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Maxwell Gravitation
Neil Dewar*y

This article gives an explicit presentation of Newtonian gravitation on the backdrop of
Maxwell space-time, giving a sense in which acceleration is relative in gravitational the-
ory. However, caution is needed: assessing whether this is a robust or interesting sense of
the relativity of acceleration depends on some subtle technical issues and on substantive
philosophical questions over how to identify the space-time structure of a theory.
1. Introduction. The following two observations are well known to phi-
losophers of physics:

1. Newtonian gravitation admits, in addition to the well-known velocity-
boost and potential-shift symmetries, a “gravitational gauge symme-
try” in which the gravitational field is altered.

2. Newtonian gravitation may be presented in a “geometrized” form
known as Newton-Cartan theory,1 in which the dynamically allowed
trajectories are the geodesics of a nonflat connection.

Moreover, it is widely held that these two observations are intimately related.
However, aspects of this relationship remain somewhat obscure. In particular,
there is widespread disagreement over the sense in which the symmetry of ob-
servation 1 motivates the move from a nongeometrized formulation to the ge-
ometrized formulation of observation 2 and over the extent to which such
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motivation ought to be regarded as analogous to the use of the velocity-boost
symmetry to motivate the move fromNewtonian to Galilean space-time, or to
the use of the potential-shift symmetry to motivate the move from a formu-
lation in terms of gravitational potentials to a formulation in terms of gravi-
tational fields.

In this article, I seek to clarify this relationship. First, I consider the sym-
metry from point 1 above, in the context of Newtonian gravitation set on
Galilean space-time. I then briefly review the geometrized formulation of
the theory and discuss some puzzling aspects concerning the relativity of ac-
celeration. This motivates an exploration of Maxwell space-time and the
presentation of a Newtonian theory of gravitation set on Maxwell space-
time. I then look at how this theory relates to Newton-Cartan theory and ex-
plore how this illuminates the conceptual issues with which we began.

2. Galilean Gravitation. I will assume familiarity with the differential-
geometric architecture standardly used to present classical gravitational the-
ories (see Friedman 1983; Earman 1989; and esp. Malament 2012). All the
theories we will consider postulate at least as much structure as that of
Leibnizian space-time, which comprises data hM, ta, habi: here, M is a dif-
ferential manifold that is diffeomorphic to R4; ta is a smooth, curl-free 1-
form; and hab is a smooth, symmetric rank (0, 2) tensor, of signature
(0, 1, 1, 1). The tensors ta and hab are orthogonal; that is, they satisfy

tah
ab 5 0: (1)

Given our topological assumptions, ta induces a foliation of M into three-
dimensional hypersurfaces; we require that each such hypersurface is dif-
feomorphic toR3. The tensor hab induces a three-dimensional metric on each
hypersurface. We require that each hypersurface is complete relative to this
induced metric and that the induced metric is flat.2 We will use L to denote a
Leibnizian space-time. If L 5 hM , ta, habi is a Leibnizian space-time, then a
connection ∇ on M is said to be compatible with L just in case it satisfies

∇atb 5 0; (2a)

∇ah
bc 5 0: (2b)

We will only consider compatible connections in this article.
A Galilean space-time is a Leibnizian space-time equipped with a flat

(compatible) connection. The first theory we will consider is that of Newto-
nian gravitation on Galilean space-time—for short, “Galilean gravitation.”
Each model of such a theory comprises the following data:
2. For more detail on the above, see Malament (2012, sec. 4.1).
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• A Galilean space-time hL, ∇i
• A space-like vector field Ga

• A rank (2, 0) tensor field T ab

satisfying the following equations:

∇aG
a 5 24pr; (3a)

∇½ cGa� 5 0; (3b)

∇nT
na 5 rGa, (3c)

where r 5 Tabtatb.
The vector field Ga represents the gravitational field, and the tensor field

Tab represents the mass and momentum of whatever matter or fields are
present (with the scalar field r representing the mass density). I have chosen
to work with a gravitational field, related to the mass density by the source
equation (3a), rather than with a gravitational potential. This is simply in
order to remove the gauge symmetries of the potential, so that we can focus
on those symmetries that alter the field itself. Equation (3b), the condition
that the gravitational field is twist-free, ensures that this decision is harm-
less: given our assumptions about the topology of L, it holds of Ga if and
only if (iff ) there is a scalar field J such that Ga 5 2 ∇a J.3 Finally, equa-
tion (3c) encodes the dynamics of the matter (both gravitational and non-
gravitational).

To illuminate this last remark, note that wherever r ≠ 0, we can decom-
pose Tab by defining4

ya 5 r21Tabtb; (4a)

jab 5 Tab 2 ryayb, (4b)

so that

Tab 5 ryayb 1 jab, (5)

where ya is a unit, future-directed time-like field (interpretable as the net
motion of the matter) and j ab is a symmetric field space-like in both indices
(interpretable as the stress tensor for the matter). Equation (3c) then holds iff

r∇ay
a 1 ya∇ar 5 0 (6a)
3. See Malament (2012, proposition 4.1.6). Note that this is analogous to the role played
by the equation ∇ � E 5 0 in electrostatics.

4. The below follows Malament (2012, 265–66).
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rya∇ay
b 5 rGb 2 ∇aj

ab (6b)

hold. Thus, in the presence of mass, equation (3c) encodes both a continuity
equation (6a) and an equation of motion (6b). Given a model of Galilean
gravitation, we will refer to the integral curves of ya as the dynamical tra-
jectories, so the dynamical trajectories undergo an acceleration due to the
gravitational field and due to the nongravitational forces encoded by the
stress tensor. Obviously, in a realistic application one would impose further
equations on T ab, capturing the details of the nongravitational dynamics.
The theory (3) is only intended to provide a framework for analyzing the-
ories involving gravitation, at a reasonably high level of generality (while
nevertheless including an explicit representation of themass andmomentum).

It will be helpful to have a term for a structure hL, ∇, Ga, Tabi that does
not necessarily satisfy equations (3).5 We will refer to such a structure as a
model candidate for Galilean gravitation. The metaphysically inclined may
think of model candidates as representing worlds that are metaphysically
possible according to Galilean gravitation (they contain the right ontologi-
cal ingredients) and of models as representing worlds that are physically
possible according to Galilean gravitation (they contain the right ontologi-
cal ingredients, arranged in the right way).

Our concern in this article is with a certain transformation one can make
of the models of this theory—specifically, one obtained by altering the con-
nection and gravitational field as follows:

∇↦ ∇0 5 ∇, hatbtcð Þ; (7a)

Ga ↦G0a 5 Ga 2 ha, (7b)

where ha is any space-like vector field such that ∇a hb 5 0. The notation
(∇, hatbtc) follows Malament ( 2012, proposition 1.7.3); it shows that given
any connection ∇ on a manifold M, any other connection ∇0 may be ex-
pressed in the form (∇, Ca

bc) (for some symmetric tensor field Ca
bc), meaning

that for any tensor field Ta1 : : :ar

b1 : ::bs
on M:

∇0
cT

a1 :::ar

b1 :::bs
5 ∇cT

a1 :::ar

b1 :::bs

2 Ca1

cnT
na2 :::ar

b1 :::bs
2 ⋯ 2 Car

cnT
a1 :::ar21n
b1 :::bs

1 Cn
cb1
Ta1 :::ar

nb2 :::bs
1 ⋯ 1 Cn

cbs
T a1 :::ar

b1 :::bs21n:

(8)

It is straightforward to show that the transformation (7) is a symmetry of
Galilean gravitation, in the following sense: if ∇0 5 (∇, hatbtc) and G0a 5
Ga 2 ha are substituted into the equations (3), we get the same equations
5. That is, what, e.g., Belot (2007) refers to as a “kinematical possibility.”
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out again (and if ∇ is flat, then so is ∇0). Consequently, any model candidate
hL, ∇, Ga, Tabi is a model of Galilean gravitation iff hL, ∇0, G0a, Tabi is also a
model of Galilean gravitation.

Now, if we read the theory literally, then these two models would appear
to represent distinct possibilities (since the two models are not isomorphic
to one another). That is, if all the mathematical structures present in the
models are taken to represent physical structure, then the two models dis-
agree over what the world is like: they disagree over the magnitude of the
gravitational field, for instance, and over the acceleration of matter. Yet this
is a problematic judgment, since it seems that two such possibilities would
be epistemically indistinguishable from one another: all seemingly observa-
tionally accessible quantities, such as relative distances, are the same in the
two models. Such epistemic underdetermination gives us some reason to
think that we should seek another theory that, read literally, does not give
rise to such a problem (while still capturing the “good” content of Galilean
gravitation; i.e., the content that is invariant under [7]).6

3. Newton-Cartan Gravitation. The standard view is that such a theory is
provided by Newton-Cartan gravitation. Let us say that a Newton-Cartan
connection, for a given Leibnizian space-time, is a (compatible) connection
~∇whose curvature tensor ~Rab

bcd obeys the homogeneous Trautman conditions,

~Rab
cd 5 0 (9a)

~Ra
b
c
d 5 ~Rc

d
a
b, (9b)

and that a Newton-Cartan space-time consists of a Leibnizian space-time L
together with a Newton-Cartan connection for L. Note that all flat connec-
tions obey the conditions (9), and so are Newton-Cartan connections; as such,
Galilean space-time is a Newton-Cartan space-time. A model of Newton-
Cartan gravitation then comprises

• A Newton-Cartan space-time hL, ~∇i
• A tensor field Tab
6. The above kind of argument is an instance of a more general one: the claim that the
differences between symmetry-related models of a theory are (in some sense) not differ-
ences that should be taken seriously and that should motivate us either to interpret the the-
ory in such away that it is not committed to that structure or to replace the theory by amore
parsimonious one (for discussion, see Møller-Nielsen [2016]). However, it is controver-
sial both how exactly the notion of “symmetry” should be defined and how (or whether)
this general interpretationalmaxim should apply (seeBrading andCastellani 2003; Saunders
2003; Baker 2010; Caulton 2015; Dewar 2015; Dasgupta 2016; and references therein).
Since the general debate is tangential to our purposes, I pass over it here.
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such that the following equations hold:

~Rbc 5 4prtbtc, (10a)

~∇nT
na 5 0, (10b)

where the Ricci tensor ~Rbc 5 ~Ra
bca and (as before) r 5 Tabtatb.

Thus, the source equation (10a) relates the mass density to the curvature
of space-time, rather than to the gravitational field. If we have r ≠ 0, then
we can decompose Tab as in equation (5) to obtain

r~∇ay
a 1 ya~∇ar 5 0; (11a)

rya~∇ay
b 5 2~∇aj

ab: (11b)

So the continuity equation (11a) is unchanged, but the equation of motion
(11b) only features acceleration due to nongravitational forces: the gravita-
tional acceleration has been “absorbed” into the curved Newton-Cartan con-
nection.

The relationship between Galilean gravitation and Newton-Cartan grav-
itation is captured in what are known as the geometrization and recovery
theorems (see Trautman 1965; Malament 2012, propositions 4.2.1, 4.2.5).
The former states that from any model of Galilean gravitation, one can ob-
tain a unique model of Newton-Cartan gravitation, namely, that given by
taking ~∇ 5 (∇,Gatbtc). Note that two models of Galilean gravitation that are
related by the transformation (7) will generate the same model of Newton-
Cartan gravitation. The latter asserts that given a model of Newton-Cartan
gravitation, there is a model of Galilean gravitation related to it by ~∇ 5
(∇,Gatbtc) for some twist-free space-like field Ga; several models, in fact,
corresponding to different choices of Ga (and all related to one another by
transformations of the form [7]). It is in this sense that Newton-Cartan grav-
itation captures the invariant content of Galilean gravitation: there is a sys-
tematic one-to-one correspondence between models of Newton-Cartan gravi-
tation and equivalence classes of (7)-related models of Galilean gravitation.

At the same time, there is something potentially puzzling about this case.
As mentioned above, the acceleration of the matter represented by ya is not
invariant under the transformations (7). If models related by such a transfor-
mation correspond to the same physical situation, then the natural reading
would seem to be that accelerations are not a real, or objective, or absolute
feature of the world (according to Newtonian gravitational theory). This no-
tion is supported by reflection on the transition from setting Newtonian
gravitation on Newtonian space-time (wherein there is a standard of abso-
lute rest) to setting it on Galilean space-time. Here, we observe that apply-
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ing a “boost” transformation is a symmetry of the dynamics. In Newtonian
space-time, trajectories have (absolute) velocities relative to absolute space,
but those velocities are not invariant under boosts. This is generally taken to
license the claim that such velocities are not real, or objective, or absolute
features of the world (according to the best interpretation of the theory).
This claim is supported by the fact that we can set the theory instead on Gal-
ilean space-time, in which there is not the structure required to impute ab-
solute velocities to trajectories. So if this transition involves the repudiation
of absolute velocities (since they are not invariant under boosts), analogous
reasoning would suggest that the move from Galilean gravitation to Newton-
Cartan gravitation should involve the repudiation of absolute accelerations
(since they are not invariant under [7]).

However, the orthodox view is that this is decisively not the case. The rea-
son for this is straightforward: any model of Newton-Cartan gravitation does
have enough structure to make pronouncements on the accelerations of trajec-
tories, since it contains a privileged connection ~∇. As such, in transitioning
from Galilean to Newton-Cartan gravitation, “We eliminate the notions of
absolute acceleration and rotation relative to ∇, but we replace them with
new notions of absolute acceleration and rotation relative to ~∇. Hence, the
move from [Galilean gravitation] to [Newton-Cartan gravitation] does not
involve a relativization of acceleration parallel to the relativization of veloc-
ity” (Friedman 1983, 122).7 Here is another way of expressing the idea that
Newton-Cartan space-time is just as committed to absolute acceleration as
Galilean space-time was: the Newton-Cartan connection is not invariant un-
der a transformation of the form (7a).8 So let us consider what kind of struc-
ture is so invariant.

4. Maxwell Gravitation. Given a Galilean space-time hL, ∇i, the structure
that is invariant under a transformation of the form (7a) goes by themoniker of
Maxwell space-time (Earman 1989, chap. 2). Intuitively, the idea is that a
Maxwell space-time contains a “standard of rotation” but no “standard of ac-
celeration.”More precisely,9 we say that a pair of connections ∇ and ∇0 com-
patible with a given Leibnizian space-time L are rotationally equivalent if, for
any unit time-like field va on L, ∇½av b� 5 0 iff ∇0 ½avb� 5 0. Then, aMaxwell
space-time comprises
7. I have modified Friedman’s notation to fit with that used in this article.

8. The question of whether it is invariant under a transformation of the form (7) is rather
more subtle.

9. This definition follows Weatherall (2015).
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• A Leibnizian space-time L
• A standard of rotation [∇]: an equivalence class of rotationally equiv-
alent flat affine connections (compatible with L).

The following proposition demonstrates the invariance of Maxwell space-
time under (7a):
10. S
Saun

7 Publ
Proposition 1. Let hL, [∇]i be a Maxwell space-time, and consider any
∇ ∈ ½∇ �. For any other flat connection ∇0, ∇0 ∈ ½∇� (i.e., ∇0 is rotationally
equivalent to ∇) iff ∇0 5 ð∇, hatbtc), for some space-like field ha such that
∇a hb 5 0.

Proof. The “if ” direction is straightforward: if ∇0 5 (∇, hatbtc), then

∇0 ½ avb � 5 ∇½ avb� 2 tntkv
khn ½ ahb �

5 ∇½ avb�,

and so ∇ and ∇0 are rotationally equivalent.
The “only if ” direction follows immediately from the proof of proposi-

tion 3 in Weatherall (2015). QED
So given a pair of models of Galilean gravitation related by (7), the struc-
ture shared by their Galilean space-times hL, ∇i and hL, ∇0i is that of their
common Maxwell space-time hL, [∇]i.

Recently, Saunders has queried whether we really should regard Newton-
Cartan theory as the space-time theory that properly encodes the lessons of
the symmetry canvassed above: he argues that we can “interpret [Newton’s]
laws . . . directly as concerning the relative motions of particle pairs” (2013,
41) and, hence, as describing a theory set on Maxwell space-time rather
than Galilean space-time.10 Saunders’s analysis concerns the point-particle
formulation of Newtonian gravitation, but he continues: “There remain im-
portant questions, above all, moving over to a manifold formulation: What
is the relation between a theory of gravity (and other forces) formulated in
Maxwell space-time and one based on Newton-Cartan space-time?” (46).
Obviously, assessing that relationship requires us to first present such a the-
ory set on Maxwell space-time.

Without further ado, then, a model of Maxwell gravitation comprises

• A Maxwell space-time hL, [∇]i
• A tensor field Tab
trictly, against the backdrop of a space-time structure equivalent to it, which
ders refers to as “Newton-Huygens spacetime.”
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such that the following equations hold wherever r ≠ 0:

ta ∇n T
na 5 0, (12a)

∇a r21 ∇n T
nað Þ 5 24pr, (12b)

∇c r21 ∇n T
nað Þ 2 ∇a r21 ∇n T

ncð Þ 5 0, (12c)

where ∇ is an arbitrary element of [∇]. Moreover, we require that if there are
regions of L in which r 5 0, then the quantity r21∇nTna converges as such a
region is approached.

This is only well specified if the choice of ∇ is indeed arbitrary. The fol-
lowing proposition shows that this is, indeed, the case.
11. T

86/6963
Proposition 2. Let hL, [∇], Tabi be a model candidate for Maxwell grav-
itation, and consider any ∇, ∇0 ∈ ½∇�. Then the equations (12) hold with
respect to ∇ iff they hold with respect to ∇0.

Proof. By proposition 1, ∇0 5 (∇, hatbtc), for some space-like field ha such
that ∇ahb 5 0. It follows that

∇0
nT

na 5 ∇nT
na 2 rha: (13)

First, from equation (13)

ta∇0
nT

na 5 ta∇nT
na, (14)

so equation (12a) holds with respect to ∇ iff it holds with respect to ∇0.
Second, we find that

∇0
a r21 ∇0

n T
nað Þ 5 ∇0

a r21 ∇n T
na 2 hað Þ

5 ∇a r21 ∇n T
na 2 hað Þ 2 hatatr r

21 ∇n T
nr 2 hrð Þ

5 ∇a r21 ∇n T
nað Þ 2 ∇ah

a:

Since ∇a hb 5 0, ∇a h
b 5 tav

n ∇n h
b, where vn is any future-directed unit

time-like field; it follows that ∇a h
a 5 0.11 So (12b) holds with respect to

∇ iff it holds with respect to ∇0.
Finally,

∇0c r21 ∇0
n T

nað Þ 5 ∇0c r21 ∇n T
na 2 hað Þ

5 ∇c r21 ∇n T
na 2 hað Þ 2 hdchatdte r

21 ∇n T
ne 2 heð Þ

5 ∇c r21 ∇n T
nað Þ:
his observation is adapted from Malament (2012, 277).
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And so equation (12c) also holds with respect to ∇ iff it holds with respect
to ∇0. QED
As with the two previous theories, wherever r ≠ 0 we can decompose
Tab using (5). It is then straightforward to show that (12a) holds iff

r ∇a y
a 1 ya ∇a r 5 0 (15)

does (i.e., the continuity equation carries over).
There is not a straightforward analogue of (6b) or (11b) for Maxwell

gravitation (which is to be expected, given that Maxwell space-time lacks
an absolute standard of acceleration). However, we can show that Maxwell
gravitation determines the relative acceleration of the dynamical trajecto-
ries. That is, given a unit time-like vector field va on a Maxwell space-time
hL, [∇]i, let la be a connecting field for va: a space-like vector field such that
Lvl

a 5 0 (where Lv denotes the Lie derivative along va). Intuitively, we
think of la as joining integral curves of va to “neighboring” integral curves.
The relative acceleration of such neighboring curves is then given by

vn ∇n vm ∇m lað Þ (16)

and has radial component (magnitude in the direction of la)

lav
n ∇n vm ∇m lað Þ, (17)

where la 5 ĥabl
b, for ĥab the spatial metric associated to va.12 These expres-

sions are easily shown to be independent of the choice of ∇ ∈ ½∇�, but they
do depend on la. If, however, we introduce three connecting fields la1

, la2

,
and la3

that are orthonormal to one another, then we can define the average
radial acceleration of va as the average of the three radial components,

Av :5
1

3o
3

i51

l
i

av
n ∇n vm ∇m la

i� �
: (18)

It can then be shown that the average radial acceleration is independent of
the choice of connecting fields lai ; indeed, we have
Proposition 3. Let va be a unit time-like field on some Maxwell space-
time hL, [∇]i, and suppose that fla

i gi are three orthonormal space-like
fields such that Lvl

i
a 5 0. Then for any ∇ ∈ ½∇�,
n fact, given that la is space-like, we could have used the spatial metric associated
y unit time-like field, but since we have a particular such field knocking around, it is
ul to fix on it.
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Av 5
1

3
∇a vn ∇n v

að Þ: (19)

Proof. First, some straightforward algebra shows that for any connecting
field la,13

vn ∇n vm ∇m lað Þ 5 lm ∇m vn ∇n v
að Þ: (20)

Since the connecting fields are orthonormal (Malament 2012, eq. [4.1.12]),

o
i

l
i

al
c

i

5 dca 2 tav
c: (21)

Therefore,

Av 5
1

3o
3

i51

l
i

av
n ∇n vm ∇m la

i� �

5
1

3oi l
i

al
c

i

∇c vn ∇n v
að Þ

5
1

3
dca 2 tav

cð Þ ∇c vn ∇n v
að Þ

5
1

3
∇a vn ∇n v

að Þ:

ED
Now observe that, given equation (15),

∇n rynya 1 jnað Þ 5 ryn ∇n y
a 1 ∇nj

na: (22)

It follows that if Tab obeys equation (12b), then

Ay 5 2
4

3
pr 2

1

3
∇a r21 ∇n j

nað Þ: (23)

In other words, Maxwell gravitation specifies the relative acceleration of
trajectories (and characterizes them as having both a gravitational and non-
gravitational component).

5. Comparing Maxwell Gravitation and Newton-Cartan Gravitation.
We now consider the relationship between Maxwell gravitation and Newton-
Cartan gravitation. First, we say that a connection is compatible with a given
Maxwell space-time hL, [∇]i if it is compatible with the Leibnizian substruc-
he calculation is just an adaptation of the proof of Malament (2012, proposition
) to the case in which va is not a geodesic and ∇ is flat.

87 Published online by Cambridge University Press

https://doi.org/10.1086/696387


260 NEIL DEWAR

https://doi.org/10.1086/69638
ture L of the Maxwell space-time and rotationally equivalent to the members
of [∇]. We now prove an intermediate proposition, giving the relationship be-
tween different Newton-Cartan connections compatible with a given standard
of rotation.
7 Publ
Proposition 4. Let hL, [∇]i be a Maxwell space-time, and let ~∇ be any
Newton-Cartan connection compatible with hL, [∇]i. Then for any other con-
nection e∇0, e∇0 is a Newton-Cartan connection compatible with hL, [∇]i iffe∇0 5 (~∇, zatbtc), for some space-like field z a such that ~∇½azb� 5 0.

Proof. First, suppose that e∇0 5 (~∇, zatbtc) for such a field z a. That it is com-
patible with L is immediate. And for any time-like va,

e∇0 ½ avb� 5 hn ½ a e∇0
nv

b�

5 hn ½ a~∇nv
b� 2 hn ½ azb�vmtmtn

5 ~∇½ avb�:

So clearly, ~∇0½avb� 5 0 iff ~∇½avb� 5 0; that is, ~∇ and e∇0 are rotationally equiv-
alent. It remains to show that e∇0 satisfies the homogeneous Trautman con-
ditions (9). Applying the standard condition relating two Riemann tensors
(Malament 2012, eq. [1.8.2]), we obtain

~R0a
bcd 5 ~Ra

bcd 1 2tbt½ d~∇c�z
a: (24)

Hence

~R0ab
cd 5 ~Rab

cd: (25)

Next, suppose that ~Ra
b
c
d 5 ~Rc

d
a
b. A straightforward computation (together

with the twist freedom of z a) yields

~R0a
b
c
d 5 ~R0c

d
a
b : (26)

The converse half of the proof is adapted from Weatherall (2015). Sup-
pose that e∇0 is a Newton-Cartan connection compatible with hL, [∇]i.
Since ~∇ and e∇0 are both compatible with L, there is some antisymmetric
tensor field kab such that e∇0 5 (~∇, 2hant(bkc)n) (Malament 2012, proposi-
tion 4.1.3). Now let va be some unit time-like field such that ~∇½avb� 5 0
(some such field is guaranteed to exist, since ~∇ obeys the homogeneous
Trautman conditions; seeMalament 2012, proposition 4.3.7). Using the fact
that e∇0 ½avb� 5 0, we can show that kab p 0, and hence that e∇0 5 (~∇, zatbtc)
for some space-like field z a (see Weatherall [2015, 91] for details of the
computation).
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It remains to show that z a is twist-free. By using equation (24), we obtain

~R0a
b
c
d 5 ~Ra

b
c
d 1 2tbtd~∇cz a: (27)

So by exchange of indices, and applying the second homogeneous Traut-
man condition,

tbtd~∇cza 5 tbtd~∇az c: (28)

Since ta ≠ 0, ~∇½cza� 5 0. QED
We can now explore the relationship between Maxwell gravitation and
Newton-Cartan gravitation. The relationship is limited in an important
way: we can establish a correspondence between the models of Maxwell
gravitation and those of Newton-Cartan gravitation only in the case of an
everywhere nonvanishing mass density. However, each such model of
Newton-Cartan gravitation is naturally associated with a unique such model
of Maxwell gravitation and vice versa. This provides a sense in which the
two theories might be regarded as equivalent over the nonvanishing-mass
sector, since the mutual pair of associations might be regarded as showing
how the two theories are intertranslatable with one another (cf. Glymour
1970, 1977; Barrett and Halvorson 2016).
Proposition 5. Let hL, ~∇, Tabi be a model of Newton-Cartan gravitation
such that at all points in L, r ≠ 0. Then there is a unique standard of rota-
tion [∇] such that ~∇ is compatible with [∇], and hL, [∇], Tabi is a model of
Maxwell gravitation.

Proof. First, define [∇] as consisting of all and only those connections that
are flat and that are rotationally equivalent to ~∇. By the Trautman recovery
theorem, there is at least one such connection, so [∇] is nonempty. Hence,
it is indeed a standard of rotation with which ~∇ is compatible—and it is
manifestly unique in this regard.

It remains to show that hL, [∇], Tabi is a model of Maxwell gravitation.
Let ∇ be an arbitrary element of [∇]. The connection ∇ is a Newton-Cartan
connection,14 and is evidently compatible with [∇], so by proposition 4,
~∇ 5 (∇, zatbtc) for a space-like z a such that ~∇½azb� 5 0. Since ~∇ and ∇
are rotationally equivalent, we also have that ∇½a zb� 5 0. By equation (10b),

rza 5 ∇nT
na: (29)

So first, the fact that z a is space-like entails that (12a) is satisfied.
s remarked earlier, any flat connection trivially satisfies the homogeneous Traut-
conditions.
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Second, from (10a) and the standard equation relating curvature tensors
for different connections, we obtain

4prtbtc 5 ~Rbc

5 2tbt½ a ∇c� z
a

5 2tbtc ∇a r21 ∇n T
nað Þ:

Since ta ≠ 0, it follows that equation (12b) is satisfied.
Finally,

∇c r21 ∇n T
nað Þ 2 ∇a r21 ∇n T

ncð Þ 5 ∇½ cza�

5 0:

So equation (12c) is satisfied. QED

Proposition 6. Let hL, [∇], Tabi be a model of Maxwell gravitation such
that at all points in L, r ≠ 0. Then there is a unique Newton-Cartan con-
nection ~∇ compatible with hL, [∇]i such that hL, ~∇, Tabi is a model of
Newton-Cartan gravitation.

Proof. First, we show existence. Let ∇ be an arbitrary element of [∇], and
define

~∇ 5 ∇, tbtcr21 ∇n T
nað Þ: (30)

Then ~∇ is a Newton-Cartan connection compatible with hL, [∇]i. For this,
given proposition 4, it suffices to observe that r21∇nTna is a space-like field
that is twist-free (by eqq. [12a] and [12c]).
Further, hL, ~∇, Tabi is a model of Newton-Cartan gravitation. First, from
equations (12a) and (12b),

~Rbc 5 2tbtc ∇a r21 ∇n T
nað Þ

5 4prtbtc:

So equation (10a) is satisfied. Second,

~∇nT
na 5 ∇nT

na 2 tntk r21 ∇m Tmnð Þ 2 tntk r21 ∇m Tmað ÞTnk

5 ∇nT
na 2 ∇mT

ma

5 0,

where we have used equation (12a). So equation (10b) is satisfied.
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We now prove uniqueness. Suppose that ~∇ and e∇0 are two Newton-Cartan
connections, compatible with [∇], such that ~∇nTna 5 e∇0

nTna 5 0. By prop-
osition 4, e∇0 5 (~∇, zatbtc), where ~∇½azb� 5 0. But then by equation (13),e∇0

nT na 5 ~∇nT na 2 rza. So by supposition (and the fact that r ≠ 0), za 5
0, and so e∇0 5 ~∇. QED
6. Constructing Space-Time. Let us take stock. On the face of it, a model
of Maxwell gravitation hL, [∇], Tabi might be imagined to have strictly less
structure than a model of Newton-Cartan gravitation hL, ~∇, Tabi: the latter
has all the same stuff that the former has but also includes a standard of ac-
celeration. What proposition 6 shows is that—in the case that r is nowhere
vanishing—there is a sense in which this appearance is misleading, since
the “extra” structure (the standard of acceleration) can be defined from
the other structure in the model: the standard of acceleration is defined as
that according to which the net gravitational acceleration of the matter en-
coded by Tab is zero.

Note that we do need to represent the matter by a mass-momentum tensor
(rather than just a mass density) if this reconstruction is to work: a mere mass
density does not carry enough information to fix a standard of acceleration,
that is, to determine a unique Newton-Cartan connection.15 For example,16

let hL, ~∇, Tabi be some model of Newton-Cartan gravitation, and consider
the structures hL, ~∇, ri and hL, (~∇, (~∇af)tbtc), ri (with r 5 Tabtatb), where
in some coordinate system (t, x, y, z) adapted to L,

f 5 exey sin
ffiffiffi
2

p
z

� �
: (31)

One can show that both structures satisfy equation (10a) (the satisfaction of
eq. [10b] does not arise), and clearly, both structures give rise to the same
standard of rotation, and so both correspond to the same Maxwell-space-
time-based structure hL, [∇], ri.

Now, compare the possibility of reconstructing a model of Newton-
Cartan gravitation from a model of Maxwell gravitation with an observation
made by Pooley (2013, sec. 4.5). He notes that the presentation by Earman
eatherall (2015) and Wallace (2017) both make the same observation: the under-
point is just that Poisson’s equation admits of homogeneous solutions that corre-
to nontrivial gravitational fields, and since it is linear, superimposing such a so-
onto a given solution for a fixed mass density r will yield another solution for that
mass density r. Note that imposing boundary conditions will typically restore
eness of solutions.

take this example from Jim Weatherall; for further discussion, see Dewar and
herall (2017).
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and Friedman of Newtonian space-time as hL, ∇, Aai (where Aa is the time-
like vector field representing absolute space) has a certain redundancy: hL,
Aai has the same structure, in the sense that the derivative operator ∇may be
defined from the structure of L and Aa. One way of thinking about propo-
sition 6 is as showing that a Newton-Cartan model hL, ~∇, Tabi (in which r ≠
0 everywhere) carries a similar form of redundancy: provided we know the
standard of rotation associated to ~∇, and provided we know the character of
Tab, we can “fill in the blanks” to reconstruct ~∇ itself.

That said, there are two important differences between this case and the
case raised by Pooley. The first is that in the example of Newtonian space-
time, we note that a piece of spatiotemporal structure (the connection) may
be defined in terms of other pieces of spatiotemporal structure (the Leibnizian
space-time structure, plus the structure of absolute space). By contrast, here
we have a piece of spatiotemporal structure (the standard of acceleration) be-
ing defined in terms of spatiotemporal structure (the Maxwellian space-time
structure) and nonspatiotemporal structure (the mass-momentum tensor).
This gives us a better handle on the question of whether acceleration is abso-
lute or relative in the context of Newtonian gravitation. To claim that accel-
eration is relative in Maxwell gravitation would mean taking the space-time
structure in a model hL, [∇], Tabi to be given by the Maxwell space-time hL,
[∇]i, rather than by the Newton-Cartan structure hL, ~∇i definable within the
model. In favor of this interpretation, note that L and [∇] are the only prim-
itive geometrical structures in any model of Maxwell gravitation, so on a
view that identifies space-time structure as just the primitive geometrical
structure of a theory, it would be very natural to read this theory as having
merely relative acceleration.17 But, if one has a different conception of space-
time structure, then it may well be that the Newton-Cartan connection is
properly identified as spatiotemporal structure—the fact that it is derived
from material dynamical structures (i.e., Tab) notwithstanding. In particular,
Knox’s (2014) “space-time functionalism” holds that the space-time structure
in a theory is whatever structure encodes the relevant notion of inertial frame
in that theory. There are good grounds for thinking that this role is played by
the Newton-Cartan connection—and hence, for the space-time functionalist
to maintain that acceleration in Maxwell gravitation is absolute. Thus, this
case provides a useful (although admittedly partial) illustration of the so-
called dynamical approach to space-time geometry (Brown 2005; Stevens
2015) in which one seeks to characterize space-time geometry as a codifica-
tion of the behavior of dynamical structures.18
17. For example, Dorr (2011) and Maudlin (2012) are both plausibly read as employing
a methodology of this kind.

18. Wallace (2016) discusses these issues in more depth.
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The second (perhaps related) distinction is that such a unique reconstruc-
tion is always available in the Newtonian space-time case,19 whereas unique
reconstruction is here only guaranteed by requiring the nonvanishing of the
matter—in effect, by requiring that there be sufficient material structure to
everywhere “probe” the spatiotemporal structure.

What happens when the matter distribution does vanish in some regions,
then? In such a case, we are still able to construct a Newton-Cartan connec-
tion, but, in general, the connection will not be unique. For example, con-
sider the case in which Tab 5 0. Trivially, hL, [∇], 0i is a model of Maxwell
gravitation, but we can show that hL, ∇, 0i and hL, (∇, (∇af)tbtc), 0i, where
∇ ∈ ½∇� and f is as in equation (31), are both models of Newton-Cartan
gravitation for which Tab 5 0. However, these models are distinct (non-
isomorphic): the connection (∇, (∇af)tbtc) is not flat (but merely has a van-
ishing Ricci tensor).

Bearing this in mind, consider the following remarks of Saunders: “What
of possible worlds, and distinctions among them drawn in [Newton-Cartan
gravitation], invisible to ours? Take possible worlds each with only a single
structureless particle. Depending on the connection, there will be infinitely
many distinct trajectories, infinitely many distinct worlds of this kind. But
in [Maxwell-gravitation] terms, . . . there is only one such world—a trivial
one in which there are no meaningful predications of the motion of the par-
ticle at all. Only for worlds with two or more particles can distinctions
among motions be drawn” (2013, 46–47). We have now seen how to extend
this observation to a field-theoretic formulation of Newtonian gravitation: in
general, there are distinct but “materially identical” models of Newton-
Cartan gravitation (such as hL, ∇, 0i and hL, (∇, (∇af)tbtc), 0i), which will
correspond to a single model of Maxwell gravitation.

The natural next question is whether Saunders is correct that the extra
structure of Newton-Cartan gravitation compared to Maxwell gravitation
is “surplus.” Consider a pair of such materially identical models M, M 0 of
Newton-Cartan gravitation. The only difference betweenM andM 0 concerns
the nature of space-time in empty regions. So, at issue is whether such a dif-
ference constitutes an empirical difference. It turns out, however, that this is
not a clear-cut question, for one can find (intuitively plausible) criteria of
empirical equivalence that generate different answers. On the one hand, M
and M 0 agree with respect to all material structure: thus, the full collection
of every piece of observational data regardingM is identical to that regarding
M 0. On the other, it is not straightforwardly the case thatM andM 0 agree on
the content of all possible observations. For although there is not (in fact)
any matter in the empty regions, there could have been, and were such mat-
19. Admittedly, “always” is a slightly odd term to use here since there is effectively only
one case: Newtonian space-time is unique up to isomorphism.
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ter to have been introduced, the motions that it would have made would suf-
fice to empirically discriminate betweenM andM 0 (or to rule them both out
in favor of some third alternative). More generally, the distinction at issue is
whether unactualized dispositions may properly be considered as empirically
respectable properties.20

Finally, I turn to comparing the analysis given here with the (related) ac-
count of Weatherall (2015). One difference is with regard to the framework:
Weatherall’s analysis represents the source matter via a mass density r and
considers what kinds of trajectories for test particles would be permissible
for such a mass density. By contrast, the analysis above uses the mass-
momentum tensor Tab to represent matter that is simultaneously source and
test: in the Newton-Cartan theory, for instance, equation (10a) encodes Tab’s
role as source matter, and equation (10b) encodes its role as test matter. More-
over, the only dynamics in play in Weatherall’s paper is that of gravitation.

Within this framework, Weatherall characterizes the dynamically per-
missible trajectories (for a given mass density r on Maxwell space-time)
as follows. First, observe that given a Maxwell space-time equipped with
a mass density, hL, [∇], ri, for any ∇ ∈ ½∇�, there exists a space-like vector
field Ga such that hL, ∇, r, Gai satisfies equations (3a) and (3b). Given such
a Ga, the allowed trajectories are then all and only those curves whose tan-
gents satisfy

yn∇ny
a 5 Ga: (32)

Note that the choice of Ga (for a given ∇) is not unique, and not just in the
manner captured by the gravitational gauge symmetry (7): for instance, given
a scalar field f of the form (31), then hL, [∇], r, Ga 1 ∇afi will also satisfy
(3a) and (3b) but will pick out a different set of allowed trajectories, where
the two sets of trajectories do not even agree on the relative accelerations of
bodies (and hence, correspond to distinct Newton-Cartan connections).

The models of gravitation on Maxwell space-time are then identified as
follows: hL, [∇], r, {g}i (where {g} is a set of time-like curves on L) is a
model iff (i) for any ∇ ∈ ½∇�, there is some space-like field Ga

∇ such that hL,
∇, Ga

∇, r, {g}i satisfies equations (3a), (3b), and (32) and (ii) {g} is appro-
priately maximal; that is, if g0 is a curve such that y0n ∇n y

0a 5 Ga
∇ (with re-

spect to any ∇ ∈ ½∇�), then g0 ∈ fgg. Note that these conditions do not quite
line up with Maxwell gravitation as I have defined it, even allowing for the
difference in framework: Weatherall’s approach does not encode a continu-
ity equation. More significantly, each model is equipped with all the al-
lowed trajectories for test particles, even in empty regions (i.e., regions in
which r 5 0).
20. For an illuminating discussion of Newton’s attitude toward such dispositions (in the
gravitational context), see Stein (1970).
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Weatherall’s key result is then as follows (where I have modified his no-
tation, to match that used in this article):
21. T
stall

22. W
ident
the g
of cu

86/6963
Let {g}r be the collection of allowed trajectories for a given mass distri-
bution r in Maxwell-Huygens [i.e., Maxwell] space-time hL, [∇]i. . . .
Then there exists a unique derivative operator ~∇ such that (1) {g}r consists
of the timelike geodesics of ~∇ and (2) hL, ~∇i is a model of Newton-Cartan
theory for mass density r. (Weatherall 2015, proposition 4)
One word of warning: speaking of the collection of allowed trajectories for
a given mass distribution (in a Maxwell space-time) is a little infelicitous
since—as discussed above—a mass density on Maxwell space-time does
not fix a unique collection of allowed trajectories for test particles. So it
would be better to speak of a collection of allowed trajectories.21

Now, to facilitate the comparison between this and proposition 6, recall
that (in the contexts in which r ≠ 0; i.e., the contexts in which proposition 6
applies) we can decompose the mass-momentum tensor into a vector field
ya and a stress tensor j ab, and if j ab vanishes (i.e., in the absence of nongrav-
itational interactions) the reconstructed connection is that according to which
the integral curves of ya are geodesics. So whereas Weatherall’s observation
is that a full collection of dynamically allowed trajectories is sufficient to pick
out a unique Newton-Cartan connection, proposition 6 shows that a single
congruence of such trajectories is sufficient. This makes Weatherall’s result
slightly less strong than proposition 6, at least in the context of nonvanishing
r: it is a generic feature of differential geometry that a connection is uniquely
identified by its geodesics, whereas it is not typically the case that a single
congruence of geodesics is sufficient.22 (It suffices in the context of proposi-
tion 6 only because of the further requirement that the Newton-Cartan con-
nection be compatible with the background Maxwell space-time.) That said,
because Weatherall’s approach also includes the trajectories for test particles
in empty regions, a model of Newton-Cartan gravitation can always be re-
constructed from a model of Weatherall gravitation, even if there are empty
regions.

Weatherall argues that this result shows that Saunders has made an error
here: “[The proposition above]—at least as I interpret it here—reveals a cer-
tain inadequacy in Saunders’s account. Saunders insists that there is no priv-
o be clear, it is evident that Weatherall appreciates this—I am just aiming to fore-
potential confusion that might arise from quoting him out of context.

hich is not to say that the observation is trivial: it is a nontrivial fact that one can
ify a collection of allowed trajectories in such a manner that they will be apt to be
eodesics of some connection. (For a discussion of how to determine whether a class
rves may be interpreted as the geodesics of some connection, see Matveev [2012].)
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ileged standard of acceleration in Maxwell-Huygens space-time. . . . None-
theless, it turns out that once one takes the dynamically allowed trajectories
into account, one can define a standard of acceleration, namely, the unique
one relative to which the allowed trajectories are geodesics” (Weatherall
2015, 89–90). Of course, Weatherall’s technical claim here is quite correct,
but I suggest that the technical claim does not quite capture what Saunders
has in mind. From Saunders’s remarks, it seems clear that he is not includ-
ing all dynamically allowed trajectories as part of the empirical content of
the theory; rather, he is including only the actual trajectories, the actual mo-
tions of matter. In other words, the disagreement between Saunders and
Weatherall is essentially that already discussed, over what the most appro-
priate criterion of empirical equivalence between models of Newton-Cartan
gravitation is. Saunders appeals to the former criterion (where empirical
equivalence means agreement with respect to material structure) and so
concludes that Newton-Cartan gravitation draws distinctions without differ-
ences; Weatherall appeals to the latter criterion (where empirical equiva-
lence requires agreement about the counterfactual motions of hypothetical
test particles) and so denies that Newton-Cartan gravitation draws distinc-
tions without differences.23 Insofar as Maxwell gravitation does collapse
those distinctions, it—rather than Weatherall’s theory—represents the nat-
ural extension of Saunders’s remarks to the field-theoretic context.

Finally, even apart from these differences over which class of models is
picked out, there is also (I claim) a value to having equations that more sim-
ply and directly pick out the models. In particular, it helps us see a little more
clearly the reason why the theory may be set on Maxwell space-time but not
on anything weaker. If the game is just that of picking out a certain class of
models, then we can set a gravitational theory on Leibniz space-time just as
easily as onMaxwell space-time. For consider the following theory, of “Leib-
niz gravitation”: a triple hL, r, {g}i is a model of Leibniz gravitation iff for
some ∇ compatible with L, there is some space-like field Ga such that hL,
∇, Ga, r, {g}i is a model of Galilean gravitation, and (ii) {g} is appropriately
maximal. We can prove a reconstruction theorem for Leibniz gravitation of
just the same sort as Weatherall gravitation: given anymodel of Leibniz grav-
itation hL, r, {g}i, there is a unique derivative operator ~∇ such that hL, ~∇, r,
{g}i is a model of Newton-Cartan gravitation.24
23. For instance, “given some distribution of matter in space-time, it is these curves [the
allowed trajectories] that form the empirical content of Newtonian gravitational theory”
(Weatherall 2015, 89).

24. We can only do this because of the presence of all members of {g}, though. Unlike
Maxwell space-time, Leibniz space-time has insufficient structure to enable one to infer
a unique connection from a single vector field.
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Yet Leibniz gravitation is a blatant pseudotheory—“arrant knavery,” as
Belot (2000, 571) rightly derides it. Why is it knavery? I say: because we
cannot give any set of equations, formulated in terms that refer only to the
structure of Leibnizian space-time, that picks out those models. This is
not to say that there is not a distinction between the forms of Leibniz grav-
itation andWeatherall gravitation: in Leibniz gravitation, rather than univer-
sally quantifying over connections compatible with the background struc-
ture, we existentially quantified over them. My claim is just that the fact
that Maxwell gravitation is a legitimate theory, whereas Leibniz gravitation
is not, can be hard to see when both are presented merely as classes of mod-
els. By contrast, if we insist that the class of models be picked out by a set of
equations, then we can more easily keep ourselves honest.25
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