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Wake transitions behind an isolated cube are investigated numerically over a
range of Reynolds number (Re) 1–400. Four flow regimes, namely the orthogonal
symmetry–steady (1 ≤ Re ≤ 205), planar symmetry–steady (PSS, 210 ≤ Re ≤ 250),
hairpin-vortex shedding (HS, 255 ≤ Re ≤ 305) and chaotic vortex shedding (Re ≥ 310)
regimes, are identified according to spatial symmetries and temporal development of the
flow. A weakly nonlinear stability analysis, through a coupled pitchfork bifurcation model
proposed in the present study, reveals that the bifurcation to the PSS regime is supercritical
and the planar symmetry is retained in the PSS regime because stable points (four)
exist only on the two symmetry planes perpendicular to the side faces of the cube. The
supercritical Hopf bifurcation to the HS regime is induced by the excessive accumulation
of circulation in the downstream tips of merged streamwise vortex tubes behind the
cube that subsequently attract the vortex tubes of opposite signs to cut the tips off from
them, leading to alternate shedding of streamwise vortex tubes. The planar symmetry
observed in the PSS regime is preserved in the three vortex shedding states identified in
the HS regime, i.e. single-frequency shedding (255 ≤ Re ≤ 280), quasi-periodic shedding
(282 ≤ Re ≤ 285) and the high-order synchronised shedding (HS2, 289 ≤ Re ≤ 305). A
cascade of period doubling and period halving is discovered in the HS2 state, prior to
the flow bifurcation to the chaotic vortex shedding regime, where the planar symmetry is
broken. The critical Re values for the bifurcations to PSS and HS regimes are estimated to
be Re ≈ 207.0 and 252.0, respectively, through linear interpolation of the growth rate of
flow instabilities.
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1. Introduction

Compared with the flow past a sphere, steady approaching flow around a cube has not been
studied extensively, possibly because flow around a cube is less commonly encountered
than its counterpart past a sphere in practical applications. This perspective, however,
does not necessarily represent a fair reflection of the significance of flow around the
cube. The sharp edges and discontinuous symmetry (i.e. finite reflection planes) of the
cube lead to a different class of wake characteristics that are common for cuboids but
not for smooth surface objects such as a sphere. Flows around cuboids are common in
engineering applications in fact, for example, low speed positioning underwater vehicles,
buoyancy blocks and free falling of non-spherical particles. The underwater vehicle and
buoyancy block can be controlled and constrained by some means to keep steady in
constant currents, and the free-falling and free-rising patterns of non-spherical particles
can also be in a vertical path depending on the solid-to-fluid density ratio and Galileo
number (Seyed-Ahmadi & Wachs 2019), all of which implies they can be represented by
the ideal scenario of steady flow past a stationary cuboid. Therefore, a sound understanding
of flow around the cube is important both fundamentally and practically.

An isolated and stationary cube placed in the uniform flow is illustrated in figure 1.
A simple dimensional analysis shows that the flow regime is only governed by Reynolds
number Re, which is defined as UL/ν with U denoting the velocity of the undisturbed
incoming flow, L the edge length of the cube and ν the kinematic viscosity of the fluid
(the diameter of a sphere of the same volume is also used as the reference length to
study freely moving cubes, e.g. Seyed-Ahmadi & Wachs 2019). The existing studies (e.g.
Saha 2004; Klotz et al. 2014; Seyed-Ahmadi & Wachs 2019; Khan, Sharma & Agrawal
2020) have demonstrated that the flow is steady at low Re and becomes unsteady when Re
exceeds a critical value. The flow features in both steady and unsteady states are dictated
by the geometric symmetries of the cube. A Cartesian coordinate system (x, y, z) is
established at the centre of the cube in figure 1 to describe the geometric symmetries. Two
types of symmetries exist in the planes perpendicular to the x-axis. One is the rotational
symmetry with respect to the x-axis that forms a cyclic group of π/2 and the other is the
reflection symmetry with respect to any of the planes y = 0, z = 0, y = z and y = −z. The
combination of the rotational and reflection symmetries brews out a dihedral group D4
(for the dihedral group, see Armstrong 2013), which is a finite subgroup of the special
orthogonal group in two dimensions, i.e. SO(2). Hereinafter, we employ ‘orthogonal
symmetry’ to refer to the symmetry in D4. By defining the velocity and pressure fields
as (ux, uy, uz, p) and spatio-temporal coordinates as (x, y, z, t), we denote the rotational
symmetry conditions of the flow as G r in (1.1)–(1.4) with respect to the rotational angle ϑ

around the x-axis in a counter-clockwise direction and the reflection symmetry conditions
as G s in (1.5)–(1.8), with the subscripts denoting the corresponding symmetric planes, i.e.

G r
ϑ=0 : (ux, uy, uz, p)(x, y, z, t) = (ux, uy, uz, p)(x, y, z, t), (1.1)

G r
ϑ=π/2 : (ux, uy, uz, p)(x, y, z, t) = (ux, −uz, uy, p)(x, −z, y, t), (1.2)

G r
ϑ=π : (ux, uy, uz, p)(x, y, z, t) = (ux, −uy, −uz, p)(x, −y, −z, t), (1.3)

G r
ϑ=3π/2 : (ux, uy, uz, p)(x, y, z, t) = (ux, uz, −uy, p)(x, z, −y, t), (1.4)

G s
y=0 : (ux, uy, uz, p)(x, y, z, t) = (ux, −uy, uz, p)(x, −y, z, t), (1.5)

G s
z=0 : (ux, uy, uz, p)(x, y, z, t) = (ux, uy, −uz, p)(x, y, −z, t), (1.6)

G s
y=z : (ux, uy, uz, p)(x, y, z, t) = (ux, uz, uy, p)(x, z, y, t), (1.7)
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Figure 1. Schematics of flow past the cube, compute domain and the compound mesh on the middle slice.

G s
y=−z : (ux, uy, uz, p)(x, y, z, t) = (ux, −uz, −uy, p)(x, −z, −y, t). (1.8)

Considerable understanding about the flow at low Re has been achieved based on the
aforementioned studies (Saha 2004; Klotz et al. 2014; Seyed-Ahmadi & Wachs 2019; Khan
et al. 2020). Table 1 provides a brief summary of flow regimes identified previously. There
appears a lack of consistency in naming the flow regimes among these studies. To facilitate
further discussions, we unify the names of those regimes in table 1 based on the spatial
symmetries and temporal development of the flow. The existing studies showed that the
flow undergoes two major bifurcations in the sequence of increasing Re. The first one is a
regular bifurcation featured by a transition from orthogonal symmetry–steady (OSS) flow
to planar symmetry–steady (PSS) flow, where the orthogonal symmetry is broken and one
reflection symmetry is retained in the PSS flow. The second one is a Hopf bifurcation,
where the flow becomes unsteady with shedding of hairpin-shaped vortices into the wake
from the cube surface. This regime is thereby defined as hairpin-vortex shedding (HS)
flow. Klotz et al. (2014) investigated the nature of these two bifurcations through the
dependence of the squared amplitude of the global perturbation on Reynolds number and
found both bifurcations were supercritical. As demonstrated by Saha (2004) and Klotz
et al. (2014), the flow in the HS regime retains one of the reflection symmetries. As Re
is further increased in the HS regime, the reflection symmetry is broken and the vortex
shedding from the cube becomes chaotic, leading to a transition to the chaotic shedding
(CS) regime (Khan et al. 2020).

In addition to the observations about the flow features in every regime, Klotz et al. (2014)
conducted a series of analyses based on their experimental data. The flow transitions were
characterised by two different methods. One was the linear dependence of longitudinal
enstrophy on the Reynolds number, and the other was the energy correlation of the
azimuthal Fourier modes of streamwise vorticity. It is interesting to note Landau’s
amplitude equation (Stuart 1960; Watson 1960) is effective in a relatively wider interval
of Reynolds numbers, which can facilitate the determination of critical Reynolds numbers
for the supercritical bifurcations.

Despite the good understanding of the flow achieved so far, a number of important issues
related to the flow have not yet been resolved. For example, there is a lack of understanding
on the flow mechanisms behind the vortex shedding. In addition, it is not clear how the
flow bifurcations occur towards the chaotic regime. The above aspects motivate the present
study. Specifically, direct numerical simulations (DNS) are conducted over Re 1–400 to
investigate those issues. Despite the obvious relevance of high-Reynolds-number flows
to engineering applications, a sound understanding of flow mechanisms behind vortex
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Regime I Regime II Regime III Regime IV

Saha (2004) Steady Steady Unsteady flow —
symmetric flow asymmetric flow
(20 ≤ Re ≤ 216) (218 ≤ Re ≤ 265) (270 ≤ Re ≤ 300)

Richter & Flow having two Loss of flow Laminar- —
Nikrityuk (2012) symmetry planes symmetry unsteady flow

(critical Re for (critical Re for
I→II is in II→III is in
200–250) 245–260)

Klotz et al. Base flow Two Hairpin-vortex —
(2014) counter-rotating shedding

vortices flow
(100 ≤ Re � 186) (186 � Re < 277) (277 ≤ Re ≤ 400)

Seyed-Ahmadi Not specified Not specified Not specified —
& Wachs (2019) (150 ≤ Re ≤ 180) (190 ≤ Re < 225) (225 ≤ Re ≤ 300)

Khan et al. Steady Steady Unsteady flow, Unsteady
(2020) axisymmetric non-axisymmetric axisymmetric in non-axisymmetric

flow flow one plane and flow in
non-axisymmetric streamwise
in other plane orthogonal planes

(20 ≤ Re ≤ 200) (215 ≤ Re ≤ 250) (276 ≤ Re ≤ 300) (339 ≤ Re ≤ 770)

Present study Orthogonal Planar Hairpin-vortex Chaotic shedding
symmetry–steady symmetry–steady shedding (HS) (CS) flow
(OSS) flow (PSS) flow flow

Table 1. A summary of flow regimes reported in the literature and those identified in the present study. Note
that the major focus of Richter & Nikrityuk (2012) was about the drag and heat transfer coefficients for flow
past spheres and various non-spherical particles, that of Seyed-Ahmadi & Wachs (2019) was about free-falling
and free-rising cubes, and the rest of the studies were concerned with a stationary cube. The critical value from
regime II to III in Klotz et al. (2014) is inferred as a value less than Re = 277 based on the observation of the
peristaltic motion.

shedding in the laminar flow regime and its bifurcation features is pivotal to future studies
on high-Reynolds-number flows. The rest of the paper is organised as following. The
numerical method is briefly introduced in § 2. The regime map identified in the present
study, and the corresponding characteristics of steady and unsteady flows are elaborated
in § 3–5 separately. The weakly nonlinear instability analysis is presented in § 6. The main
conclusions are drawn in § 7.

2. Numerical method

The steady approaching flow around the cube is governed by the incompressible
Navier–Stokes equations, which can be written in the following non-dimensional form:

∂ui

∂xi
= 0, (2.1)

∂ui

∂t
+ uj

∂ui

∂xj
= − ∂p

∂xi
+ 1

Re
∂2ui

∂xj∂xj
. (2.2)
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Wake transitions behind a cube in Re 1–400

Here ui and xi are the velocity and spatial coordinate tensors with (u1, u2, u3) =
(ux, uy, uz) and (x1, x2, x3) = (x, y, z); p and t refer to pressure and time, respectively;
Reynolds number Re is defined as UL/ν.

The computational domain is exhibited in figure 1 with dimensions of (37.5, 15, 15)

in corresponding x, y and z directions. The centre of the cube is located 7.5 to the inlet,
top, bottom and lateral boundaries, and 30 to the outlet boundary. The distances from the
origin to the inlet and outlet are justified by referring Saha (2004) and Khan et al. (2020),
where the corresponding dimensions are (6, 22) and (7.5, 17.5), respectively. The larger
distance of 30 to the outlet is deliberately chosen in order to obtain a better visualisation
of the wake structure. The dimensions in the y and z directions are determined according to
Klotz et al. (2014), where the blockage effect was shown to be negligible with a blockage
ratio of 0.43 %, which is close enough to the present blockage ratio of 0.44 %.

The governing equations are solved numerically by the finite volume method embedded
in OpenFOAM v1712 with the pressure-implicit splitting of operators (PISO) algorithm
(Issa 1986). The time derivative term is discretised by a combined scheme in which an
equal split of the first-order Euler and second-order Crank–Nicolson schemes is adopted.
The convection and diffusion terms are discretised by the fourth-order Gaussian cubic and
second-order Gaussian linear corrected schemes, respectively. The numerical accuracy is
therefore of first order in time and second order in space.

The no-slip boundary conditions of ui = 0 and ∂p/∂n = 0 are imposed on the surface
of the cube, where ∂/∂n represents the normal derivative. The conditions of ui = δi1 (δij is
the Kronecker delta) and ∂p/∂n = 0 are specified on the inlet boundary, while ∂ui/∂n =
0 and p = 0 are enforced on the outlet boundary. The symmetric boundary conditions
are imposed on the top, bottom and lateral boundaries. The initial conditions for every
simulation are ui = 0 and p = 0, except for those mentioned specifically hereinafter.

A compound mesh, which consists of an internal region with refined hexahedral cells
and an external region with coarse hexahedral cells, is introduced in order to reduce the
computational costs. As shown in figure 1, the dimensions of the internal region are
determined as (33.5, 7, 7) by a mesh dependence study, where the simulation results, based
on a structural mesh over the entire domain that has the same mesh density as that in the
region of (33.5, 7, 7), showed a negligible difference to those based on the compound
mesh. The total cell number of the compound mesh is approximately 30 % lower than
that used in the structural mesh over the entire domain, leading to significant savings in
computational costs without compromising the accuracy of the results. A further mesh
dependence study regarding the refinement in the internal region is discussed in § A.

The numerical stability is achieved by limiting the maximum Courant number
Comax < 1 throughout the computational domain. The Courant number Co is defined as

Co = �t
2V

∑
|ϕi|, (2.3)

where V is the cell volume and
∑ |ϕi| is the summation of absolute volumetric flux

through all faces of the considered cell (https://www.openfoam.com/documentation/
guides/latest/doc/guide-fos-field-CourantNo.html). A time step �t = 0.0025 is adopted
to satisfy this stability requirement.

The drag coefficient Cd, lift coefficient in the y direction Cl,y, lift coefficient in the z
direction Cl,z and the magnitude of lift coefficients Cl on the cube are defined to facilitate
further discussions,

Cd = Fd

1/2ρU2L2 , (2.4)
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Cl,y = Fl,y

1/2ρU2L2 , (2.5)

Cl,z = Fl,z

1/2ρU2L2 , (2.6)

Cl = (C2
l,y + C2

l,z)
1/2, (2.7)

where ρ is the fluid density, and Fd, Fl,y and Fl,z are the forces exerted on the cube in the
corresponding directions. It is noted that ρ, Fd, Fl,y and Fl,z should take the dimensional
forms in order to emphasise the physical meaning of the definition of the hydrodynamic
coefficients, even though the non-dimensional operation has been introduced above.

3. Flow regimes and states

The flow regimes are mapped out over Re 1–400. The Re ranges and corresponding
features of the four regimes identified in the present study are briefly described in
table 2. Distinguished by the status of flow separation on the cube surface, the OSS
regime is further divided into non-separation (NS), OSS1 and OSS2 states. No flow
separation occurs in NS and flow only separates on the rear face of the cube in OSS1.
The flow initially separates near the front leading edges of the cube, reattaches on the
lateral surfaces and then separates again on the trailing edges of the rear face in OSS2.
We hereby define the downstream and upstream flow separations as the primary and
secondary separations, respectively. Based on distinct frequency spectra, the HS regime is
split into single-frequency shedding (HS1), quasi-periodic shedding (QP) and high-order
synchronised shedding (HS2) states. The flow in HS1 is characterised by regular shedding
of hairpin vortices and the normalised frequency of the regular shedding is denoted by the
Strouhal number St1. A low frequency component St2, which is incommensurable with St1,
appears in the QP state. Here St2 becomes commensurable with St1 in HS2. A cascade of
period doubling and period halving is also observed in the HS2 state. The Re values for the
flow regimes and states as shown in table 2 are determined through variable increments of
Reynolds number, i.e. �Re, between 1 and 20. The flow features and their corresponding
physical mechanisms in those flow regimes are further discussed in the following sections.

4. Steady flows

4.1. Orthogonal symmetry–steady flow
Flow separations in the OSS regime are illustrated by two-dimensional streamlines on
the cube faces in figure 2, where representative cases at Re = 1, 3, 135 and 200 are
employed. The streamlines are derived using the velocity at the cell centre of the first
layer of the mesh. The faces of the cube are referred to by Fx± , Fy± and Fz± with the
subscripts corresponding to the outer normal vectors of the faces. When Re is smaller than
a critical value between 1 and 3, the flow is attached as shown in figure 2(a), where the
zero streamline diverges from the stagnation point at the centre of Fx− and converges at the
counterpart of the rear face Fx+ in the NS state. The onset of flow separation is observed
in the OSS1 state. Initially, at low Reynolds numbers such as Re = 3 in figure 2(b), the
separation only occurs on the rear face, as is demonstrated by the streamlines converging to
a square outline. When Re is further increased in OSS1, the primary flow separation point
S1 extends towards the sharp edges of the rear face, as shown in figure 2(c). For the flows
in the OSS2 state, a separation bubble on each of the lateral faces is observed in figure 2(d)
at Re = 200, spanning from the secondary separation point S2 to the reattachment point
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Wake transitions behind a cube in Re 1–400

Regime Re State Symmetricity Dynamical feature

I 1 NS Orthogonal symmetry Steady, non-separation
3–142 OSS1 Orthogonal symmetry Steady, four pairs of vortices

behind the cube
143–205 OSS2 Orthogonal symmetry Steady, four pairs of vortices

behind the cube, and four pairs of
vortices beside the cube

II 210–250 PSS Planar symmetry Steady, two counter-rotating
vortices

III 255–280 HS1 Planar symmetry Single-frequency hairpin-vortex
shedding

282, 285 QP Planar symmetry QP
289–305 HS2 Planar symmetry High-order synchronised

hairpin-vortex shedding,
superharmonic spectrum,
existence of a cascade of period
doubling and period halving

IV 310–400 CS Asymmetric Chaotic shedding, weak
turbulence

Table 2. Transitional states for flow past the cube with Reynolds number varying from 1 to 400.

R, and the reattachment lines are in a parabolic shape. It is also noted that the primary
separation lines coincide with the sharp edges of the rear face, while the secondary
separation lines are slightly offset from the sharp edges of the front face. This finding
is consistent with the observation of flow around a two-dimensional square cylinder by
Jiang & Cheng (2020).

The evolutions of the primary separation, secondary separation and reattachment points
against Re are illustrated by quantifying the separation and reattachment angles within
the plane z = 0 in figure 3(a), and the length of the secondary recirculation bubble
in figure 3(b). The primary separation, secondary separation and reattachment angles,
marked respectively as θS1 , θS2 and θR in figure 3(b), are defined as positive in the
counter-clockwise direction of the x-axis, while the length of the secondary recirculation
bubble is defined as the distance l2 between S2 and R. As shown in figure 3(a), θS1 increases
to the value of π/4 rapidly after the onset of primary separation, and remains π/4 until Re
reaches to the upper bound of the OSS2 state. The occurrence of the OSS2 state is observed
with the appearance of the secondary recirculation bubble at Re = 143. The corresponding
secondary separation angle θS2 is observed increasing against Re, slowly approaching
3π/4, while the reattachment angle θR decreases tending to π/4. In figure 3(b) the length
of the recirculation bubble l2 increases against Re, and their correlation is nonlinear for
Re < 155 while linear for Re > 155. Although the above evolution trends for the primary
and secondary flow separations are demonstrated through the points S1, S2 and R on the
symmetry plane z = 0, the trends based on other planes close and parallel to either y = 0
or z = 0 are expected to be similar. The length of the secondary recirculation bubble on
other planes will be smaller than that on z = 0, as implied by the streamlines in figure 2(d).

The spatial structure of the recirculation zones in the OSS regime are illustrated by
three-dimensional steady streamlines coloured by the streamwise velocity ux in figure 4.
The OSS1 state, which only possesses the primary recirculation zone, is presented for
Re = 135 in figures 4(a) and 4(b), where four pairs of counter-rotating vortices are
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(a) Re = 1

Fx− Fy−
Fx+ Fy+

Fz+

Fz−

(b) Re = 3

Fx− Fy−
Fx+ Fy+

Fz+

Fz−

S1

(c) Re = 135

Fx− Fy− Fx+ Fy+

Fz+

Fz−

S1

(d) Re = 200

Fx− Fy− Fx+ Fy+

Fz+

Fz−

S1RS2

Figure 2. Two-dimensional streamlines on the cube faces, where (a) is for NS at Re = 1, (b) for OSS1 at
Re = 3, (c) for OSS1 at Re = 135 and (d) for OSS2 at Re = 200; Fx± , Fy± and Fz± denote cube faces in the
corresponding directions implied by the subscripts; S1 and S2 denote the primary and secondary separation
locations; R denotes the reattachment location.
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Figure 3. The separation and reattachment angles in the NS, OSS1 and OSS2 states as functions of Re.
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(a)

Vortex core
y

z

(b)

0.05

−0.05

x

z

(c)

Secondary recirculation bubble

y

z

(d)

0.05

−0.05

Vortex core
Secondary recirculation bubble

x

z

Figure 4. Vortex structure in the OSS1 and OSS2 states represented by three-dimensional steady streamlines
coloured by the streamwise velocity ux, where (a,b) are the rear and side views for OSS1 at Re = 135, while
(c,d) are those for OSS2 at Re = 200; the dash–dotted arrows in (b,d) show the entering and leaving of fluid
particles along corresponding streamlines.

(a) P1 N1

N2

P2

N3 P3

P4

N4

y

z

(b)

x

z

Figure 5. Steady vortex structure in the OSS regime depicted by the isosurface of ωx = ±0.03 with red and
blue for positive and negative values, respectively, where (a,b) are the rear and side views at Re = 200. The
negative and positive streamwise vortex tubes are marked by Ni and Pi (i = 1, 2, 3 and 4), respectively.

observed behind the cube. Four additional pairs of vortices are generated on the lateral
faces of the cube for the OSS2 state at Re = 200 in figures 4(c) and 4(d), forming
the secondary recirculation bubbles. The typical flow structures are visualised by the
isosurfaces of ωx = 0.03 in red and ωx = −0.03 in blue in figure 5. Four pairs of
counter-rotating streamwise vortex tubes are also clearly observed, which are labelled by
Ni for the negative ones and Pi for the positive ones (i = 1, 2, 3 and 4) to facilitate further
discussions.

4.2. Planar symmetry–steady flow
A regular bifurcation is observed at a Re value between 205 and 210, and the PSS regime
is established in 210 ≤ Re ≤ 250. The major difference between the OSS and PSS regimes
lies in the spatial symmetry of the flow. Our results show that the rotational and reflection
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(c) (d )
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N3 P3

P4

N4

y
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x

z

y

z

x

y

Figure 6. Isosurfaces of the streamwise vorticity ωx = ±0.03 for the PSS regime at Re = 220 with red and
blue for positive and negative values, respectively. (a) Rear view, (b) side view against x–z plane, (c) front view
and (d) side view against x–y plane. The negative and positive streamwise vortex tubes are marked by Ni and
Pi (i = 1, 2, 3 and 4), respectively.

symmetry conditions in (1.1)–(1.8) are broken and only one planar symmetry with respect
to y = 0, i.e. G s

y=0, is retained.
The projected views for the isosurfaces of streamwise vorticity ωx = ±0.03 are

exhibited in figure 6. The rear and side views in figures 6(a), 6(b) and 6(d) show that
two streamwise vortex tubes in the planar symmetry G s

y=0 are generated by the merging of
N4 with N3 and P2 with P3 in comparison with those labels marked in figure 5(a), forming
a strong pair of vortex tubes that extend further downstream in the wake.

Figure 7 shows the transient variations of the lift coefficients Cl,y and Cl,z for the cases
in the PSS regime. It is noted that for each case, Cl,y increases initially and then decreases
to zero, while Cl,z increases and stabilises at a positive value. These evolution trends,
corresponding to an observation that the flow develops from an unstable OSS state to PSS
in the end, are the reflections of temporal development of the streamwise vortex tubes.
To illustrate this evolution process, the merging processes of N4 with N3 and P2 with
P3 are demonstrated in figure 8, where the rear views of isosurfaces ωx = ±0.03 for the
case Re = 220 at different moments are plotted. The corresponding moments are marked
in sequence as open circles on the time histories of both lift coefficients in figure 7. At
the beginning t = 200 in figure 7(a), the four pairs of streamwise vortex tubes are in
orthogonal symmetry. As the instability develops, N1 and P2 are merged with N4 and
P3, respectively, as shown in figure 8(c) at t = 320. The wake structure becomes nearly
symmetric with respect to the plane y = z at t = 320. Both of the two lift coefficients
are increased in this process. In figures 8(c)–8(d) the combined structure by N1 with N4
continues to merge with N3, and subsequently, N1 is split out from the combined structure
of the three vortex tubes in figures 8(e)–8(g). The wake is thereby composed of two merged
structures by N4 with N3 and P2 with P3, along with four minor streamwise vortex tubes
N1, N2, P1 and P4 in opposite signs. This form of wake keeps growing until it becomes
fully planar symmetry with respect to the plane y = 0, as shown in figure 8(h). At this
stage, the lift coefficient in the z-axis, i.e. Cl,z, is increased to a constant non-zero value,
while Cl,y returns back to zero. This evolution process is dependent on initial perturbations,
so that the PSS flow can also settle into state with symmetry about plane z = 0. It will be
demonstrated in the next section that the merged vortex tubes play a significant role in
initiating shedding of vortex tubes from the cube.
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Re = 240

Re = 250

0 1000 2000 3000

t

0

0.02

0.04

0.06

0.08

Cl,z

(b)

Figure 7. Time histories of Cl,y and Cl,z for all simulated cases in the PSS regime.

(a)

t = 200

P1 N1

N2

P2

N3 P3

P4

N4

(b)

t = 280

(c)

t = 320

(d)

t = 380

(e)

t = 460

z

y

( f )

t = 560

(g)

t = 690

(h)

t = 1200

Figure 8. The merging process from the rear view between the streamwise vortex tubes characterised by the
isosurface of ωx = ±0.03 as the temporal growth for the PSS regime at Re = 220, where (a–h) correspond
to the temporal moments marked by the open circles in figure 7. The negative and positive streamwise vortex
tubes are labelled by Ni and Pi (i = 1, 2, 3 and 4), respectively.

5. Unsteady flows

5.1. Evolution in phase space
The onset of HS by a Hopf bifurcation is observed at a critical Re value, denoted by
ReHT

cr , between 250 and 255. The focus of our investigation is on the characteristics
and mechanism of vortex shedding. Three vortex shedding states are discovered in the
HS regime, which are the regular, quasi-periodic and high-order synchronised shedding.
As has been mentioned in § 3, these states will be referred to as HS1, QP and HS2,
respectively, in the following discussions. Before we proceed to discuss the vortex
shedding features in detail, the evolution in the phase space is first examined for the HS
and CS regimes. Eight typical cases corresponding to flows from the onset of regular
shedding to the disordered and irregular wake are considered through the frequency
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Figure 9. For caption see next page.

spectra and phase portraits based on the time histories of the drag and lift coefficients
in figure 9. The Fourier spectrum is derived based on the temporal variation of Cl,z, where
the non-dimensional frequency f is normalised by U and L, and, therefore, is equivalent to
the Strouhal number.

For the HS1 state at Re = 270, which is slightly above ReHT
cr , the single dominant

frequency peak in figure 9(a), the simple closed loop of phase portrait in figure 9(b) and
the regular oscillations of Cl,z and Cd in figure 9(c) suggest that the vortex shedding is
regular with St1 ≈ 0.0975.

As Re is increased beyond a critical value to Re = 282, the spectrum and phase portrait
are featured by two dominant peaks and non-overlapping loops, respectively, signalling
a transition of vortex shedding from HS1 to the QP state. The vortex shedding with
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Figure 9 (cntd). Frequency spectra, phase portraits and time histories of the drag and lift coefficients with
(a–c) for the HS1 state at Re = 270; (d–f ) and (g–i) for QP at Re = 282 and 285; (j–l), (m–o) and (p–r)
for HS2 at Re = 289, 295 and 300; (s–u) for CS at Re = 315. The amplitudes of the frequency spectra are
normalised by the signal length.

St1 ≈ 0.0982 is modulated by a low frequency component St2 ≈ 0.0281, suggesting the
occurrence of a secondary instability in the flow. The low frequency component St2
becomes the dominant frequency in the spectrum at Re = 285 as shown in figure 9(g),
where St1 ≈ 0.0979 and St2 ≈ 0.0280. To be consistent in the following discussions,
we refer to St1 and St2 as vortex shedding and secondary frequencies, respectively. The
quasi-periodic nature of the flow shown in the QP state suggests that St1 and St2 are
incommensurable.

With a further increase of Re to Re = 289, 295 and 300, the flow transits to the HS2
state, where the phase portraits in figures 9(k), 9(n) and 9(q) return to immaculately
overlapping patterns, demonstrating the restoration of periodicity and the synchronisation
of flow modes with St1 and St2. The interlaced loops of the phase portrait suggest
the synchronisation is high order in those cases. A cascade of period-doubling and
period-halving bifurcations is observed as Re increases from 289 to 300. Each full period
of the time histories of Cd and Cl,z at Re = 295 consists of four loops that can be grouped
into two similar partitions, as marked by the two rectangles on the time history of Cd
in figure 9(o). Five characteristic moments, denoted as E, F, G, H and E′, are selected
to distinguish the four loops in the phase portrait, which are labelled as open circles in
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figures 9(n) and 9(o). The four loops are thereby determined by the trajectory E → F
→ G → H → E′ along the arrow direction in figure 9(n). The two similar partitions
become identical to each other at Re = 289 and 300, demonstrating the period-doubling
bifurcation from Re = 289 to 295 and the period-halving bifurcation from Re = 295 to
300. The full periods for Re = 289 and 300 are also marked by the rectangles in figures 9(l)
and 9(r) with the selected characteristic moments E, F and E′. As the results of the two
bifurcations, the four loops of Re = 295 are reduced into two loops, which are clearly
represented by the trajectories E → F → E′ in figures 9(k) and 9(q). The cascade of
period-doubling and period-halving bifurcations is also observed in the wakes of other
bluff bodies and different nonlinear dynamical systems (e.g. Cheng et al. 2020; Ju et al.
2020), which often signals the transition to chaos (Pikovsky, Rosenblum & Kurths 2003).
The cascade of period doubling and period halving for the wake of the cube was detected
by using �Re = 1. We are uncertain if further cascading can be found by using smaller
�Re. The observation of Cl,y = 0 in HS1, QP and HS2 suggests that the planar symmetry
about y = 0 is maintained in these states.

The chaotic vortex shedding is identified as a flow regime primarily because of the
further breaking of symmetry about y = 0 as Re ≥ 310. A typical case at Re = 315 is
selected to exhibit the disordered and irregular nature of the flow in the CS regime. The
appearance of small amplitude fluctuations of Cl,y in figure 9(u) marks the onset of flow
instabilities associated with breaking of the planar symmetry with respect to y = 0. The
dominance of Cl,z oscillations over Cl,y fluctuations suggests that the direction of vortex
shedding at Re = 315 largely remains in the x–z plane, similar to those observed in the
HS regime. The phase space of Cd–Cl,z in figure 9(t) is characterised by non-overlapping
irregular orbits, demonstrating the chaotic nature of the flow. While the low frequency St2
near f = 0.025 remains dominant, the spectrum peak associated with St1 becomes weak
such that it is hardly recognised, suggesting the regular vortex shedding associated with
St1 is no longer a standout feature of the flow.

5.2. Periodic HS

5.2.1. Single-frequency shedding
The physical mechanism of the regular vortex shedding in the HS1 state is investigated
first in order to understand the more complicated QP and HS2 states mentioned above.
To this end, the development of flow structures for the case at Re = 270 is examined at
eight phases equally spaced in one period of vortex shedding, where St1 ≈ 0.0975 and the
period T1 = 1/St1 ≈ 10.26. The corresponding temporal moments are marked by open
circles and indexed by the i axis in figure 10(a). The initial attempts of identifying the
vortex shedding mechanism were focused on the interactions of the major shear layers
developed on the cube surface by visualising isosurfaces of ωy in the plane of y = 0 and ωz
in the plane of z = 0 without much success, suggesting the mechanism of vortex shedding
behind the cube is different from that around a circular cylinder (Griffin 1995). The focus
is then shifted towards the isosurfaces of ωx as shown in figure 11, where ωx = 0.1 and
ωx = −0.1 are marked by red and blue, respectively. This shift of focus is prompted by the
observation that the near-wake structures are dominated by the streamwise vortex tubes,
as demonstrated in figures 5 and 6 for the OSS and PSS regimes, respectively. Given the
flow is symmetric about y = 0, the computational domain is divided into two halves and
only the wake structure in the region of y < 0 is exhibited. Each of the frames in figure 11
corresponds to one of the eight temporal moments shown in figure 10(a), and consists
of two projection views of the isosurfaces in the half-domain y < 0. The left column
represents the x–z views of the streamwise vortex tubes towards the negative direction
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Figure 10. (a) Time history of Cl,z in a single period at Re = 270 in the HS1 state, where the secondary axis i
is employed to denote the selected eight temporal moments extracted by �t = T1/8. (b) The circulation of the
negative streamwise vortex tube Γ in the vicinity of Hopf transition. For the definition of circulation, see the
discussion.
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Figure 11. Isosurfaces of the streamwise vorticity with ωx = 0.1 as red and ωx = −0.1 as blue for the HS1
state at Re = 270, where (i0)–(i7) correspond to the temporal moments marked in figure 10(a). The same wake
structure in the region of y < 0 is plotted as two views in each frame, in which the left and the right ones
are about the x–z view along the negative and positive y-axis, respectively. The streamwise vortex tubes in the
y < 0 region are labelled as N3, N4, P1 and P4 in (i0) and (i2).

of the y-axis, while the right column is the x–z views of the same structure towards the
positive direction of the y-axis. The streamwise directions are marked by the x-axes for the
left and right columns. In this way, the interaction between the opposite-sign vortex tubes
can be observed from both directions.

It is reasonable to anticipate that, near the critical Re for the Hopf bifurcation, the
wake instability is evolved from a steady structure similar to the one shown in figure 6.
To be consistent, the labels P1, P4, N4 and N3 are again employed to mark the tubes in
figure 11(i0) and 11(i2). The strength of the streamwise vortex tubes is expected to increase
with increasing Re. In order to substantiate this inference, the circulation Γ is quantified
by integrating the time-averaged streamwise vorticity over the region {x = 6, −2 ≤ y ≤
0, −2 ≤ z ≤ 2}. The circulation contained in a slice of the vortex tube is chosen to
represent the circulation contained in the tube is primarily because it is not straightforward
to calculate the circulation in the three-dimensional vortex tube. Nonetheless, we find this
representation works quite well, as evidenced by the variation trend of Γ with Re in the
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vicinity of Hopf bifurcation shown in figure 10(b). The cut-off value of ωx > −0.0001 is
used to quantify the circulation of the negative streamwise vortex tubes. It is seen from
figure 10(b) that the strength of the negative vortex tube (i.e. the absolute value of Γ )
indeed increases with Re as we inferred. The different variation trends of Γ in the PSS and
HS regimes allow us to determine the critical Re for Hopf bifurcation as the intersection of
the two variation trends. The critical Re of 251.3 estimated here is very close to the value
of 252.0 determined through Landau’s equation to be presented later on in § 6.2.

When Re > ReHT
cr , the merged tube by N4 with N3 in the domain y < 0 is incapable

of sustaining more circulation, since the vorticity is continuously fed into it from the
cube surface. The excessive amount of circulation is accumulated at the downstream end
of the merged tube by N4 with N3, forming a section of strong negative vortex tube in
5 < x < 8, as shown in figure 11(i0). The low pressure induced by the section of the
strong negative vortex tube tends to draw P1 and P4 towards it, leading to a merging
process by P1 with P4 from figure 11(i0) to 11(i4). As the merged tube by P1 with P4
gains significant strength, it will cut into the merged tube by N4 with N3 and eventually
leads to the shedding of the section of the strong negative vortex tube in figure 11(i5). The
vorticity continues to accumulate in the downstream end of the merged tube by P1 with
P4. The low pressure region induced by merged P1 with P4 encourages the merging of
N4 with N3, which eventually cuts off the strong positive section of the merged tube by
P1 with P4 and leads to its shedding, as shown in figure 11(i6) and 11(i7). Then a full
vortex shedding cycle is finished. In summary, the regular vortex shedding in the HS1
state is characterised by a process involving the merging, cutting-off and releasing of N4
with N3 and P1 with P4 in the region y < 0. The same process in the region y > 0 can be
also described by those of P2 with P3 and N1 with N2. The physical mechanism behind
this process is that the low pressure induced by the strong section of merged streamwise
vortex tubes attracts another two streamwise vortex tubes of opposite signs towards it, and
the subsequent merging of the two opposite-sign vortex tubes leads to the shedding of the
strong section of merged streamwise vortex tubes. This process happens alternately in two
halves of a regular shedding period.

The wake structure at Re = 270 is further illustrated by the isosurface of λ2 in figure 12
(for λ2 technique, see Jeong & Hussain 1995), where the isosurfaces are coloured by the
streamwise vorticity −0.03 < ωx < 0.03 varying from blue to red. The flow at the moment
i = 7 in figure 10(a) is only employed to plot the global view in figure 12(a), since the
length of the compute domain is enough to display the propagation of hairpin vortices in
three full periods, so that the evolution of a hairpin vortex can be approximately traced
by comparing these consecutive cycles. The complex interactions of vortex tubes in the
wake lead to the unique wake structures observed in figure 12(a), which are distinctly
different from those formed in the wake of long cylindrical structures such as circular
cylinders and prisms of different cross-section shapes (Thompson et al. 2006; Sau 2009).
The shedding process characterised by the merging and cutting-off of streamwise vortex
tubes in figure 11 forms upper and lower branches for the hairpin vortices in the wake, as
marked in figure 12(a). From the near-wake view in figure 12(b), the streamwise vortex
tubes can also be clearly distinguished from the isocontour of λ2 around the cube, where
only the positive tubes P1 and P4, and the negative ones N1 and N2 are marked accordingly.
Further discussions on the dynamics and evolution of the hairpin vortices are not presented
here, because it digresses from the topic of this study, while it might be a worthwhile point
to form a separated investigation in the future.
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Figure 12. Representation of the wake structure at Re = 270 by isosurfaces of λ2 coloured by a blue-white-red
colour map of ωx varying from −0.03 to 0.03, where (a,b) are the global and near-wake structures at the
moment i = 7 in figure 10(a).

5.2.2. Quasi-periodic shedding
The QP state is characterised by the emergence of a dominant low frequency component
(St2) that modulates the regular oscillations of the lift coefficient observed in the HS1 state.
Although the QP state has not been reported before for the laminar wake of a cube, similar
phenomena involving modulating frequencies have been found in other bluff-body flows,
e.g. Lee (2000) and Tomboulides & Orszag (2000) for spheres; Gao et al. (2018) for an
inclined circular disk; Bohorquez et al. (2011) for a slender blunt-based body. The physical
origin of St2 along with the shedding of hairpin vortices for the cube is considered by
taking advantage of the QP state at Re = 282, where St1 ≈ 0.0982 remains dominant over
St2 ≈ 0.0282, as shown in figure 9(d). It is noted that St1/St2 ∼ 7/2, corresponding to the
occurrence of seven vortex shedding cycles in approximately two secondary periods. This
behaviour suggests the state observed here is in the vicinity of a high-order synchronisation
of St1/St2 = 7/2 in the parameter space, where the ratio of two frequencies is a rational
number (Pikovsky et al. 2003). Previous studies (e.g. Ren et al. 2019) have shown that the
stroboscopic view of flow fields sampled at the higher frequency over the entire period
of the low frequency constitutes an effective way of revealing the physical mechanism of
quasi-periodic oscillation. The regular vortex shedding frequency St1 ≈ 0.0982 is used as
the sampling frequency over the secondary period in the following flow visualisations.

Figure 13(a) exhibits the time history of Cl,z for the case Re = 282, where eight
temporal moments, as marked by the open circles, are uniformly distributed in time
under �t = 1/St1 ≈ 10.18. The secondary axis i is employed to refer to each moment.
It is seen that the phases of the open circles are not identical and Cl,z oscillates around
a mean value over the secondary period, confirming the quasi-periodic nature of the
flow. The projected x–z views of the flow field sampled at those moments are shown
in figure 14, where the vortex structure is represented by the isosurface of λ2 coloured
by the streamwise vorticity −0.03 < ωx < 0.03. A remarkable flow feature observed in
figure 14 is that the phase at which the head of the lower branch is released into the wake
becomes unstable and varies from cycle to cycle, underlying the occurrence of a secondary
instability. The phase undergoes two oscillation cycles over seven vortex shedding periods
from figures 14(i0) to 14(i7), corresponding to St1/St2 ∼ 7/2. This observation allows
us to conclude that St2 is induced by a secondary instability associated with temporal
evolution of the wake structure behind the cube. The geometry of the hairpin vortices
in the wake of Re = 282 is similar to that of Re = 270 in figure 12 since St1 is still
dominant, while the relatively weak streamwise oscillation by St2 can also be observed as
the propagation of the coherent structures in the same magnitude as shown for the release
of the heads in figure 14. Identification of the physical origin of this secondary instability
based on the flow features at this Reynolds number is not straightforward because the
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Figure 13. Selected ranges of time histories of Cl,z for the QP state at (a) Re = 282 and (b) Re = 285, where
the eight moments under �t = 1/St1 ≈ 10.18 for Re = 282 and the other eight ones under �t = 1/St1 ≈ 10.27
for Re = 285 are marked with open circles and can be referred to by the secondary axis i.
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Figure 14. Stroboscopic plots for the case at Re = 282 in the QP state, with St1 ≈ 0.0982 as the sampling
frequency. The near-wake region is characterised by the x–z views of the isosurface of λ2 in a blue-white-red
colour map of ωx varying from −0.03 to 0.03, and (i0)–(i7) correspond to the moments by the open circles in
figure 13(a).

secondary oscillation is relatively weak. We will continue exploring the physical origin of
the secondary instability through more numerical examples below.

An interesting phenomenon is observed between Re = 282 and 285. The secondary
frequency St2 becomes the dominant frequency component at Re = 285 and this
dominance over St1 continues to grow with increasing Re thereafter. This observation
suggests the secondary instability associated with St2 has become the dominant feature
of flow around a cube at Re ≥ 285. To explore the flow feature associated with St2, the
stroboscopic plots of the isosurface of streamwise vorticity in the space of y < 0, at
selected moments marked in figure 13(b), are examined in figure 15. The oscillation of
Cl,z sampled at the vortex shedding frequency St1 becomes more pronounced than that
shown in figure 13(a), which is consistent with the contrast between the wake structure
observed in figures 14 and 15. The wake structures at different moments shown in figure 14
would have been identical if there were not secondary frequency St2. The different wake
structures observed in figure 15 are induced by the phase oscillation of the vortex shedding
process observed in figure 11. The oscillation of the wake structure can be clearly observed
if our focus is placed on the structure enclosed by the dashed rectangle in figure 15(i0).
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Figure 15. Stroboscopic plots for the case at Re = 285 in the QP state, with St1 ≈ 0.0979 as the sampling
frequency. The isosurfaces of ωx = 0.1 as red and ωx = −0.1 as blue are presented in the same way as figure 11,
where (i0)–(i7) correspond to the temporal moments marked in figure 13(b).

The positive and negative vortex tubes in 8 < x < 16 start to lower down horizontally in
the next two vortex shedding periods, before curling to a similar posture to that shown in
figure 15(i0) at a moment between figures 15(i3) and 15(i4), completing a cycle of wake
oscillation in St2.

The above oscillation process repeats again approximately from figures 15(i4) to 15(i7),
completing two cycles of wake oscillation within approximately seven periods of vortex
shedding. The near-wake structure shown in figure 15 shows an excellent correlation to the
phase oscillation of Cl,z sampled at the vortex shedding frequency St1 in figure 13(b) with
St1/St2 ∼ 7/2.

5.2.3. High-order synchronised shedding
As Re is further increased, the flow changes from the QP state to the HS2 state which
occurs over 289 ≤ Re ≤ 305. One of the unique characteristics in the HS2 state is that
St1/St2 = 7/2, suggesting a high-order synchronisation between flow features associated
with St1 and St2. The underlying physics behind the 7/2 synchronisation is that seven
cycles of vortex shedding happen exactly over two secondary periods.

The time history of Cl,z in two typical secondary periods 2T2 = 2/St2 ≈ 73.86 is shown
in figure 16 for Re = 300. For the purpose of flow visualisation, the two secondary
periods are divided into two uneven periods with T1 ≈ 40.49 and T2 ≈ 33.37 based on the
recurrence pattern of the lift coefficient Cl,z. The flow structures are visualised through the
isosurfaces of ωx in figure 17. In each of T1 and T2, 16 moments are selected uniformly,
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Figure 16. Time history of Cl,z in two secondary periods 2T2 = T1 + T2 for the HS2 state at Re = 300. The
full period 2T2 is divided into two portions T1 ≈ 40.49 and T2 ≈ 33.37 by the recurrence of Cl,z, where
16 moments are uniformly selected for each portion, as marked by the open circles. The secondary axis i is
employed to refer to every moment.

as shown by the open circles in figure 16. All of the moments are plotted for the isosurfaces
of ωx in figure 17. There are more snapshots of the flow field employed in figure 17 than
those shown in previous cases so as to identify the physics behind the secondary oscillation
of the wake. The visualisation method employed in figure 17 is the same as that used in
figure 11 at Re = 270.

The alternate shedding process of vortex tubes at the initial phases of T1 is similar to
that observed in HS1, as shown by the flow features corresponding to St1 in figure 11.
Three pairs of vortex tubes, whose negative and positive branches are marked as V1, V2
and V3, are shed into the wake from figures 17(i0) to 17(i9). The flow becomes rather stable
after that and only one pair of vortex tubes, marked as V4, is shed between the moments
spanning from figures 17(i9) to 17(i15), forming a large peak of Cl,z spanning from i = 9 to
15 in figure 16. Regular vortex shedding resumes after that with two pairs of vortex tubes
V5 and V6 shed from figures 17(i16) to 17(i23), where the positive branch of V4 is squeezed
together with the shedding of V5 in figure 17(i16). The flow becomes stable again with
only one pair of vortex tubes V7 shed between the moments spanning from figures 17(i23)
to 17(i31), forming another large peak of Cl,z between i = 23 and i = 31 in figure 16. It is
clear from the above observation that the dominant flow feature associated with St2 is the
two relatively stable flow cycles over exactly seven periods of vortex shedding at St1.

The interaction of streamwise vortex tubes appears to be responsible for the relatively
stable flow cycles. The vortex tubes N4, N3, P1 and P4 become relatively weak
in figure 17(i9) after the consecutive shedding of three pairs of vortex tubes in
figures 17(i0)–17(i9), and experience an epoch of growth after figure 17(i9). Subsequently,
the fast growth of merged N4 and N3 hinders the growth and merging of P1 and P4 through
the cancellation mechanism of vorticity of opposite signs, leading to a substantial delay
of the shedding of the merged N4 and N3 in figure 17(i14). The delayed shedding process
observed at the second half of T2 is due to the same flow mechanism described above.

The oscillation of the primary recirculation zone for Re = 300 is examined through
the streamlines on the plane y = 0, as shown in figure 18, where the even values of i in
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Figure 17. Isosurfaces of the streamwise vorticity with ωx = 0.1 as red and ωx = −0.1 as blue for the HS2
state at Re = 300, where (i0)–(i15) correspond to the first 16 temporal moments marked within T1 in figure 16,
while (i16)–(i31) correspond to the rest of the 16 moments in T2. The manner to exhibit the flow structures in
figure 11 is employed.

figure 16 are plotted. It is noted that the upper side of the recirculation zone is sustaining
during the full shedding period, while the lower side oscillates under the spectrum of the
high-order synchronised state, which is similar to the motion of streamlines in the HS1
flow (e.g. figure 18 of Saha 2004 and figure 5 of Klotz et al. 2014).

5.3. Chaotic shedding
That the flow becomes chaotic has been shown with the case Re = 315 in figures 9(s)–9(u).
As Re is further increased, larger amplitude fluctuations will occur both on Cl,y and Cl,z,
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Figure 18. The periodic variations of the two-dimensional streamlines on the plane y = 0 at Re = 300 in the
HS2 state, where the moments at even values of i in figure 16 are exhibited in each plot.

suggesting the dominant shedding direction switches in the y–z plane. To facilitate further
discussions, temporal variations of Cl,y and Cl,z at Re = 390 are examined over three
intervals marked by the dashed rectangles in figures 19(a) and 19(b). In the first and second
intervals, one of the lift coefficients oscillates around a non-zero value while the other one
oscillates around zero, indicating the vortex shedding is in either the x–z or x–y plane. It is
interesting to note that both of the lift coefficients oscillate around non-zero values in the
third interval, where Cl,y oscillates around a positive value while Cl,z around a negative
one. It is speculated that the primary direction of vortex shedding is in the y = −z plane
during this interval. To confirm this speculation, the lift coefficients in the third interval
are recalculated by projecting to the diagonal directions, i.e. Ĉl,y = √

2/2(Cl,y − Cl,z)

and Ĉl,z = √
2/2(Cl,y + Cl,z). The original and transformed lift coefficients are plotted in

figures 19(c) and 19(d). We note that the mean values of the original Cl,y and Cl,z, i.e. 0.069
and −0.085, are close to each other in magnitude and both away from zero in figure 19(c),
while the transformed Ĉl,z decreases to a value around zero in figure 19(d). This result
basically confirms the above speculation. Since the flow shedding remains nearly in the
plane y = −z only briefly, we suspect the flow is relatively unstable on the diagonal planes
of y = z and y = −z.

To further confirm the above inference, the coherent structures represented by
isosurfaces of λ2 are exhibited in figure 20, where the hairpin vortices are plotted at
three selected moments t = 600, 1247 and 2101 from the three intervals. Figures 20(a,c,e)
and 20(b,d, f ) show the x–y and x–z projected views, respectively. It is clearly observed,
in figures 20(a) and 20(b) at t = 600, that the vortex shedding mainly occurs in the z
direction. While, it changes to the y direction in figures 20(c) and 20(d) for t = 1247, and
becomes oblique in figures 20(e) and 20( f ) for t = 2101.
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Figure 19. Time histories of lift coefficients for the case at Re = 390, where (a,b) are Cl,y and Cl,z with
three distinct intervals marked by the rectangles, (c) is the two lift coefficients in the third interval, and (d)
is the lift coefficients by mapping onto the diagonal direction through Ĉl,y = √

2/2(Cl,y − Cl,z) and Ĉl,z =√
2/2(Cl,y + Cl,z).
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Figure 20. Isosurfaces of λ2 at Re = 390 coloured by the streamwise vorticity −0.03 < ωx < 0.03 varying
from blue to red, where (a,b) are projected views of the coherent structure on the x–y and x–z planes for
t = 600, (c,d) are for t = 1247 and (e, f ) are for t = 2101.

6. Weakly nonlinear instability analysis

6.1. Regular bifurcation
The nature of the regular and Hopf bifurcations observed in the wake of a cube is
investigated through weakly nonlinear analysis in this section. The regular bifurcation
from OSS to PSS is a stationary one between two steady states and is believed to be a
pitchfork bifurcation, which was also mentioned as a supercritical imperfect bifurcation
in Klotz et al. (2014). The trajectories of the regular bifurcation in the wake of the

919 A44-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

40
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.406


Q. Meng, H. An, L. Cheng and M. Kimiaei

cube are bijectively reflected by the growth of the lift coefficients exerted on the cube,
as exhibited in figures 7 and 8. The non-dimensional lift force can be characterised by
the two-dimensional vector (Cl,y, Cl,z), which will be disturbed from its equilibria in
the vicinity of flow transition from OSS to PSS. Thus, a two-dimensional dynamical
system regarding the variation of the (Cl,y, Cl,z) can be employed to describe the regular
bifurcation as follows:

dCl,y

dt
= f (Cl,y, Cl,z), (6.1)

dCl,z

dt
= f (Cl,z, Cl,y). (6.2)

The orthogonal symmetry of the flow demonstrates that (Cl,y, Cl,z) = (0, 0) is the
only stable fixed point in the OSS regime before it bifurcates to the PSS regime, where
the planar symmetry with respect to the plane either y = 0 or z = 0 is retained. Due
to the symmetry of the cube with respect to the diagonal direction, Cl,y and Cl,z are
interchangeable, which guarantees an identical f (ξ, η) in (6.1) and (6.2). Four equilibria
at (±Csat

l , 0) and (0, ±Csat
l ), where Csat

l denotes the �2-norm of the lift coefficients at
saturation, are expected based on (6.1) and (6.2). The form of the coupling terms in f (ξ, η)

can be determined through Taylor expansion at (0, 0) and enforcing symmetry conditions
of (Cl,y, Cl,z) → (−Cl,y, Cl,z) and (Cl,y, Cl,z) → (Cl,y, −Cl,z),

f (ξ, η) = k1ξ + k2ξ
3 + k3ξη2 + · · · , (6.3)

where k1, k2 and k3 are real coefficients and, as to each term ξmηn, m + n is odd and n has
to be even.

Substituting (6.3) into (6.1) and (6.2) and omitting high-order terms, we have

dCl,y

dt
= Cl,y[k1 + k2(C2

l,y + γ C2
l,z)], (6.4)

dCl,z

dt
= Cl,z[k1 + k2(C2

l,z + γ C2
l,y)], (6.5)

where γ = k3/k2. Eight non-trivial equilibria for (Cl,y, Cl,z) can be obtained from (6.4)
and (6.5), (

±
√

−k1

k2
, 0

)
,

(
0, ±

√
−k1

k2

)
, (6.6)

(
±
√

− k1

k2(1 + γ )
, ±
√

− k1

k2(1 + γ )

)
,

(
±
√

− k1

k2(1 + γ )
, ∓
√

− k1

k2(1 + γ )

)
. (6.7)

The stability of the coupled pitchfork system at these equilibria can be further examined
by linear stability analysis. By applying the variational operation to (6.4) and (6.5),
the corresponding Jacobian matrix can be derived as

J (Cl,y, Cl,z) =
(

k1 + k2(3C2
l,y + γ C2

l,z) 2γ k2Cl,yCl,z

2γ k2Cl,zCl,y k1 + k2(3C2
l,z + γ C2

l,y)

)
. (6.8)

The equilibrium (0, 0) is known as unstable in PSS. Therefore, the eigenvalues of J (0, 0)

denoted as λ1,2 = k1 should be positive, i.e. k1 > 0. Without loss of generality, we take
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(0,
√−k1/k2) as the fixed point (0, Csat

l ). It is thus required that k2 < 0 and the eigenvalues
of J (0,

√−k1/k2) derived as λ1 = −2k1 and λ2 = k1(1 − γ ) are both negative, which
results in γ > 1. The determinate signs of k2 and γ imply that the third-order nonlinear
terms stabilise the coupled pitchfork bifurcation system and the nature of the regular
transition in the wake of the cube is supercritical. Through the same reasoning, the stability
of the diagonal equilibria in (6.7) can be shown as saddle points, suggesting the existence
of the alternative PSS regime with respect to the diagonals are impossible in the wake of
the cube.

The time histories of Cl,y and Cl,z at Re = 210, which is slightly above the critical Re
value of the bifurcation from OSS to PSS, are plotted in figure 21(a) to quantify the value
of k2. The linear forms of (6.4) and (6.5) can be written as

d ln Cl,y

dt
= k1 + k2(C2

l,y + γ C2
l,z), (6.9)

d ln Cl,z

dt
= k1 + k2(C2

l,z + γ C2
l,y). (6.10)

The dependence of (d ln Cl,y/dt) on (C2
l,y + γ C2

l,z) and (d ln Cl,z/dt) on (C2
l,z + γ C2

l,y) is
tested by assuming different values of γ in (6.9) and (6.10) and the corresponding results
are plotted in figures 21(b) and 21(c). Both equations become approximately linear at γ ≈
1.435, which leads to k1 ≈ 0.00572 and k2 ≈ −8.43 deduced via linear fitting.

With this set of control parameters at Re = 210, the predictions of time histories of
(Cl,y, Cl,z) based on (6.4) and (6.5) with an initial perturbation of (0.835, 1.07) × 10−5

are plotted in figure 21(a), and the possible trajectories in phase space Cl,y–Cl,z is
demonstrated in figure 21(d). The predictions based on the two-dimensional coupled
pitchfork model are in good agreement with the simulation results. The four stable fixed
points located on the axes and the four saddle nodes on the diagonals are clearly observed
through those trajectories.

The supercritical nature of the bifurcation from OSS to PSS implies that any
infinitesimal disturbances will initiate the flow bifurcation from OSS to PSS when the
Reynolds number is slightly greater than the critical value. Thus, the critical value of
Reynolds number for the regular transition, denoted as ReRT

cr , can be estimated as the point
where the linear growth rate k1 changes its sign. Figure 22 illustrates the linear initial
stage of ln Cl for four cases in the vicinity of the regular transition and the dependence
of the growth rate on Re. The critical value of ReRT

cr ≈ 207.0 is obtained through a linear
correlation of the growth rate with Re.

6.2. Hopf bifurcation
The nature of the Hopf bifurcation from PSS to HS1 is considered below. At the onset
of the HS1 state, a pair of complex eigenvalues should emerge to govern the growth of
disturbance, for which Landau’s equation has been proven appropriate to describe this
nonlinear dynamical behaviour (Stuart 1960; Watson 1960) as

dZ
dt

= c1Z + c2|Z|2Z + · · · , (6.11)

where Z = |Z|eiφ represents the complex disturbance of interest, with |Z| and φ being its
amplitude and phase, respectively; ci = ai + ibi is the complex coefficient. In particular,
a2 is the first Lyapunov coefficient.
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Figure 21. (a) Time histories of Cl,y and Cl,z either by the DNS results at Re = 210 or by the prediction of the
coupled pitchfork bifurcation model; (b) the linear dependence of (d ln Cl,y/dt) on (C2

l,y + γ C2
l,z); (c) the linear

dependence of (d ln Cl,z/dt) on (C2
l,z + γ C2

l,y); (d) the trajectories with stable, saddle and unstable equilibria of
the coupled pitchfork model in the phase space.

Substituting the expression of Z into (6.11), the temporal variation of the amplitude and
phase are decoupled, such that we obtain an equation with respect to |Z| in the form of

d ln |Z|
dt

= a1 + a2|Z|2 + · · · . (6.12)

With the similar criterion to the pitchfork bifurcation, the nature of the Hopf bifurcation
can be determined by the sign of the first Lyapunov coefficient a2. Figure 23(a) shows the
time histories of the lift coefficients at Re = 255, which is slightly greater than the critical
value Re for the Hopf bifurcation. The two characteristic dynamical behaviours displayed
by the time histories of the lift coefficients, namely the rapid decay of Cl,y to zero and the
growth of Cl,z to a periodic pattern for t > 300, are somewhat expected. The rapid decay of
Cl,y to zero suggests the flow symmetry about the plane y = 0 is retained in HS1, while the
growth of Cl,z to the periodic pattern implies that the regular vortex shedding occurs in the
x–z plane. Based on the results shown in figure 23(a), the time history of Cl,z for t > 300
is selected for the consideration of Landau’s equation, and the amplitude is extracted by
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Figure 22. (a) Time histories of ln Cl at Re = 200 and 205 for the OSS2 state and Re = 210 and 215 for the
PSS state; (b) the linear relation regarding the growth rate of Cl as the increase of Reynolds number, where the
critical Reynolds number for the regular transition ReRT

cr is estimated at 207.0 by interpolation.
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Figure 23. (a) Time histories of Cl,y and Cl,z with the employed upper and lower envelopes at Re = 255; (b)
the linear correlation between d ln |Z|/dt and |Z|2.

means of

|Z| = upper envelope − lower envelope
2

. (6.13)

The relation between d ln |Z|/dt and |Z|2 is calculated in figure 23(b), in which a linear
dependence is subsequently established with a negative slope, such that the sign of a2
is recognised. Therefore, the Hopf bifurcation is determined as supercritical, which is
consistent with Klotz et al. (2014), and the wakes of a sphere (Thompson, Leweke &
Provansal 2001) and ring tori (Sheard, Thompson & Hourigan 2004).

The critical Reynolds number for the transition from PSS to HS1, denoted as ReHT
cr , is

estimated by correlating the growth rate with Re in the vicinity of the transition point from
Re = 245 to 255. For the cases with Re < ReHT

cr , artificial perturbations are introduced
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Figure 24. Linear interpolation for the critical Reynolds number of Hopf transition: (a–d) the time histories
of lift coefficients for Re = 245 and 250 obtained by using Re = 240 at t = 516 as the initial flow state; (e, f )
are the linear relations between the amplitude ln |Z| and t; (g) the growth rates for cases in the vicinity of the
Hopf transition, where the critical value ReHT

cr is estimated at 252.0 by interpolation.

to disturb the flows at Re = 245 and 250 in order to obtain the growth rate. The steady
solution of the flow at Re = 240 is used as the initial condition for the simulations at
Re = 245 and 250. The envelops employed to calculate the growth rate at Re = 245
are exhibited in figures 24(a) and 24(b), and those for Re = 250 are in figures 24(c)
and 24(d). The amplitude of each envelope |Z| is derived by the same expression in
(6.13), and the variations of ln |Z| against t are plotted in figures 24(e) and 24( f ) for
Re = 245 and 250, respectively. A linear correlation shown in figure 24(g) suggests
ReHT

cr ≈ 252.0.

6.3. Global bifurcation features
Global bifurcation features of flow around a cube are examined by plotting peak values
of Cl,y and Cl,z in figure 25 over the range of Re investigated in the present study. Since
the peak values of Cl,y and Cl,z are extracted from temporal variations of Cl,y and Cl,z
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Figure 25. Bifurcation diagram by the stable orbits of the lift coefficients in all recognised flow states and
regimes.

over a long period of simulation time (at least five periods for 255 ≤ Re ≤ 305 and
1500 time units for 310 ≤ Re ≤ 400), figure 25 actually represents a phase diagram in
Re space. The global bifurcation is characterised by different types of attractors. In the
OSS regime, which includes the NS, OSS1 and OSS2 states, the attractors are fixed points
at (Cl,y, Cl,z) = (0, 0). The attractor is a fixed point at (0, Cl,z) in the PSS regime. In the
HS1 state the time history of Cl,z starts to oscillate between two local extrema periodically.
Therefore, the stable orbit of Cl,z settles into a limit circle with a non-zero mean of Cl,z.
The limit circle of Cl,z is distorted by the emerging secondary instability in the QP state.
The two branches of local maxima and minima are scattered into inconsistent values. With
the periodicity re-established in the form of high-order synchronisations in the HS2 state,
the dispersed characteristic values of Cl,z return to a finite number of consistent values
again, corresponding to that the limit torus collapses to well-defined limit circles in the
HS2 state. The cascade of period-doubling and period-halving bifurcations is qualitatively
reflected on the number of local maxima and minima of Cl,z at different Reynolds numbers.
In the CS regime the flow is governed by chaotic attractors, such that both Cl,y and Cl,z
start to oscillate randomly with the breaking of planar symmetry with respect to the y = 0
plane.

The evolution of the mean drag coefficient Cd, the length of the primary recirculation
zone l1 and the Strouhal numbers St1 and St2 with Re are illustrated in figures 26(a), 26(b)
and 26(c), respectively. The mean drag coefficient Cd experiences a monotonic decrease
with increasing Re until Re ≈ 310, which coincides with the onset of the CS regime. In
the CS regime, Cd increases slightly with increasing Re. This trend of Cd against Re is
apparently different with that of freely moving cubes, where Cd will first decrease as the
drag coefficient of the fixed cube in lower Reynolds numbers and then experience a sudden
increase approximately at Re = 150–200 (e.g. Haider & Levenspiel 1989; Tran-Cong,
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Figure 26. (a) The time-averaged drag coefficients Cd against Re; (b) the length of the primary recirculation
zone l1 against Re, where l1 is defined by the maximal x coordinate on the isosurface of ux = 0; (c) the Strouhal
numbers St1 and St2 against Re in the unsteady regimes.

Gay & Michaelides 2004; Seyed-Ahmadi & Wachs 2019). This is because additional
degrees of freedom for the cube leads to a wake transition into helical settling trajectories
(Seyed-Ahmadi & Wachs 2019). The length of the primary recirculation zone l1, defined
by the maximal x coordinate on the isosurface of ux = 0, is employed to characterise the
mean size of the vortex bubble behind the cube. This definition is equivalent to that by
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Wake transitions behind a cube in Re 1–400

Klotz et al. (2014), where the distance from the centre of the cube to the location of the
streamwise velocity changing its sign was defined as l1. The l1 variation illustrated in
figure 26(b) shows a monotonic increasing trend until the onset of Hopf bifurcation at
ReHT

cr ≈ 252.0, a linearly decreasing trend in the HS1 state over 255 ≤ Re ≤ 280, a near
constant value in the QP and HS2 states over 282 ≤ Re ≤ 305, and an irregular variation
trend in the CS regime for 310 ≤ Re ≤ 400. The Strouhal numbers shown in figure 26(c),
due to the strong spectral leakage in the CS regime, are calculated based on the streamwise
velocity at (3, 0, 0) and represented by the largest values among multiple peaks around
f = 0.1 for St1 and f = 0.025 for St2. It is noted that the values of St1 and St2 are both
slightly increased in HS1 but exhibit decreasing trends in QP and HS2. However, in the
CS regime for 310 ≤ Re ≤ 400, St1 and St2 turn to be obviously increasing against Re.

7. Conclusion

Steady approaching flow around an isolated cube is investigated numerically through DNS
over the range of Reynolds number 1–400 in this study. The canonical situation, where the
streamwise direction is perpendicular to a face of the cube, is taken into consideration.
High-resolution simulations with small increments of Reynolds numbers are employed in
order to precisely determine the important flow features. The conclusions drawn from the
study are summarised below.

(i) A number of flow regimes are identified over Re 1–400, including the orthogonal
symmetry–steady (OSS, Re ≤ 205), planar symmetry–steady (PSS, 210 ≤ Re ≤
250), hairpin-vortex shedding (HS, 255 ≤ Re ≤ 305) and chaotic vortex shedding
(CS, Re ≥ 310) regimes in the sequence of increasing Reynolds number. The
transitions among these regimes are characterised, in sequence, by the change from
orthogonal symmetry to planar symmetry, a Hopf bifurcation, and the breaking of
periodicity and all symmetry conditions, accordingly.

(ii) The orthogonal symmetry formed by four pairs of steady streamwise vortex tubes in
the wake of the cube is one of the profound flow features in the OSS regime. Three
flow states are further identified in the OSS regime based on the features of flow
separation on the cube surface. The flow separation is first detected on the rear face
of the cube at Re = 3 and remains on the rear face until Re is increased to a value
between 142 and 143, marking the end of the OSS1 state. The flow separates and
reattaches on the side faces of the cube, and separates again on the edges of the rear
face for 143 ≤ Re ≤ 205, which is denoted as the OSS2 state.

(iii) A flow bifurcation from OSS flow to a PSS flow about y = 0 occurs as the Reynolds
number is increased beyond 205, leading to the formation of the PSS flow regime.
The profound feature of the PSS flow is the merging of like-sign streamwise
vortex tubes on either side of y = 0, forming a strong pair of opposite-sign
streamwise vortex tubes in the wake of the cube. The weakly nonlinear stability
analysis conducted in the present study, through constructing two coupled amplitude
equations based on pitchfork bifurcations, confirms that the bifurcation from OSS to
PSS is supercritical, where four stable fixed points on the y = 0 and z = 0 planes,
and four saddle points on the y = z and y = −z planes are established. The critical
Reynolds number for the regular transition is estimated at 207.0 by interpolation for
the linear growth rates.

(iv) The supercritical Hopf bifurcation to the HS regime is determined to take place
at ReHT

cr ≈ 252.0 through Landau’s equation. The HS regime is comprised of
the regular (HS1), quasi-periodic (QP) and high-order synchronised (HS2) vortex
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shedding states. In the vicinity of the critical Reynolds number for the HS regime,
the vortex shedding is regular with a well-defined Strouhal number St1. As the
Reynolds number is increased beyond a critical value around Re = 282, vortex
shedding becomes quasi-periodic where the temporal variation of the lift coefficient
is modulated by a secondary low frequency component of St2. The spectrum peak
corresponding to the secondary frequency St2 becomes dominant at Re = 285 of
the QP state. As Re is further increased to Re = 289, 295 and 300, the flow
transits to the HS2 state, which is characterised by high-order synchronisations.
A cascade of period-doubling and period-halving bifurcations is observed among
these cases. The phase portraits of the cases at Re = 289 and Re = 300 are
comprised of two well-defined interlaced loops, whereas four loops are observed in
the phase portrait at Re = 295. The cascade of period-doubling and period-halving
bifurcations observed in the present study is similar to those observed in other
nonlinear dynamical systems and bluff-body flows, and is believed to be a precursor
to the transition to the CS regime.

(v) The regular vortex shedding in the HS1 state is induced by the interaction of merged
streamwise vortex tubes in the wake. Two pairs of merged vortex tubes of opposite
signs are shed in turn and cut off each other in a period of vortex shedding.

(vi) The quasi-periodic feature of the flow in the QP state is induced by the unstable
phase at which the head of the lower branch of the vortex tube is released into the
wake, corresponding to the secondary instability by St2. As St2 becomes dominant
for slightly higher Reynolds numbers, this instability evolves into the streamwise
fluctuations along with the regular vortex shedding, which undergoes approximately
two cycles of oscillation over seven shedding periods.

(vii) One of the unique characteristics in the HS2 state is that the Strouhal number
St1 is commensurable with St2 with a ratio of St1/St2 = 7/2, suggesting a
high-order synchronisation between the vortex shedding process and the flow
features associated with the secondary instability. The physics behind the 7/2
synchronisation is that seven cycles of vortex shedding occur exactly over two
secondary periods. By splitting the full period 2T2 into two uneven intervals T1 and
T2 in terms of the recurrence pattern on Cl,z, four hairpin-vortex shedding circles are
established in T1 whilst three circles are found in T2. The wake of the HS2 flow is
featured by two relatively stable shedding periods due to the streamwise oscillation
by the secondary instability. The flow mechanism behind this observation is that the
relatively stable periods hinder the formation of merged vortex tubes of opposite
signs.

(viii) The onset of chaotic vortex shedding is marked by the breaking of the last
flow symmetry about the y = 0 plane for Re ≥ 310. In the vicinity of the
transition flow becomes unstable about the y = 0 plane, where small amplitudes
of random oscillations appear while the vortex shedding largely remains in the x–z
plane.

The observations and understandings towards the secondary instability in the periodic
shedding flows are pivotal to future studies on wake transition to turbulence for flow around
a cube. It is anticipated that the low frequency will continue to play a significant role in the
breaking of coherent structures into smaller-scale vortices at higher Reynolds numbers.
When the breaking of symmetry occurs, the discontinuous symmetry of the cube will
again start to strongly affect the development and evolution of the coherent structures in
the wake.
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Mesh Cell number (Nx, Ny,z) �xw Cd Cl C′
l

1 3.14 million (42, 30) 0.1325 0.8735 0.1105 0.03457
2 6.23 million (61, 46) 0.1152 0.8728 0.1112 0.03417
3 9.76 million (85, 61) 0.0996 0.8735 0.1101 0.03423

Table 3. Comparison of the time-averaged drag coefficient Cd , lift coefficient magnitude Cl and
root-mean-square deviation of the lift coefficient magnitude C′

l obtained by the three meshes at Re = 400.
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Appendix A. Mesh dependence

Mesh dependence is studied at the upper bound of Re range for the problem of interest,
i.e. Re = 400. Three meshes are considered and the total number of cells is 3.14 million in
mesh 1, doubled and tripled in meshes 2 and 3, respectively. The mesh refinement is only
conducted in the internal region, whilst the total number of cells in the external region is
maintained around 0.33 million for all meshes. Table 3 lists the details of the three meshes,
where Nx and Ny,z are employed to denote the node numbers along the cube edges in x,
y and z directions, respectively; �xw represents the uniform streamwise dimension of the
cells in the internal wake region x > 3.5.

The time-averaged hydrodynamic coefficients Cd and Cl, and the root-mean-square
values of the lift coefficient magnitude C′

l are given in table 3. The maximum differences
of Cd, Cl and C′

l obtained by the three meshes are 0.08 %, 1 % and 1.17 %, respectively,
suggesting these coefficients are insensitive to the resolutions of the three meshes.

The mesh dependence is further checked by comparing pressure distributions along
selected middle lines on the cube surface and velocity distributions in the wake. For the
pressure distribution, the pressure coefficient Cp is considered and defined as

Cp = p∗

1/2ρU2 , (A1)

where p∗ is the dimensional form of the pressure.
Figures 27(a) and 27(b) show the time-averaged distributions of Cp along two paths.

The first path in figure 27(a) is represented by A → B → C → D → A with the midpoints
situated at A (−0.5, 0.5, 0), B (0.5, 0.5, 0), C (0.5, −0.5, 0) and D (−0.5, −0.5, 0); the
second one in figure 27(b) is by A′ → B′ → C′ → D′ → A′ with A′ (−0.5, 0, 0.5), B′
(0.5, 0, 0.5), C′ (0.5, 0, −0.5) and D′ (−0.5, 0, −0.5). It is noted that the time-averaged
pressure coefficients are in good agreement with each other along every path, indicating
the distributive forces on the cube are converged for the three meshes. In figures 27(a)
and 27(b), the value of Cp at the stagnation point of the front face of the cube is shown
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Figure 27. Convergence study for the distribution of the pressure coefficient Cp along paths on the cube, and
streamwise velocity ux along lines in the wake, where the overline and prime notations denote the mean value
and root-mean-square deviation, respectively. Plots of (a) Cp along A → B → C → D → A and (b) Cp along
A′ → B′ → C′ → D′ → A′, where A, B, C and D are the midpoints of the cube edges on the plane z = 0, while
A′, B′, C′ and D′ are those on plane y = 0. For coordinates of the midpoints, see the discussion. Plots of (c) ux
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x along the streamwise central line in the wake.
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Figure 28. Mesh dependence study for the transitional ranges of the regular and Hopf bifurcations, where the
time histories of the lift coefficients Cl,y and Cl,z for the cases (a) Re = 205, (b) Re = 210, (c) Re = 250 and
(d) Re = 255 are obtained based on meshes 2 and 3 in table 3.

approximately equal to 1, which demonstrates that the distance between the cube and the
inlet is appropriate.

The time-averaged velocity component ux in the specific locations of the wake are
plotted in figures 27(c), 27(d) and 27(e). Figure 27(c) shows the results along the lines
intersected by the planes x = 3, 6, 12, 20 with y = 0, figure 27(d) is along the lines by
x = 3, 6, 12, 20 with z = 0 and figure 27(e) is along the central line by y = 0 and z = 0. It
is noted that the profiles of the mean streamwise velocity based on the three meshes agree
very well with each other. The root-mean-square value of streamwise velocity u′

x along
the central line is plotted in figure 27( f ). The profiles of u′

x based on mesh 2 and mesh 3
agree reasonably well, while the one based on mesh 1 deviates noticeably from other two
shown in figure 27( f ). The following quantitative measure χmn is employed to compare
the difference of u′

x values obtained based on mesh m and n,

χmn =
∫ |u′

x,m − u′
x,n| dx∫ |u′

x,n| dx
. (A2)

Here χ13 ≈ 7.9 % and χ23 ≈ 2.9 % are obtained, which is consistent with the qualitative
observation discussed above.
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The results presented above show that mesh refinement based on mesh 2 improves little
on the accuracy. Mesh 2 is thereby selected for all the simulations.

We have examined the critical values of Reynolds number for the regular transition at
ReRT

cr ≈ 207.0 and for the Hopf transition at ReHT
cr ≈ 252.0. To verify the convergence of

these critical Reynolds numbers regarding the mesh density, mesh 3 is further employed to
simulate the cases at the upper and lower bounds of the Re ranges for the regular and Hopf
bifurcations, i.e. Re = 205, 210, 250 and 255, in comparison with the results by mesh 2.
The time histories of Cl,y and Cl,z are plotted in figure 28 to verify the spatial symmetry and
temporal development. It is noted that the total cell number increases by 56.7 % from mesh
2 to 3, and the transitional ranges of Re for the regular and Hopf bifurcations identified by
the two meshes are consistent. The differences of the mean values of Cd, Cl and St1 in
the four cases are all in the magnitude of order 10−4–10−5. Therefore, the transitional Re
ranges in our simulation results are independent of the meshes. Mesh 1 is further employed
to check the QP and HS2 flows, and the same transition route is observed in 280 ≤ Re ≤
300, which means the occurrence of the secondary frequency is also independent of the
meshes.
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