η and u = (x, p, x) we get

(ϕx ◦�)(Wp) = ϕx

(
b(p)W(x,p,x)

)
= b(p)σc

(
(y,m + p, x), η−1

)
σc(η, (x, p, x))σc(η−1, η)ϕy(W(y,p,y))

= σc

(
(y,m + p, x), (x, p, x)

)
σc

(
η, (x, p, x)

)
σc(η−1, η)ϕy ◦�(Wp).

Conversely let {ψx}x∈�∞ be a field of states on C∗(Per�, ωc) satisfying (5·3). Since M is
a Borel measure on �∞, for all f ∈ Cc(G, σ ), the function

x �→
∑
u∈Gx

x

f (u)(ψx ◦�−1)(Wu)=
∑

p∈Per�

f (x, p, x)b(p)ψx(Wp)

is continuous and hence is M-measurable. Therefore {ψx ◦�−1}x∈�∞ is a M-measurable
field of states on C∗(Gx

x , σc).
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Now applying (5·3) to {ψx}x∈�∞ with η and Wp we have

(ψx ◦�−1)(Wu) = ψx

(
b(p)Wp

)
= b(p)σc

(
(y,m + p, x), η−1

)
σc(η, (x, p, x))σc(η−1, η)ψy(Wp)

= σc

(
(y,m + p, x), (x, p, x)

)
σc

(
η, (x, p, x)

)
σc(η−1, η)(ψy ◦�−1)(Wu).

It remains to show that if ψ is a KMS1 state then M-almost all of the ψx are tracial. Given
f ∈ C0(�

∞) and p ∈ Per�, there is a function f p ∈ C∗(G�, σ ) such that f p(x, q, y)=
δp,qδx,y f (x) for all (x, q, y) ∈ G�. As discussed in [6, remark 7·2], for p ∈ Per�, we have
D(x, p, x)= 0 for all x , and so τt( f p)= f p for all t ∈R. In particular, for p, q ∈ Per�
and f, g ∈ C0(�

∞), we have ψ( f pgq)=ψ(gqτiβ( f p))=ψ(gq f p). The final statement of
the corollary therefore shows that∫

G(0)

∑
r∈Per�

( f pgq)(x, r, x)ψx(Wr ) d M(x)=
∫
G(0)

∑
r∈Per�

(gq f p)(x, r, x)ψx(Wr ) d M(x).

We have ( f pgq)(x, r, x)= δp+q,rσ
x
c (p, q) f (x)g(x) and Wp+q =ωc(p, q)WpWq , and simi-

larly (gq f p)(x, r, x)= δp+q,rσ
x
c (q, p) f (x)g(x) and Wp+q =ωc(q, p)Wq Wp. Therefore∫

G(0)
σ x

c (p, q) ωc(p, q)( f g)(x)ψx(WpWq) d M(x)

=
∫
G(0)
σ x

c (q, p)ωc(q, p)( f g)(x)ψx(Wq Wp) d M(x).

Since this holds for all f, g ∈ C0(�
∞), we deduce that

σ x
c (p, q)ωc(p, q)ψx(WpWq)= σ x

c (q, p)ωc(q, p)ψx(Wq Wp) for M-almost all x . (5·4)

By definition of ωc, we have σ x
c (p, q)σ x

c (q, p)=ωc(p, q)ωc(q, p) for all x . Rearranging
gives σ x

c (p, q)ωc(p, q)= σ x
c (q, p)ωc(q, p) for all x . Thus (5·4) gives ψx(WpWq)=

ψx(Wq Wp) for M-almost all x . Since Per� is countable, it follows that ψx is a trace for
M-almost every x .

5·4. KMS states and invariance

Given a strongly connected finite k-graph �, let I� be the interior of the isotropy
Iso(G�) in G�. Then I� is clopen by [12, proposition 2·1]. Define H� := G�/I� and let
π : G� →H� be the quotient map. Let c ∈ Z 2(�,T) and let P be as in (5·1). Suppose that
ωc ∈ Z 2(Per�,T) is a bicharacter cohomologous to σ x

c (p, q)= σc((x, p, x), (x, q, x)) for
all x ∈�∞. By [12, lemma 3·6] there is a continuous Ẑωc -valued 1-cocycle r̃σ on H� such
that

r̃σπ(γ )(p)= σ
(
γ, (y, p, y)

)
σ
(
(x,m + p, y)γ −1

)
σ(γ −1, γ )

for all γ = (x,m, y) ∈ G� and p ∈ Zωc ; [12, corollary 4·8] show that C∗(�, c) is simple if
and only if the action B of H� on �∞ × Ẑωc such that

Bπ(γ )(s(γ ), χ)=
(
r(γ ), r̃σπ(γ ) · χ

)
for all γ ∈H� and χ ∈ Ẑωc
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is minimal. The action of Ẑωc on itself by multiplication induces an action on the state space
S(C∗(Zωc)) of the associated C∗-algebra, and so the action B of H� on �∞ × Ẑωc just
described induces an action B∗ of H� on �∞ × S(C∗(Zωc)).

COROLLARY 5·2. Suppose that � is a strongly connected finite k-graph. Let c ∈
Z 2(�,T) and let P be as in (5·1). Let ωc ∈ Z 2(Per�,T) be a bicharacter cohomologous
to σ x

c (p, q)= σc((x, p, x), (x, q, x)) for all x ∈�∞. Let τ be the preferred dynamics on
C∗(G�, σc) and let M be the measure of (5·2). Then there is a bijection between the simplex
of the KMS1 states of (C∗(G�, σc), τ ) and the set of M-equivalence classes [ψ]M of states
{ψx}x∈�∞ on C∗(Zωc)

∼= C(Ẑωc) that are invariant under the action B, in the sense that

Bπ(γ )
(
s(γ ), ψr(γ )

) = (
r(γ ), ψs(γ )

)
for all γ ∈H�.

Proof. This follows from Corollary 5·1 and Lemma 2·1.

5·5. A question of uniqueness for KMS1 states

If c = 1, the results of [6] show that C∗(G�, σ1) has unique KMS1 state if and only if it is
simple (see [[6], theorem 11·1 and section 12]). Corollary 4·8 of [12] shows that C∗(G�, σc)

is simple if and only if the action B of H� on �∞ × Ẑωc is minimal. So it is natural to ask
whether minimality of the action B characterises the presence of a unique KMS1 state for
the preferred dynamics? We have not been able to answer this question. The following brief
comments describe the difficulty in doing so.

The key point in [6] that demonstrates that KMS states are parameterised by measures on
the dual of the periodicity group of the graph is the observation that in the absence of a twist,
the centrality of the copy of C∗(Per�) in C∗(�) can be used to show that KMS states are
completely determined by their values on this subalgebra. This, combined with Neshveyev’s
theorems, shows that the field of states {ψx}x∈�∞ corresponding to a KMS state ψ is, up to
measure zero, a constant field (see [6, pages 27–28]). The corresponding calculation fails in
the twisted setting.

However, we are able to show that, whether or not H� acts minimally on�∞ × Ẑωc , there
is an injective map from the states of C∗(Zωc) that are invariant for the action of H� on Ẑωc

induced by the cocycle r̃σ to the KMS states of the C∗-algebra. It follows in particular that
the Haar state on C∗(Zωc) induces a KMS state as expected.

COROLLARY 5·3. Let φ be a state on C∗(Zωc) such that r̃π(γ ) · φ = φ for all γ ∈H�.
Then there is a KMS1 state ψφ of (C∗(G�, σ ), τ ) such that

ψφ( f )=
∫
G(0)

∑
p∈Per�

f (x, p, x)φ(Wp) d M(x) for all f ∈ Cc(G, σ ).

The map φ �→ψφ is injective. In particular, there is a KMS1 state ψTr of (C∗(G�, σ ), τ ) such
that

ψTr( f )=
∫
G(0)

f (x, 0, x) d M(x) for all f ∈ Cc(G, σ ).

Proof. For each x ∈�∞ define.

ψx =
{
φ if {x} × Per�× {x} = Gx

x

0 if {x} × Per�× {x} �= Gx
x .
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Then ψφ :=�(M, {ψx}x∈�∞) satisfies the desired formula. The first statement, and injec-
tivity of φ �→ψφ follows from Corollary 5·2. The final statement follows from the first
statement applied with φ equal to the Haar trace Tr on C∗(Zωc).

Remark 5·4. Suppose that H� acts minimally on �∞ × Ẑωc . Then in particular the induced
action B̃ of H� on Ẑωc is minimal. So if φ is a state of C∗(Zωc) that is invariant for B̃ as in
Corollary 5·3, then continuity ensures that the associated measure is invariant for translation
in Zωc , so must be equal to the Haar measure. So to prove that ψTr is the unique KMS1 state
when C∗(�, c) is simple, it would suffice to show that the map φ �→ψφ of Corollary 5·3 is
surjective.

One approach to this would be to establish that if {ψx}x∈�∞ is an M-measurable,
B∗-invariant field of states on C∗(Zωc), then the state φ given by φ := ∫

�∞ ψx d M(x) is
B̃-invariant and satisfiesψφ =�(M, {ψ}x∈�∞), but we have not been able to establish either.
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