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The wake of an elliptical cylinder at low incident angles is investigated for different
aspect ratio (Γ =major:minor axis ratio) cylinders using stability analysis and direct
simulations. In particular, two- and three-dimensional transitions are mapped for
cylinders of aspect ratios between 1 and 4 using Floquet stability analysis. The
transition scenario for near-unity aspect ratio cylinders resembles that for a circular
cylinder wake as Reynolds number is increased to Re . 400; first, with the transition
from steady two-dimensional flow to unsteady two-dimensional flow, followed by
the onset of three-dimensional flow via a long-wavelength instability (mode A), then,
a short-wavelength instability (mode B) and, finally, an intermediary wavelength
instability which is quasi-periodic in nature (mode QP). The effect of the incident
angle on this transition scenario for the low-aspect-ratio cylinders is minimal. As
the aspect ratio is increased towards 2, two synchronous modes, modes Â and
B̂, become unstable; these modes have spatio-temporal symmetries similar to their
circular cylinder wake counterparts, modes A and mode B, respectively. While mode
Â persists for all incident angles investigated here, mode B̂ is found only to be
unstable for incident angles up to 10◦. Surprisingly, for 1.8 . Γ . 2.9, the mode A
instability observed at zero incident angle emerges as a quasi-periodic mode as the
incident angle is increased even slightly. At higher incident angles, this quasi-periodic
mode once again transforms to a real mode on increasing the Reynolds number. The
parameter space maps for the various aspect ratios are presented in the Reynolds
number–incident angle plane, and the three-dimensional modes are discussed in terms
of similarities to and differences from existing modes. A key aim of the work is to
map the different modes and various transition sequences as a simple body geometry
is systematically changed and as the flow symmetry is systematically broken; thus,
insight is provided on the overall path towards fully turbulent flow.

Key words: parametric instability, vortex shedding, wakes

1. Introduction
Flow past elliptical cylinders for varying angles of incidence is investigated for

various aspect ratios at low Reynolds numbers. Here, the Reynolds number is defined

† Email address for correspondence: mark.thompson@monash.edu
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by Re = UD/ν, where U is the incoming flow velocity, D is the minor axis of the
elliptical cylinder with the major axis aligned with the flow and ν is the kinematic
viscosity. The aspect ratio (Γ ) of the elliptical cylinder is the ratio of the major axis
(a) to the minor axis (D). For a circular cylinder, the aspect ratio is unity with the
major and minor axis being the diameter. The focus of this study is to explore the two-
and three-dimensional transitions that occur for Γ > 1 at low angles of incidence (I).

The various flow transitions that occur in the wake of a circular cylinder have been
investigated experimentally by Williamson (1996a) and numerically by Karniadakis &
Triantafyllou (1992), Barkley & Henderson (1996), Thompson, Hourigan & Sheridan
(1996), Barkley, Tuckerman & Golubitsky (2000), Akbar, Bouchet & Dušek (2011),
Jiang et al. (2016a,b), amongst others. At Re' 46, the flow transitions from a steady
state to an unsteady state that is characterised by the alternate shedding of vortices
from each side of the cylinder, is commonly known as Bénard–von Kármán (BvK)
shedding. As the Reynolds number is increased to '190, spanwise undulations are
observed in the wake with a wavelength of '4D. This three-dimensional instability is
known as mode A and was first observed experimentally by Williamson (1988) and
predicted numerically based on Floquet stability analysis by Barkley & Henderson
(1996). As the Reynolds number is increased, a smaller wavelength instability appears
in the flow with a spanwise wavelength of '0.8D, which is termed mode B. Barkley
& Henderson (1996) observed the onset of mode B instability to occur around
Re ' 259, while it was observed to occur at much lower Reynolds numbers in
the experiments. This is due to the instability mode becoming unstable on an
already three-dimensional base flow. Modes A and B are synchronous modes whose
periods are commensurate with the period of the base flows, and have also been
observed in other bluff body wakes from cylinders with different cross-sections
(Robichaux, Balachandar & Vanka 1999; Leontini, Lo Jacono & Thompson 2015).
Three-dimensional modes that are not commensurate with the base flow periods have
also been observed in the bluff body wakes and are known as quasi-periodic (QP)
modes (Blackburn & Lopez 2003; Marques, Lopez & Blackburn 2004; Blackburn,
Marques & Lopez 2005; Blackburn & Sheard 2010). These modes have been observed
to occur at Reynolds numbers beyond the onset of modes A and B (Blackburn et al.
2005; Leontini, Thompson & Hourigan 2007; Leontini et al. 2015), and they often
seem to be almost subharmonic. True subharmonic modes have also been observed in
the wake of tori (Sheard, Thompson & Hourigan 2004a,b), rotating cylinders (Radi
et al. 2013; Rao et al. 2013a, 2015a), rotating (and non-rotating) cylinders near walls
(Rao et al. 2015c; Jiang et al. 2017), square cylinders when the incoming flow is
at an angle of incidence (Sheard, Fitzgerald & Ryan 2009; Sheard 2011), inclined
flat plates (Yang et al. 2013), stalled airfoils (Meneghini et al. 2011), two staggered
cylinders (Carmo et al. 2008) and when trip wires are placed in the vicinity of a
circular cylinder (Zhang et al. 1995; Yildirim, Rindt & van Steenhoven 2013a,b;
Rao et al. 2015b). In these cases there is a geometry/flow change that breaks the
centreplane-reflection/half-period translation symmetry of the BvK wake base flow
(Blackburn et al. 2005).

Johnson, Thompson & Hourigan (2004) investigated the wake behind elliptical
cylinders for Γ 6 1 at low Reynolds numbers and observed a low-frequency secondary
wake that develops downstream of the BvK-like shedding at low aspect ratios. An
extension to this study was carried out by Thompson et al. (2014), who carried out
Floquet stability analysis and observed the onset of three-dimensionality via mode
A-type instability. The onset of mode A instability decreased from Rec = 190.3 at
Γ = 1 to Rec = 88.5 at Γ = 0.25. Furthermore, mode A was found to become only
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marginally stable at lower aspect ratios of Γ = 0.1. While many studies (Lindsey
1937; Lugt & Haussling 1972; Nair & Sengupta 1997; Badr, Dennis & Kocabiyik
2001; Mori, Yoshikawa & Ota 2003; Kim & Park 2006; Yoon et al. 2016) have
investigated the flow past elliptical cylinders for Γ > 1 at higher Reynolds numbers,
very few studies have detailed the two- and three-dimensional transitions that occur
in the wake of elliptical cylinders at low Reynolds numbers, other than the recent
study of Leontini et al. (2015).

Kim & Sengupta (2005) performed two-dimensional simulations of the flow past
low-aspect-ratio elliptical cylinders for 0.83 6 Γ 6 1.25 at zero angle of incidence
for Re 6 1000. They observed that the time-averaged drag coefficient decreased as
the cylinder aspect ratio was decreased, or as the cylinder became more aerodynamic
(less ‘bluff’). They further observed that the shedding frequency increased with aspect
ratio and Reynolds number. Subsequent investigations were conducted by Kim & Park
(2006), where an additional parameter, the angle of incidence of the incoming flow,
was considered. They computed the force coefficients and shedding frequencies for
an elliptical cylinder for 1.6 6 Γ 6 5, 10 6 I 6 30◦, 400 6 Re 6 600. They observed
that the time-averaged drag coefficient decreased as the aspect ratio was increased
and the angle of incidence was decreased, while the lift coefficient increased as
the angle of incidence was increased. The Strouhal number was found to decrease
as the angle of incidence was decreased. Mittal & Balachandar (1996) performed
two- and three-dimensional direct numerical simulations of a flow past an elliptical
cylinder for Re 6 1000, I 6 45◦, and observed that the two-dimensional simulations
over-predicted the values of the time-mean drag coefficient and the amplitude of lift
coefficient obtained from three-dimensional simulations at Reynolds numbers where
the flow was intrinsically three-dimensional. For Γ = 2, Re = 525, I = 0◦, the mean
drag coefficient from three-dimensional simulations was in good agreement with its
two-dimensional counterpart, and a significant decrease in the amplitude of the lift
coefficient was observed after the onset of three-dimensional flow.

Sheard (2007) investigated the three-dimensional stability in the wake of an
elliptical cylinder of Γ = 2 for I 6 30◦. Unlike the wake transition scenario of
a circular cylinder, a new three-dimensional instability, mode B̂ with a spanwise
wavelength of λ/D ' 2.4D, was the first mode to become unstable to perturbations
at Re ' 283. This mode had spatio-temporal characteristics similar to those of the
mode B instability and approximately three times its spanwise wavelength. The onset
of mode A and mode B instabilities was delayed to values of Reynolds numbers
higher than those for a circular cylinder wake. Sheard (2007) further investigated
the stability of the flow at Re = 283.1 over a range of incident angles, where a
long wavelength mode (λ/D > 6) was observed for I > 15◦, prevalent alongside
other shorter wavelength three-dimensional modes with high growth rates. More
recently, Leontini et al. (2015) presented the parameter map of the three-dimensional
instabilities observed for 0 6 Γ 6 2.4 and Re 6 550 at zero angle of incidence. In
addition to the three-dimensional modes A, B and B̂ (labelled B∗ in Sheard (2007)),
they confirmed the presence of the long wavelength mode, mode Â, observed in the
wake of elongated bluff bodies with elliptical leading edges by Ryan, Thompson &
Hourigan (2005) and later by Sheard (2007). Mode B̂ was found to be unstable for
Γ & 1.7. The range of Reynolds number for the existence of mode B̂ in the Γ − Re
parameter map increased as the aspect ratio of the elliptical cylinder was increased.
The topology of this mode resembled that of a similar wavelength instability observed
in the wake of cylinders with an elliptical leading edge (Ryan et al. 2005; Thompson
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et al. 2006b). Mode Â had spatio-temporal characteristics similar to the mode A
instability, but was unstable over larger spanwise distances. On closer inspection
of the spanwise perturbation contours and the spatio-temporal characteristics, mode
Â resembles a longer-wavelength instability previously observed in the wake of a
rotating cylinder, mode G (Rao et al. 2013a, 2015a). Mode G was found to be
unstable to spanwise perturbations over forty cylinder diameters and occurred at
rotation rates '1.8. More recently, Kim, Lee & Choi (2016) investigated helically
twisted elliptical cylinders of different spanwise wavelengths and aspect ratios at
Re= 100 and observed a wide range of three-dimensional modes in the wake.

The current systematic study extends the studies of Sheard (2007) and Leontini
et al. (2015), where Floquet stability analysis is performed for incident angles
(0◦ 6 I 6 20◦) for elliptical cylinders of different aspect ratios Γ 6 4, Re 6 500.
Stability analysis is performed to observe the variation of the critical Reynolds
numbers for the onset of the three-dimensional modes with incident angles for various
aspect ratios, and the nature of how these modes change with control parameters.
The remainder of the article is organised as follows; § 2 details the case setup and
numerical formulation; § 3 contains the results from the two-dimensional simulations
and Floquet stability analysis, and the behaviour of the various three-dimensional
modes observed, followed by a few three-dimensional simulations in § 3.10 and
conclusions in § 4.

2. Methodology
2.1. Problem definition

The schematic of the problem under consideration is shown in figure 1. The aspect
ratio of the cylinder (Γ ) is defined as the ratio of the major axis (a) to the minor
axis (b, D). An aspect ratio of Γ = 0 corresponds to a flat plate, while Γ = 1 is
equivalent to a circular cylinder. For cases considered here, the aspect ratio was
varied between Γ = 1.1 and 4.0. Rather than rotate the cylinder, for the computations
and visualisations presented, the incoming flow is set at an angle of incidence (I) to
the major axis of the elliptical cylinder. As indicated, the Reynolds number (Re) is
based on the minor axis of the cylinder, time (t) is non-dimensionalised by D/U to
give a dimensionless time, τ = tD/U. We investigate the two- and three-dimensional
transitions that occur as the Reynolds number is increased up to Re = 500. Here,
the Reynolds number is based on the minor axis (b) of the cylinder. This choice
of length scale seems appropriate for the small angles of incidence considered here.
Alternate definitions where the characteristic length is based on the major axis of the
ellipse (Griffith et al. 2016), geometric mean of the major and minor axis ((a+ b)/2)
or the square root of the product of the major and minor axis (

√
ab) have been used

in studies concerning elliptical cylinders rotated along their spanwise length (Jung
& Yoon 2014; Kim et al. 2016; Wei, Yoon & Jung 2016) and the perimeter of the
elliptical cylinder for a rotating elliptical cylinder (Naik, Vengadesan & Prakash 2017).
Nonetheless, values can be converted from one system to another as appropriate.

2.2. Numerical method
2.2.1. Flow equations

The two-dimensional incompressible Navier–Stokes (NS) equations determine the
flow fields that the stability analysis is based on

∂u
∂t
+ u · ∇u=−∇p+ ν∇2u, (2.1)
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FIGURE 1. Schematic of the elliptical cylinder in a flow at angle of incidence.

where u= u(x, y; t)= (u(x, y; t), v(x, y; t)) is the two-dimensional velocity field, p is
the kinematic pressure, i.e. the static pressure (P) divided by the fluid density (ρ), and
ν is the kinematic viscosity. These equations are coupled with the incompressibility
constraint

∇ · u= 0, (2.2)

to complete the set of equations governing the flow.
As indicated, to obtain the two-dimensional base flows necessary for the Floquet

analysis, these equations are solved numerically. There are two cases of interest
for this paper: periodic base flows and steady base flows. For the latter case, the
Reynolds number may be above the critical value leading to periodic flow, hence a
time-dependent solver cannot be used to obtain these steady flow states. Both cases
use a spectral-element formulation with further details provided in Zienkiewicz (1977),
Karniadakis & Sherwin (2005), Thompson et al. (2006a) so only a brief overview of
the key elements will be presented here.

The spectral-element method is essentially a high-order finite-element approach but
with the internal N × N nodes within each (spectral) element distributed according
to the Gauss–Legendre–Lobatto (GLL) quadrature points. The velocity and pressure
fields are represented by tensor products of Lagrangian polynomial interpolants
that are constructed using the nodal values within each element. Importantly, the
integrals resulting from the application of the Galerkin weighted-residual method to
the NS equations, which contribute to form the discrete approximation at each node
point (e.g. Karniadakis & Sherwin 2005), are evaluated by GLL quadrature. This
method achieves spectral convergence as the polynomial order is increased within
elements (Karniadakis & Sherwin 2005). For the simulations reported in this paper,
the computational domain consisted of several hundred four-sided macro-elements,
with higher concentration in the vicinity of the elliptic cylinder where the velocity
gradients were largest. The curvature of element sides forming the boundary of the
cylinder is taken into account by mapping each element in (x, y) physical space to a
square in (ξ , ζ ) computational space, as is common with the finite-element approach
(Zienkiewicz 1977; Karniadakis & Sherwin 2005). Importantly, the number of node
points within each element (N × N) is specified at runtime, with the interpolating
polynomial order in each direction being N − 1. At the very least, this tends to
simplify convergence studies.

A second-order fractional time stepping technique is used to sequentially integrate
the advection, pressure and diffusion terms of the Navier–Stokes equations forward
in time (see, e.g., Chorin 1968; Karniadakis, Israeli & Orszag 1991; Thompson
et al. 2006a). A third-order Adams–Bashforth method is used for the advection
substep, together with a θ -modified Crank–Nicholson method (e.g. Canuto et al.
1988) for the diffusion step. The incompressibility constraint is applied at the end
of the second substep to enforce mass conservation from one time step to the next.
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Formally, the method is second-order accurate in time by applying a higher-order
pressure boundary condition at solid surfaces, as discussed in Karniadakis et al.
(1991). Both the pressure and viscous substeps are implicit. The resulting sparse
matrix equations are inverted using lower–upper decomposition, so that for each time
step, subsequent substep updates only require matrix–vector multiples.

The unsteady solver was used to compute the base flows to investigate the parameter
range covering both the steady and unsteady regimes of flow. More details of the time
stepping scheme can be found in Thompson et al. (2006a), Leontini et al. (2015) and
the references therein, and the code has previously been used to accurately compute
bluff body flows in free stream (Sheard et al. 2004b; Ryan et al. 2005; Leontini et al.
2007; Rao et al. 2013a; Thompson et al. 2014; Leontini et al. 2015), and for bodies
near walls (Stewart et al. 2006, 2010; Rao et al. 2011, 2012, 2013c). In order to
achieve steady base flows for standard linear stability analysis based on steady flow
fields at parameter values that would normally result in a periodic flow (see § 2.8), the
steady incompressible NS equations were solved incorporating the incompressibility
constraint into the NS equations using the penalty method (Zienkiewicz 1977), which
eliminates direct reference to the pressure field. The resulting nonlinear coupled
discretised equations for the velocity components at the node points were then solved
using Newton iteration (Thompson & Hourigan 2003; Jones, Hourigan & Thompson
2015; Rao, Thompson & Hourigan 2016).

2.2.2. Stability analysis
To determine the stability of the calculated two-dimensional periodic or steady base

flows, which are now referred to using an overbar, the velocity and pressure fields are
expanded about the base states: u(x, y, z; t) = u(x, y; t) + u′(x, y, z; t), p(x, y, z; t) =
p(x, y; t)+p′(x, y, z; t). Substituting these expansions into the NS equations, subtracting
off the NS equations for the base flow and neglecting nonlinear terms gives

∂u′

∂t
+ u · ∇u′ + u′ · ∇u=−∇p′ + ν∇2u′ and ∇ · u′ = 0. (2.3a,b)

Since these equations are linear with constant coefficients with respect to the spanwise
coordinate z, the spatial dependence can be written as a sum of complex exponentials.
In fact, in this case, simple sine and cosine expansions are sufficient (Barkley &
Henderson 1996). That is, take

u′ =
M∑

k=0

û(x, y; t) cos(2πkz/Lz), v′ =

M∑
k=0

v̂(x, y; t) cos(2πkz/Lz),

w′ =
M∑

k=0

ŵ(x, y; t) sin(2πkz/Lz), p′ =
M∑

k=0

p̂(x, y; t) cos(2πkz/Lz),

 (2.4)

where Lz is the length of the chosen spanwise domain, with periodicity assumed at
each end and where M is the number of Fourier modes. Putting in these expansions
into (2.3), gives the following equations for each spanwise mode number k

∂ û
∂t
+ u · ∇xyû+ û · ∇xyu=−

∂ p̂
∂x
+ ν∇2

xyû−
(

2πk
Lz

)2

û, (2.5)

∂v̂

∂t
+ u · ∇xyv̂ + û · ∇xyv =−

∂ p̂
∂y
+ ν∇2

xyv̂ −

(
2πk
Lz

)2

v̂, (2.6)
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∂ŵ
∂t
+ u · ∇xyŵ=

2πk
Lz

p̂+ ν∇2
xyŵ−

(
2πk
Lz

)2

ŵ, (2.7)

∂ û
∂x
+
∂v̂

∂y
+

2πk
Lz

ŵ= 0. (2.8)

Here, the vector derivative operators are two-dimensional, i.e.

∇
2
xy ≡ ∂

2/∂x2
+ ∂2/∂y2, ∇xy ≡ i∂/∂x+ j∂/∂y, (2.9a,b)

with i, j the x and y Cartesian unit vectors.
This is essentially an eigenvalue problem for each of the mode coefficient fields

(e.g. ûk(x, y; t)) noting that because of linearity in time, the time variation will be
(possibly complex) exponential. The solutions of interest are the fast-growing or
slowest-decaying ones. These can be obtained by integrating these equations forward
in time starting from an initially random field, until the fastest-growing/slowest-
decaying modes dominate. Because the equations are of the same form as the NS
equations for the base flow, the same solution technique is applied. In practice, the
base flow solutions are found first by integrating forward in time for 50–80 base flow
periods and then the stability equations for a chosen spanwise wavelength (λ= Lz/k)
are integrated forward in time together with the base flow equations to determine the
dominant instability modes. The parallel version of the code computes the solution
for multiple wavelengths simultaneously, so that the simultaneous integration of the
base flow equations only adds trivially to the overall cost.

After a few tens of periods (typically 10–50), the fastest-growing modes dominate.
For a periodic base flow, the amplification of these dominant modes is determined
over each base flow period; this technique is known as Floquet analysis. If the base
flow is steady, it is convenient to measure the growth rate over a unit time. In both
cases, the stability multiplier (µ), measures the amplification rate of the perturbations
over the chosen time interval (T). This is called the Floquet multiplier for the periodic
base flow case. In either case, the growth rate (σ ) is determined by σ = loge(µ)/T .
For growth rates greater than 0 (or |µ|> 1), the flow is unstable to three-dimensional
perturbations at the chosen wavelength and for σ < 0 (or |µ|<1), perturbations decay
and the flow remains in its two-dimensional state. For σ = 0 (or |µ| = 1), neutral
stability is achieved. For a given Reynolds number, a range of spanwise wavelengths
is tested, and this procedure is repeated for a range of Reynolds numbers to determine
the critical Reynolds number and wavelength at which neutral stability is achieved.
For the transition from two-dimensional steady to two-dimensional periodic flow, the
method can also be applied by considering a spanwise wavelength approaching infinity.
The complex growth rate or multiplier then gives the growth rate and frequency of
the unstable oscillatory mode. Modes other than just the dominant mode have been
extracted in this study using a Krylov subspace approach together with Arnoldi
decomposition (see, e.g., Mamun & Tuckerman 1995; Barkley & Henderson 1996).

For periodic base flows, three-dimensional modes that have a positive and a purely
real multiplier are referred to as synchronous modes (i.e. the period of the Floquet
mode matches that of the two-dimensional base flow, such as modes A and B), while
those that have a negative and purely real multiplier real component are known as
subharmonic modes or period-doubling modes (such as mode C). Quasi-periodic
(QP) modes have a complex-conjugate multiplier pair and are usually observed at
Reynolds numbers past the transition of modes A and B in wake flows. When
represented on a complex plane, the synchronous multipliers lie on the positive real
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axis, the subharmonic modes lie on the negative real axis. Quasi-periodic modes
have a reflection symmetry about the real axis with a non-zero imaginary component
(Blackburn et al. 2005; Blackburn & Sheard 2010). More details on the stability
analysis employed in this study can be found in Ryan et al. (2005), Griffith et al.
(2007), Leontini et al. (2015) and Rao et al. (2015a).

2.2.3. Three-dimensional simulations
In addition to the stability analysis, some full three-dimensional simulations were

undertaken to examine the nonlinear evolution of the flow. These simulations used a
version of the spectral-element code extended to three dimensions by representing the
z dependence of the flow variables by Fourier expansions. In this case, the advection
substep is performed in real space and the pressure and diffusion substeps in Fourier
space. The latter allows a natural parallelisation by treating each Fourier mode
independently on different central processing unit (CPU) cores, while parallelisation
of the advection substep proceeds by distributing computations to discrete sets of
nodes. Full details of the method are provided in Karniadakis & Triantafyllou (1992).

3. Results
3.1. Spatial and domain size studies

The parameter space maps for different aspect ratios investigated in this study are
presented for Re6 500. The aspect ratios chosen for the stability analysis in this study
were Γ = 1.1, 1.5, 2 and 2.5 for angles of incidence less than 20◦.

The domain size chosen for this study had the inlet and lateral boundaries
60D away from the cylinder and the outlet placed at 100D downstream of the
cylinder to minimise blockage effects. The blockage ratio was less than 1 %.
Furthermore, domain size studies were conducted with inlet, lateral and outlet
boundaries at 60D, 100D and 200D from the cylinder. The force coefficients,
and shedding frequencies for the domain chosen were well within 0.5 % (e.g.
1CD = 0.25 %, 1CL,RMS = 0.5 %, 1St = 0.14 %, for Γ = 2, I = 0◦, Re = 440) of
the largest domain. Furthermore, spatial resolution studies were conducted for aspect
ratios of 1.1, 1.5, 2 and 2.5 at incident angles of 0◦, 10◦ and 20◦ and Reynolds
number of 500 by varying the polynomial order of the spectral elements from N = 4
to N = 11. For N = 8, the force coefficients and the shedding frequencies for the
cases were well within 1 % (e.g. 1CD = 0.01 %, 1CL,RMS = 0.6 %, 1St = 0.02 %, for
Γ = 2.5, I = 0◦, Re = 500) of the maximum polynomial order. Additionally, a time
step resolution study undertaken showed that the variation in the force coefficients
and shedding frequencies were again within 1 % of the values for the minimum time
step used. A further validation of the results was the good agreement with the critical
Reynolds number for the onset of unsteady flow by Jackson (1987) and the Floquet
multipliers presented for Γ = 2, I = 0◦, Re = 400 by Sheard (2007). As an indicator
of convergence for the Floquet analysis for a typical case, the difference between the
computed Floquet multiplier using 8 × 8 and 10 × 10 nodes per element was less
than 0.01 % for mode QPA at Γ = 2.5, I = 16◦, Re = 260, λ/D = 3.9. The domain
size study and spatial resolution studies are documented in appendices A and B,
respectively.

3.2. Two-dimensional flow
As the Reynolds number is increased beyond the onset of unsteady flow, periodic
shedding similar to BvK shedding is observed. For a given aspect ratio and incident

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

36
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.366


Three-dimensionality of elliptical cylinder wakes at low angles of incidence 253

St

0.15

 0.20

0.25

100 200 300 400

Re

0.15

 0.20

0.25

100 200 300

Re
400 500

(a) (b)

FIGURE 2. (Colour online) Variation of the Strouhal number, St, versus Reynolds number,
Re, for (a) Γ = 2 and (b) Γ = 2.5, for various incident angles of: I = 0◦ (u), I = 4◦ (E),
I = 8◦ (@), I = 12◦ (p), I = 16◦ (A) and I = 20◦ (q). The shedding frequency decreases
with an increase in the angle of incidence. The dashed red line approximately marks the
critical Reynolds number for the transition to three-dimensional flow.

angle, the Strouhal number (St= fD/U, where f is the frequency of vortex shedding
(Strouhal 1878)), is observed to increase monotonically with Reynolds number.
However, as the angle of incidence is varied from I = 0◦ to 20◦, St decreases with
an increase in incident angle. Shown in figure 2 is the St variation with the angle of
incidence for Γ = 2 and 2.5. Also marked on these plots by a dashed red line is the
approximate Reynolds number for the onset of three-dimensional flow. Beyond this
critical value, St varies almost linearly with Re.

The variation of the critical Reynolds number for the onset of unsteady flow is
shown in the parameter space maps of the aspect ratios investigated here. The onset of
unsteady flow occurs at lower Reynolds number as the incident angle is increased, as
observed by Paul, Prakash & Vengadesan (2014b). The critical values obtained at low
angles of incidence are within the 15 % error tolerance of their functional relationship.
Furthermore, Paul, Prakash & Vengadesan (2014a) have provided functional fits for
time-averaged lift and drag coefficients for elliptical cylinders for Re 6 200.

3.3. Transition to three-dimensional flow
The Re − I parameter space maps of the marginal stability curves for the onset of
unsteady flow and three-dimensional modes for Γ = 1.1, 1.5, 2 and 2.5 are shown
in figures 3–5 and 7, respectively. For Γ = 1.1, the three-dimensional transition
scenario is similar to that of a circular cylinder. With increasing Reynolds number,
the base flow is first unstable to mode A, then mode B, then mode QP. The angle of
incidence only has a marginal effect. As the aspect ratio of the cylinder is increased,
the complexity of these parameter space maps increases, with modes Â and C being
observed for Γ > 1.5 and modes B̂ and QPA being observed for Γ & 1.8, in addition
to modes A, B and QP. (A description of these different modes is given in later
sections.) The panels in each of these parameter space plots show the regions of
occurrence of these three-dimensional modes. The region of each mode is assigned a
unique colour and these coloured regions are overlaid to produce the parameter space
maps. The reader is also referred to Leontini et al. (2015) for the various transitions
that occur the wake of an elliptical cylinder at zero incident angle.

Shown in figure 3 are the marginal stability curves for Γ = 1.1. At lower angles
of incidence, the critical values of transition are similar to those of a cylinder of
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FIGURE 3. (Colour online) (a) Marginal stability diagram of the Re− I parameter space
showing the various transitions for Re6 440, I 6 20◦ for the elliptical cylinder of Γ = 1.1.
(b) Regions of steady flow and three-dimensional instabilities – (c) mode A, (d) mode B
and (e) mode QP are each assigned a unique colour and overlaying these regions gives
the composite image in (a).

Γ = 1, and vary only slightly as the incident angle is increased up to I = 20◦.
While the critical Reynolds number (Rec) for the onset of modes A and B decreases
marginally as the incident angle is increased, Rec marginally increases for mode
QP. The preferred spanwise wavelengths of these modes at onset remain relatively
constant over this incident angle range.
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FIGURE 4. (Colour online) (a) Marginal stability diagram of the Re− I parameter space
showing the various transitions for Re6 440, I 6 20◦ for the elliptical cylinder of Γ = 1.5.
(b) Regions of steady flow and three-dimensional instabilities: (c) mode A, (d) mode Â, (e)
mode B, ( f ) mode QP and (g) mode C are each assigned a unique colour and overlaying
these regions gives the composite image in (a).

Figure 4 shows the parameter space map for an aspect ratio Γ = 1.5. Leontini
et al. (2015) reported the onset of a long wavelength mode, mode Â, to become
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FIGURE 5. (Colour online) (a) Marginal stability diagram of the Re− I parameter space
showing the various transitions for Re 6 440, I 6 20◦ for the elliptical cylinder of Γ = 2.
Regions of three-dimensional instabilities – (b) mode QPA, (c) mode Â, (d) mode B,
(e) mode B̂, ( f ) mode C and (g) mode QP are each assigned a unique colour and
overlaying these regions gives the composite image in (a). The dashed line of mode
B̂ indicates the extrapolated values at lower angles of incidence.
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unstable for Γ & 1.2 at I = 0◦, and this mode is observed to occur at Reynolds
numbers close to the onset of mode A for Γ = 1.5. The boundaries of the these two
modes are contiguous in the Re − I space. Modes A and Â appear as two separate
branches at lower Reynolds numbers; the two modes coalesce at higher Reynolds
numbers (Leontini et al. 2015). As the incident angle is increased for this aspect ratio,
the onset of modes Â and B decreases to lower Reynolds numbers, while that of mode
A increases marginally as the incident angle is first increased from I = 0◦ to I = 4◦,
before decreasing to lower values as the incident angle is increased further. However,
the onset of mode QP is delayed to higher Reynolds numbers with increasing angle of
incidence. For I & 12◦, mode C is observed at the upper range of Reynolds numbers
investigated here, and the critical Reynolds number for the onset of mode C decreases
to lower Reynolds numbers as the angle of incidence is increased, with a marginal
increase in the spanwise wavelength. Mode C is observed to become unstable at the
lower range of wavelengths of the unstable mode QP. At lower incident angles of
I ' 12◦, the onset of mode C occurs well past the Rec for mode QP; however, at
higher incident angles (I ' 20◦), the critical Reynolds number for the onset of mode
C occurs close to the onset of mode QP.

Figure 5 shows the marginal stability curves for Γ = 2. Mode B̂ is the first
three-dimensional mode to become unstable to perturbations at low angles of incidence
and forms a closed region in the parameter space, occurring for I 6 9◦, 285.Re. 420.
At Reynolds numbers past the onset of modes B̂ and Â, mode QPA is observed. For
incident angles I & 2◦, this mode manifests as a quasi-periodic instability, whose
imaginary component of the Floquet multiplier increases with an increase in the
incident angle. Also, for a given incident angle, the imaginary component of the
mode decreases with increasing Reynolds number and a real mode whose structure
resembles mode A is observed. This mode is discussed in detail in § 3.5 with respect
to Γ = 2.5. The onset of mode B occurs at decreasing Reynolds numbers with
increasing angles of incidence. However, the onset of mode QP occurs at lower
Reynolds numbers as angle of incidence is increased from 0◦ and increases to higher
Reynolds numbers beyond I = 15◦. At higher Reynolds numbers, mode C becomes
unstable for I &18◦ (also see § 3.8). Comparing figures 4 and 5, the angle of incidence
for the onset of mode C increases to higher values as the aspect ratio is increased
from Γ = 1.5 to 2.

Figure 6 shows spanwise perturbation vorticity contours for an elliptical cylinder
at Γ = 2 at the specified parameter values for the various three-dimensional modes
observed in this study. These images bear a resemblance to the vorticity contours
shown in figure 2 of Leontini et al. (2015), albeit rotated due to the incoming flow
at an incident angle and also to the vorticity contours of the corresponding modes
observed in the wake of a rotating circular cylinder at low rotation rates (Rao et al.
2013a, 2015a). The physical mechanisms and the spatio-temporal characteristics of
these modes have been previously detailed by Leontini et al. (2015) and earlier
works. The perturbation vorticity contours of modes A (also, mode QPA) and mode
Â at onset appear to be similar in the near wake but differ in the shed vortices
further downstream of the body (Leontini et al. 2015). Closer examination of the
perturbation contours of mode Â reveals that it is mode G, which was observed in
the wake of rotating cylinders. Mode Â and mode G share the same spatio-temporal
characteristics and have wavelengths of the order of several tens of diameters in the
spanwise direction (also see figure 23 of Rao et al. (2013a)). This is detailed in § 3.6,
where the relationship of mode A and Â are discussed. The perturbation contours of
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FIGURE 6. (Colour online) Visualisation of spanwise perturbation vorticity contours for
Γ = 2 at the specified parameter values, and in the increasing order of their characteristic
spanwise wavelengths, for (a) mode B: Re = 400, λ/D = 0.85, (b) mode QP: Re =
400,λ/D=1.9, (c) mode C: I=20◦,Re=360,λ/D=2.1, (d) mode B̂: Re=320,λ/D=2.5,
(e) mode QPA: Re = 320, λ/D = 4 and ( f ) mode Â: Re = 320, λ/D = 8. Spanwise
perturbation vorticity contour levels are between ±0.1D/U and are overlaid by dashed
lines (— —) that indicate the base flow vorticity contour levels between ±1D/U. Modes
QPA, Â and B̂ have been captured at the same instant of vortex shedding at I= 8◦,Re=
320; modes B and QP have been captured at the same instant of vortex shedding at
I = 8◦, Re = 400; mode C has been captured at I = 20◦, Re = 360. Flow is from left to
right in all images.

mode C, has been shown at I = 20◦ as it appears at larger values of incident angles
due to the wake asymmetry; as previously observed in the wakes of rotating cylinders
(Rao et al. 2013a, 2015a; Radi et al. 2013) and inclined square cylinders (Sheard
et al. 2009; Sheard 2011).

The parameter space diagram for Γ = 2.5 is presented in figure 7 showing the
various three-dimensional modes that occur for Re 6 500. As the angle of incidence
is increased, the critical Reynolds number for the onset of unsteady flow decreases
from Re ' 93.5 at I = 0◦ to Re ' 52 at I = 20◦. At low angles of incidence, mode
B̂ is the first three-dimensional mode to become unstable to spanwise perturbations;
however, as the angle of incidence is increased beyond I = 8◦, mode Â becomes the
first three-dimensional mode to become unstable. Mode B̂ is unstable over a larger
region of the parameter space as compared to the previous case at Γ = 2. While mode
C was observed only at higher incident angles at aspect ratios of Γ = 1.5 and 2, a
closed region of mode C is observed here for 5◦ . I . 12◦ for 340 6 Re 6 480. The
perturbation structure of mode C at this aspect ratio is very similar to that shown
in figure 6, although the critical spanwise wavelength at onset is '1.1D. At Reynolds
numbers past the onset of modes Â (and mode B̂ at lower incident angles), mode QPA
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FIGURE 7. (Colour online) (a) Marginal stability diagram of the Re− I parameter space
showing the various transitions for Re6 500, I 6 20◦ for the elliptical cylinder of Γ = 2.5.
(b) Regions of steady flow and three-dimensional instabilities: (c) mode QPA, (d) mode
Â, (e) mode B, ( f ) mode B̂ and (g) mode C are each assigned a unique colour and
overlaying these regions gives the composite image in (a).

is observed. At lower incident angles, the critical Reynolds number for the onset of
mode QPA is more difficult to determine, as the spanwise wavelength at which this
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FIGURE 8. Variation of the critical spanwise wavelength at onset for Re 6 500 for
(a) mode A, (b) mode B, (c) mode B̂, (d) mode C, (e) mode QP and ( f ) mode QPA.
The aspect ratios are assigned a specific symbol and line type; Γ = 1.1 (u), Γ = 1.5 (E),
Γ = 1.8 (A), Γ = 2 (@), Γ = 2.5 (p) and Γ = 3 (q).

mode occurs is in the same range of wavelengths where mode B̂ is unstable. Hence,
this region is marked by dashed lines in figure 7. At large values of incident angle
and Reynolds numbers, modes A and B were the fastest growing modes. A stable
quasi-periodic mode of with a dominant wavelength of λ/D = 1.6 was observed at
I = 20◦, Re= 500.

3.4. Variation of the critical spanwise wavelength
The variation of the critical spanwise wavelength (λc/D) of the three-dimensional
modes on the unsteady flow with angle of incidence is shown in figure 8. At low
aspect ratios, the variation of the critical wavelength with incident angle is nearly
constant and at higher aspect ratios, this variation is marked. The critical wavelengths
at I = 0◦ of modes A, B, B̂ and QP decrease with an increase in the aspect ratio, as
observed in Leontini et al. (2015). The critical spanwise wavelengths for mode B̂ and
mode C for Γ = 2.5 were obtained at the lowest Reynolds number at which this
mode is observed to become unstable to perturbations. The variation of the spanwise
wavelength with Reynolds number and incident angle for mode B̂ and mode C is
discussed in §§ 3.7 and 3.8, respectively. The variation of the spanwise wavelength of
mode Â has not been documented due to peak growth rates occurring at increasingly
lower spanwise wavelengths with small increments in Reynolds numbers beyond the
critical value of transition. At higher Reynolds numbers, there is no distinct peak
for the mode Â curve, as mode A and Â merge (Leontini et al. 2015). This is
also discussed in § 3.6. At Reynolds numbers past the transitional values, there is
a possibility of the interaction of these modes, and thus, the spanwise wavelength
observed in reality could be significantly altered.

3.5. Nature of mode QPA
For Γ & 1.8, at incident angles I & 2◦, a quasi-periodic mode, mode QPA, becomes
unstable to perturbations at Reynolds numbers beyond the onset of mode Â.
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FIGURE 9. (Colour online) Locus of the Floquet multipliers on the complex plane at
the specified Reynolds numbers at Γ = 2.5 at (a) I = 8◦ for a spanwise wavelength of
λ/D = 3.6 and (b) I = 16◦ for a spanwise wavelength of λ/D = 4.5. The unit circle
(|µ| = 1) is shown by the curved red line. For clarity, only the positive component of
the complex-conjugate pair of the multipliers is shown in these figures. Three-dimensional
reconstructions of mode QPA in plan view taken at (c) t = to and (d) t = to + 17T2D
at Γ = 2.5, I = 8◦, Re = 400 showing two spanwise wavelengths of the instability over
a spanwise distance of 8D. Isosurfaces of streamwise perturbation vorticity (in red and
yellow) are visualised with the cylinder (in blue). Flow is from left to right in images
(c,d).

This mode has a complex valued Floquet multiplier when µ < 1 (or σ < 0). On
increasing the Reynolds number, the imaginary component of this quasi-periodic
mode gradually decreases to zero, and thereby becomes a real synchronous mode.
This is similar to the quasi-periodic mode found in the wake of a square cylinder,
where the imaginary component of the Floquet multiplier decreases with an increase in
Reynolds number (see figure 4 of Blackburn & Lopez (2003)). Similar quasi-periodic
modes (QP and QP2) have been reported in the wakes of flat plates and low aspect
ratio rectangular cylinders at zero incident angles (Choi & Yang 2014). In these cases,
the QP modes do not transform into a real mode because of symmetry restrictions,
unlike the case here, where centreline symmetry is broken for non-zero incidence.
Perhaps surprising is that mode QPA appears to be a modulated mode A instability,
having similar perturbation structure and spanwise wavelength at onset.

Shown in figure 9(a,b) are the loci of the Floquet multipliers of mode QPA on the
complex plane for the elliptical cylinder Γ = 2.5 at I = 8◦ and 16◦, respectively, at a
constant wavelength. For clarity, only the positive quadrant of the complex plane is
shown. At I= 8◦, the Floquet multipliers for λ/D= 3.6 exceed |µ| = 1 at around Re'
350. On further increasing the Reynolds number, the multipliers migrate towards, and
then remain on the real axis as their imaginary component reduces to zero. For Re'
480, a mode with a purely real multiplier is observed. As the angle of incidence is
increased to I=16◦, a similar phenomenon is observed, with the multipliers coalescing
on the real axis at Re' 290.
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FIGURE 10. (Colour online) Locus of the Floquet multipliers on the complex plane for
Γ = 2.5, I = 16◦ for Re= 285 (u) and Re= 290 (E) at the specified values of spanwise
wavelength. The unit circle (|µ| = 1) is shown by the curved red line. For clarity, only
the positive component of the complex-conjugate pair of the multipliers is shown in this
figure. The values of λ/D are shown in black and red labels for Re= 285 and Re= 290,
respectively for (a) λ/D= 3.6, (b) λ/D= 3.9, (c) λ/D= 4.2, (d) λ/D= 4.5, (e) λ/D= 4.8
and (f) λ/D= 5.4.

The spanwise perturbation contours of mode QPA are nearly, but not quite,
identical after each period of shedding as the spanwise frequency (computed by
St3D = tan−1(µimag/µreal)/(2πT2D), where T2D is the period of BvK shedding obtained
from the base flow computations) is of O(10−3) (this can also be implicitly observed
in figure 9(a,b), where the imaginary component of the multiplier has very low
values). However, the perturbation contours are not identical several periods apart.
Shown in figure 9(c,d) are the reconstructions of the streamwise perturbation vorticity
at Γ = 2.5, I = 8◦ and Re= 400, taken seventeen periods apart. The frequency (St3D)
of mode QPA at these parameter values is computed to be '0.0063187, which
corresponds to a period of '158.26 non-dimensional time units or approximately
thirty-four periods of shedding (T2D = 4.689). After seventeen base flow periods, the
mode has traversed half a wavelength in the spanwise direction.

At higher angles of incidence, the Reynolds number for onset of mode A
(developed from mode QPA) varies with spanwise wavelength, and this makes it more
difficult to accurately obtain the critical Reynolds number for onset of mode A by
interpolation/extrapolation. Shown in figure 10 are the loci of the Floquet multipliers
for Γ = 2.5, I = 16◦ for 3.6 6 λ/D 6 5.4. At Re = 285, mode QPA is unstable, as
the multipliers have a non-zero imaginary component, with the maximum growth rate
occurring at λ/D= 4.5. However, at Re= 290, the multipliers for λ/D & 4.5 have a
purely real Floquet multiplier.

As the angle of incidence is decreased from higher angles of incidence to zero, a
similar behaviour is observed with the Floquet multipliers approaching the real axis.
Shown in figure 11 are the loci of the Floquet multipliers in the complex plane. The
values plotted here are normalised by the magnitude of the Floquet multiplier and
hence lie on the unit circle (red curve). As the incident angle is decreased from I=12◦
to I = 0◦, the multipliers gradually migrate towards the positive real axis.
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FIGURE 11. (Colour online) Locus of the normalised Floquet multipliers on the complex
plane at the specified values for Γ = 2.5. The unit circle (|µ| = 1) is shown by the curved
red line. For clarity, only the positive component of the complex-conjugate pair of the
multipliers is shown in this figure. The values chosen are close to the marginal stability
curve for mode QPA: (a) I = 12◦, Re= 310, λ/D= 3.9, (b) I = 10◦, Re= 330, λ/D= 3.6,
(c) I= 9◦,Re= 340, λ/D= 3.3, (d) I= 8◦,Re= 360, λ/D= 3.3, (e) I= 6◦,Re= 380, λ/D=
3.15, (f) I = 4◦, Re= 400, λ/D= 3.0, (g) I = 2◦, Re= 415, λ/D= 3.3 and (h) I = 0◦, Re=
430, λ/D= 3.6.

(a) (b)

FIGURE 12. (Colour online) Visualisation of the spanwise perturbation vorticity contours
in the wake of an elliptical cylinder of Γ = 2.5 for (a) I = 0◦, Re= 460, λ/D= 3.6 and
(b) I = 16◦, Re = 290, λ/D = 4.5. Contour shading as per figure 6. Flow is from left to
right in all images.

The wavelength of mode QPA at onset decreases from λc/D ' 5.5 at I = 20◦ to
λc/D ' 3 at I = 4◦ (also see figure 8f ). It may be recalled that mode B̂ becomes
unstable around Rec ' 330, λc/D' 2 at low angles of incidence and is unstable over
a wide range of spanwise wavelengths (1.6 . λ/D . 4) at higher Reynolds numbers.
This further makes it hard to discern the critical Reynolds number for mode QPA at
lower angles of incidence and, thus, the predicted onset of this mode is shown by
dashed lines in figure 7.

Shown in figure 12 are the spanwise perturbation contours of mode A at I= 0◦ and
the real mode at I = 16◦ at a similar phase of the shedding cycle. From this figure,
the real mode observed at Reynolds numbers beyond the decay of the imaginary
component of the quasi-periodic mode at higher incident angles and mode A observed
at zero angle of incidence by Leontini et al. (2015) are similar, and appear to be
manifestations of the same instability. It is also likely that the two modes have the
same physical mechanism leading to the growth of this instability.
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FIGURE 13. Variation of the Floquet multiplier with spanwise wavelength for the elliptical
cylinder of Γ =2.5, at I=8◦,Re=400. The dashed line indicates neutral stability (|µ|=1).
The three-dimensional modes which are unstable – modes C, B̂, QPA and Â are marked
on this figure.

For a cylinder with a square cross-section, the pair of complex-conjugate Floquet
multipliers observed at I = 0◦ migrate and coalesce on the negative real axis as the
angle of incidence is increased to 5.85◦ at a constant Reynolds number and spanwise
wavelength. On further increasing the angle of incidence beyond this value, the pair of
multipliers further split up as a stable and an unstable subharmonic mode (Blackburn
& Sheard 2010; Sheard 2011). In contrast, for the elliptical cylinder case, a real
mode is transformed to a quasi-periodic mode as the angle of incidence is increased
(breaking of the Z2 spatio-temporal symmetry), with a corresponding increase in the
spanwise frequency of the three-dimensional mode.

To further validate the behaviour of mode QPA, a fully nonlinear three-dimensional
direct numerical simulation was performed for Γ = 2.5, I = 8◦, Re = 400. Sixty-four
Fourier planes were employed to capture the flow over a spanwise distance of
z/D= 8. This spanwise length was chosen to accommodate 1, 2, 4 and 7 wavelengths
of modes Â, QPA, B̂ and C, respectively. Figure 13 shows the variation of the
Floquet multiplier with spanwise wavelength for this case. Mode QPA is the
fastest-growing mode with highest valued Floquet multiplier occurring at λ/D ' 3.5.
The two-dimensional base flow is used as a starting point with some low intensity
white noise O(10−4) added at the start of the simulation. Shown in figure 14(a,b) are
the time histories of the streamwise (u) and spanwise (w) velocity components at a
point (x, y) = (1.58, 0.5), with the elliptical cylinder centred at the origin. The flow
remains nearly two-dimensional for approximately one hundred time units, beyond
which the growth of the spanwise velocity component is observed.

Figure 14(c–f ) show the isosurfaces of streamwise vorticity in plan view at the
specified time instants. At τ = 213 (figure 14c), two wavelengths of λ/D ' 4 are
observed across the span, which is in good agreement with the wavelength of mode
QPA. At a later time of τ = 295 (figure 14c), these structures have translated by half a
wavelength in the spanwise direction compared to the earlier time instant. Furthermore,
this spanwise shift is well predicted for a travelling wave with the period calculated
from the stability analysis (also see figure 9). The streamwise vortices appear to
shed obliquely (only marginally) in the near wake; however, further downstream
they appear to be parallel to the incoming flow. These structures are consistent
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FIGURE 14. (Colour online) (a,b) Time histories of the streamwise and spanwise velocity
components at a point in the wake ((x, y)= (1.58, 0.5)) of an elliptical cylinder of Γ =
2.5, I = 8◦, Re = 400 for a cylinder of spanwise distance of 8D. Visualisations of the
streamwise vorticity (in red and yellow) in the wake of the cylinder (in blue) in plan
view at (c) τ = 213, (d) τ = 295, (e) τ = 385 and ( f ) τ = 426. Flow is from left to right
in images (c)–( f ).

with figure 6(b) of Blackburn et al. (2005), where a travelling quasi-periodic wake
is observed in the wake of a circular cylinder at Re = 400. As the flow saturates
(τ ' 380), the w velocity component begins to fluctuate with large magnitudes,
resulting in irregular wake patterns, as seen in figure 14(e, f ). At τ = 385 (figure 14e),
three-dimensional structures covering the entire span are observed in the near wake
with dislocations in the subsequent vortex roller, leading to the breakup of the vortical
structure (also see figure 34 of Williamson (1992)) further downstream. At a later
time instant of τ = 426 (figure 14f ), smaller-scale structures bearing the hallmarks
of mode B are observed in the near wake and disorderly vortex patterns occur in
the far wake. (It may be recalled that the critical Reynolds number for the onset
of mode B for these parameter values is '472.) These observations are consistent
with the three-dimensional computations of wakes behind inclined square cylinders
(Sheard et al. 2009). Larger domain sizes and longer time histories would be required
to quantify the disorderly wake structures; however, these would be computationally
expensive to perform. Nonetheless, the fastest-growing mode predicted by the stability
analysis, mode QPA, is observed in the saturating three-dimensional wake before
chaotic flow ensues due to nonlinear interactions.

Also, the quasi-periodic mode observed in the wake of elliptical cylinders for
Γ . 1.8 (mode QP) is different to that observed at higher aspect ratios (mode QPA).
Mode QP which is observed at lower aspect ratios becomes unstable at Reynolds
numbers beyond the onset of modes A and B and occurs at intermediate wavelengths
of mode A and B. Mode QPA which occurs for 1.8 . Γ . 2.9 becomes unstable
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FIGURE 15. (Colour online) Locus of the Floquet multipliers on the complex plane
for elliptical cylinders at an incident angle of I = 16◦ for: (a) Γ = 1.1, λ/D = 2,
(b) Γ = 1.8, λ/D= 3.9, (c) Γ = 2.6, λ/D= 4.8 and (d) Γ = 3, λ/D= 4.8 at the specified
Reynolds numbers. The unit circle (|µ| = 1) is shown by the curved red line. For clarity,
only the positive component of the complex-conjugate pair of the multipliers is shown in
this figure.

at Reynolds numbers prior to the onset of mode B, with a spanwise wavelength in
the range of mode A instability. The real component of the Floquet multipliers of
mode QP are negative, while that of mode QPA are positive. Shown in figure 15(a)
are the loci of the Floquet multipliers for mode QP at Γ = 1.1, I = 16◦, λ/D = 2.
The imaginary component of the Floquet multiplier increases to higher values as the
Reynolds number is increased beyond the transitional value. However, for Γ > 1.8,
the quasi-periodic mode has a spanwise wavelength similar to that of mode A and
the Floquet multipliers are real and positive as seen in figure 15(b).

Mode QPA was also observed for larger aspect ratios, for Γ = 2.6 and 2.8 for
I= 16◦, λ/D= 4.8, with the transformation to mode A occurring at Re' 300 and 340,
respectively. Figure 15(c,d) show the loci of the Floquet multipliers on the complex
plane for λ/D= 4.8, I = 16◦ for Γ = 2.6 and Γ = 3, respectively. For Γ = 2.6, mode
QPA becomes unstable at Re ' 255 and the imaginary component of the Floquet
multiplier decreases to zero as the Reynolds number is increased. However, for
Γ = 3, I = 16◦, such a transformation to mode A does not occur, with the imaginary
component of the Floquet multiplier decreasing up to Re = 360 and then increasing
rapidly to higher values with a further increases in Reynolds number, while the
real component of the Floquet multiplier decreases gradually. The mode remains
quasi-periodic at the maximum tested Reynolds number of Re = 440. A similar
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FIGURE 16. (Colour online) (a) Variation of the magnitude of the Floquet multiplier with
spanwise wavelength at Γ = 2.5, I = 12◦, Re = 440. The dashed line indicates neutral
stability (|µ|= 1). (b–j) Visualisation of the spanwise perturbation vorticity contours at the
same instant in the vortex shedding cycle for spanwise wavelengths for (b) λ/D= 4, (c)
λ/D= 5, (d) λ/D= 6, (e) λ/D= 7, ( f ) λ/D= 8, (g) λ/D= 10, (h) λ/D= 12, (i) λ/D= 20
and ( j) λ/D = 32. Contour shading as per figure 6. Flow is from left to right in these
images.

behaviour was observed at spanwise wavelengths of λ/D= 3.6 and 5.4 (not shown).
Thus, mode QPA is unstable for 1.8 . Γ . 2.9.

3.6. Relationship between mode A and Â

Leontini et al. (2015) presented the relationship between modes A and Â, indicating
that both these modes are unstable for Γ & 1.2 and share the same spatio-temporal
characteristics. They further showed the variation of modes A and Â with increasing
Reynolds numbers and pointed out that the two modes can be difficult to distinguish.
Shown in figure 16 are the variation of the Floquet multiplier and the spanwise
perturbation contours with spanwise wavelength for a case where Γ = 2.5, I = 12◦,
and Re = 440. For this case, the change from mode A to Â is gradual and a hard
distinction cannot be made between the two modes. The structure of the perturbation
in the third and fourth shed vortices appears to rotate between λ/D= 4 to λ/D= 12,
covering 180◦ between these values. On further increasing the spanwise wavelength
beyond λ/D = 12, the contours appear ‘fixed’ to this configuration. This gradual
change is also observed in other bluff body wakes, where mode A is unstable over
a large range of spanwise wavelengths; examples are the wake of square cylinders
at zero angle of incidence (see figure 2 of Blackburn & Lopez (2003)), bluff bodies
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FIGURE 17. Unstable region of mode B̂ in the Re− I parameter space for Γ = 1.8 (E),
Γ = 2 (u), Γ = 2.5 (@) and Γ = 3 (p). The onset of mode B̂ is delayed to higher
Reynolds numbers as the aspect ratio is increased beyond Γ = 2. The dashed line of mode
B̂ for Γ = 2 at low incident angles indicates the values have been extrapolated using the
quadratic fit method employed in Leontini et al. (2015).

with elliptical leading edges (see figure 7a of Ryan et al. (2005)) and inclined flat
plates (Γ = 0) at I = 20◦ (see figure 2 of Yang et al. (2013)).

3.7. Unstable region of mode B̂

Mode B̂ first becomes unstable for Γ & 1.75 for Re ' 285, I = 0◦ (Leontini et al.
2015). The range of Reynolds number over which mode B̂ is unstable increases with
aspect ratio and for Γ & 1.9, mode B̂ is the first three-dimensional mode to become
unstable as Reynolds number is increased. A similar observation was made by Ryan
et al. (2005), Thompson et al. (2006b), where this mode precedes the onset of mode
A in the wake of bluff bodies with elliptical leading edges of Γ = 5. Figure 17
shows the unstable region of mode B̂ for Γ 6 3. The upper limit of mode B̂ at
lower angles of incidence was obtained using the method employed by Leontini et al.
(2015), as the growth rates of mode QPA were significantly higher and the multiplier
of a waning mode B̂ could not be accurately resolved. At Γ = 1.8, mode B̂ exists
for I . 3◦, 290 6 Re 6 315, and for a marginal increase in the aspect ratio to Γ = 2,
the range of Reynolds number and incident angles over which this mode is unstable
increases to 285 6 Re . 415 and I . 9◦, respectively. As the aspect ratio is further
increased to Γ = 2.5, the onset of mode B̂ is delayed to higher Reynolds numbers
and is unstable for I . 10◦. At a larger aspect ratio of Γ = 3, mode B̂ is found to be
unstable for I . 9◦, but over a much larger range of Reynolds number. (Note that the
Γ = 3 case was investigated for mode B̂ for I 6 10◦ with adequate spatial resolution.)
While the critical spanwise wavelength at onset of this mode was found to decrease
with aspect ratio (Leontini et al. 2015), a marginal increase was observed with an
increase in the angle of incidence for a given aspect ratio (also see figure 8c).

Mode B̂ is observed to be unstable over a range of spanwise wavelengths as
Reynolds number is increased beyond the critical value at a given incident angle.
Figure 18(a) shows the contour plot of the Floquet multiplier for 1.6 6 λ/D 6 2.6
at Γ = 2.5 when the incident angle is held constant at I = 8◦ and Reynolds number
is gradually increased. At this incident angle, the maximum value of the Floquet
multiplier of this mode is observed at Re' 380 for a spanwise wavelength λ/D' 2.2.
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FIGURE 18. (Colour online) Contour plots of the Floquet multiplier of mode B̂ for Γ =
2.5: (a) as a f (Re, λ/D) at a constant incident angle of I = 8◦ and (b) as a f (I, λ/D) at
a constant Reynolds number of Re = 360. Contour lines in (a) are at |µ| = 1.075 (thin
dashed lines), 1 (continuous line) and 0.925 (thick dashed lines). Contour lines in (b) are
at µ= 1.15 (thin dashed lines), 1 (continuous line) and 0.9 (thick dashed lines).

The Floquet multiplier decreases to lower values at as the Reynolds number is
increased. At higher Reynolds numbers, we observe mode QPA becoming unstable
at wavelengths of λ/D = 2.6 (top right of the figure). In figure 18(b), the Reynolds
number is held constant and the incident angle is increased from 0◦ 6 I 6 0◦, the
maximum Floquet multiplier of this mode occurs at I ' 4◦. The Floquet multiplier
decreases with a further increase in incident angle. This behaviour is consistent with
the closed regions formed by mode B̂ in the Re− I parameter space.

3.8. Behaviour of mode C and mode QP
For elliptical cylinders Γ . 2, mode C occurs at higher values of incident angles when
the wake is no longer symmetrical. This behaviour is very similar to that observed for
an inclined flat plate or a triangular cylinder, where mode C is observed at increasing
lower Reynolds numbers as the incident angle is increased (Yang et al. 2013; Ng
et al. 2016), and also to that of a subharmonic mode becoming unstable in the wake
of a rotating cylinder as the rotation rate is increased (Rao et al. 2013a, 2015a).
Essentially, the Z2 spatio-temporal symmetry needs to be broken for subharmonic
modes to occur (Blackburn & Sheard 2010). For the elliptical cylinder of Γ . 2,
mode C is observed to become unstable in the same range of spanwise wavelengths
as that of the unstable QP mode; usually at the lower range spanwise wavelengths of
mode QP. The critical Reynolds number for mode QP is lower than that of mode C
for I 6 20◦. Shown in figure 19(a) is the contour plot of the Floquet multiplier with
spanwise wavelength with Reynolds number for Γ = 1.5, I = 16◦. Mode QP becomes
unstable at Rec' 335, λc/D' 2.1 and mode C at Rec' 381, λc/D' 1.85. The growth
rate of mode C exceeds that of mode QP for small increments in Reynolds numbers.
A similar phenomenon was observed in the wake of inclined square cylinders (Sheard
et al. 2009; Sheard 2011) and in the wake of rings (Sheard, Thompson & Hourigan
2005a; Sheard et al. 2005b) and has been documented previously in Blackburn &
Sheard (2010). For the inclined square cylinder, they show the transformation of from
mode QP to mode C at a constant Reynolds number and spanwise wavelength as
the incident angle is increased from I = 0◦ to I = 8◦; with mode QP multiplier first
becoming stable to perturbations as the incident angle is increased from I = 0◦ and
coalescing on the real axis as stable subharmonic modes at I = 5.85◦, and finally
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FIGURE 19. (Colour online) Contour plots of the Floquet multipliers for mode QP and
mode C for Γ = 1.5: (a) as a f (Re, λ/D) at a constant incident angle at I = 16◦ and (b)
as a f (I, λ/D) at a constant Reynolds number of Re = 380. Contour lines in (a) are at
|µ| = 1.3 (thin dashed lines), 1.15 (continuous line) and 1 (thick dashed lines) and in (b)
are at |µ| = 1.4 (thin dashed lines), 1.25 (continuous line) and 1.1 (thick dashed lines).
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FIGURE 20. (Colour online) Locus of the Floquet multipliers on the complex plane for
Γ = 1.5, I= 16◦ at the specified Reynolds numbers for spanwise wavelengths of (a) λ/D=
1.9 and (b) λ/D = 2.15. The unit circle (|µ| = 1) is shown by the curved red line. For
clarity, only the positive component of the complex-conjugate pair of the multipliers is
shown in this figure.

becoming unstable at I = 7.5◦. Shown in figure 19(b) is the contour plot of the
Floquet multipliers at Γ = 1.5 with incident angle, at a constant Reynolds number
of Re= 380. The maximum growth rate of mode QP occurs at increasing values of
spanwise wavelength as the incident angle is increased from I= 8◦. Mode C becomes
unstable for I & 16◦ at lower values of spanwise wavelength and has a higher growth
rate as compared with mode QP. This is again similar to the behaviour observed in
the wake of square cylinders at low incident angles (Sheard 2011).

Shown in figure 20(a,b) are the loci of the Floquet multipliers at the specified
Reynolds number on the complex plane for Γ = 1.5, I = 16◦ for λ/D = 1.9 and
λ/D= 2.15, respectively. For λ/D= 1.9, the transformation of mode QP to mode C
occurs as Reynolds number is increased; and for λ/D= 2.15, the quasi-periodic mode
does not undergo the transformation to a subharmonic mode for the Reynolds numbers
considered here. Nonetheless, these a plots show the dependence of both Reynolds
number and spanwise wavelength for such transformations to occur.

Shown in figure 21(a,b) is the variation of spanwise wavelength at which the
maximum Floquet multipliers of modes QP and mode C occur at I= 18◦ for Γ = 1.5
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FIGURE 21. Variation of the dominant spanwise wavelength of mode C (u) and mode
QP (@,p) at I = 18◦ for (a) Γ = 1.5, (b) Γ = 2 and (c) Γ = 1.5, I = 22◦. Open symbols
indicate values when the mode is stable to perturbations (µ < 1), while filled symbols
indicate values where Floquet multipliers are unstable (µ> 1). Lines are best fits to the
measured values.

and Γ = 2, respectively. For Γ = 1.5 (Γ = 2), mode QP becomes unstable for
Re& 332 (Re& 344) and mode C is observed for Re& 365 (Re& 402). The dominant
wavelength for both modes increases marginally with Reynolds number. For Γ = 1.5
(Γ = 2), both mode C and mode QP have distinct peaks in the µ − λ/D space for
365 6 Re 6 380 (402 6 Re 6 410), and beyond Re = 380 (Re = 415), a clear peak
for mode QP is not observed. For Γ = 1.5, I 6 20◦, mode C becomes unstable to
perturbations at Reynolds numbers beyond the onset of mode QP. However, at a
slightly larger incident angle of I = 22◦, mode C becomes unstable prior to mode
QP as indicated in figure 21(c). For Re & 340, mode C becomes unstable, while the
mode QP branch is still stable to perturbations. Beyond Re & 340, no discernible
peak is observed for mode QP, although the QP branch was found to be unstable
for Re & 360. This is not surprising as the Floquet multiplier of mode C is much
higher than compared with that of mode QP. This cross over is also apparent from
the parameter space plot (see figure 4), where the Rec of mode C decreases with
increasing incident angle, while that of mode QP increases to higher values of
Reynolds numbers.

For Γ = 2.5, mode C is unstable over an enclosed region in the Re− I parameter
space. Shown in figure 22(a,b) are the contour plots of the Floquet multiplier over
spanwise wavelength at a constant incident angle of I = 8◦ and a constant Reynolds
number of Re = 400, respectively. In these plots, the Floquet multiplier of mode
C increases as Reynolds number and incident angle is shown to initially increase,
before decreasing with further increases in Reynolds numbers and/or incident angle.
Figure 22(a) shows that the spanwise wavelength at which the maximum Floquet
multiplier of mode C occurs does not depend strongly on the Reynolds number at
the incident angle considered, while figure 22(b) shows that the maximum Floquet
multiplier of mode C occurs at I' 9◦ at Re= 400. Similar closed regions of instability
of mode C in the Re− λ/D plots have been observed in the wakes of flat plates at
incident angles of 20◦ and 25◦ (Yang et al. 2013). For the flat plate inclined at 20◦
to the flow, mode C is unstable for 400 6 Re 6 510, and for the flat plate inclined
at 25◦, the onset of mode C occurs at a lower Reynolds number of Re' 266 and is
unstable for Re. 305. As a result of the flow becoming aperiodic for Re& 305, they
double the sampling period for their stability analysis and observe that the unstable
mode now has positive real multipliers, which they call mode D. Mode D is observed
for 305 6 Re 6 330, and together with the subharmonic mode, mode C, observed for
Re 6 305, form a closed region in the Re − λ/D plot. Mode C and mode D have
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FIGURE 22. (Colour online) Contour plots of the Floquet multiplier of mode C for Γ =
2.5: (a) as a f (Re, λ/D) at a constant incident angle of I = 8◦ and (b) as a f (I, λ/D) at
a constant Reynolds number of Re= 400. Contour lines in (a b) are at |µ| = 1.02 (thin
dashed lines), 0.96 (continuous line) and 0.9 (thick dashed lines).

identical perturbation contours in the near wake as seen in figure 7(c–e) of their study.
Furthermore, the spanwise wavelength at which the maximum growth occurs does
not change across the two modes (λ/D' 0.8).

3.9. Mode E instability
Using a steady solver, the onset of the three-dimensional modes is investigated by
perturbing the stabilised based flows, i.e. steady base flows that would naturally
be periodic without stabilisation. Previously, such studies were used to identify the
three-dimensional mode that occurred when the BvK vortex shedding was suppressed
(Rao et al. 2015a, 2016). This three-dimensional mode, named mode E, in the
alphabetical order of the modes discovered in the wake of rotating cylinders (Rao
et al. 2013a,b, 2015a), and experimentally observed in Radi et al. (2013), occurs
in the wake of elliptical cylinders as the aspect ratio is increased and also when
the angle of incidence is changed. It may be recalled that mode E has a positive
real multiplier and the structure of the mode bears close resemblance to the modes
observed in bluff body flows near walls (Stewart et al. 2010; Rao et al. 2011, 2013c),
where the onset of three-dimensionality occurs prior to the onset of unsteady flow.

Shown in figure 23(a) is the variation of the critical Reynolds number and spanwise
wavelength of the mode E instability with increasing aspect ratio. As the aspect ratio
is increased from Γ = 1 to Γ = 4, the onset of the critical Reynolds number for mode
E increases from Rec' 95 to Rec' 262, while the critical wavelength decreases from
λc/D ' 6 at Γ = 1 to λc/D ' 4 at Γ = 4. Shown in figure 23(b) are the variations
of the critical Reynolds number and wavelength with increasing incident angle for
the aspect ratios investigated of Γ = 1.1, 1.5, 2 and 2.5. For small values of aspect
ratio, the variation in critical Reynolds number with incident angle is small, and on
increasing the aspect ratio to Γ = 2.5, the critical Reynolds number decreases from
Rec' 165 at I = 0◦ to Rec' 97 at I = 20◦. The corresponding variation in the critical
spanwise wavelength at low aspect ratios is small while for higher aspect ratios,
the variation is more pronounced, as shown in figure 23(c). The critical spanwise
wavelength increases marginally for Γ = 1.1 with angle of incidence, while for
Γ = 2.5, it varies from λc/D' 4.7 at I = 0◦ to λc/D' 7 at I = 20◦.

Shown in figure 24(a,b) are the spanwise perturbation contours of mode E instability
in the wake of elliptical cylinders at the specified parametric values. As the aspect
ratio increases, the width of the wake reduces and the shear layers appear elongated
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FIGURE 23. (a) Marginal stability diagrams of the mode E instability showing the
variation of the critical Reynolds number (u), spanwise wavelength (E) and the critical
Reynolds number for the onset of unsteady flow (@) with varying aspect ratios at I = 0◦.
(b) The variation of the critical Reynolds number with angle of incidence is shown for
Γ = 1.1 (u), Γ = 1.5 (E), Γ = 2 (@) and Γ = 2.5 (p). The critical Reynolds number for
the onset of this mode decreases to lower values as the angle of incidence is increased.
(c) Variation of the critical spanwise wavelength of the mode E instability at onset with
angle of incidence for the aspect ratios in (b). Lines are best fits to the measured values.
Plots reproduced from figures 3 and 4 of Rao et al. (2016).

(a) (b)

(c) (d)

FIGURE 24. (Colour online) Visualisation of the spanwise perturbation vorticity contours
for the mode E instability in the wake of an elliptical cylinder for (a) Γ =1.2, I=0◦,Re=
110, λ/D= 6, (b) Γ = 4, I = 0◦, Re= 280, λ/D= 4, (c) Γ = 2, I = 4◦, Re= 140, λ/D= 5
and (d) Γ = 2, I = 20◦, Re = 110, λ/D = 6.5. Contour shading as per figure 6. Flow is
from left to right in these images. Images reproduced from figures 3 and 4 of Rao et al.
(2016).

for the zero angle of incidence cases. Figure 24(c,d) show the perturbation contours
as the angle of incidence is increased for Γ = 2. In both these cases, the structure
of the perturbation is similar, although the underlying base flows have changed. For
more details on the mode E instability, the reader is referred to Rao et al. (2016),
where a wide range of bluff body geometries has been investigated and their instability
mechanisms discussed.

3.10. Three-dimensional simulations
A few three-dimensional simulations were performed to investigate the nonlinear
behaviour of the three-dimensional modes and to compare with the results of the
linear stability analysis. Domain sizes of z/D = 16 with 128 Fourier planes in
the spanwise direction were used in the three-dimensional simulations described
henceforth. Shown in figure 25(a,b) are the velocity traces at a point in the flow
for Γ = 1.6, I = 0◦, Re= 300 in the streamwise and spanwise direction, respectively,
while figure 25(c–e) show the streamwise vorticity contours in plan view. At these
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FIGURE 25. (Colour online) (a,b) Time histories of the streamwise and spanwise velocity
components at a point in the wake ((x, y)= (1.76, 1.76)) of an elliptical cylinder of Γ =
1.6, I = 0◦, Re = 300 for a cylinder of spanwise distance of 16D. Visualisations of the
streamwise vorticity (in red and yellow) in the wake of the elliptic cylinder (in blue) in
plan view at (c) τ = 103, (d) τ = 172, (e) τ = 257 and ( f ) τ = 261. Flow is from left to
right in images (c–f ).

parameter values, linear stability analysis predicts the critical Reynolds number for
the transition to three-dimensionality of mode Â, A and B at Rec' 251, 264 and 335,
respectively (Leontini et al. 2015). In the saturating phase at τ = 103 (figure 25c),
we observe mode Â type structure in the first wake vortex, and five wavelengths of
mode A in the subsequent downstream vortex rollers. Once the wake has saturated
(figure 25d), the wake is no longer orderly due to vortex dislocations, although mode
A-type structures are clearly discernible in the third and fourth rollers (also see
Williamson (1989, 1992, 1996b), Ling & Zhao (2009), Behara & Mittal (2010), Jiang
et al. (2016a,b) and others). At a much later time at τ = 257 (figure 25e), streamwise
vortices similar reminiscent of mode B are found to dominate much of the wake, with
little or no remnants of mode Â or mode A structures. This premature occurrence
of mode B-type structures is not uncommon as previous numerical (Akbar, Bouchet
& Dušek 2014), and experimental results (Williamson 1996a) for a circular cylinder
show mode B occurring at Re ' 220 although linear stability analysis predicts the
onset of mode B to occur at much higher Reynolds number of Re' 260 (Barkley &
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(a) (b)

FIGURE 26. (Colour online) Visualisations of the streamwise vorticity (in red and yellow)
in the wake of the elliptic cylinder (in blue) in plan view at Γ = 2, I = 12◦, Re= 320 for
a cylinder of spanwise distance of 16D, at (a) τ = 276 and (b) τ = 1903. Flow is from
left to right in these images.

(a) (b) (c)

FIGURE 27. (Colour online) Visualisations of the streamwise vorticity (in red and yellow)
in the wake of the elliptic cylinder (in blue) in plan view at Γ = 2.25, I = 0◦ for a
cylinder of spanwise distance of 16D, at (a) Re= 300, τ = 618, (b) Re= 320, τ = 649 and
(c) Re= 320, τ = 1079. Flow is from left to right in these images.

Henderson 1996). On careful observation of figure 25(e), there appears to be a site
of dislocation at the bottom left of the image, leading to the second vortex roller
being shed slightly obliquely to the flow (also see Williamson (1989)). However,
this oblique shedding is not sustained as the vortices are shed parallel to the flow
approximately one period later at τ = 261 (figure 25f ).

Figure 26 shows the plan view of the wake at two time periods at Γ = 2, I =
12◦, Re = 320, an increase in the aspect ratio, incident angle and Reynolds number
as compared to the previous example. At τ = 276, mode Â can be observed growing
on the first vortex, while a smaller wavelength mode can be observed to grow on
the vortices downstream. However, at a much later time, τ = 1903, oblique vortex
shedding is observed; with much smaller-scale structures, with wavelengths similar
to mode B appear in the near wake on these obliquely shed vortices. However, no
discernible mode structures can be observed downstream due to the chaotic nature of
the wake.

Oblique shedding with pure mode Â instability has also been observed in the
saturated wake for Γ = 2.25, I = 0◦, Re = 300 (figure 27a). For this case, linear
stability analysis predicts the flow to be two-dimensional, with the onset of mode
B̂ and mode Â predicted at Rec ' 303 and Re & 320, respectively. One wavelength
of the mode Â instability is observed spanning the width of the cylinder in the near
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wake and the vortex rollers are inclined to the flow. It may be recalled that Leontini
et al. (2015) presented similar three-dimensional simulations at Γ = 2, Re = 350
showing mode Â in the wake although linear stability analysis predicted mode B̂ to
be the most unstable mode. At a slightly higher Reynolds number of Re = 320
(figure 27b), parallel shedding is observed in the wake with one wavelength of
mode Â instability covering the entire span (note that these structures are very
similar to the three-dimensional reconstructions of mode G in figure 22g of Rao et al.
(2013a)); while at a much later time τ = 1079 (figure 27c), mode B̂-type structures
can be observed in the wake. It may be recalled that parallel and oblique vortex
shedding has previously been observed numerically in the fully developed wake of
rotating and non-rotating circular cylinders (Mittal & Sidharth 2014; Navrose, Meena
& Mittal 2015), and in the wake of inclined flat plates (Yang et al. 2012) for incident
angles I & 20◦.

4. Conclusion

The three-dimensional stability for the flow past an elliptical cylinder for
Γ 6 4, Re 6 500 was investigated for incident angles I 6 20◦. For low-aspect-ratio
elliptical cylinders, the three-dimensional transition scenario closely resembles that
of a circular cylinder with the onset of mode A, followed by mode B, and finally a
quasi-periodic mode, mode QP, on increasing the Reynolds number. The order of the
transition is not altered by the increase in angle of incidence, although the critical
values are marginally lower for the synchronous modes, modes A and B; the critical
value of mode QP marginally increases with increase in angle of incidence.

As the aspect ratio of the cylinder is increased to Γ = 1.5, the onset of a
long-wavelength three-dimensional mode, mode Â, is observed. The critical Reynolds
number for the onset of mode Â occurs close to the onset of mode A and they share
the same spatio-temporal characteristics. The onset of modes Â, A and B occurs
at Reynolds numbers lower than for the circular cylinder case, while that of mode
QP increases to higher Reynolds numbers as the angle of incidence is increased. For
I & 12◦, a subharmonic mode is observed due to the increasing asymmetry in the flow.
The onset of mode C occurs at lower Reynolds numbers as the angle of incidence is
increased.

The transition scenario for Γ = 2 is similar to the Γ = 1.5 case, but with the
unstable region of mode B̂, which forms a closed region in the Re− I parameter space.
As the aspect ratio is increased, the unstable region of mode B̂ expands, with the
mode being unstable over a large range of Reynolds numbers. However, mode B̂ is
not observed beyond I > 10◦ at larger aspect ratios. The onset of mode C is delayed
to higher incident angles compared with the Γ = 1.5, with mode C being observed
beyond I ' 18◦.

For 1.8 . Γ . 2.9, a new three-dimensional mode, mode QPA, is observed. As
the flow symmetry is broken, mode A transforms to a quasi-periodic mode, with
the imaginary component of the Floquet multiplier increasing with the increase in
the angle of incidence. In addition, for a given angle of incidence, the imaginary
component of the quasi-periodic mode decreases to zero as the Reynolds number is
increased, giving way to a real mode. This real mode has a perturbation structure and
spatio-temporal symmetries similar to mode A. The frequency of the quasi-periodic
mode computed from the stability analysis is in good agreement with that predicted
from a three-dimensional simulation.
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Mode λ/D Nature of µ Base flow Symmetry

A [4–4.5] Real and positive BvK shedding u(x, y, z, t)= u(x, y, z+ nλ, t+ T)
Â [6–50] Real and positive BvK shedding u(x, y, z, t)= u(x, y, z+ nλ, t+ T)
B [0.8–1.05] Real and positive BvK shedding u(x, y, z, t)= u(x, y, z+ nλ, t+ T)
B̂ [2–2.5] Real and positive BvK shedding u(x, y, z, t)= u(x, y, z+ nλ, t+ T)
C [1.1–2.1] Real and negative BvK shedding u(x, y, z, t)= u(x, y, z+ nλ, t+ 2T)
E [5.5–7] Linear growth Steady u(x, y, z, t)= u(x, y, z+ nλ)
QP [1.8–2.4] Complex BvK shedding u(x, y, z, t)= u(x, y, z+ nλ, t+ T3D)

QPA [3–5.5] Complex BvK shedding u(x, y, z, t)= u(x, y, z+ nλ, t+ T3D)

TABLE 1. Summary of the three-dimensional modes showing the characteristic wavelength
at onset, nature of the Floquet multiplier (µ), the periodicity of the two-dimensional base
flow and the spatial symmetries of these modes with respect to the streamwise velocity, u.

For Γ = 2.5, mode C forms a closed region in the parameter space. The critical
Reynolds number for the transitions of the three-dimensional modes is delayed to
higher Reynolds numbers at low angles of incidence due to the streamlining of the
cylinder, while the critical values at higher incident angles decrease rapidly as the
angle of incidence is increased, due to the increased bluffness of the cylinder.

While these three-dimensional bifurcation scenarios are presented for the unsteady
flow, the artificially stabilised base flows were also tested for their three-dimensional
stability. A three-dimensional steady mode, mode E, was observed on these base flows
at Reynolds numbers where the flow would be naturally unsteady. The variations of
critical Reynolds number and spanwise wavelength of mode E with increasing cylinder
aspect ratio and incident angles were also mapped. A summary of the characteristics
of the three-dimensional modes observed in this study is provided in table 1. The
spanwise wavelengths of these modes increases with an increase in angle of incidence.
In summary, a large region of the Γ − Re− I parameter region was investigated for
the flow past an elliptical cylinder, with several interesting flow features observed. The
three-dimensional scenario for I 6 20◦ is rich in fluid dynamics with several three-
dimensional modes found to be unstable over a wide range of spanwise wavelengths.
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Appendix A. Domain size study
Shown in table 2 is the domain size study at Γ = 2, I= 0◦,Re= 440. The values of

the time-averaged drag coefficient (Cd), root mean square of the lift coefficient (Cl,RMS)
and Strouhal number (St) for the domain 60D× 60D× 100D (inlet × lateral × outlet)
are within 1 % of the values for the 200D× 200D× 200D domain.
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Inlet × Lateral × Outlet Cd Cl,RMS St

60D× 60D× 100D 0.806967 0.347251 0.214300
100D× 100D× 100D 0.805892 0.347854 0.214121
200D× 200D× 200D 0.804988 0.346622 0.214004

TABLE 2. Variation of time-averaged drag coefficient (Cd), root mean square of the lift
coefficient (Cl,RMS) and Strouhal number (St) with the specified domain sizes at Γ = 2,
I = 0◦, Re= 440.

N Cd Cl,RMS St

4 0.712217 0.291714 0.232481
5 0.710023 0.294918 0.231254
6 0.709486 0.293001 0.230951
7 0.709350 0.295065 0.230888
8 0.709194 0.292911 0.230847
9 0.709206 0.294625 0.230847
10 0.709173 0.294868 0.230809
11 0.709145 0.294655 0.230809

TABLE 3. Variation of time-averaged drag coefficient (Cd), root mean square of the
lift coefficient (Cl,RMS) and Strouhal number (St) with spatial resolution (N) at Γ = 2.5,
I = 0◦, Re= 500. A resolution of N = 8 was chosen for the computations and it is within
0.6 % of the maximum tested value at N = 11.

N Cd Cl St

4 0.717410 0.745443 0.214365
5 0.717101 0.741692 0.214175
6 0.717220 0.740980 0.214114
7 0.717054 0.740122 0.214102
8 0.717125 0.740406 0.214134
9 0.717120 0.740516 0.214143
10 0.717096 0.740101 0.214134
11 0.717058 0.740159 0.214127

TABLE 4. Variation of time-averaged drag coefficient (Cd), root mean square of the
lift coefficient (Cl) and Strouhal number (St) with spatial resolution (N) at Γ = 2.5,
I= 10◦,Re= 500. A resolution of N = 8 was chosen for the computations and it is within
0.5 % of the maximum tested value at N = 11.

Appendix B. Spatial resolution size study

Shown in tables 3–7 are the spatial resolution studies for the specified parametric
values.

A convergence study was undertaken to ensure that the Floquet multipliers were
accurate for the newly observed modes. Shown in table 6 are the Floquet multipliers
for mode QPA at the specified parametric values. For each case, the domain sizes and
time step used were fixed, and the number of internal node points (N) was varied.

A convergence study for the mode C instability was carried out at Γ = 2, I =
20◦, Re= 400, λ/D= 2.5. Only the magnitude of the multiplier is shown in table 7.
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N Cd Cl St

4 0.795453 1.642686 0.187553
5 0.803145 1.642469 0.188037
6 0.803134 1.641160 0.188094
7 0.803370 1.641172 0.188138
8 0.797985 1.651956 0.188170
9 0.802877 1.639757 0.188183
10 0.799550 1.646020 0.188218
11 0.795732 1.661537 0.188195

TABLE 5. Variation of time-averaged drag coefficient (Cd), root mean square of the
lift coefficient (Cl) and Strouhal number (St) with spatial resolution (N) at Γ = 2.5,
I= 20◦,Re= 500. A resolution of N = 8 was chosen for the computations and it is within
0.6 % of the maximum tested value at N = 11.

N Re(µ) Img(µ) Magnitude (µ)

4 0.9733301103 0.2528498209 1.0056363834
5 0.9755267122 0.2463104741 1.0061417474
6 0.9753805470 0.2462380863 1.0059823093
7 0.9753642243 0.2460460034 1.0059194828
8 0.9752702964 0.2462427170 1.0058765464
9 0.9752566756 0.2462731594 1.0058707931
10 0.9752127922 0.2461762027 1.0058045102

TABLE 6. Variation of Real (Re(µ)) and imaginary components (Img(µ)) of the Floquet
multiplier with spatial resolution (N) for mode QPA at Γ = 2.5, I = 16◦, Re = 260,
λ/D= 3.9. A resolution of N= 8 was chosen for the computations and it is within 0.007 %
of the maximum tested value at N = 10.

N Magnitude of the multiplier |µ|

4 1.38205
5 1.48179
6 1.48877
7 1.48518
8 1.48492
9 1.48421
10 1.48193
11 1.48166

TABLE 7. Variation of magnitude of the Floquet multiplier with spatial resolution for mode
C at Γ = 2, I = 20◦, Re = 400, λ/D = 2.5. A resolution of N = 8 was chosen for the
computations and it is within 0.22 % of the maximum tested value at N = 11.
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