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Abstract

We provide constructions of age-structured branching processes without or with immi-
gration as pathwise-unique solutions to stochastic integral equations. A necessary and
sufficient condition for the ergodicity of the model with immigration is also given.
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1. Introduction

Branching processes were introduced to describe the evolution of populations undergoing
random reproduction. For the classical continuous-time branching process, it is assumed that
an individual has exponential life-length and gives birth to a random number of offspring at
the end of its life. The age-dependent branching process introduced in [3] assumes that the
individual may have a general life-length distribution. The model has been generalized further
to allow the individual to give birth to offspring at any time during its life; see, e.g., [8, 9, 11, 15,
20]. Those age-dependent models are usually not Markovian if one only considers the evolution
of the total number of individuals in the population. A measure-valued Markovian branching
particle system was introduced in [4] to describe the evolution of a birth–death model with
age structures; see also [5, 6, 10, 19]. In the models mentioned above, the death rate and the
offspring distribution of an individual may depend on its age, but different individuals behave
independently of each other. Several authors have also studied population models where the
reproduction depends on the age structure of the whole population; see, e.g., [17, 18, 24, 25,
28]. We refer to [1, 12, 14, 16, 21] for systematic treatments of various classes of branching
processes.

The approach of stochastic equations has played an important role in recent developments
of the theory of branching processes. The reader may refer to [2, 22, 26] and the references
therein for applications of this approach to continuous-state branching processes. Stochastic
equations have also been introduced in the study of discrete-state branching models; see, e.g.,
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[7, 13, 28]. In particular, a stochastic equation for an age-structured birth–death process was
proposed in [28] in the study of large population limits.

The purpose of this paper is to develop the approach of stochastic equations further for
age-structured branching processes to allow general offspring distributions. For concreteness,
we focus on the model where the death rate and the offspring distribution of an individual
only depends on its own age. The model can be thought of as a typical special case of non-
local branching particle systems; see, e.g., [5, 6, 10, 19, 21]. We give a construction of the
age-structured branching process as the pathwise-unique solutions of a stochastic equation
driven by a time–space Poisson random measure. The construction determines explicitly the
behavior of the trajectory of the process. By a slight extension of the stochastic equation, an
age-structured immigration model is constructed. We also prove a necessary and sufficient
condition for the ergodicity of the process with immigration.

Let B
(
R+

)
denote the Borel σ -algebra on R+ := [0,∞). Let M

(
R+

)
denote the set of

finite Borel measures on R+ with the weak convergence topology. Let D
(
R+

)
be set of

bounded positive right-continuous increasing functions f on R satisfying f (x) = 0 for x< 0.
We identify ν ∈M

(
R+

)
with its distribution function ν ∈D

(
R+

)
defined by ν(x) = ν[0, x]

for x ≥ 0. Let N
(
R+

)
be the subset of M

(
R+

)
consisting of integer-valued measures. Let

B
(
R+

)
be the Banach space of bounded Borel functions on R+ furnished with the supremum

norm ‖ · ‖. Let C
(
R+

)
be the set of continuous functions in B

(
R+

)
, and let C1

(
R+

)
be the

set of functions in C
(
R+

)
with bounded continuous derivatives of the first order. We use the

superscript ‘+’ to denote the subsets of positive elements and the subscript ‘0’ to denote the
subsets of functions vanishing at infinity, e.g. B

(
R+

)+, C0
(
R+

)+, etc. For any f ∈ B
(
R+

)
and ν ∈M

(
R+

)
write 〈ν, f 〉 = ∫

R+ f (x)ν(dx). In the integrals we use the convention that, for
a ≤ b ∈R,

∫ b

a
=

∫
(a,b]

and
∫ ∞

a
=

∫
(a,∞)

.

The rest of this paper is organized as follows. In Section 2 we introduce the age-structured
branching process and give some basic characterizations of its transition probabilities. In
Section 3, the process is constructed as the pathwise-unique strong solution to a stochastic
integral equation driven by a Poisson random measure. Similar results for the age-structured
system with immigration are presented in Section 4, where the ergodicity of the model is also
studied.

2. An age-structured branching process

In this section we introduce the age-structured branching process and give some basic char-
acterizations of its transition probabilities. Most of the results presented here are essentially
known, so we only sketch the proofs; see, e.g., [6, 19, 21, 23].

Let α ∈ C1
(
R+

)+ be a function bounded away from zero. For each x ∈R+ let {p(x, i) : i ∈
N} be a discrete probability distribution with generating function g(x, z) = ∑∞

i=0 p(x, i)zi,

z ∈ [0, 1]. We assume that p(·, i) ∈ C1
(
R+

)+ for every i ∈N, and that ‖∂zg(·, 1−)‖ =
supx≥0

∑∞
i=1 p(x, i)i<∞, where ∂z denotes the first derivative with respect to z. A branching

particle system is characterized by the following properties:

(i) The ages of the particles increase at unit speed, i.e. they move according to realizations
of the deterministic process ξ = (ξt)t≥0 in R+ defined by ξt = ξ0 + t.
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(ii) For a particle which is alive at time r ≥ 0 with age x ≥ 0, the conditional probability of
survival in the time interval [r, t) is exp

{− ∫ t−r
0 α(x + s) ds

}
.

(iii) When a particle dies at age x ≥ 0, it gives birth to a random number of offspring with age
zero according to the probability law {p(x, i) : i = 0, 1, . . .} determined by the generating
function g(x, ·).

We assume that the lifetimes and the offspring productions of different particles are inde-
pendent. Let Xt(B) denote the number of particles alive at time t ≥ 0 with ages belonging to the
Borel set B ⊂R+. If we assume X0

(
R+

)
<∞, then {Xt : t ≥ 0} is a Markov process with state

space N
(
R+

)
. We refer to [21, Section 4.3] for the formulation of general branching particle

systems.
Let σ ∈N

(
R+

)
and let {Xσt : t ≥ 0} be the above system with initial value Xσ0 = σ . Let

δx denote the unit measure concentrated at x ∈R+. Suppose that the process is defined on a
probability space (�, G, P). Properties (i)–(iii) imply that, for f ∈ B

(
R+

)+,

E
[
exp

{ − 〈
Xσt , f

〉}] = exp{−〈σ, ut f 〉}, ut f (x) = − log E
[

exp
{ − 〈

Xδx
t , f

〉}]
.

From properties (i)–(iii) we derive, as in [19, Section 3] and [21, Section 4.3], the following
renewal equation:

e−ut f (x) = exp

{
−f (x + t) −

∫ t

0
α(x + s) ds

}

+
∫ t

0
exp

{
−

∫ s

0
α(x + r) dr

}
α(x + s)g

(
x + s, e−ut−sf (0)) ds. (2.1)

From [21, Proposition 2.9], the above equation implies

e−ut f (x) = e−f (x+t) +
∫ t

0
α(x + t − s)

[
g
(
x + t − s, e−usf (0)) − e−usf (x+t−s)] ds. (2.2)

The uniqueness of the solution to (2.1) and (2.2) follows by Gronwall’s inequality. The two
equations are therefore equivalent.

We call any Markov process (Xt : t ≥ 0) with state space N
(
R+

)
an (α, g)-age-structured

branching process if it has a transition semigroup (Qt)t≥0 defined by
∫
N

(
R+

) e−〈ν,f 〉Qt(σ, dν) = exp
{ − 〈σ, ut f 〉}, f ∈ B

(
R+

)+
, (2.3)

where ut f (x) is the unique solution to (2.2).

Proposition 2.1. For any x ≥ 0, t ≥ 0, and f ∈ C1
0

(
R+

)+
, we have

∂tut f (x) = ∂xut f (x) + α(x)
[
1 − eut f (x)g

(
x, e−ut f (0))]. (2.4)

Proof. For any t ≥ 0 let Tt be the operator on the Banach space C0
(
R+

)
defined by

Ttf (x) = f (x + t). By (2.2) it is easy to see that Ut f (x) = 1 − e−ut f (x) solves the evolution
integral equation

Ut f (x) = TtU0f (x) −
∫ t

0
Tt−sφ(·,Usf )(x) ds, (2.5)
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where φ(x, f ) = α(x)
[
g(x, 1 − f (0)) − 1 + f (x)

]
. By a general result on semi-linear evolution

equations, we know that t �→ Ut f (x) is continuously differentiable and solves the differen-
tial evolution equation ∂tUt f (x) = ∂xUt f (x) − φ(x,Ut f ), U0f (x) = 1 − e−f (x); see, e.g., [27,
Theorem 6.1.5, p. 187]. Then t �→ ∂tut f (x) is also continuously differentiable. By differentiat-
ing both sides of (2.2) we have

e−ut f (x)∂tut f (x) = ∂xe−f (x+t)

+
∫ t

0
∂x

[
α(x + t − s)

(
g
(
x + t − s, e−usf (0)) − e−usf (x+t−s))] ds

+ α(x)
[
e−ut f (x) − g

(
x, e−ut f (0))]

= e−ut f (x)∂xut f (x) + α(x)
[
e−ut f (x) − g

(
x, e−ut f (0))],

which proves (2.4). �

Proposition 2.2. For any t ≥ 0 and σ ∈N
(
R+

)
we have

∫
N

(
R+

)〈ν, f 〉Qt(σ, dν) = 〈σ, πtf 〉, f ∈ B
(
R+

)
, (2.6)

where (πt)t≥0 is the semigroup of bounded kernels on R+ defined by

πtf (x) = f (x + t) +
∫ t

0
α(x + s)

[
∂zg(x + s, 1−)πt−sf (0) − πt−sf (x + s)

]
ds. (2.7)

Proof. The existence and uniqueness of the locally bounded solution to (2.7) follows by a
general result; see, e.g., [21, Lemma 2.17]. For f ∈ B

(
R+

)+ we can use (2.2) to see that the
unique solution of (2.7) is given by πtf (x) = ∂θut(θ f )(x)|θ=0. By differentiating both sides of
(2.3) we get (2.6). The extension to f ∈ B

(
R+

)
is immediate by linearity. �

Proposition 2.3. Let c∗ = infy≥0 α(y)[1 − ∂zg(y, 1−)]. Then ‖πtf ‖ ≤ e−c∗t‖f ‖ for t ≥ 0, f ∈
B
(
R+

)
.

Proof. This follows from (2.7) and [23, Theorem 3.1]. �

Proposition 2.4. Let c1 = supy≥0 α(y). Then, for any t ≥ 0 and x ≥ 0,

πtf (x) ≥ ut f (x) ≥ (
1 − e−f (x+t))e−c1t, f ∈ B

(
R+

)+. (2.8)

Proof. By taking σ = δx in (2.3) and (2.6) and using Jensen’s inequality we get the first
inequality in (2.8). Let Ut f (x) be as in the proof of Proposition 2.1. By (2.5) and a comparison
theorem we have Ut f (x) ≥ vtf (x), where (t, x) �→ vtf (x) solves

vtf (x) = 1 − e−f (x+t) −
∫ t

0
α(x + s)vt−sf (x + s) ds.

The unique locally bounded solution to the above equation is given by

vtf (x) = (
1 − e−f (x+t)) exp

{
−

∫ t

0
α(x + s) ds

}
.

Then we have the estimate (2.8). �
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3. Construction by stochastic equations

In this section we give a construction of the age-structured branching process by solving a
stochastic equation driven by a Poisson random measure. Recall that D

(
R+

)
denotes the set of

bounded positive right-continuous increasing functions f on R satisfying f (x) = 0 for x< 0. For
μ ∈D

(
R+

)
and α ∈ B

(
R+

)+ define Aα(μ, y) = inf{z ≥ 0 : 〈μ, α1[0,z]〉> 〈μ, α〉y}, 0 ≤ y ≤ 1,
with inf ∅ = ∞ by convention. Then 〈μ, α〉 = 0 implies Aα(μ, y) = ∞ for all 0 ≤ y ≤ 1. By an
elementary result in probability theory, we have the following lemma.

Lemma 3.1. If 〈μ, α〉> 0 and if ξ is a random variable with uniform distribution on (0, 1],
then P{Aα(μ, ξ ) ∈ dx} = 〈μ, α〉−1α(x)μ(dx), x ≥ 0.

Suppose that (�,F,Ft, P) is a filtered probability space satisfying the usual hypotheses.
Let M(dt, du, dy, dz, dv) be an (Ft)-Poisson random measure on (0,∞)2 × (0, 1] ×N× (0, 1]
with intensity dt du dy π (dz) dv, where π (dz) denotes the counting measure on N. Given an
F0-measurable random function X0 ∈D

(
R+

)
, we consider the stochastic integral equation,

for t ≥ 0 and x ≥ 0,

Xt(x) = X0(x − t) +
∫ t

0

∫ 〈Xs−,α〉

0

∫ 1

0

∫
N

∫ p(Aα(Xs−,y),z)

0
z1{t−s≤x}M(ds, du, dy, dz, dv)

−
∫ t

0

∫ 〈Xs−,α〉

0

∫ 1

0

∫
N

∫ p(Aα(Xs−,y),z)

0
1{Aα(Xs−,y)+t−s≤x}M(ds, du, dy, dz, dv). (3.1)

Heuristically, the left-hand side Xt(x) is the number of individuals at time t with ages less
than x. On the right-hand side, the first term X0(x − t) counts the number of individuals hav-
ing ages less than x − t at time 0, and thus having ages less than x at time t. A death in
the population occurs at time s ∈ [0, t] at rate 〈Xs−, α〉ds. In that case, the age of the dying
individual is distributed according to the probability measure 〈Xs−, α〉−1α(x)Xs−(dx) and is
realized as Aα(Xs−, y), where y ∈ (0, 1] is taken according to the uniform distribution by the
Poisson random measure. The number of offspring of the individual takes the value z ∈N

with probability p(Aα(Xs−, y), z) and contributes to the number Xt(x) if and only if t − s ≤ x,
which is recorded by the second term. The death of the individual affects Xt(x) if and only if
Aα(Xs−, y) + t − s ≤ x, which is recorded by the third term.

Let ζa(x) = 1{a≤x} for a, x ∈R. Given a function f on R define f ◦ θt(x) = f (x + t) for x, t ∈
R. Then we may rewrite (3.1) equivalently, for t ≥ 0 and x ≥ 0, as

Xt(x) = X0 ◦ θ−t(x) +
∫ t

0

∫ 〈Xs−,α〉

0

∫ 1

0

∫
N

∫ p(Aα(Xs−,y),z)

0

[
zζ0 ◦ θs−t(x)

− ζAα(Xs−,y) ◦ θs−t(x)
]
M(ds, du, dy, dz, dv). (3.2)

A pathwise solution to (3.2) is constructed by unscrambling the equation as follows.
Let τ0 = 0. Given τk−1 ≥ 0 and Xτk−1 ∈D

(
R+

)
, we first define τk = τk−1 + inf

{
t>

0 : M
(
(τk−1, τk−1 + t] × (0, 〈Xτk−1 , α〉] × Hk

)
> 0

}
, where Hk = {

(y, z, v) : y ∈ (0, 1], z ∈
N, 0< v ≤ p

(
Aα

(
Xτk−1 , y

)
, z

)}
, and

Xt(x) = Xτk−1 ◦ θτk−1−t(x), τk−1 ≤ t< τk, x ≥ 0. (3.3)

Then we define

Xτk (x) = Xτk−(x) + zkζ0(x) − ζAα(Xτk−,yk)(x), x ≥ 0, (3.4)
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where Xτk−(x) = Xτk−1 ◦ θτk−1−τk (x), and (uk, yk, zk, vk) ∈ (0,∞) × (0, 1] ×N× (0, 1] is the
point such that (τk, uk, yk, zk, vk) ∈ supp(M). Since Aα

(
Xτk−, yk

) ∈ supp
(
Xτk−

)
, we have Xτk ∈

D
(
R+

)
. Equation (3.4) means that at time τk an individual at age Aα

(
Xτk−, yk

)
dies and gives

birth to zk offspring with starting age 0 ∈R+.
It is clear that (3.3) and (3.4) uniquely determine the behavior of the trajectory t �→ Xt on

the time intervals [τk−1, τk], k = 1, 2, . . . Let τ = limk→∞ τk and let Xt = ∞ for t ≥ τ . Then
{Xt : t ≥ 0} is the pathwise-unique solution to (3.2) up to the lifetime τ . More precisely, the
equations hold almost surely with t replaced by t ∧ τk for every k = 1, 2, . . . Let n(t) = sup{k ≥
0 : τk ≤ t} for t ≥ 0, and β = ‖α∂zg(·, 1−)‖<∞.

Lemma 3.2. Suppose that E[X0(∞)]<∞. Then, for any k ≥ 1,

E
[
sup0≤s≤t∧τk

Xs(∞)
] ≤E[X0(∞)]eβt, t ≥ 0. (3.5)

Proof. Recall that Xt(∞) = limx→∞ Xt(x) = Xt
(
R+

)
. Let ηi = inf{s ≥ 0 : Xs(∞) ≥ i} for

i ≥ 1. It is clear that limi→∞ ηi = τ . Let ζi,k = ηi ∧ τk. In view of (3.2), we have

Xt(∞) = X0(∞) +
∫ t

0

∫ 〈Xs−,α〉

0

∫ 1

0

∫
N

∫ p
(

Aα(Xs−,y),z
)

0
(z − 1)M(ds, du, dy, dz, dv).

It follows that

E
[
sup0≤s≤t∧ζi,k

Xs(∞)
] ≤E[X0(∞)] +

∑
z∈N

E

[ ∫ t∧ζi,k

0
〈Xs−, α〉ds

∫ 1

0
p(Aα(Xs−, y), z)z dy

]

=E[X0(∞)] +
∑
z∈N

E

[ ∫ t∧ζi,k

0
ds

∫
R+

p(y, z)zα(y) dXs−(y)

]

=E[X0(∞)] +E

[ ∫ t∧ζi,k

0
ds

∫
R+
α(y)∂zg(y, 1−) dXs−(y)

]

≤E[X0(∞)] + βE

[ ∫ t∧ζi,k

0
Xs−(∞) ds

]
.

Clearly, we have Xs−(∞) ≤ i for 0< s ≤ t ∧ ζi,k. Then E
[
sup0≤s≤t∧ζi,k

Xs(∞)
]

is locally
bounded in t ≥ 0. Since the trajectory s �→ Xs(∞) has at most countably many jumps, it follows
that

E
[
sup0≤s≤t∧ζi,k

Xs(∞)
] ≤E[X0(∞)] + βE

[ ∫ t∧ζi,k

0
Xs(∞) ds

]

≤E[X0(∞)] + β

∫ t

0
E[Xs∧ζi,k (∞)] ds

≤E[X0(∞)] + β

∫ t

0
E

[
sup0≤r≤s∧ζi,k

Xr(∞)
]

ds.

By Gronwall’s inequality we have E
[
sup0≤s≤t∧ζi,k

Xs(∞)
] ≤E[X0(∞)]eβt. Then, letting

i → ∞ and using Fatou’s lemma, we obtain (3.5). �
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Proposition 3.1. Suppose that E[X0(∞)]<∞. Then P{τ = ∞} = 1 and

E[n(t)] ≤ ‖α‖E[X0(∞)]
∫ t

0
eβs ds, t ≥ 0. (3.6)

Proof. By (3.2) and monotone convergence we have

E[n(t)] = lim
k→∞ E

[ ∫ t∧τk

0

∫ 〈Xs−,α〉

0

∫ 1

0

∫
N

∫ p(Aα(Xs−,y),z)

0
M(ds, du, dy, dz, dv)

]

= lim
k→∞ E

[ ∑
z∈N

∫ t∧τk

0
〈Xs−, α〉 ds

∫ 1

0
p(Aα(Xs−, y), z) dy

]

= lim
k→∞ E

[ ∑
z∈N

∫ t∧τk

0
ds

∫
R+

p(y, z)α(y) dXs−(y)

]

≤ lim
k→∞ ‖α‖E

[ ∫ t∧τk

0
Xs(∞) ds

]
= lim

k→∞ ‖α‖
∫ t

0
E[Xs∧τk (∞)] ds.

Then (3.6) follows by (3.5). In particular, we have P{τ > t} = P{n(t)<∞} = 1 for every t ≥ 0,
which implies P{τ = ∞} = 1. �

Proposition 3.2. Suppose E[X0(∞)]<∞. Then E
[
sup0≤s≤tXs(∞)

] ≤E[X0(∞)]eβt, t ≥ 0.

Proof. Since P{τ = ∞} = 1 by Proposition 3.1, we obtain the result from (3.5) by using
monotone convergence. �

By Proposition 3.1 the solution of (3.1) or (3.2) has infinite lifetime and determines a
measure-valued strong Markov process {Xt : t ≥ 0}. The following propositions give some
useful characterization of the process.

Proposition 3.3. For any t ≥ 0 and f ∈ B
(
R+

)
,

〈Xt, f 〉 = 〈X0, f ◦ θt〉 +
∫ t

0

∫ 〈Xs−,α〉

0

∫ 1

0

∫
N

∫ p(Aα(Xs−,y),z)

0

[
zf ◦ θt−s(0)

− f ◦ θt−s(Aα(Xs−, y))
]
M(ds, du, dy, dz, dv). (3.7)

Proof. Let C1
0

(
R+

)
denote the subspace of C1

(
R+

)
consisting of functions vanishing at

infinity. For any fixed integer n ≥ 1, let xi = in/2n with i = 0, 1, . . . , 2n. By (3.2), almost surely
for any f ∈ C1

0

(
R+

)
,

2n∑
i=1

f ′(xi)Xt(xi) −
2n∑

i=1

f ′(xi)X0 ◦ θ−t(xi)

=
∫ t

0

∫ 〈Xs−,α〉

0

∫ 1

0

∫
N

∫ p(Aα(Xs−,y),z)

0

2n∑
i=1

f ′(xi)
[
zζ0 ◦ θs−t(xi)

− ζAα(Xs−,y) ◦ θs−t(xi)
]
M(ds, du, dy, dz, dv).
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Then we multiply the above equation by 2−n and let n → ∞ to get, almost surely,
∫ ∞

0
f ′(x)Xt(x) dx −

∫ ∞

0
f ′(x)X0 ◦ θ−t(x) dx

=
∫ t

0

∫ 〈Xs−,α〉

0

∫ 1

0

∫
N

∫ p(Aα(Xs−,y),z)

0

{∫ ∞

0
f ′(x)

[
zζ0 ◦ θs−t(x)

− ζAα(Xs−,y) ◦ θs−t(x)
]

dx

}
M(ds, du, dy, dz, dv)

= −
∫ t

0

∫ 〈Xs−,α〉

0

∫ 1

0

∫
N

∫ p(Aα(Xs−,y),z)

0

[
zf ◦ θt−s(0)

− f ◦ θt−s(Aα(Xs−, y))
]
M(ds, du, dy, dz, dv). (3.8)

By integration by parts we have 〈Xt, f 〉 = − ∫ ∞
0 f ′(x)Xt(x) dx. From this and (3.8) we see that

(3.7) holds for any f ∈ C1
0

(
R+

)
. Then the relation also holds for any f ∈ B

(
R+

)
by a monotone

class argument. �

Proposition 3.4. For any t ≥ 0 and f ∈ C1
(
R+

)
,

〈Xt, f 〉 = 〈X0, f 〉 +
∫ t

0
〈Xs−, f ′〉 ds +

∫ t

0

∫ 〈Xs−,α〉

0

∫ 1

0

∫
N

∫ p(Aα(Xs−,y),z)

0

[
zf (0)

− f (Aα(Xs−, y))
]
M(ds, du, dy, dz, dv). (3.9)

Proof. For n ≥ 1 we consider a partition �n = {0 = t0 < t1 < · · ·< tn = t} of [0, t]. Notice
that ∂t(f ◦ θt)(x) = f ′(x + t). By (3.7) we have

〈Xt, f 〉 = 〈X0, f 〉 +
n∑

i=1

[〈
Xti , f

〉 − 〈
Xti−1, f ◦ θti−ti−1

〉]

+
n∑

i=1

[〈
Xti−1, f ◦ θti−ti−1

〉 − 〈
Xti−1, f

〉]

= 〈X0, f 〉 +
n∑

i=1

∫ ti

ti−1

∫ 〈Xs−,α〉

0

∫ 1

0

∫
N

∫ p(Aα(Xs−,y),z)

0

[
z f ◦ θti−s(0)

− f ◦ θti−s(Aα(Xs−, y))
]
M(ds, du, dy, dz, dv)

+
n∑

i=1

∫ ti

ti−1

〈
Xti−1 , f ′ ◦ θs−ti−1

〉
ds.

By letting |�n| := max1≤i≤n (ti − ti−1) → 0 and using the right continuity of s → Xs and the
continuity of s → f ◦ θs, we obtain (3.9). �

Proposition 3.5. For f ,G ∈ C1
(
R+

)
let Gf (μ) = G(〈μ, f 〉), and let

L0Gf (μ) = 〈
μ, f ′〉G′(〈μ, f 〉)
−

∑
z∈N

∫
R+
α(y)p(y, z)

[
G(〈μ, f 〉) − G(〈μ, f 〉 + zf (0) − f (y))

]
μ(dy).
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Then we have

Gf (Xt) = Gf (X0) +
∫ t

0
L0Gf (Xs) ds + mart. (3.10)

Proof. Let M̃ denote the compensated measure of M. Since the process s �→ Xs has at most
countably many jumps, by Proposition 3.4 and Itô’s formula we have

G(〈Xt, f 〉) = G(〈X0, f 〉) +
∫ t

0
G′(〈Xs, f 〉)〈Xs, f ′〉ds

−
∫ t

0

∫ 〈Xs−,α〉

0

∫ 1

0

∫
N

∫ p(Aα(Xs−,y),z)

0

[
G(〈Xs−, f 〉)

− G(〈Xs−, f 〉 + zf (0) − f (Aα(Xs−, y)))
]
M(ds, du, dy, dz, dv)

= G(〈X0, f 〉) +
∫ t

0
G′(〈Xs, f 〉)〈Xs, f ′〉 ds − MG

t (f )

−
∫ t

0
ds

∫
R+
α(y)

∑
z∈N

p(y, z)
[
G(〈Xs−, f 〉)

− G(〈Xs−, f 〉 + zf (0) − f (y))
]
Xs−(dy)

= G(〈X0, f 〉) +
∫ t

0
L0Gf (Xs) ds − MG

t (f ),

where

MG
t (f ) =

∫ t

0

∫ 〈Xs−,α〉

0

∫ 1

0

∫
N

∫ p(Aα(Xs−,y),z)

0

[
G(〈Xs−, f 〉)

− G(〈Xs−, f 〉 + zf (0) − f (Aα(Xs−, y)))
]
M̃(ds, du, dy, dz, dv).

By Proposition 3.2 we can check that
{
MG

t (f ) : t ≥ 0
}

is a martingale. �

Theorem 3.1. The measure-valued process {Xt : t ≥ 0} defined by the stochastic equation (3.1)
or (3.2) is an (α, g)-age-structured branching process.

Proof. Recall that {Xt : t ≥ 0} is a càdlàg process. Let ef (μ) = e−〈μ,f 〉 and let L0 be defined
as in Proposition 3.5. It is elementary to see that

L0ef (μ) = −〈
μ, f ′〉e−〈μ,f 〉 − e−〈μ,f 〉

∫
R+
α(y)

[
1 − ef (y)

∑
z∈N

p(y, z)e−zf (0)
]
μ(dy)

= −e−〈μ,f 〉〈μ, f ′〉 − e−〈μ,f 〉
∫
R+
α(y)

(
1 − ef (y)g

(
y, e−f (0)))μ(dy).

Let Ft = σ {Xs : 0 ≤ s ≤ t}. By (2.4), (3.10), and the mean-value theorem, we have

e−
〈
Xt,uT−t f

〉
= e−

〈
X0,uT f

〉
+

∞∑
i=0

[
e−

〈
Xt∧(i+1)/k,uT−t∧i/kf

〉
− e−

〈
Xt∧i/k,uT−t∧i/kf

〉]

+
∞∑

i=0

[
e−

〈
Xt∧(i+1)/k,uT−t∧(i+1)/kf

〉
− e−

〈
Xt∧(i+1)/k,uT−t∧i/kf

〉]
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= e−
〈
X0,uT f

〉
−

∞∑
i=0

∫ t∧(i+1)/k

t∧i/k
e−

〈
Xs,uT−t∧i/kf

〉[〈
Xs, ∂xuT−t∧i/kf

〉

+
∫
R+
α(y)

[
1 − euT−t∧i/kf (y)g

(
y, e−uT−t∧i/kf (0))]Xs(dy)

]
ds

+ Mk(t) +
∞∑

i=0

e−ξk(t)〈Xt∧(i+1)/k, uT−t∧i/kf − uT−t∧(i+1)/kf
〉

= e−
〈
X0,uT f

〉
−

∞∑
i=0

∫ t∧(i+1)/k

t∧i/k
e−

〈
Xs,uT−t∧i/kf

〉[〈
Xs, ∂xuT−t∧i/kf

〉

+
∫
R+
α(y)

[
1 − euT−t∧i/kf (y)g

(
y, e−uT−t∧i/kf (0))]Xs(dy)

]
ds

+ Mk(t) +
∞∑

i=0

∫ t∧(i+1)/k

t∧i/k
e−ξk(t)

[〈
Xt∧(i+1)/k, ∂xuT−sf

〉

+
∫
R+
α(y)

[
1 − euT−sf (y)g

(
y, e−uT−sf (0))]Xt∧(i+1)/k(dy)

]
ds,

where t �→ Mk(t) is an (Ft)-martingale and〈
Xt∧(i+1)/k, uT−t∧i/kf

〉 ≤ ξk(t) ≤ 〈
Xt∧(i+1)/k, uT−t∧(i+1)/kf

〉
or 〈

Xt∧(i+1)/k, uT−t∧(i+1)/kf
〉 ≤ ξk(t) ≤ 〈

Xt∧(i+1)/k, uT−t∧i/kf
〉
.

By letting k → ∞ we see that t �→ e−〈Xt,uT−t f 〉 is an (Ft)-martingale. In particular, we have
E

[
e−〈XT ,f 〉 | Ft

] = e−〈Xt,uT−t f 〉, T ≥ t ≥ 0. Then {Xt : t ≥ 0} is a Markov process with transition
semigroup (Qt)t≥0 given by (2.3). �

A calculation of the generator for an age-structured birth–death process was given in
[4, (3.1)]; see also [5]. A stochastic equation for a similar model was proposed in [28, (2.5)],
which assumed that the death rate of an individual may depend on the whole population and
also calculated the generator of the model.

4. The branching process with immigration

In this section we introduce an age-structured branching process with immigration and
discuss its ergodicity. Let ψ be a functional on B

(
R+

)+ given by ψ(f ) = ∫
N

(
R+

)◦ (1 −
e−〈ν,f 〉)L(dν), f ∈ B

(
R+

)+, where L(dν) is a finite measure on N
(
R+

)◦ := N
(
R+

) \ 0, and
0 denotes the null measure.

A Markov process Y = (Yt : t ≥ 0) with state space N
(
R+

)
is called an (α, g, ψ)-age-

structured branching process with immigration if it has the transition semigroup (Pt)t≥0
defined by ∫

N
(
R+

) e−〈ν,f 〉Pt(σ, dν) = exp

{
−〈σ, ut f 〉 −

∫ t

0
ψ(usf ) ds

}
, (4.1)
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where ut f (x) is the unique solution to (2.2). Such a process is characterized by the properties
(i)–(iii) given in Section 2, along with the following:

(iv) The immigrants come according to a Poisson random measure on (0,∞) ×N
(
R+

)◦
with intensity dsL(dν).

Suppose that (�,F,Ft, P) is a filtered probability space satisfying the usual hypotheses.
Let M(dt, du, dy, dz, dv) be a Poisson random measure as in Section 3, and let N(dt, dν) be
an (Ft)-Poisson random measure on (0,∞) ×N

(
R+

)◦ with intensity dtL(dν). We assume
that the two random measures are independent of each other. Consider the stochastic integral
equation

Yt(x) = Y0 ◦ θ−t(x) +
∫ t

0

∫ 〈Ys−,α〉

0

∫ 1

0

∫
N

∫ p(Aα(Ys−,y),z)

0

[
zζ0

− ζAα(Ys−,y)
] ◦ θs−t(x)M(ds, du, dy, dz, dv)

+
∫ t

0

∫
N

(
R+

)◦ ν ◦ θs−t(x)N(ds, dν). (4.2)

Here, the first two terms on the right-hand side are as explained for (3.1) and the last term
represents the immigration. A pathwise-unique solution to (4.2) is constructed as follows.
Let σ0 = 0. Given σk−1, we define σk = σk−1 + inf

{
t> 0 : N

((
σk−1, σk−1 + t

] × N
(
R

◦+
))
> 0

}
and Yt(x) = Xk,t−σk−1 (x), σk−1 ≤ t<σk, where {Xk,t(x) : t ≥ 0} is the pathwise-unique solution
to the following equation:

Xt(x) =Yσk−1 ◦ θ−t(x) +
∫ t

0

∫ 〈Xs−,α〉

0

∫ 1

0

∫
N

∫ p(Aα(Xs−,y),z)

0

[
zζ0 ◦ θs−t(x)

− ζAα(Xs−,y) ◦ θs−t(x)
]
M(σk−1 + ds, du, dy, dz, dv).

Then we define Yσk (x) = Yσk−(x) + ∫
{σk}

∫
N

(
R+

)◦ ν(x)N(ds, dν). It is easy to see that

limk→∞ σk = ∞ and {Yt : t ≥ 0} is the pathwise-unique solution to (4.2).
The solution to (4.2) determines a measure-valued strong Markov process {Yt : t ≥ 0} with

state space N
(
R+

)
. We omit the proofs of some of the following results since the arguments

are similar to those for the corresponding results in Section 3.

Proposition 4.1. For any f ∈ B
(
R+

)+
,

〈Yt, f 〉 = 〈Y0, f ◦ θt〉 +
∫ t

0

∫ 〈Ys−,α〉

0

∫
[0,1]

∫
N

∫ p(Aα(Ys−,y),z)

0

[
zf ◦ θt−s(0)

− f ◦ θt−s(Aα(Ys−, y))
]
M(ds, du, dy, dz, dv)

+
∫ t

0

∫
N

(
R+

)◦ 〈ν, f ◦ θt−s〉N(ds, dν).

Proposition 4.2. For any t ≥ 0 and f ∈ C1
(
R+

)+
,

〈Yt, f 〉 = 〈Y0, f 〉 +
∫ t

0
〈Ys−, f ′〉 ds +

∫ t

0

∫ 〈Ys−,α〉

0

∫
[0,1]

∫
N

∫ p(Aα(Ys−,y),z)

0

[
zf (0)

− f (Aα(Ys−, y))
]
M(ds, du, dy, dz, dv)

+
∫ t

0

∫
N

(
R+

)◦ 〈ν, f 〉N(ds, dν). (4.3)
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Proposition 4.3. For any f ,G ∈ C1
(
R+

)
, let Gf (μ) = G(〈μ, f 〉) and

L Gf (μ) = 〈
μ, f ′〉G′(〈μ, f 〉) −

∫
R+
α(y)

∑
z∈N

p(y, z)
[
G(〈μ, f 〉)

− G
(〈μ, f 〉 + zf (0) − f (y)

)]
μ(dy)

+
∫
N

(
R+

)◦
[
G(〈μ, f 〉 + 〈ν, f 〉) − G(〈μ, f 〉)]L(dν).

Then G(〈Yt, f 〉) = G(〈Y0, f 〉) + ∫ t
0 L Gf (Ys) ds + mart.

Proof. Let M̃ and Ñ denote the compensated measure of M and N, respectively. By (4.3) and
Itô’s formula we have

G(〈Yt, f 〉) = G(〈Y0, f 〉) +
∫ t

0
G′(〈Ys, f 〉)〈Ys, f ′〉 ds

+
∫ t

0

∫ 〈Ys−,α〉

0

∫ 1

0

∫
N

∫ p(Aα(Ys−,y),z)

0

[
G

(〈Ys−, f 〉 + zf (0)

− f (Aα(Ys−, y))
) − G(〈Ys−, f 〉)]M(ds, du, dy, dz, dv)

+
∫ t

0

∫
N

(
R+

)◦
[
G

(〈Ys−, f 〉 + 〈ν, f 〉) − G
(〈Ys−, f 〉)]N(ds, dν)

= G(〈Y0, f 〉) +
∫ t

0
G′(〈Ys, f 〉)〈Ys, f ′〉 ds + NG

t (f )

+
∫ t

0
ds

∫
R+
α(y)

∑
z∈N

p(y, z)
[
G

(〈Ys−, f 〉 + zf (0) − f (y)
)

− G(〈Ys−, f 〉)]Ys−(dy)

+
∫ t

0
ds

∫
N

(
R+

)◦
[
G

(〈Ys−, f 〉 + 〈ν, f 〉) − G(〈Ys−, f 〉)]L(dν),

where

NG
t (f ) =

∫ t

0

∫ 〈Ys−,α〉

0

∫ 1

0

∫
N

∫ p(Aα(Ys−,y),z)

0

[
G(〈Ys−, f 〉 + zf (0) − f (Aα(Ys−, y)))

− G(〈Ys−, f 〉)]M̃(ds, du, dy, dz, dv)

+
∫ t

0

∫
N

(
R+

)◦
[
G

(〈Ys−, f 〉 + 〈ν, f 〉) − G
(〈Ys−, f 〉)]Ñ(ds, dν).

A first moment estimate can check that
{
NG

t (f ) : t ≥ 0
}

is a martingale. �

Theorem 4.1. The measure-valued process {Yt : t ≥ 0} defined by (4.2) is an (α, g, ψ)-age-
structured branching process with immigration.

Proof. Let Ft = σ {Ys : 0 ≤ s ≤ t}. By a modification of the proof of Theorem 3.1, we can

see that t �→ exp
{
−〈Yt, uT−tf 〉 − ∫ T−t

0 ψ(usf ) ds
}

is an (Ft)-martingale. Then {Yt : t ≥ 0} is

a Markov process with transition semigroup (Pt)t≥0 defined by (4.1), which completes the
proof. �

https://doi.org/10.1017/jpr.2021.80 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2021.80


682 L. JI AND Z. LI

A necessary and sufficient condition for the ergodicity of the (α, g, ψ)-age-structured
branching process with immigration is given in the next theorem.

Theorem 4.2. Suppose that c∗ = infy≥0 α(y)[1 − ∂zg(y, 1−)]> 0. Then Pt(σ, ·) converges as
t → ∞ to a probability measure η on N

(
R+

)
for every σ ∈N

(
R+

)
if and only if∫

N
(
R+

) 1{〈ν,1〉≥1} log〈ν, 1〉L(dν)<∞. (4.4)

In this case, the Laplace transform of η is given by∫
N

(
R+

) e−〈ν,f 〉η(dν) = exp

{
−

∫ ∞

0
ψ(usf ) ds

}
. (4.5)

Proof. First, for f ∈ B
(
R+

)+ let f∗ = infx≥0 f (x). From Propositions 2.3 and 2.4 we have(
1 − e−f∗)e−c1t ≤ ut f (x) ≤ ‖ut f ‖ ≤ ‖πtf ‖ ≤ e−c∗t‖f ‖, x ≥ 0. (4.6)

Moreover, for a, c> 0 it is elementary to see that∫ ∞

0
ds

∫
N

(
R+

)◦
(
1 − e−ae−cs〈ν,1〉)L(dν) =

∫
N

(
R+

)◦ L(dν)
∫ ∞

0

(
1 − e−ae−cs〈ν,1〉) ds

= c−1
∫
N

(
R+

)◦ L(dν)
∫ a〈ν,1〉

0

(
1 − e−z)z−1 dz.

(4.7)

Second, suppose that (4.4) holds. For any f ∈ B
(
R+

)+ we see from (4.6) that σ (ut f ) → 0
as t → ∞. Take any a> ‖f ‖. By (4.6) and (4.7) we have∫ ∞

0
ψ(usf ) ds =

∫ ∞

0
ds

∫
N

(
R+

)◦
(
1 − e−〈ν,usf 〉)L(dν)

≤
∫ ∞

0
ds

∫
N

(
R+

)◦
(
1 − e−ae−c∗s〈ν,1〉)L(dν)

≤ c−1∗
∫
N

(
R+

)◦

[
1 +

∫ 1∨(a〈ν,1〉)

1
z−1 dz

]
L(dν)

≤ c−1∗
∫
N

(
R+

)◦
[
1 + 0 ∨ log (a〈ν, 1〉)]L(dν)<∞.

Then, as t → ∞,∫ t

0
ψ(usf ) ds =

∫ t

0
ds

∫
N

(
R+

)◦
(
1 − e−〈ν,usf 〉)L(dν)

→
∫ ∞

0
ds

∫
N

(
R+

)◦
(
1 − e−〈ν,usf 〉)L(dν) =

∫ ∞

0
ψ(usf ) ds<∞.

From (4.1) we infer that Pt(σ, ·) converges as t → ∞ to a probability measure η defined by
(4.5); see, e.g., [21, Theorem 1.20].
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Third, suppose that Pt(σ, ·) converges as t → ∞ to a probability measure η on N
(
R+

)
for

every σ ∈N
(
R+

)
. By (4.1) we see that η has a Laplace functional given by (4.5); see, e.g., [21,

Theorems 1.17 and 1.18]. In particular, we have
∫ ∞

0 ψ(usf ) ds<∞ for every f ∈ B
(
R+

)+. Let
a = (1 − e−1). By (4.6) and (4.7) we have

∫ ∞

0
ψ(us1) ds =

∫ ∞

0
ds

∫
N

(
R+

)◦
(
1 − e−〈ν,us1〉)L(dν)

≥
∫ ∞

0
ds

∫
N

(
R+

)◦
(
1 − e−ae−c1s〈ν,1〉)L(dν)

≥ ac−1
1

∫
{a〈ν,1〉≥1}

L(dν)
∫ a〈ν,1〉

1
z−1 dz

≥ ac−1
1

∫
{a〈ν,1〉≥1}

[
log a + log〈ν, 1〉]L(dν).

This gives us (4.4). �
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