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Abstract
Robotics with artificial intelligence techniques have been the center of attraction among researchers as it is well
equipped in the area of human intervention. Here, the krill herd (KH) optimization algorithm is modified and
hybridized with a fuzzy logic controller to frame an intelligent controller for optimal trajectory planning and control
of mobile robots in obscure environments. The controller is demonstrated for single and multiple robot’s trajectory
planning. A Petri-net controller has also been added to avoid conflict situations in multi-robot navigation. MATLAB
and V-REP software are used to simulate the work, backed with real-time experiments under laboratory conditions.
The robots efficiently achieved the goals by tracing an optimal path without any collision. Trajectory length and
time spent during navigation are recorded, and a good agreement between the results is observed. The proposed
technique is compared against existing research techniques, and an improvement of 14.26% is noted in terms of
path length.

1. Introduction
In the past few years, the development of robotic applications has gained tremendous growth in
humanoids, wheeled mobile robots, and prostheses. This development has attracted many researchers
worldwide to concentrate on artificial intelligence (AI) techniques. With the development of human
working gaits to robot path planning, numerous methods have made locomotion easier. While optimiza-
tion techniques have paved the way to obtaining the best path to reach the target, it has also successfully
smoothened the traverse path. Several research works have been published in the past few years related
to the path outlining of mobile robots using various artificial techniques. Gandomi & Alavi [1] have
introduced krill herd (KH) for optimization problems, in which simulation works are carried out and
compared among them. Abualigah et al. [2] have proposed this optimization technique for solving clus-
tering problems. Rao et al. [3] have presented krill- herd optimization for navigational control of wheeled
robots. Singh & Thongam [4] have used fuzzy logic technique for the navigation of mobile robot in static
environments. Chen et al. [5] have proposed fuzzy logic for wall following wheeled robot. Ben & Seddik
[6] have proposed PID tuned fuzzy logic for the control of robot. Muni et al. [7, 8] have worked on con-
trolling legged robots using hybrid fuzzy methods. Kumar et al. [9, 10] have compared different methods
towards path optimization with a developed fuzzy-whale optimization approach in a cluttered station-
ary and moving obstacles environment. Apart from KH optimization and fuzzy logic technique, many
other techniques are available for the control of mobile robots. For example, Mohanty et al. [11] have
presented their research on adequate path planning for mobile robots using the cuckoo search technique.
The work focused on identifying the best optimal path for the locomotion of robots in an obscure sce-
nario. Patle et al. [12] discussed matrix binary-coded algorithms for robot trajectories. Recently, Kumar
et al. [13] have presented hybridized optimization technique for path optimization of multiple mobile
robots in obscure scenarios. Singh et al. [14] worked on the path optimization of mobile robot using an
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Figure 1. Pseudocode for MKH optimization technique.

artificial neural network approach. Parhi et al. [15] have worked on the controller for precise locomotion
of the wheeled robot in an unknown environment. Pandey et al. [16, 17] and Mohanty et al. [18] have
worked on wheeled robot navigation in an obscure workspace. Kim et al. [19] have presented an ant
colony optimization technique for the loading balancing problem. Parhi et al. [20–22] have presented
different AI techniques for the traversal path of robots. Cruz et al. [23] have expressed their research
on mobile robots using artificial bee colony optimization techniques. Fen et al. [24] have presented an
improved ACO technique for the analysis of problems. Muni et al. [25–27] have developed fuzzy and
water cycle approaches for navigational control of a humanoid robots. Kumar et al. [28] have proposed
a hybrid model for trajectory planning of mobile robots. Montiel et al. [29] have explained bacterial for-
aging behavior for path planning of robots. Ahmed et al. [30] have proposed space deformation-based
motion planning of mobile robots. Bolaji et al. [31] have proposed a review on different AI techniques,
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Figure 2. Fuzzy logic controller model.

including the KH optimization technique. Kumar et al. [32, 33] have proposed metaheuristic approaches
for trajectory outlining of robots. Wang et al. [34] have proposed dynamic environment path planning
using Fuzzy-artificial potential field approach. Dirik et al. [35] have proposed vision-based global path
planning of four-wheeled robots. Type-2 Fuzzy interface system has been used for performance analy-
sis. Luo et al. [36] have proposed an improved ant colony approach for path planning of mobile robots.
Authors have introduced dynamic punishment approach for solving deadlock problems. Li et al. [37]
have proposed Fuzzy- torque approach for lateral stability of robots and accurate trajectory planning.
Teli and Wani [38] have presented autonomous navigation of robot by avoiding local optima. The prob-
lem statement has been solved using fuzzy-based approach. Luan & Thinh [39] have proposed a hybrid
GA (Genetic algorithm) approach for global path outlining of the wheeled robot. Authors have improved
the GA by dynamic mutation rate and fluctuating local- global approach. Kim et al. [40] have proposed
UAV-assisted mobile robot navigation in a cluttered workspace. The robot has been used for 3D data
collection during surveillance and topographical work. Hu et al. [41] have proposed an approach for
navigational control of robots in 3D rough terrains. A sim to real pipeline training pattered has been
used for controlling the robot.

After perusal of the above-cited papers, it is observed that apart from path planning, a multi-objective
technique is still needed in the present scenario. This manuscript discusses about the hybrid controller
of modified Krill-Herd optimization and Fuzzy logic approach (MKH-Fuzzy) to accomplish a multi-
objective optimized path planning method for mobile robots in unknown terrains. Multi-objectives
comprise route outlining, time optimization, smooth navigation, and avoidance of local optimal points.
All the objectives are encountered through the hybrid technique. Layout of the manuscript is as follows:

In Section 2, modified MKH optimization approach is discussed. In Section 3, the fuzzy-logic
controller is elaborated. The hybridization model of both techniques are discussed in Section 4. In
Section 5, Petri-net controller is presented. Simulation and experimental analyses are carried out using
hybrid MKH-FLC in Section 6. The proposed controller is compared against existing technique, and the
details is presented in Section 7. Conclusion and future scopes are presented in Section 8.

2. Modified Krill-Herd optimization approach
The krill-herd optimization technique is a bio-inspired continuous optimization technique [31], which
is well known to optimize problems. The word krill refers to the small fishes, and the krill’s group is
called a herd. The optimization approach deals with the hunting style of krill in an ocean. They used to
chase food sources in a herd by maintaining communication with each other, and this hunting style is
the motivation of the algorithm. A ′n′dimensional search space is considered with random generation of
′Pn

′ number of krills. The individual krill position vector is initialized as per the following equation [3].
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Figure 3. Fuzzy membership function for inputs and output.
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Figure 4. Rules base.

Tj
i = Tj

min + randj

(
Tj

max − Tj
min

)
(1)

The maximum and minimum limit of search space is denoted as ′Tn
max

′ and ′Tn
min

′, which is in
j ∈ [1, 2, 3 . . . . . . . . . n]. The movement of krill is an essential part of this optimization, as it searches
the location of food so that the herd can find a prey source. Let the ocean be an n-dimensional space.
Through “Lagrangian” approach, the movement of krill-herd is mathematically formulated as [24];

dSi

dt
= Ni + Fi + Di (2)

Where ′Si
′ is the original motion of the ith krill. ′Ni

′ is the motion influenced by closest krill. ′Fi
′is foraging

locomotion and ′Di
′ is randomly selected diffusion of the krill. These above parameters are required

prime attention to find an optimal location of food source, So that is formulated as per the following
smooth calculation of the krill locomotion happens which are as follows:

• Krill movement with each other (Ni).
• Searching or foraging motion (Fi).
• Random diffusion of Krills (Di).
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Figure 5. Output rule generator.

Figure 6. Surface plot.
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Figure 7. Flowchart of proposed hybrid controller.

Figure 8. Petri-net Network [7].
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Figure 9. Description of K-II robot.

Figure 10. Simulation analysis on MATLAB platform.

• The individual Krill locomotion may be represented as:

Before moving to herd movement calculation, it is necessary to find ′Ni
′; therefore mathematical

calculation is given in Eq. (3).

NNew
i = Nmaxli + ωnNold

i (3)

Where ′Nmax ′= Maximum motion-induced. ′ωn
′= Inertia weight [0,1]. ′Nold

i
′= Last induced motion and

′li
′= Direction of navigation and it can be calculated as

li = li(present) + li(t arg et) (4)

These two parameters of ′li
′are called the local effect of Krill, and these effects occur during the

movement of bulk krill and target location of prey.

• The foraging motion of Krill-Herd is depends on 2-parameters:

• Location of the food.
• Prior knowledge of food location.
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Figure 11. Real-time experimental analysis.

The foraging movement of krill is formulated as follows;

Fi, mod = Vf βi + ωf F
old
i (5)

Where ′Vf
′= foraging speed (=0.02), ′βi

′= ith position of krill, ′ωf
′= inertia weight (= [0,1]), and ′Fold

i
′=

last foraging motion. The ith position of krill can be calculated as;

βi = β
food
i + βbest

i (6)
′β food

i
′ denotes the attracting parameters for food and ′βbest

i
′ denotes best position of ithkrill.

• The random diffusion can be calculated as:
Di = Dmaxδ (7)

Where ′Dmax ′= maximum diffusion speed, and ′δ′= random directional vector.

2.1. Modification of Krill-Herd (MKH) optimization technique
The primary objective of route outlining is to determine a smooth optimal path. The parametric values
are chosen randomly in basic KH technique, which leads to a delay in convergence time. Therefore,
the parameters are modified intelligently and implemented for optimal path search to provide IPA. The
modified foraging motion is represented with linearly decreasing terms in [−1, 1] in Eq. (8).

Fi, mod = (
Vf βi + ωf F

old
i

) (
1 − ith iter

max −iter

)
(8)

Where ′ith iter′is the value at ith iteration, and ′ max −iter′ is the maximum iteration value. In addition,
the linearly decreasing term is added with a random defusing motion for fast convergence, which is
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Table I. Path length in experimental analysis.

Path length (in cm)

Run In simulation In experiment % Deviation
1 304.36 320.14 4.93
2 304.15 317.42 4.18
3 303.41 317.58 4.46
4 302.46 317.25 4.66
5 302.14 317.31 4.78
6 302.48 317.17 4.63
7 302.73 317.17 4.55
8 302.42 317.23 4.67
9 302.16 317.52 4.84
10 302.43 317.14 4.64

Average = 302.87 317.59 4.63

Table II. Timespan in experimental analysis.

Timespan (s)

Run In simulation In experiment % Deviation
1 28.74 30.12 4.58
2 27.73 29.42 5.74
3 27.64 29.16 5.21
4 27.24 28.42 4.15
5 27.65 28.53 3.08
6 27.65 28.54 3.12
7 27.36 28.67 4.57
8 27.38 28.39 3.56
9 27.41 28.42 3.55
10 27.23 28.47 4.36

Average = 27.60 28.81 4.19

shown in Eq. (9).

Di, mod = Dmaxδ

(
1 − ith iter

max −iter

)
(9)

After maximum iteration, ′ith ′ krill updates its position to new global optima, which is calculated as

Si (t + �t) = Si (t) + �t
dSi

dt
(10)

′�t′ represents the time interval that depends on the environmental condition of robot, and it is
expressed as;

�t = Vi

x∑
p=1

(
Tx

max − Tx
min

)
(11)
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Figure 12. Navigational analysis in scene-1.

Figure 13. Navigational analysis in scene-2.

Where ′Tx
max

′ and ′Tx
min

′ denotes the maximum and minimum limit of ′pth ′ variable dimension [p ∈
(1, 2, 3, 4......x)] respectively. ′Vi

′ is a constant in [0,1] and used for krills to provide safe position of
locomotion. The pseudocode for modified krill-herd optimization is depicted in Fig. 1, which shows the
process of obtaining solutions.
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Figure 14. Real-time experimental analysis with two robots in scene-1.

3. Fuzzy logic controller (FLC)
Fuzzy logic is one of the simplest controllers to solve significant area problems. The human behaviour
of reasoning inspires it. The controller works on rules (IF-THEN rules) that are framed to train the con-
troller. While solving the problems, the FLC progressed through a number of steps, such as fuzzification
of inputs implies conversation of numeric value to fuzzy code, rule generation, and defuzzification of
outputs. The used model is shown in Fig. 2.

In this model, four inputs are considered such as ‘DOLO’ (Distance of left obstacles), ‘DORO’
(Distance of right obstacles), ‘DOFO’ (Distance of front obstacles) and ‘IPA’ (Initial Piloting angle);
however, one output is generated as ‘FPA’ (Final Piloting angle). The range of inputs is considered from
0 to 30, and the range of piloting angle is −90 to +90 degrees. A rule base of 200rules is framed to
implement the FLC. The inputs and output membership functions are shown in Fig. 3.

While designing FLC, the variables of robot navigation (membership function) are carefully included
in input and output. There are five variables are considered such as ‘VL’ (Very left), ‘L’ (left), ‘M’
(Medium), ‘R’ (Right), ‘VR’ (Very right) for distance inputs, and ‘VN’ (Very Negative), ‘N’ (Very
negative), ‘M’ (Medium), ‘P’ (Positive), ‘VP’ (Very positive) are considered for angle output.

The framed rules and output generation is shown in Figs. 4 and 5. The relation between input and
output is shown through the surface plot in MATLAB, shown in Fig. 6.

Let the input and output membership variables DOLO, DORO, DOFO, IPA, and FPA be symbolized
as ‘L’, ‘R’, ‘F’, ‘A1’ and ‘A2’ respectively. ‘x’, ‘y’, and ‘z’ are the membership adjusting constant. The
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Figure 15. Real-time experimental analysis with four robots in scene-2.

fuzzification of input and output variables are expressed as [10]:

η1(L) = 1

1 +
[

L−z1
x1

]2y1
(12)

η2(R) = 1

1 +
[

R−z2
x2

]2y2
(13)

η3(F) = 1

1 +
[

F−z3
x3

]2y3
(14)

η4(A1) = 1

1 +
[

A1−z4
x4

]2y4
(15)

The weighted average method is used to calculate the defuzzified value of output (A2
∗), shown in

Eq. (16).

A2
∗ =

∑ η1(L) · η2(R) · η3(F) · η1(A1) · A2

η1(L) · η2(R) · η3(F) · η1(A1)
(16)
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Table III. Path length in scene-1.

Path length

In simulation In experiment % Deviation

Run R-1 R-2 R-1 R-2 R-1 R-2
1 308.42 312.42 318.7 325.5 3.23 4.02
2 308.57 312.76 318.4 325.4 3.09 3.88
3 308.76 312.43 317.5 324.8 2.75 3.81
4 308.45 312.67 317.4 324.6 2.82 3.68
5 308.76 312.53 317.8 324.8 2.84 3.78
6 308.76 312.74 317.3 324.7 2.69 3.68
7 308.69 312.51 317.8 324.7 2.87 3.75
8 308.35 312.43 317.9 324.7 3.00 3.78
9 308.64 312.59 317.6 324.8 2.82 3.76
10 308.34 312.18 317.5 324.7 2.89 3.86
Average 308.57 312.53 317.79 324.87 2.90 3.80

Table IV. Time consumption in scene-1.

Time consumption

In simulation In experiment % Deviation

Run R-1 R-2 R-1 R-2 R-1 R-2
1 27.85 28.14 28.75 29.42 3.13 4.35
2 27.76 28.17 28.74 29.31 3.41 3.89
3 27.84 28.24 28.68 29.37 2.93 3.85
4 27.65 28.46 28.76 29.42 3.86 3.26
5 27.47 28.41 28.74 29.42 4.42 3.43
6 27.86 28.17 28.81 29.27 3.30 3.76
7 27.56 28.34 28.82 29.51 4.37 3.96
8 27.49 28.37 28.49 29.34 3.51 3.31
9 27.81 28.41 28.52 29.42 2.49 3.43
10 27.56 28.17 28.75 29.25 4.14 3.69
Average 27.69 28.29 28.71 29.37 3.56 3.69

4. Hybrid MKH-fuzzy controller model
The aim of developing a hybrid controller is to overcome the limitations of standalone algorithms. Robot
navigation and trajectory optimization have always remained as one of the challenging research that
requires accurate navigational parameters along with fast convergence. The basic advantage of classical
method is fast convergence rate, whereas the reactive approach gives optimal value. Therefore, the com-
bination of classical practice and reactive technique is developed and implemented on robots. In this
model, two stages of hybridized is proposed. The initial inputs DORO, DOLO, and DOFO (Sensory
information) are fed to the MKH model, and the interim output is considered as the first output. In the
second phase, the output (IPA) from MKH model and sensory information (DORO, DOLO, DOFO)
are fed to FLC. Further, the FLC calculates the final piloting angle (FPA) used by the robot to escape
obstacles and achieve target. The hybrid model of FLC is shown in Fig. 2. The flow chart of the hybrid
model is shown in Fig. 7.
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Table V. Path length in scene-2.

Path length (cm)

In simulation In real-time experiment % Deviation

Run R-1 R-2 R-3 R-4 R-1 R-2 R-3 R-4 R-1 R-2 R-3 R-4
1 137.17 142.56 136.78 146.24 143.2 148.6 142.2 152.2 4.21 4.06 3.81 3.92
2 137.25 142.42 136.65 146.35 142.3 148.4 142.6 152.8 3.55 4.03 4.17 4.22
3 137.41 142.18 136.91 146.72 143.6 148.3 143.3 152.5 4.31 4.13 4.46 3.79
4 136.42 142.37 136.19 146.35 143.2 148.2 142.6 152.6 4.73 3.93 4.50 4.10
5 137.56 142.54 136.87 146.68 142.3 148.3 142.8 152.3 3.33 3.88 4.15 3.69
6 137.84 142.63 136.74 146.87 142.6 148.3 142.7 152.5 3.34 3.82 4.18 3.69
7 137.26 142.34 136.62 146.35 142.6 148.6 142.8 152.5 3.74 4.21 4.33 4.03
8 137.46 142.62 136.37 146.39 142.5 148.2 142.6 152.4 3.54 3.77 4.37 3.94
9 137.28 142.6 136.42 146.43 142.3 148.2 142.6 152.5 3.53 3.78 4.33 3.98
10 137.29 142.71 136.82 146.52 142.4 148.3 142.7 152.4 3.59 3.77 4.12 3.86
Avg. 137.29 142.50 136.64 146.49 142.70 148.34 142.69 152.47 3.79 3.94 4.24 3.92

Table VI. Time consumption in scene-2.

Time consumption (s)

In simulation In real-time experiment % Deviation

Run R-1 R-2 R-3 R-4 R-1 R-2 R-3 R-4 R-1 R-2 R-3 R-4
1 11.45 12.72 12.01 13.12 11.91 13.26 12.57 13.58 3.86 4.07 4.46 3.39
2 11.37 12.79 12.11 13.16 11.84 13.27 12.42 13.52 3.97 3.62 2.50 2.66
3 11.42 12.71 12.09 13.15 11.86 13.21 12.52 13.62 3.71 3.79 3.43 3.45
4 11.37 12.69 12.12 13.17 11.89 13.29 12.51 13.65 4.37 4.51 3.12 3.52
5 11.32 12.73 12.11 13.14 11.81 13.26 12.57 13.67 4.15 4.00 3.66 3.88
6 11.46 12.78 12.09 13.14 11.79 13.24 12.54 13.58 2.80 3.47 3.59 3.24
7 11.43 12.76 12.13 13.15 11.81 13.25 12.53 13.57 3.22 3.70 3.19 3.10
8 11.46 12.71 12.11 13.18 11.82 13.27 12.52 13.54 3.05 4.22 3.27 2.66
9 11.48 12.72 12.13 13.16 11.81 13.24 12.54 13.62 2.79 3.93 3.27 3.38
10 11.42 12.71 12.13 13.15 11.81 13.26 12.54 13.53 3.30 4.15 3.27 2.81
Avg. 11.42 12.73 12.10 13.15 11.84 13.26 12.53 13.59 3.52 3.95 3.38 3.21

The whole process of hybrid controller may be summarized as

• State location of start and target.
• Robot follows target until the obstacle is detected within the threshold range.
• Once an obstacle is detected, the MKH model activates.
• The initial inputs, DORO, DOLO, DOFO, are fed into the MKH model and find IPA as interim

output.
• IPA along with DORO, DOLO, DOFO are fed to the FLC controller.
• Calculate FPA according to the rules of FLC.
• FPA is provided to the robots that help to move forward.
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Figure 16. V-Rep navigational analysis.

5. Petri-net controller
The hybrid MKH-Fuzzy approach is intelligent enough to navigate from start to target points. However, it
cannot perform well at conflict situation during multiple robot navigation due to several robots detecting
multiple dynamic obstacles. At that time, one robot treats others as an obstacle, and confusion occurs
among the robots regarding which robot should move first and complete the task. According to the
controller, all the robots start their journey, and there is a chance of inter-collision. A Petri-net controller
is added [7] to overcome the inter-collision situation and enhance the controller, whose function is to
provide priority related to the motion of robots.

Figure 8 elaborates all stages of the Petri-net network model, and each phase are described as follows:

Stage 1: The first stage is the waiting stage for each randomly placed robot. Here, randomly implies
robot location is unknown. It waits until the command is released to move towards the target.

Stage 2: In this stage, each robot starts its journey. They may sense some obstacles during navigation.

Stage 3: In this stage, robots find some obstacles.

Stage 4: This stage is termed as decision stage as the Petri-net controller decides the priority of
movement. It implies the preference is given to that robot which is nearest to the goal-point among the
robots. During the movement of priority robot, other robots act as stationary obstacles at their locations
till the threshold range.

Stage 5: This stage is known as the scrutiny stage, where the robots search whether any conflict of
movement exists or not. If not found any conflict, then move towards the target.
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Table VII. Result of navigational analysis in V-Rep.

Path length Time consumption

Sl. No. R-1 R-2 R-1 R-2
1 220.45 223.65 17.02 17.29
2 221.41 223.72 17.14 17.27
3 220.64 223.41 17.20 17.26
4 220.52 222.42 17.16 17.28
5 221.63 223.67 17.11 17.34
6 221.75 223.48 17.09 17.26
7 221.74 223.58 17.14 17.26
8 221.58 223.47 17.15 17.27
9 221.61 223.57 17.42 17.21
10 221.77 223.71 17.31 17.42
Average 221.31 223.47 17.17 17.29

Start 

Goal Point

Paths traced by 
AI Techniques

Obstacles

Obstacles
Obstacles

A
B
C

Figure 17. Comparison among PSO (Path-A), ABC (Path- B) and MKH-Fuzzy (Path-C) Techniques for
path length and time consumption.

Stage 6: If the priority robot finds any new robot, it behaves like a stationary obstacle and waits
until the priority robot crosses the threshold distance. Later, the waiting robot completes its task from
stage 2.

With the above-discussed steps of the Petri-net controller, the navigation of multiple robots in a shared
workspace can be performed with ease.

6. Execution of proposed hybrid MKH-fuzzy controller
The developed hybrid controller is implemented on simulation and real-time experiments by considering
the Khepera-II robot (Fig. 9) on the navigation platform. Here, navigation of single and multiple robots
has been performed in the designed environments. Only hybrid controller is implemented in single robot
navigation; however, hybrid controller with Petri-net controller is executed in multiple robot analysis to
avoid conflict situations.
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Table VIII. Comparative table for path length and time consumption.

% Improvement

Sl. Algorithm/ Path Time In path In time
No. Technique length consumption length consumption
1 PSO 211.3 17.23 9.32 10.73
2 ABC 213.8 17.66 10.38 12.91
3 MKH-Fuzzy 191.6 15.38 Average = 9.85% 11.82%

Figure 18. Path length comparison plot.

6.1. Navigation of single robot
As MATLAB has gained immense popularity among researchers to demonstrate navigational prob-
lems, it has been used as a simulation platform in single and multiple robot analysis. An arena of size
200 × 200 cm2 is allocated for analysis on both the simulation and experimental platforms. A cluttered
environment has been created with the help of rectangular and hexagonal obstacles, as shown in exper-
imental figures. The real-time experiment is conducted under laboratory conditions by creating the
exactly same environment as simulation. The navigational analysis is shown in Figs. 10 and 11, and
the results are recorded in Tables I and II.

After perusal of the results mentioned above, it has been observed that the hybrid controller performed
well in both environments as earned less than 5% of deviation in results. In robotic research, it is said
that below 5% is an acceptable range of deviation; actually, the reason behind this, is wheel slippage,
friction, internet connectivity, etc.

6.2. Navigation of multiple robots
Multiple robot navigation is quite different from single robot navigation. As stated above, a Petri-net
controller has been added for smooth negotiation of dynamic obstacles and avoidance of robots’ inter-
collision. The arena size is kept similar to single robot navigation; however, the workspaces have been
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Figure 19. Time consumption comparison plot.

Figure 20. The path traced by bacterial potential field technique (PBF) [24].
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Figure 21. The path traced by the MKH-Fuzzy controller (Proposed Technique).

created by placing different blocks arbitrarily with predefined start points and target points. While apply-
ing the hybrid model with Petri-net controller, each robot starts moving towards its respective targets by
avoiding static and dynamic obstacles. Moving robots are treated as dynamic obstacles in multiple robot
analyses. Two robots and four robots have been used to execute the hybrid controller on MATLAB in
scenes 1 and 2, as shown in Figs. 12 and 13. The outcomes of simulation analysis are validated through
real-time experiments as shown in Figs. 14 and 15. The simulation and real-time experimental results
are presented in Tables III, IV, V, and VI.

The evaluation of results from single and multiple robot navigation has imposed a satisfactory out-
come that says that the developed hybrid controller is well established and performed in static and
dynamic environments by optimal negotiation of obstacles. The hybrid controller has also revealed sat-
isfactory time optimization. An acceptable range of deviation in results signifies proper execution and
effective working of the proposed hybrid controller.

6.3. Analysis with Khepera-III robot
Along with a similar kind of robot, it is required to check the hybrid controller with a different one.
Therefore, the Khepera-III robot is utilized in V-Rep simulation platform by implementing the developed
controller. The outcomes of navigational analysis in V-REP has signified the compatibility of proposed
controller with different platforms and dissimilar robots. The simulation analysis is shown in Fig. 16,
and the results are in Table VII.

From the above Figures and Tables, it is observed that the proposed approach is adequately utilized
the controller with Khepera-III robots. The deviation in the results shows good agreement between both
the evaluating platforms as it is within 5%. The variation or error between both the platforms is occurred
due to surface roughness, wheel slippage, surface friction, etc.
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Table IX. Comparison table for path length [24].

Sl. No. AI technique used Path length (units) Improvement (%)
1 GPF 8.338 16.53
2 PBFP 8.088 13.95
3 BPF 7.938 12.32
4 MKH-Fuzzy 6.96 Average = 14.26%
GPF: Genetic potential filed, PBFP: Pseudo-bacterial potential filed.

Figure 22. Path length comparison histogram.

7. Comparative analysis
In order to authenticate the simulation and real-time experimental results, a comparison between pro-
posed controller and recognized or existing approach is required. Therefore, particle swarm optimization
(PSO) and artificial bee colony (ABC) algorithms are considered for comparison in an environment.
Figure 17 shows the trajectories traced by PSO, ABC, and MKH-Fuzzy techniques. The path lengths
and time consumed by the robot using above mentioned techniques are recorded in Table VIII. Further,
comparative bar charts are plotted as shown in Figs. 18 and 19, and convergence curves for the men-
tioned techniques are shown in Fig. 23. In addition to the above comparison, the proposed technique
(MKH-Fuzzy) is again compared with the existing research paper [24], and an average improvement of
14.26% is found in path length. Figs. 20 and 21 show the paths generated by BPF [24] and proposed
approaches, and the results are recorded in Table IX. Path length comparison bar chart is shown in
Fig. 22.

The convergence graph shows the relation between path length obtained and number of iterations.
Graph shows the fluctuation of length with iterations. Beginning of flat line indicates convergence
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Figure 23. Convergence curve between PSO, ABC, and MKH-Fuzzy Controller.

of result implies the best solution is obtained. The graph also indicates the comparison between the
approaches.

8. Conclusions and future scopes
This paper describes the navigational control of Khepera-II and Khepera-III robots using hybrid (MKH-
Fuzzy) optimization approach aided Petri-net controller in unknown terrains. The aim of the proposed
technique is achieved by successfully navigating the robots up to target without any collision within
optimized time after avoiding local optima. The proposed approach is tested against other methods, and
an average improvement of approximately 10% is remarked.

Additionally, the proposed technique is again tested against the existing research paper, and an average
improvement of 14.26% is noted in terms of path length, which authenticates the proposed approach.
In the future, the method may give an upper hand to the scholars of robotics to understand the scenario
of route planning of robots. It can be applied to the real automation problem or in automatic robots.
Besides, it may also be expanded by using this technique in dynamic environments.
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