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Traveling times in a FIFO-stochastic event graph are compared in increasing con-
vex ordering for different arrival processéss a special case stochastic lower
bound is obtained for the sojourn time in a tandem network of FIFO queues with a
Markov arrival proces#\ counterexample shows that the extended Ross conjecture
is not true for discrete-time arrival processes

1. INTRODUCTION

In this article we consider an open stochastic queueing network with one input
node The network dynamics are supposed to satisfy a linear recursion in the so-
called(max +)-algebra orR" (see[9]). It is well known that the epoch of the be-
ginning of thenth firing time of a FIFO-stochastic event gra(fflSEQ satisfies such

a linear recursion for each transiti¢see[ 8]).

A special case is a stochastic networklLogingle-server FIFO queues in tan-
dem with infinite buffer capacity in the first queue and finite buffers with manu-
factoring blocking or infinite buffers in the other queué&eaders not familiar
with (max+)-linear systems might read the article with this specific model in
mind; the firing time then is the service time and transitions 1L of the FSEG
become the servers.l., L. Note that the sojourn time in this tandem network of
L single-server FIFO queues is the traveling time to sekvplus its service time
atL. Hence the comparison results below hold also for the sojourn time

LetT,, n=1,2,..., be a stationary sequence of potential arrival epothg
number of arrivals at,, will be denoted byA,,. In generalA,, n=1,2,..., may be a
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stochastic sequencandA,, = | means thaltcustomers arrive &,. Note thatA,,= 0
implies thatT, is not an actual arrival epoch

Two arrival processes are compared with respect to their implied performance
of the stochastic networkVe assume that both have the same potential arrival epochs
but differentA sequencesayAl andA2. Let us call these the admission sequences
Let Sl be the firing time(service time of the nth token(customey in transition
(servej j. We assume that

S =S S)

is a stationary sequence of stochastic vectdode that no independence assumption
is made on the firing timestationarity is sufficientHowever we assume that for
i =1 and fori = 2, every couple of two sequences fr¢mi,, T,,, S} are stochastically
independent

Let W,y denote the traveling time of theh arrival to transitiorg (i.e., the time
between its entrance in the stochastic network and the beginning of its firing time at
transitiong). Let Wy be the same time of a potential arrivalfagt Recall that aff,,,
there may be no arrivadnd the arrival time of theth customer isin generalnotT,.
With Z!,, we denote theth arrival epoch for arrival process = 1,2, that is

k
Zi = min{k: > A= n}.
I=1
Then the arrival time of thenth customer isTi .
We also need the following notation

BL=Z,-Z, 1, i=12n=12...,

where we tak&l = 0. Note thatB! is thenth interarrival lengthin generalthis is not
equal to the interarrival timeOf course By, is a function of A}, Ay, ..., Ay ; we
suppress this in our notatioh is shown in[1] for a (max +)-linear system that for
any transitiong, andn=1,2,...,

E W2 is a multimodular function ofBs,..., By)
E ,Wdis a multimodular function ofA,, ..., A,),

where the expectation is with respectfpandS,, n € N. These multimodularity
properties induce the convexity results which we use to prove our comparison re-
sults The arrival processes in this article will be generated by a Markov arrival
procesg MAP), for which we assume a Markov processgm finite state space
with intensitiesA,y, X,y € E, and an arrival occurs with probability,, when a
transition from statex to statey happens

In[14], it is explained that a MAP is more general than the Markov-modulated
Poisson process or the phase-type renewal prolcg4s, it is shown that any arrival
process can be approximated arbitrarily close by a MAP
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Let us mention the stochastic orders we use in this arfiRd@dom vectorx* =
(XE,..., XY andX? = (X2,...,X2) are ordered with respect to the convex ordering
(Xt = X?) [resp increasing convex ordering(* =i, X?)] if

Eh(X?') = Eh(X?)

for all convex[resp increasing convejfunctions
h: R" - R.
In this article increasing and decreasing are always in the nonstrict sense
In Section 2we give a counterexample which shows that the extension of the

Ross conjecture is not true in our comparison of queues with different admission
sequencedn Section 3 a first comparison lemma is derived for admissiarter-
arrival) sequences which are comparable in the convex orddtiisgshown that the
potential (actua) traveling times are ordered in the increasing convex ordering

Similar comparison results hold for the stationary traveling tirAespplications of
the lemmawe derive the following results

1. Independent sources have a better performéndacreasing convex order-
ing sensgthan coupled sources

2. Fixed batch sizes are better than random batch sizes

3. Fluid scaling improves the performance

In Comparison Lemma,2lerived in Section dactual(potentia) traveling times are
ordered in the increasing convégx) ordering for noninteger admissigimterarriv-
al) sequencedere a regularization procedure is givamhich has been used in the
theory on balanced sequences and optimal routihd3]).

In Section 5we construct the most regular arrival process for a fixed arrival
intensity and we call it the regular arrival proce@RAP). We show that the RAP
provides a stochastic lower bound for any MAP source with the same arrival inten-
sity. This result(Theorem 1 can be seen as the Ross conjecture theorem in the
comparison of discrete-time arrival processes

In the literature on optimal routing to parallel quepieésvas claimedcf. [12])
that good approximations could be obtained through replacing the MAP by a re-
newal process with approximately the same arrival intenshgorem 2 and Corol-
lary 3 provide the proof of these claimmdeed the performance of a RAP has
stochastic lower bounds for arrival processes which(approximately renewal
processesFor a rational arrival intensifythere is a RAP which is renewal with
Erlang-distributed interarrival time8y a continuity argumentve obtain that the
renewal-arrival process with constant interarrival times gifgrsany real stationary
arrival intensity a stochastic lower bound on the performance

2. ON THE ROSS CONJECTURE IN DISCRETE TIME

In his inspiring article Ross[17] conjectured that the mean waiting time in a
-/G/1/o0 queue with a nonstationary Poisson arrival process is larger than or equal
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to the mean waiting time of thd/G/1/c0 queue with the same arrival intensitiis

article initiated a long sequence of research papers on this and related problems
Rolski proved the Ross conjecture[ib6]. Recent publications on this and related
topics ard 4], [6], and[10].

Suppose a/G/1/00 queue with potential arrival epochs given by sequefce
but with different admission sequencA$ and A% Because the potential arrival
times are fixed and form a sequence of discrete eposbsprefer to call this a
discrete-time modehlthough thél,, may have continuous distributiorBuppose!
is time stationary ané? not, but they have the same intensity the mean waiting
time for theA! sequence smaller than or equal to tha&®? TheA sequence can be
seen as a random environment and one may expect that an extended Ross conjecture
holds(cf. [7], where the service process has a random environmerith states
“The G/G/1/c0 queue in a random environment should be bounded below by the
corresponding queue where the environment process is ‘frozen’to its mean.Values

For the setting of this articldt is not true as the following counterexample
shows Let T = {T,} be a Poisson process with rate\WWe consider the /M/1/c0
queueg and we assume that tig are ii.d. with exponential distribution with mean
1. Let A}, be distributed asiid. Bernoulli random variables with medn Let A2 be
distributed as independent Bernoulli random variables and let the megrbefp,,.

We assume that, is random with meag. Then Al is the arrival process for which
the random environment 8 is frozen to its mearBo the extended Ross conjecture
would claim that folW', the stationary waiting time for sequengei = 1,2, is

EW! < EW?2, (1)

Suppose that the sequer(gg, p, ps, . ..) is with probabilitys equal to + €, 3 —
1 +¢,... and with probabilityz equal tos — €, 5 + €, 2 —¢€,..., Wwhere 0= ¢ =
Then Ep, = 3, which is the probability in thé\}, sequence

It is easily seen that far = 3, we have thawv ! is the stationary waiting time of
theM/M/1/c queue with traffic intensity = 3 and thatV/ 2 is the stationary waiting
time of theGl/M/1/c0 queue with interarrival times which have an Erlang distribu-
tion with two phases of exponential length with meairit 1s well known that

€,
1
5.

EW! > EW?

which contradicts relatiofil).
In Section 5 we will derive a discrete-time analogon of the Ross conjecture
theorem The above example explains why we use regular sequences there

3. COMPARISON LEMMA 1 AND APPLICATIONS

In this sectionwe derive a first comparison lemma which is a rather direct conse-
quence of the multimodularity of the traveling times as a function of the admission
sequenceAs we will seg the comparison lemma has some nice implications

We recall thatWi (W), i = 1,2, is the traveling time of thath arrival(poten-
tial arrival atT,) to a fixed but arbitrarily chosen transiti@nin the FSEG
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ComparisoN LEMMA 1: The following implications hold for any # 1,2,...:
(@ (AL,...,AL) =, (A3,...,A2) implies that
(awll, s ,aWnl) Sicx (awlz, e ’aWn2)~
(b) (Bi,...,Bl) = (B%,...,B2) implies that
(W .o W) <iox (BWE . o WD)
Proor: The proof is given for(a); the proof of (b) is similar Note that
(AL,...,A)) EN"i=12;leth:R — R be an increasing convex functiofihen
fori =12,
\M(Aib" '7Air'|) é Eh(aM(Nl, ""Ain))

is a function fromN" to R.

Theorem 54 of [1] (for the proof of(b), use Theorem @ of [1]) shows that
Wi (AL, ..., AY) is multimodular in(A, ..., Al) as a function olNK fork=1,2,....

SinceW,(AL,...,Al) is independent of, for n > Kk, it trivially follows that
W (A, ..., A) is also multimodular in(AL,..., A,) if n= k. It then follows from
Theorem 22 of [2] thatW! is integer convex oN", i =1,2, k=1,...,n.

The rest of the proof is more or less standaB8ince (Al,...,AL) =,
(A3,...,A2), we may by Strassen’s representation theorerssume without loss
of generality that

E((AL,...,ADI(AL,...,AD) = (AL,...,A}).
From Jensen’s inequalitywe then have
Wk(A]i’ [EEX) A:rl1) = Wk(E((Ag.’ LEEE} A%l) | (A%.’ LEEE} A:ll'-l)))
= E(W(AS,....AD|(AL,..., AD). (2)

Hence

EW (AL, ..., AL) = EW (AZ,...,A2).
Leth: R" — R be an increasing convex functiohhen

h(Wl(Ail’ LR Ain)’ s ’Wn(Ail’ LR} Ain))

is an increasing convex function 6A,...,AL), i =1,2.
The firstinequality below is now a consequencé)fand the increasingness of
h; the second inequality follows from Jensen'’s inequality

h(Wi(AL, ..., AT), ..., Wh (A, ..., AT))
S h(E(Wl(A%." . '7A%)|(A%." . "A%\)7 ""E(WH(A%7 . "’A%)|(A]i7 ""A:rl:]))))
= E(h(Wy(AS,..., A%),..., Wh(AR,..., AD)I(AL,..., An)).
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Hence
Eh(Wy (AL, ..., AL, ..., W, (AL,...,AL)
< Eh(W,(A2,...,A2), ... W,(A2,..., A2)). =

Let us assume the following
AssumpTION 1: Al is a stationary sequence in@ Z for i = 1,2.

The following sequences with= a or b andj = 1 or 2 are well known as the
Loynes sequencdsf. [7]):

WS WAL AL AL,

They are monotone increasing m Consequentlythey have a limit as tends to
infinity, which is possiblyso. These limits are called Loynes variahlege denote
them as

W2 lim W

n—oo

It is well known (cf. [7, 11]) that under strong coupling or renovatjdénholds that

I— j.
iWoo_ lim iWnJ’

n—oo

that is it is the time-forward limit
As an immediate consequence of Comparison Lemmaehave the following
corollary:

CoroLLARY 1: Suppose that Assumptidrholds:

(@ (AL,...,AL) =, (A3,...,A2) for all N € N implies that, W = ;W2
(b) (Bi,...,B}) = (B?,...,B2) for all n € N implies that,W.: = W2,

Proor: We prove parta); the proof of par{b) is similar From Assumption lwe
have for alln,

(A];m A];nJrl’ LEEE) Aj;l) g (Aji’ A]éa ceey A:IL1)

d
S(:x (A%J A22, KKK A%) = (Az—n’ A2—n+1’ seey Az—l)'
From Comparison Lemma 1
aWnl Si(:>< awnz-
The monotone convergence theorem then gives

1_ | \\/1 H \\/2 — 2
ML = lim WS =i rI1|m W= WL u
— 00

n—oo
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Itis well known that in case of stability of the stochastic netwotke Loynes
variables are & finite and represent the stationary versions of the traveling times
Thus in the case of stability alséhe stationary versions are icx ordered

Also, a multidimensional marginal distribution of the stationary processes can
be shownalso as a consequence of Comparison Lemjta e ordered in the icx
ordering

3.1. Application 1: Two i.i.d. MAP Sources Perform Better Than Two
Completely Coupled MAP Sources

Consider two MAPssay MAP, i = 1,2, which are independent and have the same
distribution Denote byT' the transition epochs of MAPi = 1,2, and letT =
T1 U T2 be the superposition df* andT?2 Define AL =1 if T, € Tis an arrival
epoch of MAP or MAP? Then T = {T,,} are the potential arrival epochand the
admission sequenc¥, generates all arrivals of the two independent MAPs
Consider now two completely coupled MAP sourcekich are equivalent to
one MAP source which generates two arrivals at any of its arrival epBdime the
MAP source with probability as the MAP source and that with probabiliyas the
MAP? source Define fori = 1,2,

n

i 1 if T,is the arrival epoch of MAP
0 otherwise

Then
AL =E}+ E?,

and forAZ, the admission sequence of the coupled MAP soyrzeshave for 1=
m= nthatA2 givenAl,..., A% with probability ; equal to £} and with probability
1 equal to E2. Hence

B[RRI AL, Al = A,
and therefore
(AL,...,AY) = (A2,...,A2) foralln.

Clearly the eventE! in MAP' are independent of the transition epodisi = 1,2.
This implies tha{ Al,} and{T,} are independent fdr= 1,2. Hence we can apply
Comparison Lemma 1 and Corollary 1 and find that the pote(gtationary trav-
eling times for the.i.d. MAP sources are in icx ordering smaller than those of two
completely coupled MAP sources

It is possible to extend this result toi.i.d. MAP sources which generate
customers at each of their arrival epochs that perform better in icx ordet th&n
i.i.d. MAP sources which generakecustomers at each of their arrival epochs
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3.2. Application 2: A Fixed Batch Size Is Better Than Random Batch Sizes

Consider a MAP source and assume that at each of its arrival g@ocrslom batch
number of customers arriysay N, at arrival epochTl,. We assume thafN,} is
independent ofT,} and thatN,} is stationary andN, = I.

TakeA} = | andAZ = N, n € N; then Al is the admission sequence with fixed
(or frozen batch sizeClearly (A, ..., AL) = (A2,...,A2), n € N, and part(a) of
Comparison Lemma 1 and Corollary 1 applies

If 1 =1, then(Bi,...,BY) = (4,...,1), and in order to show that

(Bi,...,BY) = (B2,...,B2),
it suffices to verify that fok=1,...,n,
EBZ = 1.
SinceA? is stationaryit follows that
EAZ-EB? = 1,

andEB, = EB, = 1. Hence in this case alsdhe actual traveling times are smaller in
icx order for the fixed batch sizes

3.3. Application 3: Fluid Scaling Improves the Performance

Consider the following transformations of the time variabkend the state vari-
ablex:

t — Nt

X
X— —.
N
Fluid limits are obtained by taking limits fo¥ — co. Herg we take a fixedN € N.
If we have a MAP with finite state spacg and transition rates,,, X,y € E, and if
we divide the time variable by, then we get a MAPwith transition ratesl/N)Ay,.
After uniformizing both processes such that the transition times in both processes
are a Poisson process with the same parametsay MAPY(A) and MAP?(A), we
have that a real transition in MARA) (i.e., a transition in MAP) is, with proba-
bility (1/N), a real transition in MAB()) (i.e., a transition of MAF). Clearly, we
can couple the MABR(A) and MAP*()) such that ifT, are the arrival epochs of
MAPZ()), then the potential arrival epochs of MAR\) are{T,} and the admission
sequence is

1
1 with probability N

n

0 otherwise
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where theA2 are ii.d. and independent of,. If we take AL = 1, thenAl is the
admission sequence for MAR).
As in Application 2 we have

(AL, AY) =ox (AL, AD),

whereA? = NAZ, k € N.

The scaling of the state can be done by considering the original service require-
ments as a number of packéfgossibly of random sizeand takingN arrivals in-
stead of one arrivalThis gives theAZ as admission sequenc8q the process
corresponding to thé&l can be seen as a fluid scaling of tAginduced process
Mathematically it is the same comparison as in ApplicationThe Comparison
Lemma 1 and Corollary 1 imply that the performance of the fluid scaled process is
better than that of the original process in icx ordering

4. COMPARISON LEMMA 2

In Comparison Lemma,wve had admission sequendes,},i = 1,2, whereA! de-
fined the number of arrivals at,. This means thad\, is an integerin Comparison
Lemma 2 the admission sequences &pa}, wherep), may be any nonnegative real
numberForp' = (pi, pb,...) withpi, =0,n=1,2,..., we define an integer admis-
sion sequencgA,(p)} by

n—1

AP =12 p+0]-1 p+ 6,
j=1 j=1

whered is a random variablainiformly distributed on0,1), and where x| denotes
the largest integer smaller than or equakta R, . Note thatA,,(p) is random and
integer-valuedit gives the number of arrivals &t..

For the interarrival lengthsve proceed similarly giveq' = (g}, qs,...) with
g,=0,n=12,...; we define

n n—1
Ba(q) =12 g +0]-1 g +0l,
j=1 j=1
where again 6 is uniformly distributed ori0,1). Note that ifpi, pb,..., p\, are all
integer-valuedthenA.(p') = pkfor 1=k =nand any € [0,1).
Similarly, as in Comparison Lemma We consider the potential traveling times

avvni = aWn(Al( pi),---’An(pi))’ i=12,

and the actual traveling times

bWr'II é an(Bl(qi),---,Bn(qi)), i = 1’2'

CowmparisoN LEMMA 2: The following implications hold for any # 1,2,...:
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@ (pi,...,pE) = (P,..., p2) implies that
(awll, s aaWnl) Sicx (aW12’ LR aaWn2)~
(b) (ai,...,q7) =cx (0, ...,d7) implies that
(WL, - pWB) <iox (BWE ..o WD)
Proor: We prove parta); the proof of partb) is similar Since
(Pis--- PR) =cx (PE,..-, PR),
we may by Strassen’s representation theorassume without loss of generality that
E((p,..., pAI(pi,..., pa)) = (Pi,..., Pa).

Theorem ™4 of [1] together with Theorem.2 of [2] (which is an extension of
Hajek’s theorem on multimodularity irL3]) imply that forh an increasing convex
function

aV\4<( p_!l.’ R pll’\) é IEh(aWkl(Al( pi )9 LR} An( pi )))

is a convex function ofpi,..., p)).
The rest of the proof is similar to the proof of Comparison Lemma 1 with
(pi,...,ph) substituted foK A, ..., Al). u

Also in this settingwe can consider the Loynes stochastic variglaesuming
thatp, is defined for allin € Z,

(1>

I\W/nJ iWn(pln’---7 pjfl)

and

WL = lim W
AssumPTION 2: Al (p) is a stationary sequence in@ Z for i = 1,2.
With the same proof as for Corollary We then have the following corollary
CoroLLARY 2: Under Assumption 2, the following hold
(@ (pi,...,pY) = (P2?,...,p2) for alln € N implies that
AWt <jcx AW
(b) (gi,...,q}) =« (03,...,93) for all n € N implies that

1 2
bWoo Sicx bWoo'
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5. A STOCHASTIC LOWER BOUND ON THE TRAVELING TIMES

In Section 2we found that the intuitive argument that queues in a random environ-
ment should be bounded below by the corresponding queues where the environment
is “frozen” to its mean values is not generally true

As an application of Comparison Lemmawe will derive in this section a
lower bound in the icx orderin@ he queuing model is a FSEG with a MAP source
We will construct a more reguldm fact, the most regulararrival process with the
same arrival intensity as the MAP sour@dis will provide the lower boundis we
will seg this regular arrival process can be approximated by a renewal arrival pro-
cess with Erlang-distributed interarrival times

Without loss of generalitywe may assume that the MAP has transition times
{T,} that form a Poissom) processLet{X,} be the Markov process with transition
probabilitiesA,y, which governs the transitions of the MARe., X, is the state &f,,).
We assume that the Markov process is stationary and we denatgetbg stationary
probability on statex € E. The probability on an arrival &k, is

p = 2 2 Ty )\xyrxy- (3)
x |y

The arrival intensity of the stationary MAP is thar pA. The MAP corresponds to
the following admission sequence

, 1 with probabilityry  x
As = .
0 otherwise

Because\? is 0 or 1, hence integer-valued for ail we can also use thgrepresen-
tation(i.e., takep? = A2, n € N); then

A,(p?) = A2 (forall 9).

Takep® = (p,p,...) andAL £ A,(pl). Then A} (for fixed 6) is called the(mosh
regular sequence with rape Regular sequences are a subclass of the balanced se-
guenceson which there is a extensive literature in combinatof®se[3] for a
recent article in which balanced sequences are applied to optimal routing to fjueues
The lower bound in icx ordering is obtained if we use the arrival process on
with Al as the admission sequentet us call this the regular arrival process with
parametersp, A) (RAP(p, A)). The MAP with stationary distribution,, x € E, and
arrival probabilitiesy, X, y € E, we denote by MAR, r). Analogous to the/G/1
notation let us denote the FSE@®vith stationary sequenc@sands,) by - /G/SEG
and,W,.(-/G/SEQG, i = a, b for the potentiali = a) or actual traveling timéi = b)
(to afixed transition Then the main result of this articlevhich is an application of
Comparison Lemma,2s Theorem 1

THEOREM 1: Fori=a,b,

W, (RAP(p, 1)/G/SEQ) =icx iW..(MAP (7,1)/G/SEG.
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Proor: Fori= a, we apply parta) of Comparison Lemma.Z hereforewe have to
show that

E((pZ,....p2)|(pL,....,p3) = (pi,...,po).

However pig = pfor all k; thereforeit suffices to show thaEpg = pfor all k. Indeed
this holds since

IE:plg = 2 E Ty )\xyrxy: p.
x

In order to apply Corollary Ave have to verify Assumption IZndeedthe admission
sequence?? is stationary sinceX,, is assumed to be stationa@ecausefole +
0]de = ximplies

lEAﬁ(p)=fo (Inp+ 8] —L(n—Dp+8))do = p,

it follows that AL(p) is a stationary sequence and Assumption 2 applies for both
sequencegori = b, we consider thé, sequence corresponding to tA& p) se-
guenceLemma 73 in[3] guarantees that it is balanced with ratp.SinceAL( p) is
stationaryBl is also stationaryHence by a result of Morse and Hedluridee Thm

7.2 of [3]),

B! =B,(q) withq=(1/9,1/q,...).

Since theA2 sequence is integer-valuethe correspondindd? sequence is also
integer-valuedHence it remains to verify thaftB2 = 1/p, but this is a standard
result for stationary MAP processes u

Itis well known that a MAP process with transition tim{@g} 4 PoissoriA) can
be represented also as one with transition tifigg 4 PoissoriNA) with the same
 as the stationary distributioif we want to keep the arrival intensity equal xp
then we have to divide theand ther,, by N; hence 1/p is multiplied byN.

Now, suppose Mp is rationa) say N;/N,, thenN,/p = N is an integerThe
corresponding regular arrival process has interarrival lengthi sfeps henceits
interarrival times are Erlang distributed with phases of exponential-distributed
length with paramete, A.

Using Theorem Jwe will show Theorem 2

THEOREM 2: Fori = a,b and any real numbed < c <1, it holds that
W, (RAP(p,1)/G/SEG =i, iW,.(RAP(p/c, Ac)/G/SEG.

Proor: RAP(p/c,Ac) can be seen as a MAP with transition tir{@fs} which are

a PoissofA) processWith probability ¢, a transition is a real transitiofi.e., a
transition of the RAPp/c, Ac) process The stationary admission sequence in
RAP(p/c, Ac) has ratgp/c on an arrival at dreal) transition Hence the stationary
probability on an arrival af, is c-p/c = p, and Theorem 1 applies u
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As a consequence of Theoren& have that for a MAP, r) with p (as in(3))
rational sayp = N,/N,, the FSEG with renewal input witR; phases of exponential-
distributed length with parametdk A provides a icx stochastic lower bound on the
actual and potential stationary traveling times

By Theorem 2RAP(pc, A/c) for any 0< c =1 provides also a icx lower bound
Hence since RAR pc, A/c) is arbitrarily close to a renewal input farsufficiently
small we get for p is irrational an approximationThese facts have been used
without proof in articles on optimal routing to parallel queugs. [12]).

Clearly, the limit process of RAPp/c, Ac) for ¢ — oo is the renewal process
with a constant interarrival time equal tgph (notationD(1/pA)). Hence by a
continuity argumentcf. [15]) we have Corollary 3 as a consequence of Theorems 1
and 2

CoroLLARY 3: Fori = a,b, the following hold

(&) ;W,,(RAP(p/c,Ac)/G/SEQG is monotone decreasing in ¢
(b) Forany c=1,

iW.,(D(1/pA)/G/SEQ =iex iW.,.(RAP(p/c, AC)/G/SEQ
<iox iW(MAP (77, 1)/G/SEG.
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