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Abstract

A common way of dynamically scheduling jobs in a flexible manufacturing system~FMS! is by means of dispatching
rules. The problem of this method is that the performance of these rules depends on the state the system is in at each
moment, and no single rule exists that is better than the rest in all the possible states that the system may be in. It would
therefore be interesting to use the most appropriate dispatching rule at each moment. To achieve this goal, a scheduling
approach which uses machine learning can be used. Analyzing the previous performance of the system~training
examples! by means of this technique, knowledge is obtained that can be used to decide which is the most appropriate
dispatching rule at each moment in time. In this paper, a review of the main machine learning-based scheduling
approaches described in the literature is presented.
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1. INTRODUCTION

Scheduling, a part of any manufacturing system’s control
process, is necessary when a common set of resources needs
to be shared to manufacture several different products dur-
ing the same time period. The goal of scheduling is to as-
sign machines and other resources to jobs, or operations
within jobs, in an efficient manner, as well as to determine
the moment when each of the jobs is processed~Shaw et al.,
1992!

Processing times in flexible manufacturing systems
~FMSs! are almost deterministic, as operations are computer-
controlled and mainly processed by numerically controlled
machines, and setups between consecutive operations are
automated. As a result, providing the system is not dis-
turbed in some way, results can be predicted and a fixed
off-line scheduling system is sufficient.

However, the actual states of FMSs may not be predict-
able because of part arrivals, machine states~up or down!,
tool breakages, rushed jobs, and many other system distur-
bances. This dynamic, uncertain nature of the FMS sug-
gests that an off-line scheduling system is not really the
most adequate. Moreover, FMSs are more sensitive than

conventional manufacturing systems to disturbances, as their
components are more synchronized, more integrated, and
more interdependent. They therefore require immediate
response to changes in system states, using a real-time sched-
uling method. If system states change dynamically, sched-
uling of parts should be done as a function of the current
state of the system~Jeong & Kim, 1998!.

The rest of this paper is organized as follows. The differ-
ent techniques described in the literature to schedule FMS
jobs are first described. Then, there is a description of two
ways of modifying the dispatching rules dynamically so as
to overcome the problem that dispatching rules cause when
applied statically. One of these two ways is based on the use
of a simulation model, whilst the other utilizes “scheduling
knowledge” of the manufacturing system. A review of the
work done on the two approaches is then provided, and
their main characteristics are described. Finally, the paper
ends with a consideration of a series of generalized short-
comings of knowledge-based systems that need to be dealt
with in future research.

2. APPROACHES TO SCHEDULING IN FMSs

The different approaches available to solve the problem of
FMS scheduling can be divided into the following categories:
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1. The analytical approach.

2. The heuristic approach.

3. The simulation-based approach.

4. The artificial intelligence-based approach.

The analytical approach interprets an FMS scheduling
problem as an optimization model with certain constraints,
in terms of an objective function and explicit constraints.
An appropriate algorithm is then used to resolve the model
~see, e.g., Stecke, 1983; Kimemia & Gershwin, 1985;
Shanker & Tzen, 1985; Lashkari et al., 1987; Han et al.,
1989; Hutchison et al., 1989; Shanker & Rajamarthandan,
1989; Wilson, 1989!.

In general, these problems are of a NP-complete type
~Garey & Johnson, 1979!. Heuristic and off-line type algo-
rithms are therefore usually proposed to resolve this kind of
problem ~Cho & Wysk, 1993; Chen & Yih, 1996!. How-
ever, these analytical models contain simplifications that
are not always valid in practice. Indeed, Basnet and Mize
~1994! state that some models are so singular that one has
the impression that the problems are invented to fit the
model rather thanvice versa. They are not efficient for
reasonably large-scale problems either.

The above-mentioned difficulties of applying the analyt-
ical approach to scheduling problems led to research into
many heuristic approaches. These are usually dispatching
rules, although they may be more complicated than that,
and they are generally used to schedule the jobs in a man-
ufacturing system dynamically. These heuristics use differ-
ent priority schemes to order the different jobs competing
for the use of a given machine. Each job is assigned a pri-
ority index and the one with the lowest index is selected
first.

Many researchers~see, e.g., Panwalkar & Iskander, 1977;
Blackstone et al., 1982; Baker, 1984; Russel et al., 1987;
Vepsalainen & Morton, 1987; Ramasesh, 1990; Kim, 1990!
have evaluated the performance of these dispatching rules
on manufacturing systems using simulation. The conclu-
sion to be drawn from such studies is that their performance
depends on many factors, such as the criteria that are se-
lected, the system’s configuration, the work load, and so on
~Cho & Wysk, 1993!. With the advent of FMSs came many
studies analyzing the performance of dispatching rules in
these systems~see, e.g., Stecke & Stolberg, 1981; Egbelu &
Tanchoco, 1984; Denzler & Boe, 1987; Choi & Malstrom,
1988; Henneke & Choi, 1990; Montazeri & Van Wassen-
hove, 1990; Tang et al., 1993!.

In view of the variable performance of dispatching rules,
it would be interesting to modify these rules dynamically
and at the right moment according to the system’s condi-
tions. That this approach will be better than the conven-
tional system of using a dispatching rule constantly is ana
priori assumption, for two reasons. Firstly, because it can
identify the best rule for a given manufacturing scenario.
Given such a selection capacity, the system should perform

at least as well as the best of the candidate dispatching rules
being considered. Secondly, this approach can adapt its
choices dynamically to changing scenarios. This adaptabil-
ity should result in job scheduling of a higher quality than
even the best dispatching rules~Shaw et al., 1992!.

Basically, two approaches to modifying dispatching rules
dynamically can be found in the literature. Firstly, the rule
is selected at the appropriate moment by simulating a set of
preestablished dispatching rules and choosing the one that
provides the best performance. In the second approach, be-
longing to the field of artificial intelligence, a set of earlier
system simulations~training examples! is used to deter-
mine which is the best rule for each possible system state.
These training cases are used to train a machine learning
module to acquire knowledge about the manufacturing sys-
tem. Such knowledge is then used to make intelligent deci-
sions in real time. These scheduling systems are normally
said to be knowledge-based.

In contrast, there are other scheduling schemes within
the artificial intelligence approach in which dynamic mod-
ification of the dispatching rule does not take place~see,
e.g., Fox & Smith, 1984; Maimon, 1987; Maley et al., 1988;
Shen & Chang, 1988; Shaw & Whinston, 1989; Chaturvedi
et al., 1993; Dong & Kitaoka, 1994; De & Lee, 1998!.
Kanet and Adelsberger~1987!, as well as Kusiak and Chen
~1988!, both present reviews of expert systems as applied
to scheduling. Jain and Meeran~1998! review scheduling
systems that use neural networks. Aytug et al.~1994! and
Minton ~1993! present a review of work in which machine
learning is applied to solving scheduling and planning prob-
lems. Zweben and Fox~1994! give different scheduling
systems that use artificial intelligence, including real sys-
tems used in different industrial fields~aerospace, defence,
heavy industry, and semiconductor manufacturing!.

Finally, in the literature on FMSs scheduling, there are
many reviews of a general nature that apply any of the four
above-mentioned approaches~see, e.g., Harmonosky &
Robohn, 1991; Kouvelis, 1992; Gunasekaran et al., 1993;
Basnet & Mize, 1994!.

3. SIMULATION-BASED SYSTEMS

The general scheme of simulation-based scheduling sys-
tems is shown in Figure 1. When the simulator receives a
request to select a rule, it carries out a series of simulations
with each of thea priori selected rules. From amongst the
results of the simulations carried out, the selector chooses
the best dispatching rule to use to schedule the manufactur-
ing system’s jobs. Finally, if an anomaly occurs in the sys-
tem, the control system sends a signal to the rule selector.
This can then send the simulator a new request according to
the type of anomaly observed. Some simulation-based sys-
tems that vary the dispatching rule applied at each particu-
lar moment dynamically will next be reviewed.

Wu and Wysk~1989! put forward a scheduling system
and on-line control that selects the best rulevia simulation
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for each time period; they call this the scheduling interval.
Although they do point out that the duration of this interval
is an important factor insofar as it determines the system’s
performance, they do not provide a general procedure by
which it might be defined. Simply by using multiples of the
average total processing time, they make the claim and ob-
servation that three times this amount is the best possible
scheduling interval. However, a constant interval cannot
keep up with the changes of state in a system as dynamic as
the FMS is. They likewise define a simulation window, to
simulate a model and evaluate the performance of the can-
didate rules, which is the same as the scheduling interval.
Because of the parts that remain in the system at the end of
each simulation period, this window affects each of the
rules differently~this problem is called “censored data”!.
Despite all this, the authors achieve an improvement of
7.7% and 21.11%, respectively, for the FMS they used, com-
pared to employing one rule constantly, using mean tardi-
ness and mean flow time as performance measurements.

Ishii and Talavage~1991! present an approach that at-
tempts to solve the above problems which has three main
components. First, it calculates the scheduling intervals as
a function of an index that measures the system’s state. The
second element determines the dispatching rule to be used.
The authors propose four strategies that define different
simulation windows to reduce the problem of “censored
data”. The final element is the FMS simulator.

When the authors compared this approach with the one
proposed by Wu and Wysk~1989!, they observed that the
latter displayed extremely variable behavior, owing to the

problem of “censored data” and the constant scheduling
interval. Moreover, the average improvement according to
the six performance criteria that are considered is 5.17% if
the third strategy is used to lessen the problem of “censored
data”. Curiously, the authors claim that the algorithm pro-
posed by Wu and Wysk~1989! is 4.12% inferior to the best
of the rules used constantly.

Kim and Kim ~1994! suggest a real-time simulation-
based scheduling method whose dispatching rules vary dy-
namically. The main elements of the proposed method are
the simulator and the real-time control system. The func-
tion of the former is to evaluate the rules and select the best
one for a given performance criterion. The latter compo-
nent supervises the manufacturing system and checks its
performance periodically.

The selected dispatching rule is applied until the differ-
ence between actual performance and performance as cal-
culated by the simulator exceeds a given limit, or until there
is a major disturbance. When either of these occur, a new
rule is selected by the simulator with the jobs that remain to
be carried out. The authors study the methodology in rela-
tion to the monitoring period of the control system and the
limits in performance differences. The improvement with
respect to mean tardiness and mean flow time is 6.10% and
2.08%, respectively.

Jeong and Kim~1998! use a scheme based on the work of
Kim and Kim ~1994! and analyze two factors that can in-
fluence the scheduling system. First, the type of simulation
model that is used; this can be dynamic or static, depending
on whether it includes probability distributions of system

Fig. 1. General overview of a simulation-based scheduling system.
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disturbances. Second, the authors study the right moment to
select a new rule, for which there are four options:

1. Once only, at the beginning of the planning horizon.

2. When there is a major disturbance.

3. If there is a major disturbance or if the difference
between the actual performance value and the one
estimated by the simulator goes over a given limit.

4. When any kind of disturbance occurs.

Their results show that modifying the rules in response
to changes in the manufacturing system reduces the mean
flow time between 1.77% and 3.20%. Moreover, mean tar-
diness goes down between 8.34% and 12.05%. Further-
more, ANOVA analysis shows that the simulation model
type is not relevant. The authors conclude by calculating
the percentage use of each of the rules, and they come to the
conclusion that no rule predominates over the others, and
that it is therefore useful to substitute rules when the state
of the system changes.

The main generalized drawbacks to these simulation-
based systems are the following:

1. The time required to examine the performance of the
set of candidate rules, which can make real-time sched-
uling difficult.

2. Very frequent changes in the system. As the evalua-
tion of each of the rules is carried out until the end of
the period considered, there may not be a match be-
tween the rule that is proposed and the one that is
really required, as the one that is chosen is used for a
period of time that is less than the time used during its
evaluation.

3. Methods to avoid unnecessary modifications of the
dispatching rules during transitory changes are not
available.

4. No knowledge is acquired about the system.

5. There are no methods to determine a reasonable sim-
ulation window.

6. The scheduling interval must be defined at machine,
not system, level~Chiu & Yih, 1995!.

4. KNOWLEDGE-BASED SYSTEMS

A real-time scheduling system that modifies dispatching
rules dynamically should fulfil two contradictory character-
istics to work adequately~Nakasuka & Yoshida, 1992!:

1. Rule selection must contemplate a variety of informa-
tion about the manufacturing system in real time.

2. Rule selection must be completed in such a short time
that real operations are not delayed.

One way of achieving these characteristics is to utilize
some class of knowledge about the relationship between
the manufacturing system’s state and the rule to be applied
at that moment. It is therefore useful to use “scheduling
knowledge” of the manufacturing system to save time and
get a rapid response in a dynamically changing environ-
ment~as are FMS environments!. However, one of the most
difficult problems to solve in a knowledge-based system is
precisely how this knowledge is to be acquired.

To acquire knowledge, machine learning techniques, such
as inductive learning or neural networks, are used. These
reduce the effort involved in determining the knowledge
required to make scheduling decisions. However, the train-
ing examples and the learning algorithm must be right for
this knowledge to be useful. Moreover, in order to get the
training examples, the attributes that are selected are cru-
cial to the performance of the scheduling system that is
generated~Chen & Yih, 1996!.

There are at least four reasons why a knowledge-based
approach might perform worse than the best rules used
individually:

1. The training set is a subset of the universe of all pos-
sible cases. However, situations in which the sched-
uling system does not work properly can always be
observed and added as training examples.

2. The system’s performance depends on the number and
range of control attributes taken into account in the
design of the training examples.

3. A rule may perform well in a simulation over a long
time period for a set of given attributes, but will per-
form poorly when applied dynamically.

4. The system can be prone to inadequate generaliza-
tions in extremely imprecise situations.

An overview of a knowledge-based scheduling system is
shown in Figure 2. The examples generator uses a simula-
tion model to generate different manufacturing system states
and search for the best dispatching rule for that state. The
training examples that the machine learning module needs
are generated by an information processor, based on the
simulation results. The machine learning module acquires
the knowledge that is necessary to make future scheduling
decisions by using the training cases. The knowledge may
need to be refined, depending on the manufacturing sys-
tem’s performance, by generating further training exam-
ples. The remaining elements of the system have similar
functions to those described in Figure 1.

Several knowledge-based approaches that dynamically
modify the dispatching rule being used at a specific in-
stance are reviewed next. According to the type of machine
learning algorithm used, these approaches can be divided
into the following categories:

1. Approaches that do not use knowledge-acquisition
algorithms.
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2. Inductive learning-based approaches.

3. Neural network-based approaches.

4. Mixed approaches. Here a combination of different
types of learning algorithms is applied.

5. Other approaches based on machine learning
algorithms.

4.1. Approaches that do not use
knowledge-acquisition algorithms

Thesen and Lei~1986! propose an expert system for sched-
uling robots in a flexible electroplating system. The authors
carry out a series ofa priori simulations using different
dispatching rules to study the performance of the manufac-
turing system in different situations; 38 training examples
were acquired in the process. However, knowledge of the

system was not acquired by any machine learning proce-
dure, but rather by inspection carried out directly on the
simulation results. The authors observe that the manufac-
turing system increases the number of parts produced in
percentages ranging between 7% and 30%.

Sarin and Salgame~1990! define an expert system to
schedule dynamically. At the beginning of a given time
period, the system has a known schedule of jobs that is
followed during this period. This system reacts when a
change occurs. Changes are classified into different groups:
machine breakdown, rush jobs, new batch of jobs, material
shortage, labor absenteeism, job completion at a machine,
and change in shift. The system they propose has the fol-
lowing parts to it: a scheduling knowledge, a global data-
base, a user interface, and a control block. The knowledge
is divided into several groups, each of which has rules to
solve different types of problems depending on the changes

Fig. 2. General overview of a knowledge-based scheduling system.
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that occur in the system. The rules represent the heuristics
of a human expert.

The global database has information on the different jobs
and shifts that exist at a specific point in time. The group of
rules that needs information goes to the global database.
Finally, the control block, which has the form of a tree
~“meta-rules” or “knowledge about knowledge”!, chooses
the group of rules that fits the new problem that originated
the change in the system.

The same authors likewise present an integrated system
made up of two modules. The first, which is backed up by
mathematical programming, determines a predictive sched-
ule as a starting point. The second, the expert system, takes
over control of executing dynamic or reactive scheduling as
the new situation demands, whenever a change occurs. Fi-
nally, they point out that this integrated approach has still
not been implemented in a real case.

Chandra and Talavage~1991! present a system called
EXPERT, made up of a set of decision rules. The informa-
tion that is used in the decision process is the congestion
level of the manufacturing system, the preference of a part
for a machine, how critical the part is~it indicates the part’s
ability to meet its due date!, and the objective of the man-
ufacturing system at that specific moment. The authors state
that in principle the aim of maximizing the work progress
rate is an interesting one, even though there is the risk that
some jobs are delayed~especially if the system is over-
loaded and there are a lot of critical jobs!. Excessive pre-
occupation with critical jobs can make the system worse;
for this reason the objective of maximizing the work progress
rate is chosen as the first criterion.

Jobs are furthermore divided into groups~high, medium,
and low preference! instead of them being classified indi-
vidually. The system that is proposed selects the job as-
signed to a machine, beginning with the high preference
ones, pursuing the primary objective whilst also searching
for opportunities to improve the secondary one~minimiz-
ing the number of tardy jobs!. In certain cases, jobs avail-
able in the near future are inspected. If there is a tie, or
when a clear decision is not taken, then the shortest pro-
cessing time~STP! rule is applied. At the experimental stage,
it was shown that the EXPERT system is superior to con-
ventional dispatching rules.

Sabuncuoglu and Hommertzheim~1992! suggest a dy-
namic algorithm to schedule jobs in machines and auto-
matic guided vehicles~AGVs!. The algorithm they propose
is based on the idea that a job should not be assigned to a
machine if it has to wait for an AGV in the following oper-
ation andvice versa. It uses several priority schemes~or
rules! and information about the system~queue levels, the
number of parts in the system, machine state, etc.! and about
the jobs~processing times, number of operations, etc.!. The
algorithm has two fundamental parts: a set of procedures
for scheduling jobs in the machines, and others to schedule
the jobs in the AGVs. The latter check whether there are
blocked or empty stations or parts in the central buffer.

The authors compare the algorithm that is proposed, using
mean flow time and mean tardiness as performance criteria,
with the two best dispatching rule combinations for ma-
chines and AGVs. To do this they proposed different sce-
narios, varying the load level, the queue capacity,F ~flow
allowance; Baker, 1984!, the type of processing time distri-
bution, and the performance criterion. The algorithm was
found to perform better than the best rule combinations
when machine load is high~if it is low there are hardly
parts in the queue so the rule selected has no influence! and
queue size is small. In such conditions an improvement of
over 12% is achieved.

Pierreval and Mebarki~1997! introduce a heuristic meth-
odology, called SFSR~shift from standard rules!, to dynam-
ically modify the dispatching rules according to two
performance criteria~one primary and the other second-
ary!. The SFSR heuristic checks the manufacturing sys-
tem’s state when a resource becomes available or a new job
arrives. By using rules that were defined beforehand that
are functions of parameters to be optimized, the presence of
certain symptoms in the manufacturing system can be de-
tected~for example, when the system is congested or when
there is a job which is waiting too long, etc.!. The optimal
values of the parameters are calculated by the Hooke-
Jeeves method~Hooke & Jeeves, 1961!. If there are no
symptoms in the system, standard rules taken from the lit-
erature depending on the criterion to be optimized are used.
The dispatching rule to be applied can thus be calculated.

If the opposite is the case, rules defined by the authors
are used; these depend on the criteria to be optimized, on
the symptom detected, and on the state of the system. In
general, the methodology that is proposed improves upon
the alternative of using a rule constantly according to the
primary criterion; if this is not the case, it compensates with
the secondary criterion. The improvements vary between
12.3% and 33.8%. The greatest defect of the methodology
is that the standard rules are defined according to research
results already presented in the literature. An alternative
approach would be for them to be generated by inductive
learning, so as to take account of the peculiarities of the
system under study. Inductive learning could also be used
to generate other types of rules used in SFSR.

4.2. Inductive learning-based approaches

Pierreval and Ralambondrainy~1990! suggest an inductive
learning algorithm called GENREG, to obtain heuristic rules
to know system performance with different dispatching rules
and states of the manufacturing system. In the methodology
that they propose, a rule is obtained with each training ex-
ample. As the number of rules is extremely large, GENREG
is then used to generalize them, and thereby reduce this
number. The approach they propose is applied in a simpli-
fied flow-shop configuration with two machines, using 198
training examples. However, the rules obtained using GEN-
REG are not used dynamically.
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Shaw et al.~1992! present a system called PDS~Pattern-
Directed Scheduling! to schedule jobs in an FMS that uses
inductive learning. Here, the learning algorithm that is used
is ID3. During the knowledge-acquisition stage 130 train-
ing examples are used, applying mean tardiness as perfor-
mance criterion. This system provides a mean tardiness
reduction of 11.5%.

The authors observe that the maximum effectiveness of
the approach is obtained when the number of changes in the
manufacturing system’s states~patterns! is between me-
dium and reasonably high. Moreover, the number of alter-
native machines to process a given operation does not need
to be very high. The authors confirm that all these charac-
teristics occur in most real FMSs.

Nakasuka and Yoshida~1992! propose a scheduling
scheme called LADS~Learning-Aided Dynamic Sched-
uler! that incorporates an inductive learning algorithm with
two characteristics that differentiate it from conventional
algorithms. Firstly, there is a new criterion to decide how to
separate data groups; owing to data noise in scheduling
problems, dividing them so that they belong to a single
class is of no interest, as the number of data in each group
would be very small. The second characteristic of the algo-
rithm that is proposed is the generation of linear combina-
tions of attributes fed into the system. The scheduling scheme
being proposed is used in a simplified flow-shop system
with three machines so as to minimize the makespan and
keep mean tardiness below a set level. The authors point
out that the system is superior~by both criteria! to using
one rule constantly.

Piramuthu et al.~1993! define an approach to scheduling
jobs dynamically. The approach they propose, along with
the examples they apply it to, is similar to the one the au-
thors present in others works~see for example, Shaw et al.,
1992; Piramuthu et al., 1994!. What this paper does con-
tribute, compared with others that the same authors have
published, is a more elaborate theoretical framework for
each of the parts that make up the job scheduling system.

Piramuthu et al.~1994! define a methodology to sched-
ule jobs using inductive learning in a flexible flow-shop
manufacturing system with mean flow time as the perfor-
mance criterion. By using C4.5 as the learning algorithm,
two decision trees are generatedvia 66 training examples.
The first is to schedule jobs in the machines themselves,
and the second is for part-release decision. They also present
a refinement procedure for the decision trees, which con-
sists of including cases that the system misclassifies in the
training set.

The authors observe that incorporating a decision tree to
select the dispatching rule does not improve results signif-
icantly with respect to the alternative of using the decision
tree only for part-release decision using a dispatching rule
constantly. Moreover, this methodology is particularly use-
ful when input buffer size is limited and small, and there is
a great variation in processing times for parts in the bottle-
neck machines.

4.3. Neural network-based approaches

Chen and Yih~1996! define an approach to determine the
most important attributes as a first step to constructing
knowledge-based scheduling systems. The approach for iden-
tifying attributes has three steps to it:

1. Data collectionvia manufacturing system simulation.

2. Building of attributes0performance mapping func-
tions of the manufacturing system using back-
propagation neural networks.

3. Selection of essential attributes.

To do this, an attribute is omitted and the difference be-
tween the original output and the output obtained with the
attribute omitted is measured. More important attributes
have a greater difference than those with a lower signifi-
cance level. Twenty candidate attributes taken from the lit-
erature~Nakasuka & Yoshida, 1992; Cho & Wysk, 1993;
Chiu, 1994! are used in the experimental study~using
attribute variability defined as the variance of the attribute
divided by its mean!, along with six performance measure-
ments and ten dispatching rules. One thousand three hun-
dred training examples are generated for each type of rule
and the corresponding neural network, and the ten most
important attributes are selected.

Finally, the authors compare three neural networks with
input nodes formed by alternative groups of attributes~with
the ten selected attributes, with the first twenty, and with
the other ten! and output nodes corresponding to the rules
that are selected. There is verification of the fact that the
network’s capacity for generalization obtained with the ten
significant attributes is 9% superior with respect to the net-
work formed by the first twenty attributes. The authors claim
that using as many attributes as possible to build up a knowl-
edge base does not improve generalization or prediction
capacity. The more attributes that are included, the greater
the effort required to develop the knowledge base, and the
more complex its structure becomes. The main defects of
the approach being proposed are that it does not identify
important attributes if they are not considered initially and
the process must be repeated if performance measurements
change.

Sun and Yih~1996! apply an approach that uses a back-
propagation neural network on each machine to select the
most adequate dispatching rule in a multiple criterion envi-
ronment. At each point of decision, when a machine has to
select a new job, an adjustment module determines the rel-
ative importance of each performance criterion as a func-
tion of the desired and current values. Taking the value
provided by the adjustment module and the current state of
the machine as the input value, the neural network provides
the most adequate dispatching rule.

The authors used around 1000 training examples for each
neural network, and show that the proposed approach has
an average performance 4.2% better than the best rules used
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constantly. Moreover, it is very adaptable to changes in the
choice of performance criteria that are given priority. The
greatest defect of this approach is that the manufacturing
system being studied does not have flexible routes and the
number of parts is limited.

Min et al. ~1998! propose a methodology that uses com-
petitive neural networks. Here, differences between the val-
ues of performance criteria and system state variables in
different time intervals are used as attributes. By simulating
the system for a long time period and modifying the dis-
patching rules randomly, the training examples are ob-
tained with these differences. Three thousand five hundred
examples are used in the training stage and 40 network
nodes or classes are defined. Neural networks are then used
to obtain classes from the training examples.

Their scheduling system works in real time in the follow-
ing way. First, the user sets differences as an objective and
the class is identified using the neural network. Then, from
amongst all the training examples, those that have the same
class and the same decision variables~dispatching rules!
from the previous interval are sought. If this example is not
found, which is the likely case, the most used rule within
this class is chosen for each decision variable.

An interesting characteristic of this approach is that it
uses earlier dispatching rules to find the new ones. The
system proposed is compared to another one that chooses
rules randomly~ten replicas of the random system are in
fact made and the best from amongst them is chosen! and it
is shown to have superior performance. The drawbacks of
the approach are the lack of a method to systematically
search for an optimum number of output nodes to the neural
network, and that it is compared to a random system rather
than the best possible combination of the proposed dispatch-
ing rules.

4.4. Mixed approaches

Wu and Wysk~1988! propose a control and scheduling
scheme called MPECS~Multipass Expert Control System!
that combines expert systems, simulation, and inductive
learning. The system they propose has three modules: an
intelligent scheduling module, a manufacturing system sim-
ulator, and a cell control module. The first element is in turn
made up of a knowledge base, an inference engine, and a
learning module.

The base has declarative knowledge~information about
the system state, scheduling heuristics, and rules!, and pro-
cedural information~general criteria, in rule form, to select
dispatching rules!. The inference engine is a search mech-
anism to select the right rules of procedural knowledge.
Finally, the learning module generates a set of rules from
the training examples that associate dispatching rules, per-
formance measurements, and the system’s characteristics.
The rules created by the learning module are sent to proce-
dural knowledge.

The intelligent scheduling module is activated when a
new job arrives, or if there is an anomaly in the system. The
task of the simulator is to examine the performance of the
dispatching rules suggested by the intelligent scheduling
module and to select the best. Finally, the control module
allows scheduling in the physical cell. Moreover, most in-
formation about the cell, which is essential to control it, is
obtained and manipulated through this module. The authors
point out that the proposed scheme produces a performance
improvement in the manufacturing system of between 2.3%
and 29.3%, when compared to the alternative of using a
dispatching rule constantly.

Rabelo and Alptekin~1989! define an approach called
ISS0FMS~Intelligent Scheduling System for FMS! to sched-
ule jobs, made up of three basic modules. The first of them
is an expert system which decides the heuristic rule to use
based on certain information~data on work to be done,
constraints imposed by the workshop, cell state, etc.!. It
takes into account data provided by a neural network and a
statistical analysis model that study past cases obtainedvia
a simulation study. The second module carries out a heuris-
tic process~Kiran & Alptekin, 1989! that depends on two
coefficients determined by a neural network as a function
of the characteristics of the scheduling problem being solved.
The third component chooses the best of the solutions cal-
culated by the previous two modules.

Cho and Wysk~1993! present a system called IWC~In-
telligent Workstation Controller! that uses neural networks
and a simulator, based on the work of Wu and Wysk~1989!.
The neural network has seven input nodes, corresponding
to the state of the system, and nine output nodes, one for
each of the dispatching rules considered. The network is
trained with 90 examples taken from the literature, taking
into account different configurations of the hidden layers
and different learning rates.

Using the two best rules provided by the network, the
simulator selects the better of them as a function of the state
of the manufacturing system. Moreover, the authors exper-
imentally calculate the most adequate simulation window
for the performance criterion chosen using a set of simula-
tions. It is observed that IWC is superior to the use of one
rule constantly, although percentage improvement never goes
beyond 3%.

Li and She~1994! use an approach that utilizes cluster
analysis~Evert, 1980! and inductive learning. Six hundred
examples are uniformly generated from the decision spec-
trum. By using cluster analysis, seven classes with similar
performance values are established. Then an algorithm sim-
ilar to C4.5 establishes two sets of rules that determine the
class as a function of the decision and performance attributes.

One way that the authors suggest of using this scheduling
knowledge is to set performance conditions and determine
the class they correspond to. Once the class is known, the
decision variables that will be taken are determined using
the other set of rules. However, this methodology is not
compared with any other to check how it works.
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Chiu and Yih~1995! put forward a system that uses in-
ductive learning and genetic algorithms. The latter are used
to search for a set of good-quality training examples. To do
this, at each point of decision the best dispatching rule is
chosen and, this rule forms a training case along with the
state of the system. Furthermore, the learning algorithm
can modify the decision tree when new examples are pre-
sented only if the change is significant. The authors show
that the proposed approach is superior to using a dispatch-
ing rule constantly. The greatest defect of the approach lies
in the need to change the induced scheduling knowledge
when there are small modifications in the manufacturing
system.

Lee et al.~1997! propose a scheme that also uses induc-
tive learning and genetic algorithms. The first technique
serves to generate a decision tree using C4.5 to select the
best rule to control the input flow of jobs to the system. The
genetic algorithms are used to select the most appropriate
dispatching rules for each of the system’s machines. The
authors verify the approach they propose with two job shop
systems~one of them with a bottleneck machine!, using
mean tardiness as performance criterion, and show that it
beats the best combination of rules used constantly, at a rate
of between 20.34% and 25.28%. However, times required
~26 and 168 min for the first and second cases, respec-
tively! are rather high for this system to work in real time.

Kim et al. ~1998! suggest a scheme that broadens the
scope of earlier work~Min et al., 1998! and uses competi-
tive neural networks and inductive learning. Once the classes
are obtained from the neural networks, inductive learning is
applied to express knowledge in tree form and production
rules. The authors use 99.999 training cases and establish a
network with 100 groups or classes.

The scheduling system works in real time in the same
way as the previously described approach~Min et al., 1998!.
The only difference is that the class is identified by the
production rules obtained from the C4.5 inductive learning
algorithm. The authors compare this system with another
that only uses a competitive neural network, and demon-
strate its superiority, due to the C4.5’s tree pruning algo-
rithm, which deals with noise in the data more efficiently.
This scheme displays the same defects as the approach sug-
gested in Min et al.~1998!.

4.5. Other approaches based on
machine learning algorithms

Quiroga and Rabelo~1995! solve the problem of schedul-
ing jobs for a machine by inductive learning~ID3!, back-
propagation neural networks, and fuzzy logic. They use 358
training cases and 198 test cases, and the test error is lower
than 10% in the three methodologies. Inductive learning
and fuzzy logic have the advantage of generating rules that
are intelligible to humans, which is not the case for neural
networks. However, the latter are less sensitive to noise or

incomplete data, and have the lowest level of test error
~1.2%!.

Bowden and Bullington~1996! suggest a scheme called
GARDS ~Genetic Algorithm Rule Discovery System! to
determine control strategies using genetic algorithms.
GARDS has three fundamental modules:

1. A simulation model to analyze the performance of the
different strategies that are generated.

2. An algorithm that determines the most adequate rule
within a strategy or plan for the current state of the
manufacturing system.

3. A genetic algorithm that uses traditional crossover and
mutation operators to improve the initial plans by
choosing the best for the control system.

The system that is proposed is tested on two configura-
tions of different complexity with the aim of minimizing
the number of tardy jobs. It was observed that GARDS
improves the performance of manufacturing systems with
respect to several classical heuristic methods~e.g., sending
jobs to the queue of the machine with fewest jobs!.

Table 1 recapitulates and summarizes the different ap-
proaches to be found in the literature, classified by the meth-
odology used. Table 2 shows a collection of different
approaches that dynamically modify dispatching rules, clas-
sified by the type of machine learning algorithm used.

5. LIMITATIONS OF THE SCHEDULING
APPROACHES AND FUTURE RESEARCH
DIRECTIONS

A number of limitations that would be desirable character-
istics can be detected across the board in the knowledge-
based approaches using machine learning algorithms that
have been considered above. These limitations point to fu-
ture directions of research in the field of dynamic schedul-
ing of manufacturing systems, by modifying the dispatching
rule that is employed. Future research directions would in-
clude the following:

1. Comparison of the different machine learning meth-
odologies. The approaches described in the literature
employ a methodology or, in certain cases, a combi-
nation of methodologies. However, there is no com-
parative study that determines which of them is the
best. Furthermore, because of the wide range and dis-
parity of the FMSs used in the literature that has been
reviewed, it is not possible to have even an inkling of
which of the methodologies described is the most ad-
equate for resolving this type of scheduling problem.

2. The use of CBR~Case-Based Reasoning! as a ma-
chine learning methodology in scheduling systems.
These algorithms are very efficient at classification,
despite their simplicity~Rachlin et al., 1994!. Yet none
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of the systems reviewed uses CBR. It would therefore
be interesting to test how good they are for scheduling
problems.

3. Determination of the optimum number of training ex-
amples. None of the approaches reviewed calculate
the number of examples required to optimally train
the machine learning algorithm. Nor do they specify
whether the test examples are the same, similar or
very different to the training examples. Yet classifica-
tion error of “scheduling knowledge”, and therefore
the performance of a manufacturing system, depends
to a great extent on the number of training examples
that is considered. It is therefore necessary to study
classification error as a function of the number of ex-
amples considered, and an adequate size of the train-
ing set must be chosen.

4. Selection of an adequate monitoring period. A study
to determine the right monitoring period for each per-
formance criterion is not generally done in the exist-
ing literature. However, the frequency of control
attribute checking, to decide whether dispatching
rules are to be changed or not, is a vitally important
question that determines manufacturing system’s
performance.

5. Determination of a mechanism or filter to smooth tran-
sitory states. On certain occasions the manufacturing
system running on “scheduling knowledge” does not
perform as it is expected to, and is worse than the
alternative of using the best combination of dispatch-
ing rules constantly. This phenomenon is explained
by the fact that the system reacts hastily to changes in
control attributes that are only transitory in time. Thus,
one proposal would be to use digital filters to smooth
transitory scenarios in control attributes. This mecha-
nism is not considered in most of the approaches that
have been reviewed, or when it is considered, neither
the different kinds of digital filters available nor their
interrelationship with the monitoring period is
analyzed.

6. Generation of new control attributes using an algo-
rithm that can create attributes that are a combination
of the initial ones. In some cases, it is necessary to
check relationships of the following type in order to
select the best dispatching rule: use of machine 1 is
less than that of machine 2. To achieve these relation-
ships, the arithmetical combinations of the basic ini-
tial attributes would need to be defined. However, these
combinations are often not known at the outset, and
can only be discovered in simple manufacturing sys-
tems after detailed examination of simulation results.

7. Incorporation of a simulator. The performance of the
scheduling system could be enhanced if a simulator
was used to determine the best rule from amongst
those that the machine learning system considered the
most important ones. On occasions, and given certain
control attribute values, “scheduling knowledge” de-
termines that there are two or more dispatching rules

Table 1. Classification of references according
to methodology applied

Methodology References

Analytical approach

Han et al.~1989!; Hutchison et al.~1989!;
Kimemia & Gershwin~1985!; Lashkari et al.
~1987!; Shanker & Rajamarthandan~1989!;
Shanker & Tzen~1985!; Stecke~1983!; Wilson
~1989!.

Heuristic approach

Choi & Malstrom~1988!; Denzler & Boe~1987!;
Egbelu & Tanchoco~1984!; Henneke & Choi
~1990!; Montazeri & Van Wassenhove~1990!;
Stecke & Solberg~1981!; Tang et al.~1993!.

Simulation-based
approach

Ishii & Talavage~1991!; Jeong & Kim~1998!;
Kim & Kim ~1994!; Wu & Wysk ~1989!.

Artificial
intelligence-based
approach

Bowden & Bullington~1996!; Chandra &
Talavage~1991!; Chaturvedi et al.~1993!; Chen
& Yih ~1996!; Chiu & Yih ~1995!; Cho & Wysk
~1993!; De & Lee ~1998!; Dong & Kitaoka
~1994!; Fox & Smith ~1984!; Kim et al. ~1998!;
Lee et al.~1997!; Li & She ~1994!; Maimon
~1987!; Maley et al.~1988!; Min et al. ~1998!;
Nakasuka & Yoshida~1992!; Pierreval &
Mebarki ~1997!; Pierreval & Ralambondrainy
~1990!; Piramuthu et al.~1993!; Piramuthu et al.
~1994!; Quiroga & Rabelo~1995!; Rabelo &
Alptekin ~1989!; Sabuncuoglu & Hommertzheim
~1992!; Sarin & Salgame~1990!; Shaw et al.
~1992!; Shaw & Whinston~1989!; Shen &
Chang~1988!; Sun & Yih ~1996!; Thesen & Lei
~1986!; Wu & Wysk ~1988!.

Table 2. Classification of references according
to the machine learning algorithm applied

Machine Learning
Algorithm References

Is not used
Chandra & Talavage~1991!; Pierreval & Mebarki
~1997!; Sabuncuoglu & Hommertzheim~1992!;
Sarin & Salgame~1990!; Thesen & Lei~1986!.

Inductive learning
Nakasuka & Yoshida~1992!; Pierreval &
Ralambondrainy~1990!; Piramuthu et al.~1993!;
Piramuthu et al.~1994!; Shaw et al.~1992!.

Neural Networks
Chen & Yih ~1996!; Min et al. ~1998!; Sun & Yih
~1996!.

Mixed
Chiu & Yih ~1995!; Cho & Wysk ~1993!; Kim
et al.~1998!; Lee et al.~1997!; Li & She ~1994!;
Rabelo & Alptekin~1989!; Wu & Wysk ~1988!.

Others
Bowden & Bullington~1996!; Quiroga & Rabelo
~1995!.
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that might in principle be the right one. In such cases,
when “scheduling knowledge” decisions are not clear,
incorporating a simulator would be very useful.

8. Refinement of the knowledge base. Once developed,
the knowledge base is not static, so it would be inter-
esting to establish a procedure that would automati-
cally modify knowledge if important changes in the
manufacturing system occur. The main aim of the re-
finement module is to discover deficiencies in the
knowledge base and add training cases that cater to
them. These deficiencies can occur in certain ranges
of control attribute values. To solve this problem, such
ranges have to be “covered” with new training cases,
so that the new “scheduling knowledge” obtained is
able to deal with these situations.

Table 3 provides a summary of the characteristics of each
of the scheduling systems that have been reviewed above.
Only the last five characteristics~of the eight listed above!
are shown, as some of the systems include some of these

five characteristics and others include others. However, as
none of the first three characteristics~comparison of the
different methodologies for machine learning, use of CBR,
and determination of the optimum number of training ex-
amples! are found in any of the systems, they do not appear
in this table.

6. CONCLUSIONS

This paper provides a review of the literature on dynamic
scheduling of FMSs using machine learning. A classifica-
tion of general approaches to be found in the literature is
first provided. Then, two ways of dynamically modifying
dispatching rules in order to overcome their drawbacks when
they are used statically are described. A review is then pro-
vided of the approaches available according to the machine
learning algorithm that is used. Next, we indicate a number
of limitations that would be desirable characteristics, but
which are lacking in the approaches we have reviewed.
Finally, the point is made that in future work it would be

Table 3. The characteristics of scheduling systems

References
Machine Learning

Algorithm
Monitoring

Period Filter

Generation
of New

Attributes
Incorporation
of a Simulator

Knowledge
Refinement

Chandra & Talavage~1991! No No No No No No
Pierreval & Mebarki~1997! No No No No No No
Sabuncuoglu & Hommertzheim~1992! No No No No No No
Sarin & Salgame~1990! No No No No No No
Thesen & Lei~1986! No No No No No No

Nakasuka & Yoshida~1992! LADS No No Yes No No
Pierreval & Ralambondrainy~1990! GENREG No No No No No
Piramuthu et al.~1993! ID3; C4.5 No Yes No No Yes
Piramuthu et al.~1994! C4.5 No Yes No No Yes
Shaw et al.~1992! ID3 No Yes No No No

Chen & Yih ~1996! Backpropagation NN No No No No No
Min et al. ~1998! Competitive NN No No No No No
Sun & Yih ~1996! Backpropagation NN No No No No No

Chiu & Yih ~1995! Inductive Learning:
Genetic Algorithm

No No No No Yes

Cho & Wysk ~1993! Backpropagation NN;
Simulator

Yes No No Yes No

Kim et al. ~1998! C4.5; Competitive NN No No No No No
Lee et al.~1997! C4.5; Genetic Algorithm No No No No Yes
Li & She ~1994! Inductive Learning;

Cluster Analysis
No No No No No

Rabelo & Alptekin~1989! Expert System;
Backpropagation NN

No No No No No

Wu & Wysk ~1988! Expert System;
Inductive Learning;
Simulator

Yes No No Yes Yes

Bowden & Bullington~1996! Simulator; Genetic
Algorithm

No No No Yes Yes

Quiroga & Rabelo~1995! ID3; Fuzzy Logic;
Backpropagation NN

No No No No No
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interesting for a scheduling module to be designed that in-
corporates the eight characteristics that are listed, and for
the effect of each of them on the performance of scheduling
systems to be measured.
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