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A mechanism for the amplification of interface
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A novel mechanism for the amplification of distortions to the material interface of liquid
jets is identified. The mechanism is independent of the exponential instability of the
flow and can intensify small perturbations to the material interface by several orders
of magnitude. Depending on the parameters, it can amplify interfacial distortions at a
faster pace than modal mechanisms such as the Kelvin–Helmholtz instability. The study
is based on spatial linear stability theory in a two-fluid formulation that accounts for the
effects of both viscosity and surface tension. The analysis of the mechanism is cast into an
optimization problem in the surface tension energy of the interface distortion and discounts
the trivial redistribution of perturbation kinetic energy. The identified mechanism is related
to the Orr mechanism, and amplifies distortions to the material interface via a reorientation
of perturbations by the mean shear. Analyses of the linearized energy budgets show
that energy is extracted from the mean shear by the production term of the streamwise
perturbation velocity component and subsequently transferred to the radial perturbation
velocity component, where it is absorbed by the surface tension potential of the interface.
The gain in surface tension energy attributable to the mechanism is shown to scale linearly
with the Reynolds number. A critical Weber number is identified as a lower bound beyond
which the mechanism becomes active, and a power-law relation to the Reynolds number
is established. Nonlinear simulations based on the full two-fluid Navier–Stokes equations
substantiate the observability and realizability of the mechanism.

Key words: jets

1. Introduction

The atomization of liquid jets is of relevance in applications ranging from energy
technology to medicine. The atomization process often begins with the amplification
of small distortions to the material interface. In many settings, the growth of interface
distortions is promoted by exponential instabilities that are related to the effects of surface
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tension or the mean shear. By means of an optimization approach, this work demonstrates
a new mechanism for the amplification of interface distortions on liquid jets.

Several possible pathways for the primary atomization of liquid jets exist, and their
respective prevalence depends on a variety of factors, including the relative importance
of surface tension and viscous forces. Stability analyses of two-liquid Poiseuille flow by
Preziosi, Chen & Joseph (1989) and Lin & Ibrahim (1990) identified a linearly stable
regime within a range of Reynolds numbers, which at its lower end is limited by the
emergence of a capillary Plateau–Rayleigh instability. On the other hand, at sufficiently
high Reynolds numbers, the shear between the two phases triggers a Kelvin–Helmholtz
(K–H) instability. The K–H mode also plays an important role in the model set forth by
Marmottant & Villermaux (2004) which ascribes the primary atomization of liquid jets to
a series of exponential instabilities. Past the exit of the nozzle, the velocity difference
between the liquid and the surrounding gas promotes a K–H instability that induces
a primary distortion of the liquid interface. Depending on the flow parameters, this
distortion can be either axisymmetric or helical (see e.g. Hoyt & Taylor 1977; Chigier
& Eroglu 1989). Together with the difference in density between the gas and liquid
phases, the primary distortion can make the flow susceptible to secondary Rayleigh–Taylor
instabilities. The Rayleigh–Taylor instability gives rise to ligaments that are distributed
around the circumference of the jet. Surface tension eventually induces the breakup of the
ligaments by way of a Plateau–Rayleigh instability into an array of small droplets.

In addition to these inviscid instability mechanisms that rely on either surface tension
or the shear between the phases, viscosity can introduce additional mechanisms for the
amplification of disturbances in the two-fluid setting. Specifically, a mismatch of the
viscosity in the two phases can generate viscous interfacial instabilities, as discussed
by Yih (1967) and Hinch (1984). Viscosity can also give rise to instability modes that
live within the shear of either phase, largely unaffected by the interface, and which are
related to the Tollmien–Schlichting waves observed in single-fluid boundary layers (Yecko,
Zaleski & Fullana 2002).

The identification of the specific mechanisms that promote the distortion and eventual
breakup of two-fluid interfaces has often relied on linear stability theory. The classical
setting considers the governing equations of small perturbations to a given base
flow, which allows the disregard of nonlinear terms. The eigenvalue spectrum of the
resulting linear operator identifies exponentially unstable solutions, and the associated
eigenfunctions give insight into the spatial structure of the associated instability
mechanism. Applications of linear theory in the two-fluid setting include the study
of an air-blasted breaking liquid sheet by Lozano et al. (2001). They compared the
results with experimental measurements of the wavenumber and amplification rate of
the perturbations. Although their two-dimensional analysis quantitatively disagreed with
the measurements, the consideration of viscosity in the linear analysis was deemed critical
to obtain qualitative agreement. Yecko et al. (2002) applied linear stability theory to planar
two-fluid mixing layers and investigated the influence of parameters such as the surface
tension and viscosity. In the same setting, Bague et al. (2010) and Fuster et al. (2013)
compared the eigensolutions computed in linear stability analyses with experimental
measurements and nonlinear simulations.

Exponential growth, or modal instability, nevertheless describes only one possible path
for the amplification of disturbances. Even when the eigenvalue spectrum reveals the
flow as exponentially stable, disturbances can amplify through non-modal, or algebraic,
mechanisms (Gustavsson 1991; Trefethen et al. 1993). The analysis of these types of
non-exponentially growing solutions is commonly facilitated by solving an optimization
problem in terms of a suitable measure, such as the perturbation kinetic energy (Reddy
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Figure 1. Illustration of the Orr mechanism. The reorientation of the initially tilted structure by the
non-uniform mean flow U(r) reduces the length of the closed contour. The conservation of the circulation
Γ thus requires a strengthening of the associated velocity.

& Henningson 1993). It has been shown that the solutions computed in the analysis
of optimal disturbances qualitatively reproduce the ensemble average of perturbations
sampled in flows excited by broad-band excitation (e.g. Hack & Zaki 2015). The underlying
rationale is that while it is improbable to exactly observe the optimal initial condition in
a realistic flow field at any given time, the projection of a random perturbation field onto
this particular solution is typically non-zero and thus gives rise to energy growth.

Non-modal amplification of the perturbation in single-fluid flows such as boundary
layers is most often attributable to the lift-up mechanism which describes the displacement
of the mean momentum (Landahl 1975, 1980). In this setting, vortices described by
the transverse and normal velocity components give rise to velocity perturbations in
the streamwise velocity component, generally referred to as streaks. The coupling is
nonetheless one-sided, and the streaks do not reinforce the normal and transverse
fluctuations which eventually undergo viscous decay. The lift-up mechanism is most
effective for perturbations at zero wavenumber in the streamwise dimension (Butler &
Farrell 1992). A second pathway for the amplification of disturbances in the absence of
exponential instability is provided by the Orr mechanism (Orr 1907), which intensifies
perturbations by a tilting in the direction of the mean flow (see also Farrell 1987). The
underlying principle is the conservation of the circulation along a closed line, as outlined in
Kelvin’s theorem and visualized in figure 1. In contrast to lift-up, the Orr mechanism also
amplifies perturbations normal to the mean flow and is most effective for perturbations at
finite streamwise wavenumber. In non-parallel flows, the two mechanisms may also occur
simultaneously and lead to enhanced perturbation growth (Hack & Moin 2017).

Several studies have investigated the potential of non-modal amplification in two-fluid
settings (van Noorden et al. 1998; Malik & Hooper 2007). Following the classical transient
growth analyses in single-fluid flows, these studies considered objective functionals that
were effectively posed in terms of the perturbation kinetic energy of the disturbances.
In this setting, the most highly amplified perturbations were found at zero streamwise
wavenumber (Yecko & Zaleski 2005) and effectively describe streamwise elongated
streaks generated by the lift-up mechanism. Lift-up was also determined by Boronin,
Healey & Sazhin (2013) to be the mechanism driving the transient amplification of
perturbations in round liquid jets. As noted above, lift-up describes a one-sided coupling
of the velocity components, with the fluctuations in the component normal to the mean
shear, and thus also normal to the interface in two-fluid settings such as jets, monotonically
decaying. At leading order, the liquid–gas interface is, however, kinematically coupled
to the normal, but not the streamwise, fluctuation component. Perturbations amplified
by lift-up, although highly intense in terms of their kinetic energy, are therefore largely
irrelevant in the context of interface distortions, and by extension the advancement of
the flow towards atomization. The second candidate for non-exponential amplification
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of disturbances, the Orr mechanism, simultaneously amplifies both the streamwise and
normal fluctuation components as visualized in figure 1. As such, it has the potential to
amplify distortions of the interface which may eventually trigger secondary instabilities
and drive the flow towards atomization. The generally lower effectiveness of the Orr
mechanism at amplifying the kinetic energy of perturbations nonetheless means that
its identification requires an objective functional that focuses on the energy gain in the
material interface. Moreover, Cruz-Mazo et al. (2017) reported the breakup of capillary
jets even in the case when all the global linear modes are stable, although no direct
connection to the transient amplification of disturbances was made.

In the present study, we explore a non-exponential pathway for the amplification of
interface distortions of round liquid jets. The analysis is based on the solution of an
optimization problem in terms of the surface tension energy. The paper is structured
as follows. Section 2 presents an overview of the methodology, including a description
of the linear framework and the optimization method used herein. The mechanism for
the amplification of interface distortions in the absence of exponential instability is
demonstrated in § 3. Analyses of the energy budget in § 4 provide further insight into
the underlying physics, followed by a study into the effect of various parameters in § 5.
A realization of the mechanism in a nonlinear two-fluid simulation is presented in § 6.

2. Methodology

In the following, we describe a conceptual framework for the analysis of linearly
amplifying distortions in a liquid jet injected into a quiescent gas medium. The formulation
is based on spatial stability analysis and accounts for the effects of viscosity as well as
surface tension under the assumption of an axisymmetric laminar base state.

2.1. Base flow
The analyses employed in this work consider a linearization of the governing equations
around a two-fluid base flow describing a liquid jet injected into quiescent gas. In general,
the velocity distribution of axisymmetric liquid jets is governed by the distance to the
nozzle exit, with the flow in the vicinity of the nozzle being influenced by the profile
attained at the orifice. In an idealized configuration of a pipe with circular cross-section
and constant radius connecting the nozzle to a reservoir, the product of the pipe radius
a and the Reynolds number introduces a characteristic length, Lc = a Re. If the ratio of
the characteristic length to the length of the pipe is large, the profile at the nozzle exit is
effectively uniform, leading to an intense shear layer at the gas–liquid interface past the
nozzle exit. On the other hand, for long pipes with a comparatively small characteristic
length, the flow at the nozzle exit effectively describes a Hagen–Poiseuille profile (Duda
& Vrentas 1967). Past the nozzle, the liquid begins to relax towards a uniform velocity
distribution (González-Mendizabal, Olivera-Fuentes & Guzmán 1987; Shkadov & Sisoev
1996), with the region of influence of the upstream flow again scaling with the product
of nozzle diameter and Reynolds number. For the case of a planar jet, Söderberg &
Alfredsson (1998) predict a relaxation length of 0.36a Re. The relaxation process leads to
comparatively intense streamwise gradients in the vicinity of the nozzle exit, x � 0.01a Re
(Boronin et al. 2013). Downstream of this region, the streamwise gradient becomes
increasingly negligible relative to the radial gradient. The linear analyses in this work thus
consider a parallel base flow that is a function of the radial coordinate only, and describe
a steady, laminar and axisymmetric liquid jet taken from an analytical solution, previously
introduced as profile U3 in Boronin et al. (2013). The profile is representative of a nozzle
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Figure 2. Base flow of liquid jet in stationary gas. The material interface is located at r = 1.

that is sufficiently long to allow the development of the flow into a Hagen–Poiseuille
profile.

Throughout this work, x, r and θ denote the axial, radial and azimuthal directions,
respectively, and u, v and w denote the velocity disturbances in these dimensions. All
quantities are normalized by the the radius of the liquid jet, R, and its centreline velocity,
Uc. We further introduce a decomposition of the velocity vector u = (u, v, w)T into a
mean, or base flow and a small perturbation component:

u (x, r, θ, t) = ū (r) + u′ (x, r, θ, t) . (2.1)

The analytical expressions for the base flow velocity profiles in the liquid and gas phases,
respectively, are

ūl(r) = αl exp

(
−r2

δ2
l

)
+ βl, 0 < r < 1,

ūg(r) = αg exp

{
−(r − rg)

2

δ2
g

}
, r > 1.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(2.2)

Here and throughout the paper, the indices g and l denote quantities taken from the gas and
liquid phases, respectively. Following Boronin et al. (2013), we choose αl = 0.6, βl = 0.4,
rl = 0, δl = 0.7 and δg = 0.25. The parameters αg and rg are determined so as to satisfy
the interfacial continuity of velocity and stress in the streamwise velocity component. We
note that the streamwise expansion of the jet balances the radial diffusion. However, the
resulting streamwise gradients are small and are thus disregarded. A visualization of the
streamwise invariant base flow profile is presented in figure 2.

The radial extent of the computational domain is three jet radii, Lr = 3.
We further introduce a set of non-dimensional parameters, including the Reynolds

number

Re = ρlUcR
μl

, (2.3)

with ρl the fluid density. The Weber number is defined as

We = ρlU2
c R

σ
, (2.4)
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with σ denoting the interfacial surface tension. The set of non-dimensional parameters
describing the two-fluid problem is completed by the ratio of the densities of the two
media,

η = ρg

ρl
, (2.5)

and the ratio of their viscosities,

m = μg

μl
. (2.6)

2.2. Linear stability equations
We consider the dynamics of small disturbances to the jet, as described by the linearized
Navier–Stokes equations in cylindrical coordinates:

∂u′

∂t
+ ū

∂u′

∂x
+ v′ ∂ ū

∂r
= −∂p′

∂x
+ 1

Re
∇2u′, (2.7)

∂v′

∂t
+ ū

∂v′

∂x
= −∂p′

∂r
+ 1

Re

(
∇2v′ − v′

r2 − 2
r2

∂w′

∂θ

)
, (2.8)

∂w′

∂t
+ ū

∂w′

∂x
= −1

r
∂p′

∂θ
+ 1

Re

(
∇2w′ + 2

r2
∂v′

∂θ
− w′

r2

)
, (2.9)

∂u′

∂x
+ 1

r
∂

∂r
(rv′) + 1

r
∂w′

∂θ
= 0, (2.10)

with the Laplace operator in cylindrical coordinates defined as ∇2 = (∂2/∂x2) +
(1/r)(∂/∂r)(r(∂/∂r)) + (1/r2)(∂2/∂θ2). We note that in contrast to formulations in terms
of the radial velocity and vorticity, as proposed for instance in Schmid & Henningson
(1994), the present formulation, (2.7)–(2.10), is limited to spatial derivatives of second
order.

The streamwise-invariant, axisymmetric and steady base flow introduced in § 2.1 allows
a normal-mode ansatz for the disturbances, which are assumed to be of the form[

u′, v′, w′, p′] = [
û(r), v̂(r), ŵ(r), p̂(r)

]
exp(i(αx + nθ − ωt)). (2.11)

In the same manner, the disturbance of the interface between the two phases f ′ is expressed
as

f ′ = f̂ exp(i(αx + nθ − ωt)). (2.12)

Here, α and n denote the streamwise and discrete azimuthal wavenumbers, respectively,
and ω represents the frequency of the disturbance. The spatial discretization in the
inhomogeneous radial dimension is based on two sets of Chebyshev polynomials that
represent the flow in the two phases. The liquid phase uses Nl = 120 Chebyshev
collocation points, and Ng = 70 collocation points are employed in the gas phase.
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Substitution of the ansatz (2.11) into the governing equations (2.7)–(2.10) leads to{
− 1

Re
∂2

∂r2 − 1
Re

1
r

∂

∂r
+
[
−iω + iαū + 1

Re

(
n2

r2 + α2
)]}

û + i
∂ ū
∂r

v̂ + iαp̂ = 0, (2.13){
− 1

Re
∂2

∂r2 − 1
Re

1
r

∂

∂r
+
[
−iω + iαū + 1

Re

(
n2 + 1

r2 + α2
)]}

v̂ + i
Re

2n
r2 ŵ + ∂

∂r
p̂ = 0,

(2.14){
− 1

Re
∂2

∂r2 − 1
Re

1
r

∂

∂r
+
[
−iω + iαū + 1

Re

(
n2 + 1

r2 + α2
)]}

ŵ − 1
Re

2n
r2 v̂ + i

n
r

p̂ = 0,

(2.15)

iαû + 1
r

∂

∂r
v̂ + i

n
r

ŵ = 0. (2.16)

The interface disturbance is assumed to be small and is related to the radial disturbance
velocity component through the kinematic condition

Df ′

Dt
=
(
−iω + iαūI

l

)
f̂ exp(i(αx + nθ − ωt)) = v̂I

l exp(i(αx + nθ − ωt)), (2.17)

where (D/Dt) = (∂/∂t) + (ū(∂/∂x)) denotes the material derivative and the superscript I
denotes quantities evaluated at the interface.

2.3. Boundary and interface conditions
The solution of the governing equations (2.13)–(2.16) requires the prescription of boundary
and interface conditions. At the outer boundary of the computational domain, in the far
field of the gas phase, no-slip and no-penetration boundary conditions are imposed on the
eigenfunctions:

ûg = 0, v̂g = 0, ŵg = 0 at r = Lr. (2.18)

Special care has to be taken at the centreline because of the singular nature of the
cylindrical coordinate system. The assumption of smooth and bounded behaviour of all
physical quantities at the centreline, r → 0, implies that (see e.g. Khorrami, Malik & Ash
1989)

lim
r→0

∂û
∂θ

= ∂

∂θ

(
ûez + v̂er + ŵeθ

) = 0, (2.19)

and for the pressure

lim
r→0

∂ p̂
∂θ

= 0. (2.20)

Substitution of the normal-mode ansatz (2.11) into (2.19)–(2.20) yields

nv̂ + ŵ = 0, (2.21)

v̂ + nŵ = 0, (2.22)

nû = 0, (2.23)

np̂ = 0. (2.24)
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The resulting centreline conditions depend on the discrete azimuthal number, n, as
follows:

∂ û
∂r

= 0, v̂ = 0, ŵ = 0,
∂ p̂
∂r

= 0 for n = 0, (2.25)

û = 0, −iv̂ + nŵ = 0, −2i
∂v̂

∂r
+ n

∂ŵ
∂r

= 0, p̂ = 0 for n = −1 or 1, (2.26)

û = 0, v̂ = 0, ŵ = 0, p̂ = 0 otherwise. (2.27)

We note that because of the linear dependence of conditions (2.21) and (2.22) in the
case |n| = 1, one of the conditions for that case was derived by applying the continuity
equation (2.16).

At the interface (r = 1), both the velocity and stress are continuous in the radial
dimension. In the parallel velocities and tangential stresses, the differences across the
interface are proportional to the surface tension and mean gradient, respectively:

J (û) = J
(

∂ ū
∂r

)
f̂ , J (v̂) = 0, J (ŵ) = 0, (2.28a–c)

J (̂τzr) = J
(

μ
∂2ū
∂r2

)
f̂ , J (̂τθr) = 0, J (̂τrr) = σ∇2 f̂ . (2.29a–c)

Here, J (X ) denotes the difference in X between the two phases at the interface.
We note that the relations for û and τ̂zr have been derived by employing first-order
Taylor expansions, implying that ūj(r = 1 + f ) = ūI

j + (dūI
j/dr)f̂ . The resulting interface

conditions are

J
(

iμαv̂ + μ
∂ û
∂r

)
= J

(
μ

∂2ū
∂r2

)
f̂ , (2.30a)

J
(

μ

(
∂

∂r
− 1

)
ŵ + iμnv̂

)
= 0, (2.30b)

J
(

− ρ

ρ1
p̂ + 2

Re
μ

μ1

∂v̂

∂r

)
= − 1

We

(
1 − n2 − α2

)
f̂ . (2.30c)

2.4. Spatial linear analysis
The linearized equations (2.13)–(2.16) permit solutions of both temporally and spatially
developing solutions. In this work, we focus exclusively on the spatial case which more
faithfully represents the amplification of perturbations in the shear layer of the liquid jet.
Spatial stability analysis prescribes a real-valued frequency ω and azimuthal wavenumber
n of the disturbances. As a consequence, only certain complex wavenumbers α satisfy the
stability equations (2.13)–(2.16), which gives rise to an eigenvalue problem of the form

iαM q̂ = Lq̂. (2.31)

Here, q̂ is the disturbance state vector

q̂ =
[
φ̂g(r) f̂ αf̂ φ̂l(r)

]T
, (2.32)
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with
φ̂i = [

ûi(r) v̂i(r) ŵi(r) p̂i(r) αûi(r) αv̂i(r) αŵi(r)
]T

. (2.33)

The operators M and L are given in appendix A.
Since our focus is on the study of disturbances in the absence of exponential instability,

we restrict our analyses to exponentially stable settings in which all eigensolutions of the
spatial stability problem (2.31) decay in x. While the sign of the eigenvalue reveals the
stability of the eigensolution in temporal analysis, the nonlinear spatial eigenvalue problem
prevents such immediate classification. Existing approaches to the identification of the
stability properties of spatial modes involve iterative schemes as applied for instance by
Lin & Chen (1998) and Boronin et al. (2013). In the present work, we directly determine
the spatial stability of individual eigenfunctions by evaluating their group velocity,

cg ≡ ∂ω

∂α
, (2.34)

using information provided by the adjoint stability equations. More specifically, a positive
spatial growth rate, i.e. a negative imaginary part of α, implies spatial growth if the mode
travels downstream, indicated by a positive group velocity. If the group velocity of the
eigenfunction is negative, it travels upstream and thus undergoes decay. Analogously, a
mode with a negative spatial growth rate, i.e. a positive imaginary part of α, will decay if
its group velocity is positive, and amplify if its group velocity is negative.

In this context, we define the inner product as the volume integrated dot product within
the computational domain:

〈a, b〉 =
∫

Ω

aHb dV, (2.35)

with superscript H denoting the complex conjugate transpose. The adjoint eigenfunctions,
q̂†, are the solution of the adjoint eigenvalue problem

α∗MH q̂† = LH q̂†, (2.36)

where superscript ∗ denotes complex conjugate. Solutions to the forward and adjoint
eigenvalue problem satisfy a bi-orthogonality condition, so that upon proper normalization

〈q̂†
i , M q̂j〉 = δij. (2.37)

We derive a relation for the group velocity by applying the partial derivative with respect
to ω to (2.31), and integrating over the computational domain:

∂α

∂ω
〈q̂†, M q̂〉 =

〈
q̂†,

∂L

∂ω
q̂
〉
. (2.38)

Application of the bi-orthogonality condition (2.37) to (2.38) leads to
∂α

∂ω
=
〈
q̂†,

∂L

∂ω
q̂
〉
. (2.39)

The group velocity of an eigenfunction q̂, and by extension its exponential stability within
the spatial stability framework, may thus be evaluated by the inner product with its
corresponding adjoint eigenvector q̂†:

∂ω

∂α
=
〈
q̂†,

∂L

∂ω
q̂
〉−1

. (2.40)

We note that while iterative approaches require multiple solutions of the stability problem
for each individual mode, the gradient information provided by the adjoint problem
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identifies the group velocity of all eigensolutions after solving the adjoint eigenvalue
problem (2.36) once.

2.5. Optimization problem
Even when all the eigensolutions of the spatial stability problem (2.31) are stable,
the non-normal nature of the linearized Navier–Stokes equations provides a pathway
for disturbance growth. The study of this non-modal, or transient, amplification of
disturbances can be facilitated by considering an optimization problem in a suitably chosen
norm. Earlier analyses of non-modal growth in the two-fluid setting followed studies
in single-fluid shear flows in effectively optimizing the kinetic energy of disturbances
(e.g. Renardy 1987; Yecko & Zaleski 2005; Boronin et al. 2013). In the wider context
of flow atomization, the amplification of distortions specifically of the material interface
is nonetheless of greater relevance.

We investigate the specific conditions that amplify distortions of the interface by
introducing an interface energy norm of the form

||q||IE =
∫ 2π/n

0

∫ 2π/ω

0

1
We

(−1 + n2 + α2)f̂ ∗ f̂ dt dθ. (2.41)

The norm represents a measure for the surface tension energy stored in the material
interface owing to the perturbation displacement f̂ . The derivation is presented in
appendix B. Together with the norm (2.41), we introduce the suitably chosen weight matrix
F which allows the transformation of the interface energy norm into a 2-norm so that
||q||IE ≡ ||Fq||2. We note that the interface energy norm (2.41) partitions the state vector
and as such describes a non-trivial semi-norm. As a consequence, F is rank-deficient.
Specifically, the velocity and pressure components of both the gas and liquid phases are
within the kernel of F . The formulation of a well-posed optimization problem thus calls
for the introduction of a full norm (see e.g. Foures, Caulfield & Schmid 2012), which we
choose as the total energy norm:

||q||E = 1
2
η

∫ Lr

1

∫ 2π/n

0

∫ 2π/ω

0

(
û∗

gûg + v̂∗
g v̂g + ŵ∗

gŵg

)
r dt dθ dr

+ 1
2

∫ 1

0

∫ 2π/n

0

∫ 2π/ω

0

(
û∗

l ûl + v̂∗
l v̂l + ŵ∗

l ŵl
)

r dt dθ dr

+
∫ 2π/n

0

∫ 2π/ω

0

1
We

(−1 + n2 + α2)f̂ ∗ f̂ dt dθ. (2.42)

Analogous to the interface energy norm, the energy norm can be converted to a 2-norm by
means of the matrix F N , with ||q||E ≡ ||F Nq||2. Since (2.42) covers all components of the
state vector, the null space of F N is empty.

Our optimization problem seeks to find the specific, optimal, initial condition q0, which
over a prescribed spatial distance evolves into the particular final condition q1 that induces
the most energetic distortions of the jet interface, as measured by the norm ‖q‖IE. In our
solution of the optimization problem, we follow Hack & Moin (2017) in expressing the
initial condition as a weighted sum of eigenfunctions of the two-fluid stability problem
(2.31):

q0 = Q0κ . (2.43)

Here, the columns of Q0 ∈ CNQ×N , where NQ = 7Nl + 7Ng + 2, contain the N least
stable eigenfunctions q̂j,0 and κ ∈ CN×1 assigns each of the modes a specific weight.
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Consistently, the solution at the final position x1 may be expressed as

q1 = Q1κ, (2.44)

with the columns of Q1 representing the evolution of the n eigenfunctions:

q̂j,1 = q̂j,0 exp
(
iαj (x1 − x0)

)
. (2.45)

The linear nature of the problem implies that κ is identical in both expressions. Since
Q0 has full column rank, we can explicitly determine its Moore–Penrose pseudo-inverse
Q+

0 = (QH
0 Q0)

−1QH
0 , leading to

Q+
0 q0 = κ . (2.46)

Substitution into (2.44) yields

q1 = L1q0, (2.47)

where L1 = Q1Q+
0 is a pseudo-propagator that advances arbitrary initial disturbances q0

within the column space of Q0 from x0 to x1. Without loss of generality, we choose x0 = 0
in this work.

The objective of finding the specific initial condition q0 that maximizes the amplification
of interface distortions with frequency ω at a given target location x1 may thus be expressed
as the functional

G(ω, x1) = 1
2

max
q0

||q1||2IE
||q0||2E

(2.48)

= 1
2

max
q0

||L1q0||2IE
||L0q0||2E

(2.49)

= 1
2
||FL1(F NL0)

+||22. (2.50)

Here, q1 = q(x1) and the introduction of L0 = Q0Q+
0 into the denominator restricts q0 to

the column space of Q0. We further note that the majority of the results presented in the
following focus on the maximum gain, which represents the maximum G for all possible
perturbation frequencies and target locations, Gmax = maxω,x1 G(ω, x1).

The objective functional G relates the interface energy at the target position x1 to the
sum of the kinetic and interface perturbation energies at the initial position x0. In other
words, G quantifies the interface energy at the target location normalized by the total
initial perturbation energy. In doing so, it prescribes a fair and conservative measure
for the amplification of interface distortions as G attains values larger than unity only
if the perturbation interface energy at the considered target location exceeds the total
energy at the initial location x0, i.e. if energy has been extracted from the mean shear
and redistributed into the potential energy of the interface. A trivial redistribution of
initial perturbation kinetic energy into perturbation interface energy at the target location
therefore does not add to the gain. We also note that the pre-factor of 1

2 has been added
for convenience only. In its absence, the critical value separating genuine amplification
from decay or trivial redistribution would be 2. In what follows, we apply the conceptual
framework presented above in the demonstration of the linear amplification of distortions
to the interface of a liquid jet by a non-exponential mechanism.
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Figure 3. (a) Spectrum of the complex eigenvalue α for Re = 7500, We = 3000, m = 0.01, η = 0.001, n = 1
and ω = 0.7. (b) Group velocity cg and growth rate αi of the eigenfunctions. Blue and red circles mark the
unstable modes.

3. Mechanism for the amplification of interface distortions

In the following, we demonstrate a mechanism that allows the amplification of distortions
to the material interface of a liquid jet in exponentially stable settings. In a first step,
we analyse the linear stability of a jet described by profile (2.2) by solving the spatial
stability problem (2.31) for the considered parameters Re = 7500, We = 3000, m = 0.01,
η = 0.001, n = 1 and ω = 0.7. We note that the considered viscosity and density ratios
are comparable to those of the combination of water and air. Figure 3(a) presents the
real and imaginary parts of the computed eigenvalues in terms of the complex streamwise
wavenumber, α, of the disturbances. The polynomial nature of the spatial stability problem
impedes a classification of the exponential stability of eigensolutions based on the sign
of the eigenvalue alone, as discussed in § 2.4. The determination of the stability of a
given eigensolution instead has to consider both the eigenvalue and the associated group
velocity. For the present setting, figure 3(b) presents the group velocities of the individual
eigenvalues along with the imaginary parts of the wavenumber. The group velocity is
positive for all considered eigenvalues, and the two eigensolutions with negative αi are
thus exponentially unstable while all other modes with αi > 0 are stable.

The imaginary parts of the eigenvalues, αi, of the respective least stable modes at
eight different azimuthal numbers, n, are presented in figure 4 as a function of the
disturbance frequency ω. The parameters are Re = 7500, We = 3000, m = 0.01 and
η = 0.001, and the considered azimuthal wavenumbers range from n = 0 to n = 7.
In all cases, the corresponding group velocities are positive, and the sign of the
eigenvalues thus determines the stability of the solutions. The modes computed for n = 0
to n = 4 are exponentially unstable for certain perturbation frequencies. The highest
amplification occurs for n = 1, which is referred to as the sinuous mode of the K–H
instability (Söderberg 2003). For n > 4, the most unstable modes decay for all considered
frequencies. Our analyses of the transient amplification of interface perturbations thus
focus on this wavenumber range. Analogous to the optimal modes with non-zero transverse
wavenumber considered by Yecko & Zaleski (2005), these non-axisymmetric modes
directly provide a pathway for the generation of transverse perturbations.

The solution of the optimization problem in the interface energy norm ‖q‖IE establishes
that a significant amplification of interfacial distortions can occur in the absence of
exponential instability. The 2-norm of the operator FL1(F NL0)

+ is determined by the
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Figure 4. Spatial growth rate αi as a function of the disturbance frequency ω for the least stable modes at
azimuthal wavenumbers n = 0 (blue), n = 1 (red), n = 2 (yellow), n = 3 (purple), n = 4 (green), n = 5 (black
solid), n = 6 (black dashed) and n = 7 (black dotted). The parameters are Re = 7500, We = 3000, m = 0.01
and η = 0.001.

singular value decomposition:

UΣV H = FL1(F NL0)
+. (3.1)

Here, U is an orthogonal matrix whose columns are the left singular vectors, and the
columns of V contain the right singular values. The entries of the real, positive definite
diagonal matrix Σ describe the singular values σj. Specifically, the largest singular
value describes the gain, G ≡ σmax, and the associated right singular vector gives the
corresponding initial state. The parameters are Re = 7500, We = 3000, m = 0.01, η =
0.001, n = 5 and ω = 2.2 and the target location is x1 = 11.8. The amplification of
the distortion to the material interface is quantified by evaluating the magnitude of the
interface displacement, f . The absolute value of the interface distortion, normalized by its
initial value, is presented in figure 5(a) as a function of the streamwise coordinate. The
maximum amplification ratio of the interface distortion at x = 11.8 is | f (x)/ f0| � 1042.
The growth of the interface distortion towards the target location, x1, shows an oscillatory,
non-monotonic behaviour. The streamwise evolution of the integrated kinetic energy in
the velocity perturbations and surface potential energy is presented in figure 5(b,c). The
kinetic energy in all components generally increases from the initial location x0 to the
target location x1 = 11.8. While the energy in the streamwise components gains most,
we note that the azimuthal and critically the radial components also amplify. In contrast
to the streamwise and azimuthal components, the gain in the radial perturbations is
non-monotonic, and the energy in that component is below its peak at the target location.
Analogously, the trend in the interface potential energy is non-monotonic, although the
peak of this quantity coincides with the target location. As we demonstrate in § 4, the
non-monotonic increase in both the interface displacement and the kinetic energy in the
radial velocity perturbations is related to a temporary redistribution between the potential
energy in the interface due to surface tension and the kinetic energy of the velocity
perturbations.

The significance of the non-exponential amplification of the interface distortion is
established by comparing with the fastest-growing exponential instability, which occurs
for an azimuthal wavenumber n = 1 (see figure 4). The growth rate of the mode is αi =
0.1028, leading to an expected growth of the most unstable mode during the considered
interval of exp(αix1) = exp(0.1028 × 11.8) = 3.364, which is significantly smaller than
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Figure 5. (a) Spatial evolution of the absolute value of the ratio of interface disturbance amplitude.
(b) Spatial evolution of the integrated kinetic energy in the streamwise velocity component (blue), radial
velocity component (red) and azimuthal component (yellow), their sum (black) and surface tension energy of
the interface perturbation (green). (c) Detail showing the spatial evolution of the integrated kinetic energy in the
radial velocity component (red) and surface tension energy of the interface perturbation (green). The dashed
lines mark the target location, x1 = 11.8. The parameters are Re = 7500, We = 3000, m = 0.01, η = 0.001,
n = 5 and ω = 2.2.

the ratio of | f (x)/ f0| � 1042 reported for the optimal interface distortion. This result
demonstrates that over finite streamwise intervals, the algebraic amplification of interface
distortions by means of the presented mechanism may considerably exceed that by the
exponential K–H instability.

A visualization of the spatial evolution of the disturbance field is presented in figure 6.
Vectors mark the streamwise and radial perturbation velocities, u′ and v′, in the x–r plane
and colour contours show the azimuthal component, w′, of the perturbation velocity. The
growth in the intensity of the perturbation velocities coincides with a reorientation of
the initially tilted fluid structure by the mean shear. As a consequence, the distortion of
the material interface is amplified and peaks at x = 11.8, marked by the vertical dashed
line. Both the tilting of the perturbation structures and the amplification of velocity
perturbations normal to the direction of the mean shear are characteristic of the Orr
mechanism, as sketched in figure 1. In the two-fluid setting, these perturbations are
also normal to the the material interface, and thus induce an amplification of interface
distortions.

We note that the presented outcome qualitatively differs from that of the lift-up
mechanism which generates low-frequency perturbations in the streamwise perturbation
velocity component (e.g. Gustavsson 1991; Hack & Zaki 2015) and which was identified in
earlier analyses of non-exponentially amplifying disturbances in two-fluid settings (Yecko
& Zaleski 2005; Boronin et al. 2013). Owing to the kinematic coupling of the interface
distortion to the velocity component normal to the interface, these perturbations are,
however, unlikely to meaningfully advance the atomization process. The present analysis
of perturbations which induce a significant amplification of the distortion of the material
interface by means of the Orr mechanism is facilitated by the choice of the objective
functional in terms of the perturbation interface energy (2.41). This approach differs from
the optimization of the total energy of the perturbations, as considered in previous studies
(e.g. South & Hooper 1999; Yecko & Zaleski 2005).
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Figure 6. Side view of the streamwise evolution of the optimal initial condition. Vectors of the streamwise
and radial disturbance fields, u′ and v′, with colour contours of the azimuthal disturbance field, w′. The red line
marks the position of material interface. The white dashed line marks the target location, x1. The parameters
are Re = 7500, We = 3000, m = 0.01, η = 0.001, n = 5 and ω = 2.2.

4. Energy budget

In the following, we seek to provide a more comprehensive documentation of the presented
mechanism for amplifying interface distortions by examining the budget of the
perturbation kinetic energy. The energy budget is derived by taking the dot product of the
linearized governing equations, (2.7)–(2.9), with the velocity perturbation vector for each
phase and substituting the continuity equation, (2.10), as well as the interface coupling
condition (2.29). Our analyses of the energy budget will focus on integral quantities,
defined in terms of the spatio-temporal integral

∫
Ω

χ dΩ =
∫ x

0

∫ 2π/ω

0

∫ 2π/n

0

∫ 1

0
χr dr dθ dt dx. (4.1)

Similarly, spatio-temporal integration on the jet interface for a quantity of interest, χ , is
denoted as ∫

S
χ dS =

∫ x

0

∫ 2π/ω

0

∫ 2π/n

0
[χ ]r=1 dθ dt dx. (4.2)

The linearized energy budgets for the three perturbation velocity components thus are

∫
Ω

D
Dt

(
1
2

u′2
)

dΩ =
∫

Ω

p′ ∂u′

∂x
dΩ︸ ︷︷ ︸

Pressure-velocity
correlation

+
∫

Ω

∂

∂x

{
−p′u′ + 1

Re
∂

∂x

(
1
2

u′2
)}

dΩ︸ ︷︷ ︸
Convection

+
∫
S

1
Re

(
−u′ ∂v′

∂x
− u′f ′ ∂2ūl

∂r2

)
dS︸ ︷︷ ︸

Liquid viscous stress

−
∫

Ω

u′v′ ∂ ū
∂r

dΩ︸ ︷︷ ︸
Production
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−
∫

Ω

1
Re

(
∂u′

∂x
∂u′

∂x
+ 1

r
∂u′

∂θ

1
r

∂u′

∂θ
+ ∂u′

∂r
∂u′

∂r

)
dΩ︸ ︷︷ ︸

Dissipation

+
∫
S

1
Re

m

(
u′ ∂v′

g

∂x
+ u′ ∂u′

g

∂r
+ u′f ′ ∂

2ūg

∂r2

)
dS︸ ︷︷ ︸

Gas viscous stress

, (4.3)

∫
Ω

D
Dt

(
1
2
v′2
)

dΩ

=
∫

Ω

p′

r
∂

∂r
(rv′) dΩ︸ ︷︷ ︸

Pressure-velocity
correlation

+
∫
S

(
−ηp′

gv
′
g + 2m

Re
v
∂v′

g

∂r

)
dS︸ ︷︷ ︸

Gas viscous stress

−
∫
S

1
Re

v′ ∂v′

∂r
dS︸ ︷︷ ︸

Liquid viscous stress

−
∫

Ω

1
Re

(
∂v′

∂r
∂v′

∂r
+ 1

r
∂v′

∂θ

1
r

∂v′

∂θ
+ ∂v′

∂x
∂v′

∂x
+ v′2

r2 + 2
r2 v′ ∂w′

∂θ

)
dΩ︸ ︷︷ ︸

Dissipation

+
∫

Ω

1
Re

∂2

∂x∂x

(
1
2
v′2
)

dΩ︸ ︷︷ ︸
Convection

−
∫
S

1
We

(
−1 + n2 + α2

)
f ′v′ dS︸ ︷︷ ︸

Surface tension energy

, (4.4)

∫
Ω

D
Dt

(
1
2

w′2
)

dΩ

=
∫

Ω

p′

r
∂w′

∂θ
dΩ︸ ︷︷ ︸

Pressure-velocity
correlation

+
∫

Ω

1
Re

∂2

∂x∂x

(
1
2

w′2
)

dΩ︸ ︷︷ ︸
Convection

+
∫
S

1
Re

(
−w′ ∂v′

∂θ
− w′2

)
dS︸ ︷︷ ︸

Liquid viscous stress

−
∫

Ω

1
Re

(
∂w′

∂r
∂w′

∂r
+ 1

r
∂w′

∂θ

1
r

∂w′

∂θ
+ ∂w′

∂x
∂w′

∂x
+ w′2

r2 − 2
r2 w′ ∂v′

∂θ

)
dΩ︸ ︷︷ ︸

Dissipation

+
∫
S

1
Re

m

(
w′ ∂w′

g

∂r
+ w′ ∂v′

g

∂θ
− w′w′

g

)
dS︸ ︷︷ ︸

Gas viscous stress

. (4.5)

Unless marked by a subscript g, all quantities are evaluated in the liquid phase. In this
context, we also note that the evolution of the surface tension energy is related to the
surface tension term in the energy budget (4.6) as follows:∫

S
D
Dt

(
1

We
(−1 + n2 + α2)f ′2

)
dS = 2

∫
S

1
We

(
−1 + n2 + α2

)
f ′v′ dS. (4.6)
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Figure 7. Evolution of the terms of the component-wise energy budgets. (a) Streamwise component. (b) Radial
component. (c) Azimuthal component. Production (magenta), gas viscous stress (purple), liquid viscous stress
(green), PVC (blue), surface tension energy (red), dissipation (orange) and convective (yellow) terms, and their
sum (back dotted). The vertical dashed line marks the target location, x1 = 11.8. The parameters are Re = 7500,
We = 3000, m = 0.01, η = 0.001, n = 5 and ω = 2.2.

The evolution of the budget terms for the three velocity components from the initial
location x = 0 to the target location x1 = 11.8 is presented in figure 7. Consistent with
the case considered in the previous section, the parameters are Re = 7500, We = 3000,
m = 0.01, η = 0.001, n = 5 and ω = 2.2. Positive values indicate that the respective term
introduces perturbation kinetic energy in the considered component while negative-valued
terms extract perturbation kinetic energy from the component. The sum of all quantities
at a given downstream location denotes the variation of perturbation kinetic energy in
the corresponding component. Consistent with the considered optimization problem, the
energy budgets are normalized by the total perturbation energy at the initial location,
x = 0.

When considering the budget of the streamwise velocity component in figure 7(a), the
production term is positive throughout the evolution of perturbation. This term acts as the
main energy source of the perturbations by extracting energy from the mean shear. The
gas viscous stress terms are of positive sign in both the streamwise and radial dimensions,
although their magnitudes are small compared with the production term. In contrast, the
dissipation terms are negative for all three components, meaning that energy is drained by
viscous dissipation.

Of particular interest is the pressure–velocity correlation (PVC) term. The sum of
the PVC terms of the individual velocity components is zero, and the PVC terms thus
introduce an inter-component redistribution of perturbation energy. For the present case,
the PVC term in the budget of the streamwise velocity component remains negative
for the entire process, while positive values are observed for the radial component. In
the azimuthal component, the PVC term is initially marginally negative, and eventually
attains positive values for x � 4. The PVC term thus drains energy from the streamwise
component and reintroduces it into the radial and azimuthal components. In this manner,
perturbation kinetic energy is introduced into the streamwise component by the mean
shear, and transferred to the azimuthal and radial components via the PVC terms.

The surface tension energy term only appears in the budget of the radial component,
(4.4), and the growth of the energy stored in the interface energy thus occurs independent
of the budgets representing the streamwise and azimuthal components. The perturbation
energy conveyed to the interface can therefore be studied by considering the interfacial
stress condition, (2.30c). Multiplication by v′ and integration along the liquid surface
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Figure 8. Evolution of the terms of the energy budget at the liquid jet interface. Liquid PVC (blue), gas viscous
stress (yellow), liquid viscous stress (green), gas PVC (purple) and surface tension energy (red) terms, and
their sum (black dotted line). The black dashed line marks the target location, x1 = 11.8. The parameters are
Re = 7500, We = 3000, m = 0.01, η = 0.001, n = 5 and ω = 2.2.

yields

∫
S

−p′
lv

′ dS︸ ︷︷ ︸
Liquid

pressure-velocity
correlation

+
∫
S

2
Re

(
v′ ∂v′

l
∂r

)
dS︸ ︷︷ ︸

Liquid
viscous stress

+
∫
S

ηp′
gv

′ dS︸ ︷︷ ︸
Gas

pressure-velocity
correlation

−
∫
S

2m
Re

(
v′ ∂v′

g

∂r

)
dS︸ ︷︷ ︸

Gas
viscous stress

+
∫
S

1
We

(
−1 + n2 + α2

)
f ′v′ dS︸ ︷︷ ︸

Surface tension
energy

= 0. (4.7)

The terms in (4.7) are presented in figure 8. The sum of all terms is zero at all
downstream locations, and the gas PVC term is of negligible amplitude. Any gain in the
surface perturbation energy can thus be attributed to the balance of the remaining three
terms. The results show that the main source of energy is the liquid PVC term. During the
early stages (x � 7), the magnitude of the liquid PVC term effectively matches that of the
energy absorbed by the surface tension energy while viscous stress terms are nearly zero.
Past this point, the liquid PVC and the surface tension terms grow rapidly with matching
oscillation patterns. In contrast, the viscous terms grow smoothly, again with matching
trends in the two liquids. The positive contribution by the gas viscous stress is moderately
exceeded by the negative contribution of the liquid viscous stress, with the difference being
compensated by the liquid PVC term. The outcome establishes that the gain in surface
tension energy is indeed driven by the liquid PVC term.

In summary, the discussion of the energy budget establishes the mechanics of the
algebraic amplification of interface distortions. Perturbation kinetic energy is generated by
the mean shear in the streamwise perturbation velocity component and transferred to the
radial component through the PVC term. Since only the radial component is kinematically
coupled to the interface displacement, this redistribution mechanism is critical in enabling
the amplification of interface distortions. At the interface, the energy introduced by the
PVC term acts as a source for increasing the surface tension energy.
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Figure 9. Energy gain G as a function of the target location x1. The parameters are Re = 7500, We = 3000,
m = 0.01, η = 0.001, ω = 2.2 and n = 5.

After the qualitative demonstration of the algebraic amplification of interface
distortions, and the analysis of the underlying dynamics, we seek in the following to
quantify the scaling of the mechanism with several key parameters.

5. Parameter influence and scaling

The considered problem is governed by five parameters: the Reynolds number Re, the
Weber number We, the ratio of the densities of the two fluids η, the ratio of their
viscosities m and the azimuthal wavenumber of the perturbations n. The frequency of the
perturbations ω and the target location x1 of the analysis of optimal disturbances describe
two additional parameters in the determination of the gain G. As noted in § 2.5, these
parameters are nonetheless eliminated in the consideration of the maximum gain Gmax
which is defined as the maximum of all G(ω, x1). Following its definition in (2.50), the
objective functional G relates the interface energy at the target location x1 to the sum
of the kinetic and interface perturbation energies at the initial position x = 0. In other
words, G quantifies the interface energy at x1 normalized by the total initial perturbation
energy. In doing so, it defines a conservative measure for the gain of the interface energy
that discounts the trivial redistribution of initial perturbation kinetic energy into surface
tension energy at the target location. We note that a side effect of this approach is that the
initial value of G at x = 0 is in general not unity.

The influence of the target location x1 on the objective functional G is presented in
figure 9. We note that the presented gain in surface tension energy at each target location
is the result of an independent evaluation of the optimization problem. For example, the
maximum G for the parameters Re = 7500, We = 3000, m = 0.01, η = 0.001, ω = 2.2
and n = 5 is G = 2.638 at x1 = 11.8 in figure 9.

In the remainder, we will focus on the maximum gain Gmax = maxω,x1 G(ω, x1) which
is obtained by maximizing G for all possible combinations of ω and x1. The azimuthal
wavenumber is chosen from the range of exponentially stable settings, n = {5, 6, 7}. We
maintain a constant base flow and investigate the effect of the Reynolds and Weber
numbers as well as the viscosity and density ratios of the two fluids on the amplification
of perturbations.

An overview of the effect of the Reynolds and Weber numbers on Gmax is presented in
figure 10. The remaining parameters are kept constant at m = 0.01, η = 0.001 and n = 5.
The effect of the Reynolds number is monotonic so that higher Re also leads to higher gain
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Figure 10. Contours of the maximum energy gain Gmax as a function of the Reynolds number Re and the
Weber number We (a) in linear scale and (b) in logarithmic scale. The parameters are m = 0.01, η = 0.001 and
n = 5.
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Figure 11. Energy gain Gmax as a function of the Weber number We (a) in linear scale and (b) in logarithmic
scale for n = 5 (black), n = 6 (blue) and n = 7 (red). The critical Weber numbers Wec corresponding to
Gmax = 1 are marked by dashed lines. The parameters are Re = 9000, m = 0.01 and η = 0.001.

of the objective functional. On the other hand, an increase of the Weber number leads to
a local maximum in Gmax, with further increases of We reducing the gain. More generally
speaking, the presented result establishes that both viscosity and surface tension have an
appreciable effect on the amplification of interface distortions.

The influence of the Weber number at fixed Re = 9000 is isolated in figure 11 for three
different azimuthal numbers. In all cases, Gmax is initially marginally below 1, followed
by a sharp increase that leads to a local maximum which tends to have larger magnitude
at smaller n. A further increase of the Weber number causes Gmax to decrease before
remaining approximately constant for a comparatively large range of Weber numbers.
Since the numerator of G is proportional to f and σ , and thus the inverse of the Weber
number, this result implies that the magnitude of the surface distortion grows with We.

Analogously, we investigate the scaling of Gmax with the Reynolds number at constant
Weber number. The resulting Gmax for a density ratio m = 0.01 and a viscosity ratio
η = 0.001 is presented in figures 12 and 13. We focus on two different regimes, the first
relating to the local maximum of Gmax at relatively low Weber number seen in figure 11.
The three considered cases are n = 5 at We = 3000, n = 6 at We = 5000 and n = 7 at

911 A51-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
67

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1067


A mechanism for the amplification of interface distortions

4000
1.0

1.5

2.0

2.5
Gmax

n2 G
m

ax

3.0

3.5

40

30

50

60

70

80

90

5000 6000 7000
Re

8000 9000 4000 5000 6000 7000
Re

8000 9000

(b)(a)

Figure 12. Amplification ratio Gmax as a function of the Reynolds number Re at the local maximum in terms
of the Weber number: (a) Gmax and (b) n2Gmax. Azimuthal wavenumbers n = 5, We ∼ 3000 (black); n = 6,
We ∼ 5000 (blue); and n = 7, We ∼ 6000 (red). The parameters are m = 0.01 and η = 0.001.
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Figure 13. Amplification ratio Gmax as a function of the Reynolds number Re in the regime of relatively high
Weber number: (a) Gmax and (b) n2Gmax. Azimuthal wavenumbers n = 5 (black), n = 6 (blue) and n = 7 (red).
The parameters are We = 20 000, m = 0.01 and η = 0.001.

We = 6000. The scaling of Gmax with the Reynolds number is presented in figure 12(a)
for three azimuthal wavenumbers. Within the considered range of Reynolds numbers,
Gmax linearly increases with Re. The slope of the lines nonetheless decreases with n.
When pre-multiplied with the square of the azimuthal wavenumber n, the different lines
effectively collapse (see figure 12b). The result thus establishes that the peak Gmax scales
as

Gmax ∼ Re
n2 . (5.1)

The second regime is related to the region of near-constant Gmax at relatively high We. For
We = 20 000, Gmax again grows linearly with the Reynolds number for sufficiently large
Re (see figure 13a). As demonstrated in figure 13(b), the inverse proportionality of Gmax to
the square of the azimuthal wavenumber does not, however, extend to the regime of higher
Weber numbers.

Overall, the results establish a linear scaling of Gmax with the Reynolds number
throughout the considered range of Weber numbers. The differing scaling with the
azimuthal wavenumber depending on the Weber number nonetheless points to differences
in the evolution of the perturbation flow field. These differences are qualitatively illustrated
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Figure 14. Cross-planes showing (a) the optimal initial condition at x0 = 0 and (b) its evolution at x1 = 11.8.
Vectors of the radial and azimuthal disturbance fields, v′ and w′, with colour contours of streamwise disturbance
field, u′. The red line marks the position of the material interface. The parameters are Re = 7500, We = 3000,
m = 0.01, η = 0.001, n = 5 and ω = 2.2.
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Figure 15. Cross-planes showing (a) the optimal initial condition at x0 = 0 and (b) its evolution at x1 = 11.2.
Vectors of the radial and azimuthal disturbance fields, v′ and w′, with colour contours of streamwise disturbance
field, u′. The red line marks the position of the material interface. The parameters are Re = 7500, We = 10000,
m = 0.01, η = 0.001, n = 5 and ω = 1.7.

by the perturbation fields in cross-planes at both the initial and final locations between the
cases of low and high Weber number (see figures 14 and 15). At low Weber number, the
highest perturbation amplitudes in the radial velocity component at the target location
occur within the jet, at approximately two-thirds of the jet radius. In contrast, the most
intense fluctuations at comparatively high We are observed at the interface location.

We now turn to examining the effect of the viscosity ratio m and the density ratio η on
the amplification mechanism. We maintain a tractable problem by keeping the remainder
of the parameter space at constant values, Re = 6000, We = 1000 and n = 5. Contours in
figure 16 present the maximum surface tension energy gain Gmax for the range 0.01 � m �
0.335 and 0.001 � η � 0.08. We note that the viscosity ratio determines the ratio of the
thicknesses of the shear layers in the two fluids, with higher values of m corresponding to
a relatively thicker shear layer in the gas phase. Moreover, the density ratio is related to the
ratio of the perturbation kinetic energy in the two phases. The result shows that the growth
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Figure 16. Contours of the energy gain Gmax as a function of the viscosity ratio m and the density ratio η.
The parameters are Re = 6000, We = 1000 and n = 5.

of the interface distortion is highest for a combination of comparatively low viscosity ratio
and high density ratio.

The results presented in figures 10 and 11 established that for small Weber numbers,
the objective functional remains marginally below unity before rising sharply once a
certain threshold for We is exceeded. In this context, we recall that the definition of the
objective functional implies that for Gmax < 1, the perturbation surface tension energy at
the target location is less than the total perturbation energy at the initial position, implying
either passive decay or a trivial redistribution of initial perturbation kinetic energy into the
interface. On the other hand, for cases with Gmax > 1, the perturbation interface energy
at the target position exceeds the total perturbation energy at the initial position, which
implies that energy has been extracted from the mean shear and converted into surface
tension energy.

In the following, we seek to characterize the critical Weber number Wec at which Gmax
crosses unity, and which thus marks the boundary at which the distortion to the material
interface grows in a non-trivial manner by means of a redistribution of energy from the
mean shear. In terms of the energy budget, this implies that the right-hand side of (4.4)
yields a positive value so that the contribution to the perturbation kinetic energy by the
radial component at the target location x1 has increased compared to the initial location
x0. The difference in the kinetic energy in the radial velocity component between the initial
and target locations, Δ1

2v′2 = 1
2 (v′2(x1) − v′2(0)), is presented in figure 18(a). The Weber

numbers at which each of the curves crosses zero coincide with the critical Weber numbers
identified in figure 11.

In the exploration of a potential scaling law for the critical Weber number, we turn to
the critical Ohnesorge number,

Ohc =
√

Wec

Re
, (5.2)

which relates the viscous forces to the inertial and surface tension forces at the critical
Weber number. Figure 17 shows the logarithm of the Ohnesorge number, ln(Ohc),
for the corresponding critical Weber number as a function of the logarithm of the
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Figure 17. Scaling of the logarithm of the critical Ohnesorge number Ohc with the logarithm of the Reynolds
number Re. Here n = 5 (black), n = 6 (blue) and n = 7 (red). The parameters are m = 0.01 and η = 0.001.
The black dotted line indicates a reference slope of −3/2.

Reynolds number. A linear trend is observed with a slope of approximately −3/2,
suggesting that Ohc ∼ Re−3/2.

Insight into the scaling of Ohc and thus Wec is gained by extending the analysis of the
energy budget presented in the preceding section, where it was shown that the PVC term
is the major source of the surface tension energy. Since the measure for the gain of the
interface energy G relates the surface tension energy at a certain downstream location x1
to the initial total energy of the perturbation, it follows that G is proportional to the PVC
term in (4.7). Previous results in figure 12(a) further showed that G scales with Re. Thus,∫

Ω

p′

r
∂

∂r
(rv′) dΩ ≈ C1Re, with C1 � 0. (5.3)

For the considered cases, n2 � 1, and also n2 � α2. The surface tension energy term
is thus approximated as∫

S
1

We

(
−1 + n2 + α2

)
f ′v′ dS ≈ C2

We
, with C2 � 0. (5.4)

Using the energy budget in the radial velocity component (4.4), the condition at the critical
Weber number of Δ1

2v2 � 0 becomes

∫
Ω

p′

r
∂

∂r
(rv′) dΩ +

∫
S

(
−ηp′

gv
′
g + 2m

Re
v′ ∂v′

g

∂r

)
dS

−
∫
S

1
Re

v′ ∂v′

∂r
dS +

∫
Ω

1
Re

∂2

∂x∂x

(
1
2
v′2
)

dΩ +
∫
S

1
We

(
−1 + n2 + α2

)
f ′v′ dS

−
∫

Ω

1
Re

(
∂v′

∂r
∂v′

∂r
+ 1

r
∂v′

∂θ

1
r

∂v′

∂θ
+ ∂v′

∂x
∂v′

∂x
+ v′2

r2 + 2
r2 v′ ∂w′

∂θ

)
dΩ � 0. (5.5)
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Substitution of (5.3) and (5.4) into (5.5) yields

C1Re � C2

We
+ C3

Re
, (5.6)

with C3 defined as

C3 =
∫
S

(
ηp′

gv
′
g − 2mv′ ∂v′

g

∂r

)
dS +

∫
S

v′ ∂v′

∂r
dS −

∫
Ω

∂2

∂x∂x

(
1
2
v′2
)

dΩ

+
∫

Ω

(
∂v′

∂r
∂v′

∂r
+ 1

r
∂v′

∂θ

1
r

∂v′

∂θ
+ ∂v′

∂x
∂v′

∂x
+ v′2

r2 + 2
r2 v′ ∂w′

∂θ

)
dΩ. (5.7)

The results in figure 8 showed that C3 is small compared to the PVC and surface tension
energy terms, especially in the early stage of the evolution, and thus C3 � C1, C2. Hence,
for Re � 1, we obtain

C1Re3 � C2
Re2

Wec
, (5.8)

so that
Ohc � C4Re−3/2, (5.9)

where C4 = C2/C1. The predicted exponent of −3/2 recovers the scaling observed in
figure 17 and thus substantiates the power-law relation between the Reynolds number and
the critical Ohnesorge number. Substitution of (5.2) yields the associated critical Weber
number:

Wec � C2
4

Re
. (5.10)

For Weber numbers below the critical value, We < Wec, the energy gain attains
values less than unity, and the surface tension energy gain may thus be attributed to
a redistribution of the initial perturbation kinetic energy without meaningful extraction
of energy from the mean shear. In this regime, the target location x1 at which Gmax is
attained is expected to be comparatively close to the initial position x = 0 so as to minimize
any losses of perturbation kinetic energy due to viscous dissipation. Results presented in
figure 18(b) showing the target location x1 as a function of Weber number confirm this
hypothesis. For all considered azimuthal wavenumbers, the critical Weber numbers Wec
coincide with an abrupt downstream shift of the target locations.

6. Nonlinear simulation

So far, we have demonstrated the algebraic mechanism for generating interface distortion
exclusively by means of linear analyses. In this setting, the nonlinear higher-order
terms in the governing equation are neglected which in turn allows the identification of
optimal solutions in the interface energy norm as combinations of the non-orthogonal
eigenfunctions. In the following, we demonstrate the realizability of the identified
mechanism in a nonlinear setting by means of a simulation of the full two-fluid
Navier–Stokes equations.

The nonlinear simulations employ the Basilisk solver (Popinet 2015, 2018) which
is based on a conservative, non-diffusive geometric volume-of-fluid scheme to track
the material interface. The evolution of the interface is captured by advecting a
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Figure 18. (a) Perturbation kinetic energy gain in the radial direction, Δ 1
2 v2, as a function of Weber number

We. (b) Target location x1 as a function of Weber number. Azimuthal wavenumbers n = 5 (black), n = 6 (blue)
and n = 7 (red). The parameters are Re = 9000, m = 0.01 and η = 0.001. Dashed lines mark the critical Weber
numbers Wec.

volume-fraction function coupled with the incompressible Navier–Stokes equations. An
orthogonally structured grid of size [Nx, Ny, Nz] = [1536 × 256 × 256] and spatial extent
[Lx, Ly, Lz] = [60R, 10R, 10R] is used. In this setting, the radius of the jet is defined as
r = ( y2 + z2)1/2 in the y–z plane. A homogeneous uniform grid spacing of �x = 0.004 is
applied in all dimensions. We note that the comparatively large streamwise extent of the
computational domain prevents any interaction of the jet with the outflow plane during the
runtime of the simulations.

In a first step, a base flow is computed by imposing the profile (2.2) at the inflow of
the computational domain. After the initial transient has cleared, the base flow profile
is superimposed with the optimal initial condition identified in the solution of the
optimization problem (3.1) for the parameters Re = 7784, We = 4865, m = 0.036, η =
0.0012, n = 6 and ω = 2.5. Homogeneous Neumann boundary conditions are imposed on
both the side walls and the outlet:

∂u · ên

∂n
= 0 if

∂u · ên

∂n
> 0,

u · ên = 0 otherwise,

⎫⎬⎭ (6.1)

where ên is the face-normal vector pointing outward of the domain. The convergence of
the simulation results was verified by increasing the resolution as well as changing the
domain size in the y and z directions.

An isosurface of the material interface at time t = 0.24 is presented in figure 19(a).
Colours indicate the local amplitude of the interface distortion. The linear result, rescaled
to the same initial amplitude of the perturbations, is presented in figure 19(b) and shows
excellent qualitative agreement.

The envelopes of the amplitudes of the interface perturbations computed in linear
analysis and the nonlinear simulations are plotted in figure 20. The nonlinear simulation
qualitatively recovers the non-monotonic growth of the perturbation observed in the linear
analysis. In both cases, the global maximum is preceded by two local maxima past which
the amplitude of the interface distortion decays before amplifying again. The prediction by
linear theory and the nonlinear simulation are in excellent agreement in the vicinity of the
nozzle. With growing distance to the exit of the nozzle, a moderate discrepancy between
the two results appears. The peak amplitude of the interface distortion is recorded at
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Figure 19. Isosurfaces of the material interface, coloured by the local displacement of the interface. (a) Linear
stability theory. (b) Nonlinear simulation based on a geometric volume-of-fluid formulation. The parameters
are Re = 7784, We = 4865, m = 0.036, η = 0.0012, n = 6 and ω = 2.5.
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Figure 20. Envelope of the interface distortion of the liquid jet. Linear stability theory (black) and nonlinear
simulation based on a geometric volume-of-fluid formulation (blue). The parameters are Re = 7784, We =
4865, m = 0.036, η = 0.0012, n = 6 and ω = 2.5.

x = 11.2 in the linear analysis while it is located at x = 12.37 in the nonlinear simulation.
The magnitude of the maximum interface distortion also attains a moderately lower value
of | f (x)/ f0| = 16.05 in the nonlinear simulation, compared to a value of | f (x)/ f0| = 16.81
predicted in the linear analysis. This disparity can be attributed to the relaxation of the
base flow in the nonlinear simulation which leads to a thickening of the shear layer
with increasing distance to the inflow location at x = 0. In contrast, the linear analysis
assumes a constant base flow profile which matches that at the inflow location of the
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nonlinear simulation. An evaluation of the surface tension energy gain Gmax for the
relaxed base flow at x = 10 results in a reduced amplification ratio, | f (x)/ f0| = 14.08.
Overall, the qualitative agreement between linear analysis and nonlinear simulations
clearly substantiates the realizability of the presented mechanism.

7. Conclusions

The literature on two-fluid flows commonly ascribes the amplification of small interface
distortions to exponential mechanisms that are driven by shear or surface tension effects.
Our work presents an alternative pathway for the amplification of disturbances to the
material interface of a liquid jet. Depending on the parameters, the mechanism can
intensify small perturbations by several orders of magnitude, and on a faster scale than
exponential mechanisms such as the K–H instability.

The analysis is based on the application of linear stability theory in a spatial framework
which incorporates the viscosity of both phases as well as the surface tension at the
material interface. A linear optimization problem identifies the particular initial condition
that most effectively amplifies the magnitude of the distortion to the material interface.
The formulation is cast in a manner that discounts the trivial redistribution of initial
perturbation kinetic energy into perturbation surface tension energy, and maximizes the
actual redistribution of energy from the mean shear into the distortion of the material
interface. The approach differs from earlier analyses of non-exponential growth in
two-fluid settings which commonly applied a norm based on the kinetic energy of the
disturbances.

The most effective disturbances are related to the Orr mechanism and appreciably
amplify the magnitude of the initial interface perturbation. The underlying principle is
the reorientation of initially tilted structures by the mean shear. Since the Orr mechanism
amplifies velocity perturbations both parallel and perpendicular to the direction of the
mean shear, it enables the amplification of the distortions to the material interface which
are kinematically coupled to velocity perturbations in the radial component only. Analyses
of the energy budget illustrated that perturbation energy is extracted from the mean shear
by the production term of the streamwise perturbation velocity component. The PVC term
redistributes the energy from the streamwise component into the radial component where
it is transferred into surface tension energy in the form of a distortion to the material
interface.

The surface tension energy gain was shown to scale linearly with the Reynolds number.
The critical Weber number past which the surface tension energy in the material interface
at the final location exceeds the initial total perturbation energy was related to the Reynolds
number through a power law. Simulations of the full multi-phase Navier–Stokes equations
confirmed the realizability of the mechanism and quantitatively verified the outcome of
the linear analyses.

The presented mechanism may participate in the primary atomization process of liquid
jets by providing a route for the shear-driven amplification of initial distortions to the
material interface. The identification and comparison of its efficacy in triggering the
secondary instabilities which further advance the flow towards breakup remain a subject
of future research. We finally note that similar physics may also be relevant in the case of
planar interfaces.
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Appendix A. Linear operators

The system matrices M and L in (2.31) are

M =

⎡⎢⎢⎣
M̃ j 0 0 0
0 ūI 0 0
0 −i 0 0
0 0 0 M̃ j

⎤⎥⎥⎦ , (A1)

L =

⎡⎢⎢⎣
L̃j 0 0 0
0 iω 0 LI

0 0 1 0
0 0 0 L̃j

⎤⎥⎥⎦ , (A2)

with the block matrices M̃ j, L̃j and LI defined as

M̃ j =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ūj 0 0 1 − i
Rej

0 0

0 ūj 0 0 0 − i
Rej

0

0 0 ūj 0 0 0 − i
Rej

1 0 0 0 0 0 0
−i 0 0 0 0 0 0
0 −i 0 0 0 0 0
0 0 −i 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (A3)

L̃j =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Uj −i
dūj

dr
0 0 0 0 0

0 Vj − i
Rej

2n
r2 − d

dr
0 0 0

0
1

Rej

2n
r2 Wj −i

n
r

0 0 0

0 Pj −n
r

0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A4)

and

LI = [0 i 0 0 0 0 0] . (A5)
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The elements of the matrices L̃j are

Uj = 1
Rej

∂2

∂r2 + 1
Rej

1
r

∂

∂r
+ iω − 1

Rej

n2

r2 , (A6)

Vj = 1
Rej

∂2

∂r2 + 1
Rej

1
r

∂

∂r
+ iω − 1

Rej

n2 + 1
r2 , (A7)

Wj = 1
Rej

∂2

∂r2 + 1
Rej

1
r

∂

∂r
+ iω − 1

Rej

n2 + 1
r2 , (A8)

Pj = ∂

∂r
+ 1

r
. (A9)

Note that the Reynolds numbers in (A6)–(A8) are related through Reg = (η/m)Rel.

Appendix B. Interface energy norm

The interface energy owing to surface tension is defined as

Einterface =
∫ λ

0

∫ 2π/n

0
σγ f dS, (B1)

where κ is the the curvature of the interface. We further introduce the level-set function H
as

H = r − f (x, θ) = r −
(

1 + f̂ exp(i(αx + nθ − ωt))
)

. (B2)

The curvature of the liquid interface may then be expressed in terms of H as

∇H = ∂H
∂r

er + 1
r

∂H
∂θ

eθ + ∂H
∂x

ex = er − in
r

f eθ − iαf ex. (B3)

Application of the Laplacian on H yields

∇2H = 1
r

∂

∂r

(
r
∂H
∂r

)
+ 1

r2
∂2H
∂θ2 + ∂2H

∂x2 = 1
r

− n2

r2 f − α2f . (B4)

Furthermore, the infinitesimal surface area dS is

dS =
{

1 +
(

∂f
∂θ

)2

+
(

∂f
∂x

)2
}1/2

= |∇H| dx dθ. (B5)

Substitution of (B3)–(B5) into (B1) yields

Einterface =
∫ λ

0

∫ 2π/n

0
σγ f dS =

∫ λ
0

∫ 2π/n

0
σ∇ ·

( ∇H
|∇H|

)
f |∇H| dθ dx

=
∫ λ

0

∫ 2π/n

0
σ

(
−f + n2

r2 f + α2f
)

f dθ dx

=
∫ λ

0

∫ 2π/n

0
σ
(
−1 + n2 + α2

)
f 2 dθ. (B6)
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