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Traveling times in a FIFO-stochastic event graph are compared in increasing con-
vex ordering for different arrival processes+ As a special case, a stochastic lower
bound is obtained for the sojourn time in a tandem network of FIFO queues with a
Markov arrival process+Acounterexample shows that the extended Ross conjecture
is not true for discrete-time arrival processes+

1. INTRODUCTION

In this article, we consider an open stochastic queueing network with one input
node+ The network dynamics are supposed to satisfy a linear recursion in the so-
called~max,1!-algebra onRL ~see@9# !+ It is well known that the epoch of the be-
ginning of thenth firing time of a FIFO-stochastic event graph~FSEG! satisfies such
a linear recursion for each transition~see@8# !+

A special case is a stochastic network ofL single-server FIFO queues in tan-
dem, with infinite buffer capacity in the first queue and finite buffers with manu-
factoring blocking or infinite buffers in the other queues+ Readers not familiar
with ~max,1!-linear systems might read the article with this specific model in
mind; the firing time then is the service time and transitions 1, + + + , L of the FSEG
become the servers 1, + + + , L+ Note that the sojourn time in this tandem network of
L single-server FIFO queues is the traveling time to serverL plus its service time
at L+ Hence, the comparison results below hold also for the sojourn time+

Let Tn, n 5 1,2, + + + , be a stationary sequence of potential arrival epochs+ The
number of arrivals atTn will be denoted byAn+ In generalAn, n51,2, + + + ,may be a
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stochastic sequence, andAn5 l means thatl customers arrive atTn+Note thatAn5 0
implies thatTn is not an actual arrival epoch+

Two arrival processes are compared with respect to their implied performance
of the stochastic network+We assume that both have the same potential arrival epochs
but differentA sequences, sayAn

1 andAn
2 + Let us call these the admission sequences+

Let Sn
j be the firing time~service time! of the nth token~customer! in transition

~server! j+We assume that

Sn 5 ~Sn
1, + + + ,Sn

L!

is a stationary sequence of stochastic vectors+Note that no independence assumption
is made on the firing times; stationarity is sufficient+ However, we assume that for
i 51 and fori 52, every couple of two sequences from$An

i ,Tn,Sn% are stochastically
independent+

Let bWn
q denote the traveling time of thenth arrival to transitionq ~ i+e+, the time

between its entrance in the stochastic network and the beginning of its firing time at
transitionq!+ Let aWn

q be the same time of a potential arrival atTn+ Recall that atTn,
there may be no arrival, and the arrival time of thenth customer is, in general, notTn+
With Zn

i , we denote thenth arrival epoch for arrival processi, i 5 1,2, that is,

Zn
i 5 minHk :(

l51

k

Al
i $ nJ +

Then, the arrival time of thenth customer isTZn
i +

We also need the following notation:

Bn
i 5

n
Zn

i 2 Zn21
i , i 5 1,2, n 5 1,2, + + + ,

where we takeZ0
i 50+Note thatBn

i is thenth interarrival length: in general, this is not
equal to the interarrival time+ Of course, Bn

i is a function ofA1
i ,A2

i , + + + ,AZn
i

i ; we
suppress this in our notation+ It is shown in@1# for a ~max,1!-linear system that for
any transitionq, andn 5 1,2, + + + ,

E bWn
q is a multimodular function of~B1, + + + ,Bn!

E aWn
q is a multimodular function of~A1, + + + ,An!,

where the expectation is with respect toTn andSn, n [ N+ These multimodularity
properties induce the convexity results which we use to prove our comparison re-
sults+ The arrival processes in this article will be generated by a Markov arrival
process~MAP!, for which we assume a Markov process onE, a finite state space
with intensitieslxy, x, y [ E, and an arrival occurs with probabilityrxy when a
transition from statex to statey happens+

In @14# , it is explained that a MAP is more general than the Markov-modulated
Poisson process or the phase-type renewal process+ In @5# , it is shown that any arrival
process can be approximated arbitrarily close by a MAP+
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Let us mention the stochastic orders we use in this article+Random vectorsX15
~X1

1, + + + ,Xn
1! andX2 5 ~X1

2, + + + ,Xn
2! are ordered with respect to the convex ordering

~X1 #cx X2! @resp+ increasing convex ordering~X1 #icx X2!# if

Eh~X1! # Eh~X2!

for all convex@resp+ increasing convex# functions

h: Rn r R+

In this article, increasing and decreasing are always in the nonstrict sense+
In Section 2, we give a counterexample which shows that the extension of the

Ross conjecture is not true in our comparison of queues with different admission
sequences+ In Section 3, a first comparison lemma is derived for admission~inter-
arrival! sequences which are comparable in the convex ordering+ It is shown that the
potential ~actual! traveling times are ordered in the increasing convex ordering+
Similar comparison results hold for the stationary traveling times+As applications of
the lemma, we derive the following results:

1+ Independent sources have a better performance~in increasing convex order-
ing sense! than coupled sources+

2+ Fixed batch sizes are better than random batch sizes+
3+ Fluid scaling improves the performance+

In Comparison Lemma 2, derived in Section 4, actual~potential! traveling times are
ordered in the increasing convex~icx! ordering for noninteger admission~interarriv-
al! sequences+ Here, a regularization procedure is given, which has been used in the
theory on balanced sequences and optimal routing~cf+ @3# !+

In Section 5, we construct the most regular arrival process for a fixed arrival
intensity, and we call it the regular arrival process~RAP!+ We show that the RAP
provides a stochastic lower bound for any MAP source with the same arrival inten-
sity+ This result~Theorem 1! can be seen as the Ross conjecture theorem in the
comparison of discrete-time arrival processes+

In the literature on optimal routing to parallel queues, it was claimed~cf+ @12# !
that good approximations could be obtained through replacing the MAP by a re-
newal process with approximately the same arrival intensity+ Theorem 2 and Corol-
lary 3 provide the proof of these claims+ Indeed, the performance of a RAP has
stochastic lower bounds for arrival processes which are~approximately! renewal
processes+ For a rational arrival intensity, there is a RAP which is renewal with
Erlang-distributed interarrival times+ By a continuity argument, we obtain that the
renewal-arrival process with constant interarrival times gives, for any real stationary
arrival intensity, a stochastic lower bound on the performance+

2. ON THE ROSS CONJECTURE IN DISCRETE TIME

In his inspiring article, Ross@17# conjectured that the mean waiting time in a
{0G010` queue with a nonstationary Poisson arrival process is larger than or equal
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to the mean waiting time of theM0G010` queue with the same arrival intensity+This
article initiated a long sequence of research papers on this and related problems+
Rolski proved the Ross conjecture in@16# + Recent publications on this and related
topics are@4# , @6# , and@10# +

Suppose a{0G010` queue with potential arrival epochs given by sequenceTn

but with different admission sequencesA1 and A2+ Because the potential arrival
times are fixed and form a sequence of discrete epochs, we prefer to call this a
discrete-time model, although theTn may have continuous distributions+SupposeA1

is time stationary andA2 not, but they have the same intensity+ Is the mean waiting
time for theA1 sequence smaller than or equal to that ofA2? TheA sequence can be
seen as a random environment and one may expect that an extended Ross conjecture
holds~cf+ @7# , where the service process has a random environment! which states:
“The G0G010` queue in a random environment should be bounded below by the
corresponding queue where the environment process is ‘frozen’ to its mean values+”

For the setting of this article, it is not true, as the following counterexample
shows+ Let T 5 $Tn% be a Poisson process with rate 1+ We consider the{0M010`
queue, and we assume that theSn are i+i+d+ with exponential distribution with mean
1+ Let An

1 be distributed as i+i+d+ Bernoulli random variables with mean12
_ + Let An

2 be
distributed as independent Bernoulli random variables and let the mean ofAn bepn+
We assume thatpn is random with mean12

_ + Then, An
1 is the arrival process for which

the random environment ofAn
2 is frozen to its mean+So the extended Ross conjecture

would claim that forWi, the stationary waiting time for sequenceAi, i 5 1,2, is

EW1 # EW2+ (1)

Suppose that the sequence~ p1, p2, p3, + + + ! is with probability1
2
_ equal to1

2
_ 1 e, 1

2
_ 2 e,

1
2
_ 1 e, + + + and with probability1

2
_ equal to1

2
_ 2 e, 1

2
_ 1 e, 1

2
_ 2 e, + + + , where 0# e # 1

2
_ +

Then, Epn 5 1
2
_ , which is the probability in theAn

1 sequence+
It is easily seen that fore 5 1

2
_ , we have thatW1 is the stationary waiting time of

theM0M010` queue with traffic intensityr5 1
2
_ and thatW2 is the stationary waiting

time of theGI0M010` queue with interarrival times which have an Erlang distribu-
tion with two phases of exponential length with mean 1+ It is well known that

EW1 . EW2,

which contradicts relation~1!+
In Section 5, we will derive a discrete-time analogon of the Ross conjecture

theorem+ The above example explains why we use regular sequences there+

3. COMPARISON LEMMA 1 AND APPLICATIONS

In this section, we derive a first comparison lemma which is a rather direct conse-
quence of the multimodularity of the traveling times as a function of the admission
sequence+ As we will see, the comparison lemma has some nice implications+

We recall thatbWn
i ~aWn

i !, i 51,2, is the traveling time of thenth arrival~poten-
tial arrival atTn! to a fixed but arbitrarily chosen transitionq in the FSEG+
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Comparison Lemma 1: The following implications hold for any n5 1,2, + + + :

~a! ~A1
1 , + + + ,An

1 ! #cx ~A1
2 , + + + ,An

2 ! implies that

~aW1
1, + + + ,aWn

1! #icx ~aW1
2, + + + ,aWn

2!+

~b! ~B1
1, + + + ,Bn

1! #cx ~B1
2, + + + ,Bn

2! implies that

~bW1
1, + + + ,bWn

1! #icx ~bW1
2, + + + ,bWn

2!+

Proof: The proof is given for~a!; the proof of ~b! is similar+ Note that
~A1

i , + + + ,An
i ! [ Nn, i 5 1,2; let h :R r R be an increasing convex function+ Then,

for i 5 1,2,

Wk~A1
i , + + + ,An

i ! 5
n Eh~aWk

i ~A1
i , + + + ,An

i !!

is a function fromNn to R+
Theorem 5+4 of @1# ~for the proof of~b!, use Theorem 6+4 of @1# ! shows that

Wk~A1
i , + + + ,Ak

i ! is multimodular in~A1
i , + + + ,Ak

i ! as a function onNk for k 5 1,2, + + + +
SinceWk~A1

i , + + + ,Ak
i ! is independent ofAn

i for n . k, it trivially follows that
Wk~A1

i , + + + ,An
i ! is also multimodular in~A1

i , + + + ,An
i ! if n $ k+ It then follows from

Theorem 2+2 of @2# thatWk
i is integer convex onNn, i 5 1,2, k 5 1, + + + , n+

The rest of the proof is more or less standard+ Since ~A1
1 , + + + ,An

1! #cx

~A1
2 , + + + ,An

2 !, we may, by Strassen’s representation theorem, assume without loss
of generality that

E~~A1
2 , + + + ,An

2 !6~A1
1 , + + + ,An

1 !! 5 ~A1
1 , + + + ,An

1!+

From Jensen’s inequality, we then have,

Wk~A1
1 , + + + ,An

1 ! 5 Wk~E~~A1
2 , + + + ,An

2 !6~A1
1 , + + + ,An

1 !!!

# E~Wk~A1
2 , + + + ,An

2 !6~A1
1 , + + + ,An

1 !!+ (2)

Hence,

EWk~A1
1 , + + + ,An

1 ! # EWk~A1
2 , + + + ,An

2 !+

Let h: Rn r R be an increasing convex function+ Then,

h~W1~A1
i , + + + ,An

i !, + + + ,Wn~A1
i , + + + ,An

i !!

is an increasing convex function of~A1
i , + + + ,An

i !, i 5 1,2+
The first inequality below is now a consequence of~2! and the increasingness of

h; the second inequality follows from Jensen’s inequality:

h~W1~A1
1 , + + + ,An

1 !, + + + ,Wn~A1
1 , + + + ,An

1 !!

# h~E~W1~A1
2 , + + + ,An

2 !6~A1
1 , + + + ,An

1 !, + + + ,E~Wn~A1
2 , + + + ,An

2 !6~A1
1 , + + + ,An

1 !!!!

# E~h~W1~A1
2 , + + + ,An

2 !, + + + ,Wn~A1
2 , + + + ,An

2 !!6~A1
1 , + + + ,An1!!+
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Hence,

Eh~W1~A1
1 , + + + ,An

1 !, + + + ,Wn~A1
1 , + + + ,An

1 !!

# Eh~W1~A1
2 , + + + ,An

2 !, + + + ,Wn~A1
2 , + + + ,An

2 !!+ n

Let us assume the following:

Assumption 1: An
i is a stationary sequence in n[ Z for i 5 1,2+

The following sequences withi 5 a or b andj 5 1 or 2 are well known as the
Loynes sequences~cf+ @7# !:

i RWn
j 5

n

iWn~A2n
j ,A2n11

j , + + + ,A21
j !+

They are monotone increasing inn+ Consequently, they have a limit asn tends to
infinity, which is possiblỳ + These limits are called Loynes variables; we denote
them as

iẀ
j 5

n
lim
nr`

i RWn
j +

It is well known~cf+ @7, 11# ! that under strong coupling or renovation, it holds that

iẀ
j 5 lim

nr`
iWn

j ;

that is, it is the time-forward limit+
As an immediate consequence of Comparison Lemma 1,we have the following

corollary:

Corollary 1: Suppose that Assumption1 holds:

~a! ~A1
1 , + + + ,An

1 ! #cx ~A1
2 , + + + ,An

2 ! for all N [ N implies thataẀ
1 # aẀ

2

~b! ~B1
1, + + + ,Bn

1! #cx ~B1
2, + + + ,Bn

2! for all n [ N implies thatbẀ
1 # bẀ

2+

Proof: We prove part~a!; the proof of part~b! is similar+ From Assumption 1, we
have for alln,

~A2n
1 ,A2n11

1 , + + + ,A21
1 ! 5

d
~A1

1 ,A2
1 , + + + ,An

1 !

#cx ~A1
2 ,A2

2 , + + + ,An
2 ! 5

d
~A2n

2 ,A2n11
2 , + + + ,A21

2 !+

From Comparison Lemma 1,

a RWn
1 #icx a RWn

2+

The monotone convergence theorem then gives

aẀ
1 5 lim

nr`
a RWn

1 #icx lim
nr`

a RWn
2 5 aẀ

2+ n
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It is well known that in case of stability of the stochastic networks, the Loynes
variables are a+s+ finite and represent the stationary versions of the traveling times+
Thus, in the case of stability also, the stationary versions are icx ordered+

Also, a multidimensional marginal distribution of the stationary processes can
be shown~also as a consequence of Comparison Lemma 1! to be ordered in the icx
ordering+

3.1. Application 1: Two i.i.d. MAP Sources Perform Better Than Two
Completely Coupled MAP Sources

Consider two MAPs, say MAPi, i 5 1,2, which are independent and have the same
distribution+ Denote byT i the transition epochs of MAPi, i 5 1,2, and letT 5
T 1 ø T 2 be the superposition ofT 1 andT 2+ DefineAn

1 5 1 if Tn [ T is an arrival
epoch of MAP1 or MAP2+ Then, T 5 $Tn% are the potential arrival epochs, and the
admission sequenceAn

1 generates all arrivals of the two independent MAPs+
Consider now two completely coupled MAP sources, which are equivalent to

one MAP source which generates two arrivals at any of its arrival epochs+Define the
MAP source with probability12

_ as the MAP1 source and that with probability12
_ as the

MAP2 source+ Define, for i 5 1,2,

En
i 5 H1 if Tn is the arrival epoch of MAPi

0 otherwise+

Then,

An
1 5 En

1 1 En
2,

and forAn
2 , the admission sequence of the coupled MAP sources, we have for 1#

m# n thatAm
2 givenA1

1 , + + + ,An
1 with probability 1

2
_ equal to 2Em

1 and with probability
1
2
_ equal to 2Em

2 + Hence,

E@Am
2 6A1

1 , + + + ,An
1 # 5 Am

1 ,

and, therefore,

~A1
1 , + + + ,An

1 ! #cx ~A1
2 , + + + ,An

2 ! for all n+

Clearly, the eventsEn
i in MAP i are independent of the transition epochsTn

i , i 51,2+
This implies that$An

i % and$Tn% are independent fori 5 1,2+ Hence, we can apply
Comparison Lemma 1 and Corollary 1 and find that the potential~stationary! trav-
eling times for the i+i+d+ MAP sources are in icx ordering smaller than those of two
completely coupled MAP sources+

It is possible to extend this result tok i+i+d+ MAP sources which generatel
customers at each of their arrival epochs that perform better in icx order thanl # k
i+i+d+ MAP sources which generatek customers at each of their arrival epochs+
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3.2. Application 2: A Fixed Batch Size Is Better Than Random Batch Sizes

Consider a MAP source and assume that at each of its arrival epochs, a random batch
number of customers arrive, say Nn at arrival epochTn+ We assume that$Nn% is
independent of$Tn% and that$Nn% is stationary andEN1 5 l+

TakeAn
1 5 l andAn

2 5 Nn, n [ N; then, An
1 is the admission sequence with fixed

~or frozen! batch size+ Clearly, ~A1
1 , + + + ,An

1 ! #cx ~A1
2 , + + + ,An

2 !, n [ N, and part~a! of
Comparison Lemma 1 and Corollary 1 applies+

If l 5 1, then~B1
1, + + + ,Bn

1! 5 ~1, + + + ,1!, and in order to show that

~B1
1, + + + ,Bn

1! #cx ~B1
2, + + + ,Bn

2!,

it suffices to verify that fork 5 1, + + + , n,

EBk
2 5 1+

SinceAn
2 is stationary, it follows that

EA1
2{EB1

2 5 1,

andEBk5EB151+Hence, in this case also, the actual traveling times are smaller in
icx order for the fixed batch sizes+

3.3. Application 3: Fluid Scaling Improves the Performance

Consider the following transformations of the time variablet and the state vari-
ablex:

t r Nt,

x r
x

N
+

Fluid limits are obtained by taking limits forN r `+ Here, we take a fixedN [ N+
If we have a MAP1 with finite state spaceE and transition rateslxy, x, y [ E, and if
we divide the time variable byN, then we get a MAP2 with transition rates~10N!lxy+
After uniformizing both processes such that the transition times in both processes
are a Poisson process with the same parameterl, say MAP1~l! and MAP2~l!, we
have that a real transition in MAP1~l! ~ i+e+, a transition in MAP1! is, with proba-
bility ~10N!, a real transition in MAP2~l! ~ i+e+, a transition of MAP2!+ Clearly, we
can couple the MAP1~l! and MAP2~l! such that ifTn are the arrival epochs of
MAP1~l!, then the potential arrival epochs of MAP2~l! are$Tn% and the admission
sequence is

An
2 5 H1 with probability

1

N

0 otherwise+
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where theAn
2 are i+i+d+ and independent ofTn+ If we take An

1 5 1, then An
1 is the

admission sequence for MAP1~l!+
As in Application 2, we have

~A1
1 , + + + ,An

1 ! #cx ~ NA1
2 , + + + , NAn

2 !,

where NAk
2 5 NAk

2, k [ N+
The scaling of the state can be done by considering the original service require-

ments as a number of packets~possibly of random size!, and takingN arrivals in-
stead of one arrival+ This gives the NAn

2 as admission sequence+ So, the process
corresponding to theAn

1 can be seen as a fluid scaling of theNAn
2-induced process+

Mathematically, it is the same comparison as in Application 2+ The Comparison
Lemma 1 and Corollary 1 imply that the performance of the fluid scaled process is
better than that of the original process in icx ordering+

4. COMPARISON LEMMA 2

In Comparison Lemma 1, we had admission sequences$An
i %, i 5 1,2, whereAn

i de-
fined the number of arrivals atTn+ This means thatAn

i is an integer+ In Comparison
Lemma 2, the admission sequences are$ pn

i %, wherepn
i may be any nonnegative real

number+ Forpi 5 ~ p1
i , p2

i , + + + ! with pn
i $ 0, n51,2, + + + , we define an integer admis-

sion sequence$An
i ~ p!% by

An~ pi ! 5
n {(

j51

n

pj
i 1 u}2 {(

j51

n21

pj
i 1 u} ,

whereu is a random variable, uniformly distributed on@0,1!, and where{x} denotes
the largest integer smaller than or equal tox [ R1+ Note thatAn

i ~ p! is random and
integer-valued; it gives the number of arrivals atTn+

For the interarrival lengths, we proceed similarly givenqi 5 ~q1
i ,q2

i , + + + ! with
qn

i $ 0, n 5 1,2, + + + ; we define

Bn~qi ! 5
n {(

j51

n

qj
i 1 u}2 {(

j51

n21

qj
i 1 u} ,

where, again, u is uniformly distributed on@0,1!+ Note that ifp1
i , p2

i , + + + , pn
i are all

integer-valued, thenAk~ pi ! 5 pk
i for 1 # k # n and anyu [ @0,1!+

Similarly, as in Comparison Lemma 1,we consider the potential traveling times

aWn
i 5

n

aWn~A1~ pi !, + + + ,An~ pi !!, i 5 1,2,

and the actual traveling times

bWn
i 5

n

bWn~B1~q
i !, + + + ,Bn~qi !!, i 5 1,2+

Comparison Lemma 2: The following implications hold for any n5 1,2, + + + :
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~a! ~ p1
1, + + + , pn

1! #cx ~ p1
2, + + + , pn

2! implies that

~aW1
1, + + + ,aWn

1! #icx ~aW1
2, + + + ,aWn

2!+

~b! ~q1
1, + + + ,qn

1! #cx ~q1
2, + + + ,qn

2! implies that

~bW1
1, + + + ,bWn

1! #icx ~bW1
2, + + + ,bWn

2!+

Proof: We prove part~a!; the proof of part~b! is similar+ Since

~ p1
1, + + + , pn

1! #cx ~ p1
2, + + + , pn

2!,

we may, by Strassen’s representation theorem, assume without loss of generality that

E~~ p1
2, + + + , pn

2!6~ p1
1, + + + , pn

1!! 5 ~ p1
1, + + + , pn

1!+

Theorem 5+4 of @1# together with Theorem 2+1 of @2# ~which is an extension of
Hajek’s theorem on multimodularity in@13# ! imply that forh an increasing convex
function,

aWk~ p1
i , + + + , pn

i ! 5
n Eh~aWk

i ~A1~ pi !, + + + ,An~ pi !!!

is a convex function of~ p1
i , + + + , pn

i !+
The rest of the proof is similar to the proof of Comparison Lemma 1 with

~ p1
i , + + + , pn

i ! substituted for~A1
i , + + + ,An

i !+ n

Also in this setting, we can consider the Loynes stochastic variables, assuming
thatpn

i is defined for alln [ Z,

i RWn
j 5

n

iWn~ p2n
j , + + + , p21

j !

and

iẀ
j 5

n
lim
nr`

i RWn
j +

Assumption 2: An
i ~ p! is a stationary sequence in n[ Z for i 5 1,2+

With the same proof as for Corollary 1, we then have the following corollary+

Corollary 2: Under Assumption 2, the following hold:

~a! ~ p1
1, + + + , pn

1! #cx ~ p1
2, + + + , pn

2! for all n [ N implies that

aẀ
1 #icx aẀ

2+

~b! ~q1
1, + + + ,qn

1! #cx ~q1
2, + + + ,qn

2! for all n [ N implies that

bẀ
1 #icx bẀ

2+
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5. A STOCHASTIC LOWER BOUND ON THE TRAVELING TIMES

In Section 2, we found that the intuitive argument that queues in a random environ-
ment should be bounded below by the corresponding queues where the environment
is “frozen” to its mean values is not generally true+

As an application of Comparison Lemma 2, we will derive in this section a
lower bound in the icx ordering+ The queuing model is a FSEG with a MAP source+
We will construct a more regular~in fact, the most regular! arrival process with the
same arrival intensity as the MAP source+ This will provide the lower bound+As we
will see, this regular arrival process can be approximated by a renewal arrival pro-
cess with Erlang-distributed interarrival times+

Without loss of generality, we may assume that the MAP has transition times
$Tn% that form a Poisson~l! process+ Let $Xn% be the Markov process with transition
probabilitieslxy which governs the transitions of the MAP~i+e+, Xn is the state atTn!+
We assume that the Markov process is stationary and we denote bypx the stationary
probability on statex [ E+ The probability on an arrival atTn is

p 5
n (

x
(
y

px lxyrxy+ (3)

The arrival intensity of the stationary MAP is thenNl 5
n

pl+ The MAP corresponds to
the following admission sequence:

An
2 5 H1 with probabilityrXn21 Xn

0 otherwise+

BecauseAn
2 is 0 or 1, hence integer-valued for alln, we can also use thep represen-

tation~i+e+, takepn
2 5 An

2 , n [ N!; then,

An~ p2! 5 An
2 ~ for all u!+

Takep1 5 ~ p, p, + + + ! andAn
1 5

n
An~ p1!+ Then, An

1 ~ for fixed u! is called the~most!
regular sequence with ratep+ Regular sequences are a subclass of the balanced se-
quences, on which there is a extensive literature in combinatorics~see@3# for a
recent article in which balanced sequences are applied to optimal routing to queues!+

The lower bound in icx ordering is obtained if we use the arrival process onTn

with An
1 as the admission sequence+ Let us call this the regular arrival process with

parameters~ p,l! ~RAP~ p,l!!+ The MAP with stationary distributionpx, x [ E, and
arrival probabilitiesrxy, x, y [ E,we denote by MAP~p, r !+ Analogous to the{0G01
notation, let us denote the FSEG~with stationary sequencesTn andSn! by {0G0SEG
andiẀ ~{0G0SEG!, i 5 a,b for the potential~i 5 a! or actual traveling time~i 5 b!
~ to a fixed transition!+Then, the main result of this article,which is an application of
Comparison Lemma 2, is Theorem 1+

Theorem 1: For i 5 a,b,

iẀ ~RAP~ p,l!0G0SEG! #icx iẀ ~MAP~p, r !0G0SEG!+
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Proof: For i 5 a,we apply part~a! of Comparison Lemma 2+ Therefore,we have to
show that

E~~ p1
2, + + + , pn

2!6~ p1
1, + + + , pn

1!! 5 ~ p1
1, + + + , pn

1!+

However, pk
15 p for all k; therefore, it suffices to show thatEpk

25 p for all k+ Indeed,
this holds since

Epk
2 5 (

x
(
y

px lxyrxy 5 p+

In order to apply Corollary 2,we have to verifyAssumption 2+ Indeed, the admission
sequenceAn

2 is stationary sinceXn is assumed to be stationary+ Because*0
1{x 1

u} du 5 x implies

EAn
1~ p! 5E

0

1

~ {np1 u}2 {~n 2 1!p 1 u} ! du 5 p,

it follows that An
1~ p! is a stationary sequence and Assumption 2 applies for both

sequences+ For i 5 b, we consider theBn sequence corresponding to theAn
1~ p! se-

quence+ Lemma 7+3 in @3# guarantees that it is balanced with rate 10p+ SinceAn
1~ p! is

stationary, Bn
1 is also stationary+ Hence, by a result of Morse and Hedlund~see Thm+

7+2 of @3# !,

Bn
1 5 Bn~q! with q 5 ~10q,10q, + + + !+

Since theAn
2 sequence is integer-valued, the correspondingBn

2 sequence is also
integer-valued+ Hence, it remains to verify thatEBn

2 5 10p, but this is a standard
result for stationary MAP processes+ n

It is well known that a MAP process with transition times$Tn% 5
d

Poisson~l! can
be represented also as one with transition times$Tn

1% 5
d

Poisson~Nl! with the same
p as the stationary distribution+ If we want to keep the arrival intensity equal toNl,
then we have to divide thep and therxy by N; hence, 10p is multiplied byN+

Now, suppose 10p is rational, say N10N2, then N20p 5 N1 is an integer+ The
corresponding regular arrival process has interarrival lengths ofN1 steps; hence, its
interarrival times are Erlang distributed withN1 phases of exponential-distributed
length with parameterN2l+

Using Theorem 1, we will show Theorem 2+

Theorem 2: For i 5 a,b and any real number0 , c # 1, it holds that

iẀ ~RAP~ p,l!0G0SEG! #icx iẀ ~RAP~ p0c,lc!0G0SEG!+

Proof: RAP~ p0c,lc! can be seen as a MAP with transition times$Tn% which are
a Poisson~l! process+ With probability c, a transition is a real transition~i+e+, a
transition of the RAP~ p0c,lc! process!+ The stationary admission sequence in
RAP~ p0c,lc! has ratep0c on an arrival at a~real! transition+ Hence, the stationary
probability on an arrival atTn is c{p0c 5 p, and Theorem 1 applies+ n
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As a consequence of Theorem 2,we have that for a MAP~p, r ! with p ~as in~3!!
rational, sayp5N20N1, the FSEG with renewal input withN1 phases of exponential-
distributed length with parameterN2l provides a icx stochastic lower bound on the
actual and potential stationary traveling times+

By Theorem 2,RAP~ pc,l0c! for any 0, c#1 provides also a icx lower bound+
Hence, since RAP~ pc,l0c! is arbitrarily close to a renewal input forc sufficiently
small, we get, for p is irrational, an approximation+ These facts have been used,
without proof, in articles on optimal routing to parallel queues~cf+ @12# !+

Clearly, the limit process of RAP~ p0c,lc! for c r ` is the renewal process
with a constant interarrival time equal to 10pl ~notationD~10pl!!+ Hence, by a
continuity argument~cf+ @15# ! we have Corollary 3 as a consequence of Theorems 1
and 2+

Corollary 3: For i 5 a,b, the following hold:

~a! iẀ ~RAP~ p0c,lc!0G0SEG! is monotone decreasing in c+
~b! For any c$ 1,

iẀ ~D~10pl!0G0SEG! #icx iẀ ~RAP~ p0c,lc!0G0SEG!

#icx iẀ ~MAP~p, r !0G0SEG!+
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