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Abstract
This work concerns the representation of a class of continuous functions into Logic, so that one may auto-
matically reason about properties of these functions using logical tools. Rational McNaughton functions
may be implicitly represented by logical formulas in Łukasiewicz Infinitely-valued Logic by constraining
the set of allowed valuations; such a restriction contemplates only those valuations that satisfy specific
formulas. This work investigates two approaches to such depiction, called representation modulo satisfia-
bility. Furthermore, a polynomial-time algorithm that builds this representation is presented, producing a
pair of formulas consisting of the representative formula and the constraining one, given as input a rational
McNaughton function in a suitable encoding. An implementation of the algorithm is discussed.

Keywords: Function representation; Łukasiewicz Infinitely-valued Logic; rational McNaughton functions; piecewise linear
functions

1. Introduction
The formal representation of functions is an important step in the automated reasoning about
properties of such functions; if a represented function models a system, we have at our disposal a
formal way to verify desirable properties of such system by means of automated reasoning tech-
niques. In this work, we are concerned with the theoretical and practical aspects of an efficient
representation of rational McNaughton functions, continuous [0, 1]-valued piecewise linear func-
tions with rational coefficients whose domain is [0, 1]n, into Łukasiewicz Infinitely-valued Logic
(Ł∞).

Rational McNaughton functions are able to approximate any continuous function f : [0, 1]n →
[0, 1] according to the Weierstrass-like result stated in Aguzzoli and Mundici (2001), Amato
and Porto (2000). This property expands the application of this kind of representation practical
systems modeled by any (normalized) continuous function; e.g. neural networks.

There are several approaches to represent rational McNaughton functions by logic systems; it
is preferable from a computational point of view that the complexity of the target logic system
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be as low as possible. This work aims at showing that such efficiency may be achieved by means
of representation modulo satisfiability or representation in the Ł∞-MODSAT system, according to
which rational McNaughton functions may be implicitly represented in Ł∞ (Finger and Preto,
2020). In this approach, a function is represented by a pair of Ł∞-formulas, 〈ϕ,�〉, where the
former is a representative formula and the latter a constraining set of formulas; a function f is
represented by a pair 〈ϕ,�〉, where ϕ is a formula that semantically acquires values f (x), for x ∈
[0, 1]n, only from valuations in {v | v(ψ)= 1, for all ψ ∈�}.

We introduce two different definitions for such a representation concept, which highlight dif-
ferent aspects of the intended technique. In a first approach, we explore the properties of logical
formulas; we call it the formula-based approach. Such presentation differs from the original one
in Finger and Preto (2020), which departs from a traditional representation and constrains the
domain of the represented function; this is the function-based approach. We carry out a formal
investigation of both views and compare them.

We present a polynomial-time representation builder algorithm, which is an algorithm that
builds representations in Ł∞-MODSAT, taking as input rationalMcNaughton functions presented
in regional format; this format has been updated in relation to a previous work as observed at the
end of this section. We also discuss an implementation of such algorithm; for that, we estab-
lish classes of rational McNaughton functions with varied complexity from which random testing
inputs may be generated and we present some experimental results.

The rest of this work is organized as follows. Section 2 introduces all necessary concepts of
Łukasiewicz Infinitely-valued Logic and the definition of rationalMcNaughton function. Section 3
discusses the related work on the traditional logical representation of rational McNaughton
functions. Section 4 has a theoretical investigation on the concept of representation modulo sat-
isfiability together with two different approaches to defining such a concept and a comparison
between them. Section 5 has the description of a representation builder algorithm and of an input
format for such algorithm; it also discusses the input format. Section 6 presents an implementa-
tion of the algorithm, some classes of rational McNaughton functions, and experimental results.
Section 7 has our conclusions.

An early conference version of this work titledAn Efficient Algorithm for Representing Piecewise
Linear Functions into Logic (Preto and Finger, 2020) was published in the proceedings of the
15th Logical and Semantic Frameworks with Applications (LSFA 2020). We refer the reader to that
version for some omitted proofs in this work for the sake of brevity.

Note on the Previous Version. The definition of regional format that appears in Section 5.1
is modified in relation to the version in Preto and Finger (2020) and now has one additional
item requiring the encoded function to obey the lattice property. At the time of publication of the
previous version, following most current literature on lattice representation of piecewise linear
functions, that property was considered a consequence of the initial definition, and it was required
for the algorithm’s correctness. Here we provide a counterexample, showing that such property
does not follow in all cases (Example 5). Therefore, all references to the regional format in this
work deal with the updated definition. Also, the input format as defined in the previous version
is here called pre-regional format and it is investigated in Section 5.4 together with a literature
review. The aforementioned omitted proofs are not affected by the update in the definition of
regional format encoding of rational McNaughton functions.

2. Preliminaries
Łukasiewicz Infinitely-valued Logic (Ł∞) is arguably one of the best studied many-valued logics
(Cignoli et al., 2000), whose satisfiability over Ł∞ is NP-complete (Mundici, 1987), so it is in the
same complexity class as classical propositional satisfiability (SAT); there are a number of available
implementations of Ł∞-solvers, for which an empirical phase transition phenomenon is identified
(Bofill et al., 2015; Finger and Preto, 2018).
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The basic language L of Łukasiewicz Infinitely-valued Logic (Ł∞) comprehends the formu-
las built from a countable set of propositional variables P and the disjunction (⊕) and negation
(¬) operators. For the semantics, define a valuation as a function v : L → [0, 1], such that, for
ϕ,ψ ∈ L :

v(ϕ ⊕ψ)=min(1, v(ϕ)+ v(ψ)); (1)
v(¬ϕ)= 1− v(ϕ). (2)

Consider a function vP that maps propositional variables to a value in the interval [0, 1] and extend
it to a valuation by obeying (1) and (2). This extension is uniquely defined, and also called vP.

Let Val be the set of all valuations; let Var(�) be the set of all propositional variables occur-
ring in the formulas ϕ ∈�; and let Xn be the set of propositional variables {X1, . . . , Xn} ⊂ P.
A formula ϕ is satisfiable (or 1-satisfiable) if there exists a v ∈Val such that v(ϕ)= 1; otherwise, it
is unsatisfiable. A set of formulas� is satisfiable if there exists a v ∈Val such that v(ϕ)= 1, for all
ϕ ∈�. We denote by Val� the set of all valuations v ∈Val that satisfy a set of formulas�; we call
such a restricted set of valuations a semantics modulo satisfiability.

From disjunction and negation, we derive the following operators:

Conjunction: ϕ 
ψ =def ¬(¬ϕ ⊕ ¬ψ) v(ϕ 
ψ)=max(0, v(ϕ)+ v(ψ)− 1)
Implication: ϕ→ψ =def ¬ϕ ⊕ψ v(ϕ→ψ)=min(1, 1− v(ϕ)+ v(ψ))
Maximum: ϕ ∨ψ =def ¬(¬ϕ ⊕ψ)⊕ψ v(ϕ ∨ψ)=max(v(ϕ), v(ψ))
Minimum: ϕ ∧ψ =def ¬(¬ϕ ∨ ¬ψ) v(ϕ ∧ψ)=min(v(ϕ), v(ψ))

Bi-implication: ϕ↔ψ =def (ϕ→ψ)∧ (ψ → ϕ) v(ϕ↔ψ)= 1− |v(ϕ)− v(ψ)|
Note that v(ϕ→ψ)= 1 iff v(ϕ)≤ v(ψ); similarly, v(ϕ↔ψ)= 1 iff v(ϕ)= v(ψ). Let X be a
propositional variable, then, v(X 
 ¬X)= 0, for any v ∈Val; we define the constant 0 by X 
 ¬X.
We also define 0ϕ =def 0 and nϕ =def ϕ⊕ · · · ⊕ϕ, n times, for n ∈N∗; and

⊕
i∈∅ ϕi =def 0.

A rational McNaughton function f : [0, 1]n → [0, 1] is a function that satisfies the following
conditions:

• f is continuous with respect to the usual topology of [0, 1] real number interval;
• There are linear polynomials p1, . . . , pm over [0, 1]n with rational coefficients such that,
for each point x ∈ [0, 1]n, there is an index i ∈ {1, . . . ,m} with f (x)= pi(x). Polynomials
p1, . . . , pm are the linear pieces of f .

AMcNaughton function is a particular case of rational McNaughton function whose linear pieces
coefficients are restricted to integer values.

Let �⊂ [0, 1]n; we denote by �◦ its interior, by cl(�) its closure, by ∂� its boundary and by
conv(�) its convex hull.

3. The Traditional Way and Related Work
In the traditional way of representing functions by logical formulas, we inductively associate to a
given formula ϕ, with Var(ϕ)⊂Xn, a function fϕ : [0, 1]n → [0, 1] by

(i) fXj(x1, . . . , xn)= xj, for j= 1, . . . , n;
(ii) f¬ϕ(x1, . . . , xn)= 1− fϕ(x1, . . . , xn);
(iii) fϕ⊕ψ (x1, . . . , xn)=min(1, fϕ(x1, . . . , xn)+ fψ (x1, . . . , xn)).

Note that the definition of fϕ depends on n. It follows that fϕ enjoys the property:
fϕ(v(X1), . . . , v(Xn))= v(ϕ), for all v ∈Val. (3)
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And, then, we say that formula ϕ represents function f . For any formula ϕ, fϕ is a McNaughton
function and reciprocally, McNaughton’s Theorem states that every McNaughton function f may
be represented by some formula ϕ (McNaughton, 1951; Mundici, 1994).

There are propositional logics whose formulas represent rational McNaughton functions in the
traditional way. In the following, we present and discuss some of such most relevant approaches.

• Logic Ł� 1
2 extends Ł∞ with a product operator, its residuum and a constant expressing the

truth value 1
2 , not directly expressible in Ł∞ (Esteva et al., 2001). That logic not only allows for

the expressivity of rational McNaughton functions but also expresses piecewise polynomials;
as a consequence satisfiability over Ł� 1

2 requires finding roots of polynomials of n-degree
making its complexity extremely high.

• Logic ∃Ł also expresses rational McNaughton functions (Aguzzoli and Mundici, 2001, 2003);
it extends Ł∞ and introduces rational numbers by providing restricted form of propositional
quantification whose semantic counterpart is the maximization of a set of Ł∞-valuations of a
formula. Satisfiability problem in that logic is in the complexity class�p

2 , which is also a high
complexity.

• Rational Łukasiewicz Logic extends Ł∞ with division operators δn that induces division by
n ∈N∗ in its semantics, i.e. v(δnϕ)= v(ϕ)

n , where v is a valuation of Rational Łukasiewicz
Logic (Gerla, 2001); its associated tautology problem is coNP-complete, which is a reason-
able complexity for this task. This logic expresses all rational McNaughton functions, but
no algorithm has ever been proposed that builds the representation formulas; an attempt
to derive such algorithm from the results of Gerla (2001) would lead to the problem of
representing McNaughton functions in Ł∞; it is known that this task may be done in poly-
nomial time on the coefficients of some specific functions (Aguzzoli, 1998), however these
methods lead to exponential time complexity if binary representation of the coefficients is
used.

• Logic RŁ extends Ł∞ with constant multiplication operators ∇r that induces multiplica-
tion by r ∈ [0, 1] in its semantics, i.e. v(∇rϕ)= r · v(ϕ), where v is a RŁ-valuation (Di Nola
and Leus,tean, 2011, 2014). This logic expresses all continuous [0, 1]-valued piecewise linear
functions over [0, 1]n; in particular, it expresses all rational McNaughton functions, however
its language is uncountable, thus it is not computable. We are unaware of computational
considerations so far about the fragment of RŁ that comprehends only operators ∇q, for
q ∈ [0, 1]∩Q.

4. Representation Modulo Satisfiability
Although formulas of Ł∞ only represent (integer) McNaughton functions, we present here an
implicit representation of rational McNaughton functions, which we call representation modulo
satisfiability. Next, we introduce two different definitions for such a representation concept, which
highlight distinct aspects of the intended technique, then we compare both approaches.

4.1 The formula-based approach
We start by analyzing the property which is a crux for the possibility that logical formulas rep-
resent functions in the traditional way: the value of a formula ϕ according to some valuation
v is determined only by the values associated to a finite set of propositional variables X such that
Var(ϕ)⊂X. Thus, if X is semantically identified to the domain of a function, formula ϕ may
semantically express all the values such function. Let us generalize this notion.
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Definition 1. Let ϕ be a formula and let � be a set of formulas. We say that a set of propositional
variables Xn determines ϕ modulo�-satisfiable if:

• For any 〈x1, . . . , xn〉 ∈ [0, 1]n, there exists at least one valuation v ∈Val�, such that v(Xj)= xj,
for j= 1, . . . , n; and

• For any pair of valuations v, v′ ∈Val� such that v(Xj)= v′(Xj), for j= 1, . . . , n, we have that
v(ϕ)= v′(ϕ)—i.e. valuations in Val� are truth-functional on variables in Xn.

For instance, for any formula ϕ such that Var(ϕ)⊂Xn, Xn determines ϕ modulo ∅-satisfiable,
by truth-functionality and the fact that Val∅ =Val. Then, representation modulo satisfiability in
the formula-based approach is defined in a way that retrieves property (3).

Definition 2. Let f : [0, 1]n → [0, 1] be a function and 〈ϕ,�〉 be a pair where ϕ is a formula and
� is a set of formulas. We say that ϕ represents f modulo�-satisfiable or that 〈ϕ,�〉 represents f
in the system Ł∞-MODSAT) if:

• Xn determines ϕ modulo�-satisfiable; and
• f (v(X1), . . . , v(Xn))= v(ϕ), for all v ∈Val�.

The definition of representation modulo satisfiability in the formula-based approach adapts
property (3) from unrestricted to restricted valuations, as required by the semantics modulo
satisfiability. The next example should clarify the usage of such property.

Example 1. The function f : [0, 1]→ [0, 1], given by f (x1)= x1
2 , may be represented by 〈Z1,�〉,

where �= {Z1 ⊕ Z1 ↔ X1, Z1/2 ↔ ¬Z1/2, Z1 → Z1/2}. Propositional variable X1 is intended to
take values in the domain of function f and Z1 is intended to take half the value of X1; it is also
necessary to define constant 1

2 by propositional variable Z1/2 and assure Z1 takes at most value
1
2 . Observe that X1 determines ϕ = Z1 modulo �-satisfiable since, if one associates a value x1
in the domain of function f to propositional variable X1—making x1 = v(X1)—, the value v(Z1)
of formula Z1 is uniquely determined modulo satisfiability of �, i.e. assuming that valuation v
satisfies�. Moreover, the pair 〈Z1,�〉 represents function f , since f (x1)= v(Z1).

4.2 The function-based approach
Finger and Preto (2020) proposed a function-based definition of representation modulo satisfia-
bility that constained the domain of a traditionally represented function.We review such approach
in the following.

We extend the notion of associating functions from formulas to a pair 〈ϕ,�〉, where ϕ is a
formula and � is a set of formulas, with Var(ϕ)∪Var(�)⊂Xm, as follows. First, let the function
domain be

D〈ϕ,�〉 =
{
〈x1, . . . , xm〉 ∈ [0, 1]m

∣∣∣ fψ (x1, . . . , xm)= 1, for all ψ ∈�
}
.

Then we inductively define function f〈ϕ,�〉 :D〈ϕ,�〉 → [0, 1] by the following clauses in total
analogy to (i)–(iii) in the beginning of Section 3:
(i) f〈Xj,�〉(x1, . . . , xm)= xj, for j= 1, . . . ,m;
(ii) f〈¬ϕ,�〉(x1, . . . , xm)= 1− f〈ϕ,�〉(x1, . . . , xm);
(iii) f〈ϕ⊕ψ ,�〉(x1, . . . , xm)=min

(
1, f〈ϕ,�〉 (x1, . . . , xm)+ f〈ψ ,�〉 (x1, . . . , xm)

)
.

The definitions of D〈ϕ,�〉 and f〈ϕ,�〉 depend on m. In the function-based approach, we have the
following definition.
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Figure 1. Graphs of functions fϕ and f〈ϕ,�〉 and of set D〈ϕ,�〉 in
Example 2, for fixed x3 = 1

2 .

Definition 3. Let f : [0, 1]n → [0, 1] be a function and 〈ϕ,�〉 be a pair where ϕ is a formula and
� is a set of formulas. We say that ϕ functionally represents f modulo�-satisfiable or that 〈ϕ,�〉
functionally represents f (in the system Ł∞-MODSAT) if Var(ϕ)∪Var(�)=Xm,m≥ n, and there
exist m− n functions zj : [0, 1]n → [0, 1], j= 1, . . . ,m− n, such that:

• For any 〈x1, . . . , xm〉 ∈D〈ϕ,�〉, xn+j = zj(x1, . . . , xn), j= 1, . . . ,m− n;
• For any 〈x1, . . . , xn〉 ∈ [0, 1]n,
f (x1, . . . , xn)= f〈ϕ,�〉(x1, . . . , xn, z1(x1, . . . , xn), . . . , zm−n(x1, . . . , xn)).

We write x= 〈x1, . . . , xn〉 and z= 〈xn+1, . . . , xm〉.

In the functional representation modulo satisfiability, a pair 〈ϕ,�〉 functionally represents a
function f : [0, 1]n → [0, 1] when formula ϕ is the traditional representation of another function
fϕ : [0, 1]m → [0, 1] whose domain [0, 1]m has possibly higher dimension – m≥ n – and can be
constrained to D〈ϕ,�〉 ⊂ [0, 1]m in order to be identified with the domain [0, 1]n of the original
function f ; elements x ∈ [0, 1]n are identified with elements 〈x, z〉 ∈D〈ϕ,�〉 and it must hold that
f (x)= f〈ϕ,�〉(x, z). Note that the constraining from [0, 1]m to D〈ϕ,�〉 is a disguised application of
semantics modulo satisfiability since 〈x1, . . . , xm〉 ∈D〈ϕ,�〉 if, and only if, there is a valuation v ∈
Val� such that v(X1)= x1, . . . , v(Xm)= xm.

Example 2. The representation for function f : [0, 1]→ [0, 1], given by f (x1)= x1
2 , in Example 1

is almost a functional representation for it; we only need to replace Z1 and Z1/2 by X2 and X3 to
fit the definition, which results in 〈X2,�〉, where �= {X2 ⊕ X2 ↔ X1, X3 ↔ ¬X3, X2 → X3}. In
this case, we have n= 1,m= 3 and

D〈ϕ,�〉 =
{
〈x1, x2, x3〉 ∈ [0, 1]3

∣∣∣ x1 ∈ [0, 1], x2 = x1
2
, x3 = 1

2

}
.

Then, there are functions z1 : [0, 1]→ [0, 1] and z2 : [0, 1]→ [0, 1] given by z1(x1)= x1
2 and

z2(x1)= 1
2 . And we have that

f (x1)= x1
2

= z1(x1)= f〈ϕ,�〉(x1, z1(x1), z2(x1)).

Note that function fϕ : [0, 1]3 → [0, 1] is given by fϕ(x1, x2, x3)= x2. Figure 1 has graphs of the
functions fϕ and f〈ϕ,�〉 and of the set D〈ϕ,�〉.
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4.3 Formula-based versus function-based approaches
We have seen two attempts to formalize a concept of representation modulo satisfiability. Each
approach has the virtue of elucidating some different aspects of the technique that provides a
pair 〈ϕ,�〉, where ϕ is a representative formula and � is a set of constraining formulas. In this
way, one might wonder whether they formalize the same concept. In fact, despite the similarity,
the function-based presentation is a bit more restrictive than the formula-based one; the for-
mer constrains the values of xn+j, for j= 1, . . . ,m− n, to be functions zj(x1, . . . , xn), for any
〈x1, . . . , xm〉 ∈D〈ϕ,�〉, so that the set D〈ϕ,�〉 is minimal.

Example 3. The pair 〈X2 ⊕ X3,�〉, where �= {X2 ↔ ¬X3}, is a representation in the formula-
based approach for the constant function f : [0, 1]→ [0, 1], given by f (x1)= 1, but not in the
function-based approach, as the representation is not functional. In fact, for a given α ∈ [0, 1],
it is not possible to determine a unique element 〈x1, x2, x3〉 ∈D〈ϕ,�〉 such that x1 = α, since
〈α, β , 1− β〉 ∈D〈ϕ,�〉, for any β ∈ [0, 1].

In order to make both presentations equivalent, we should restrict the formula-based one by
adding to Definition 1 the following items:

• Var(ϕ)∪Var(�)=Xm,m≥ n;
• For any pair of valuations v, v′ ∈Val� such that v(Xj)= v′(Xj), for j= 1, . . . , n, we have that
v(Xj)= v′(Xj), for j= n+ 1, . . . ,m.

The first item above only standardizes propositional variables to appear in ϕ and �; such stan-
dardization was intended to ease the inductive process of associating functions to formulas in
the formula-based approach. The second item constrains, for valuations in Val�, the values of
propositional variables in Xm \Xn as functions of the values of propositional variables in Xn; this
is stronger than the original definition which only constrains the value of ϕ – indeed these new
items yield that the value of ϕ is invariant – and is the counterpart to the constraints to elements
inD〈ϕ,�〉 by functions z1, . . . , zm−n. We refer to the more restrictive form of Definition 1 as strong
determination modulo satisfiability and to the consequent more restrictive form of Definition 2 as
strong representation modulo satisfiability.

Theorem 4. A pair 〈ϕ,�〉 strongly represents a function f : [0, 1]n → [0, 1] (in the formula-based
approach) if, and only if, it functionally represents f (in the function-based approach).

Proof. Let 〈ϕ,�〉 be a strong representation for f (in the formula-based approach); then
Var(ϕ)∪Var(�)=Xm. For any x= 〈x1, . . . , xn〉 ∈ [0, 1]n and j= 1, . . . ,m− n, we set
zj(x)= vx(Xn+j), where vx ∈Val� is such vx(Xj)= xj, for j= 1, . . . , n. This way, for any
〈x1, . . . , xm〉 ∈D〈ϕ,�〉, ψ ∈� and valuation v, with v(Xj)= xj, for j= 1, . . . ,m, we have that
v(ψ)= fψ (x1, . . . , xm)= 1; then v ∈Val� and xn+j = v(Xn+j)= v〈x1,...,xn〉(Xn+j)= zj(x1, . . . , xn),
for j= 1, . . . ,m− n. Finally, for any 〈x1, . . . , xn〉 ∈ [0, 1]n, there is a v ∈Val� such that v(Xi)= xi,
for i= 1, . . . , n. Therefore, 〈v(X1), . . . , v(Xm)〉 ∈D〈ϕ,�〉, f (x1, . . . , xn)= f (v(X1), . . . , v(Xn))=
v(ϕ)= f〈ϕ,�〉(v(X1), . . . , v(Xm))= f (x1, . . . , xn, z1(x1, . . . , xn), . . . , zm−n(x1, . . . , xn)) and 〈ϕ,�〉
is a functional representation for f (in the function-based approach). Conversely, let 〈ϕ,�〉 be a
functional representation for f (in the function-based approach); then Var(ϕ)∪Var(�)=Xm.
Since for any x= 〈x1, . . . , xn〉 ∈ [0, 1]n there are values zj(x), j= 1, . . . ,m− n, such that
〈x, z1(x), . . . , zm−n(x)〉 ∈D〈ϕ,�〉, then, for all ψ ∈�, v(ψ)= fψ (x, z1(x), . . . , zm−n(x))= 1,
for a valuation v ∈Val�, where v(X1)= x1, . . . , v(Xn)= xn, v(Xn+1)= z1(x), . . . , v(Xm)=
zm−n(x). For v, v′ ∈Val�, where x= 〈v(X1), . . . , v(Xn)〉 = 〈v′(X1), . . . , v′(Xn)〉, we have
〈x, v(Xn+1), . . . , v(Xm)〉, 〈x, v′(Xn+1), . . . , v′(Xm)〉 ∈D〈ϕ,�〉, then v(Xn+j)= zj(x)= v′(Xn+j),
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for j= 1, . . . ,m− n, and v(ϕ)= f〈ϕ,�〉(x, z1(x), . . . , zm−n(x))= v′(ϕ); therefore, Xn strongly
determines ϕ modulo �-satisfiable. Also, f (x)= f〈ϕ,�〉(x, z1(x), . . . , zm−n(x))= v(ϕ), for
v ∈Val�, and 〈ϕ,�〉 is a strong representation for f (in the formula-based approach).

From now on, we choose to deal with the formula-based approach to represent functions mod-
ulo satisfiability, as we deem it a clearer and less restrictive definition. Moreover, we will only
refer to the version presented in Section 4.1 (not the strong one) as fixing the value of ϕ modulo
�-satisfiable is enough for establishing a satisfactory concept of representation. However, all the
constructions of representations to follow also fix the values of the additional propositional vari-
ables (other than the ones inXn) modulo�-satisfiable; thus, for them to be strong representations,
only the standardization of the propositional variables is missing.

5. An Efficient Algorithm for Building Representations
An attempt to derive a representation algorithm from the representation results in Finger and
Preto (2020) would lead to an exponential explosion, since the proposed pairs 〈ϕ,�〉 for rep-
resenting only truncated linear functions are already exponential over the binary representation
of their coefficients. Thus, we need to produce a less complex representation in order to derive
an efficient algorithm that actually represents a piecewise linear function; this is our aim in this
section.

5.1 Regional format of rational McNaughton functions
The algorithm we present later uses a lattice representation of rational McNaughton functions;
before that we employ an encoding as follows. A rationalMcNaughton function f : [0, 1]n → [0, 1]
is in regional format if it is given bym (not necessarily distinct) linear pieces

pi(x)= γi0 + γi1x1 + · · · + γinxn, (4)

for x= 〈x1, . . . , xn〉 ∈ [0, 1]n, γij ∈Q and i= 1, . . . ,m, with each linear piece pi identical to f over
a convex set�i ⊂ [0, 1]n called region such that:

•
⋃m

i=1 �i = [0, 1]n;
• �◦

i ∩�◦
j = ∅, for i �= j;

• Regions�i are given in such a way that there is a polynomial procedure to determine whether
or not a linear piece pk is above other linear piece pi over region �i, that is whether or not
pk(x)≥ pi(x), for all x ∈�i;

• Linear pieces and regions satisfy the lattice property, that is, for i �= j, there is k such that linear
piece pi is above linear piece pk over region�i and linear piece pk is above linear piece pj over
region�j.

The regional format allows for the repetition of linear pieces so that there is a one-to-one cor-
respondence between regions and pieces. In this format, the size of a function is the sum of the
number of bits necessary to represent its linear pieces coefficients as fractions a

b plus the space
necessary for representing its regions in some encoding. We discuss the regional format further at
the end of this section.

Example 4. Rational McNaughton function f with graph in Figure 2a may be given by the linear
pieces p1(x1, x2)= 4

9 + 2
3x2, p2(x1, x2)= 5

6 − 1
2x2 and p3(x1, x2)= 4

3 − x1. Regions �i associated
to each linear piece are depicted in Figure 2b and described in Table 1; we soon tackle the problem
of deciding if a linear piece is above another.
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Table 1. Regions�i for function f in Example 4

�1 �2 �3
8− 9x1 − 6x2 ≥ 0

1
3

− x2 ≥ 0

x1 ≥ 0
x2 ≥ 0

1− 2x1 + x2 ≥ 0

− 1
3

+ x2 ≥ 0

x1 ≥ 0
1− x2 ≥ 0

−8+ 9x1 + 6x2 ≥ 0
−1+ 2x1 − x2 ≥ 0

1− x1 ≥ 0
x2 ≥ 0

(a) (b) (c)

Figure 2. Graph of rational McNaughton function in Example 4.

Let us deal with the encoding of regions. First, we characterize them in next result.

Lemma 5. Closures of regions in regional format of rational McNaughton functions are polyhedra.

Proof. Let � be a region of a rational McNaughton function in regional format. Since cl(�) is a
convex compact set, it is the convex hull of its extreme points. Suppose cl(�) has infinitely many
extreme points and let E be the set comprehending the infinitely many extreme points which
are in the interior of [0, 1]n. Let U =⋃{�i | �i �=�}; we have that E⊂ ∂U and, since U is a
finite union of regions�i, there exists an infinite set E′ ⊂ E, such that E′ ⊂ ∂�′ ⊂ cl(�′), for some
�′ =�i �=�. Let En+1 ⊂ E′ be a set with n+ 1 points; as cl(�) and cl(�′) are convex sets, we have
that conv(En+1)⊂ cl(�)∩ cl(�′). Also, as� and�′ are convex sets, we have that�◦ = cl(�)◦ and
�′◦ = cl(�′)◦. Finally, since conv(En+1) is an n-simplex, it follows that �◦ ∩�′◦ �= ∅, contrary to
the definition of regional format. Therefore, cl(�) is a polyhedron.

Since the closure cl(�) of region � is a polyhedron, it may be entirely described as the finite
intersection of half-spaces given by linear inequalities as

cl(�)=
{
x ∈ [0, 1]n

∣∣∣ ωi0 +ωi1x1 + · · · +ωinxn ≥ 0, i= 1, . . . , λ�
}
. (5)

We show a polynomial procedure for deciding if a linear piece pk is above another linear piece pi
over region�i that takes polyhedron cl(�i) given by (5) as input. Let pk and pi be given by

pk(x)= γk0 + γk1x1 + · · · + γknxn,
pi(x)= γi0 + γi1x1 + · · · + γinxn,
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Algorithm 1 ABOVE-MAX: decides if a linear piece is above another one over a region
Input: Linear pieces pk and pi given by their coefficients γk0, . . . , γkn,. . . ,γi0, . . . , γin and
polyhedron cl(�i).
Output: True, if pk is above pi over�i. Or False, otherwise.
1: M :=MAX(pi − pk, cl(�i));
2: ifM ≤ 0 then
3: return True;
4: else
5: return False;
6: end if

where x= 〈x1, . . . , xn〉. In order to decide if pk is above pi over �i, Algorithm 1 analyzes the
optimal value of the maximization linear program:

max pi − pk
subject to cl(�i)

We call MAX(f , P) the routine that computes maximum value of an objective function f over
polyhedron P. It is known that such linear programming problem may be solved in polynomial
time (Bertsimas and Tsitsiklis, 1997).

Theorem 6. Given linear pieces pk and pi and a polyhedron cl(�i), Algorithm 1 decides in
polynomial time whether or not pk is above pi over�i.

Proof. We have that pk(x)≥ pi(x), for x ∈�i if, and only if,
pi(x)− pk(x)≤ 0, (6)

for x ∈�i. Let M be the maximum value of the objective function pi(x)− pk(x) in cl(�i) and
let xM ∈ cl(�i) be an argument where the objective function has value M. In case M ≤ 0, then
(6) is satisfied by all x ∈�i ⊂ cl(�i). In case M> 0, then, either xM ∈�i fails to fulfill (6) or, if
xM ∈ ∂�i, there is some x ∈�i which fails to do so, by the continuity of the objective function.
The correctness of Algorithm 1 follows from these remarks and, as MAX is a polynomial routine,
it terminates in polynomial time.

In view of Theorem 6, it is enough to encode regions � in such a way that there is a polyno-
mial procedure to compute cl(�) as in (5). Moreover, from continuity of rational McNaughton
function f , we have that f (x)= pi(x), for any x ∈ cl(�i), so a natural standardization is to consider
regions that are already polyhedra given by (5). We say that functions given this way are in closed
regional format; this is the case in Example 4.

We should establish that any rational McNaughton function may be put in (closed) regional
format. Let f : [0, 1]n → [0, 1] be a rational McNaughton function with distinct linear pieces
p1, . . . , pm̄; for each permutation ρ of the set {1, . . . , m̄}, we define the polyhedron

Pρ =
{
x ∈ [0, 1]n

∣∣∣ pρ(1)(x)≥ · · · ≥ pρ(m̄)(x)
}
. (7)

Let C be the set of n-dimensional polyhedra Pρ , for some permutation ρ.

Theorem 7. The set C has the following properties.

(1)
⋃

C = [0, 1]n.
(2) For polyhedron P ∈ C and indexes i′, i′′ ∈ {1, . . . , m̄} with i′ �= i′′, pi′(x) �= pi′′(x), for any

x ∈ P◦.
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(3) P′◦ ∩ P′′◦ = ∅, for P′, P′′ ∈ C such that P′ �= P′′.
(4) For each polyhedron P ∈ C , there is an index iP ∈ {1, . . . , m̄} such that f (x)= piP (x), for x ∈ P.
(5) For polyhedra P′, P′′ ∈ C , there is an index k ∈ {1, . . . , m̄} such that piP′ is above pk over P′

and pk is above piP′′ over P′′.

Proof. For (1)–(4), see Preto and Finger (2020, Proposition 4.2); the proof of (5), based on the
proof in Cignoli et al. (2000, Proposition 9.1.4), follows. If piP′ is not above piP′′ over P′′, there is
b ∈ P′′◦ such that piP′ (b)≤ piP′′ (b). Let a ∈ P′◦ and A, B ∈ [0, 1]n+1 be such that A= 〈a, f (a)〉 and
B= 〈b, f (b)〉; also, let g be the restriction of f to the line segment [a, b]= {(1− λ)a+ λb | λ ∈
[0, 1]}. There is a point a′ ∈ [a, b] \ {a}, such that g coincides with piP′ over [a, a′]; since the graph
of g lies strictly below [A, B] over [a, a′] \ {a}, among all c ∈ [a, b] \ {a} such that 〈c, g(c)〉 ∈ [A, B],
there is one point d nearest to a (possibly b). Let k ∈ {1, . . . , m̄} be such that g(d)= pk(d) and g
coincides with pk on a nonempty line segment [d′, d]⊂ [a, d]; the restriction of the graph of pk to
[d′, d] \ {d} must be strictly below [A, B]. Then, pk(a)< piP′ (a), which makes piP′ to be above pk
over P′. We also have that piP′′ (b)< pk(b), which makes pk to be above piP′′ over P′′.

Polyhedra in C may play the role of regions in regional format since they are convex sets with
the properties above; note that the same linear piece pi may be f -associated to many distinct poly-
hedra. Determining whether a linear piece pk is above other linear piece pi over P ∈ C boils down
to comparing their values for some point x ∈ P◦. Thus, any rational McNaughton function may be
encoded in regional format. Figure 2c shows the permutation-based region configuration C for
the function in Example 4.

The regional format assures sufficient conditions and information about the ordering of linear
pieces over its region configuration which are required for a lattice representation, i.e. a repre-
sentation that comes from the application of lattice operations to the linear pieces of a given
continuous piecewise linear function. For instance, Mundici (1994) uses a lattice representation
for representing McNaughton functions in Ł∞– which was adapted by Finger and Preto (2020)
for representing rational McNaughton functions in Ł∞-MODSAT – that requires conditions and
information from the region configuration given by the decomposition in simplices of the poly-
hedra Pρ in C ; this path has also been followed in the literature for representing continuous
piecewise linear functions in other Ł∞-based logical systems; see Section 3.

The setback with describing a rational McNaughton function using the set C of polyhedra
is that, in the worst case, |C | = m̄!; the situation may be even worse when decompositions in
simplices are considered. However, in many cases, regional format is able to encompass sufficient
conditions and information for lattice representation with a smaller set of regions; Figure 2 shows
such contrast related to Example 4 and it may also be seen in the classes of functions in Section 6.
This feature does not interfere with the complexity of the general algorithm in Section 5.3, since it
only amounts to a possible reduction of the input size, but it might yield a gain in the complexity
of the representation of inputs and, therefore, make some applications viable. Of course that if
a more compact encoding of rational McNaughton functions is provided, a side effect might be
an inefficient translation from such encoding to the regional format. However, we are unaware of
methods that perform representations in a Ł∞-based logical system which require less conditions
or information than the provided by regional format or do not apply lattice representations.

5.2 A particular case: Truncated linear functions
Let us show the possibility of representing a rational McNaughton function in Ł∞-MODSAT and
develop a polynomial algorithm for computing such representation in the particular case that
function is a truncated linear polynomial with rational coefficients, defined in the following.

Let p : [0, 1]n →R be a nonzero linear polynomial given by

p(x)= a0
b0

+ a1
b1

x1 + · · · + an
bn

xn, (8)
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for x= 〈x1, . . . , xn〉 ∈ [0, 1]n, aj ∈Z and bj ∈Z∗+. We want to build a representation for the
function p# : [0, 1]n → [0, 1] given by

p#(x)=min
(
1, max

(
0, p(x)

))
. (9)

We have that p#(x)= 0, if p(x)< 0; p#(x)= 1, if p(x)> 1; and p#(x)= p(x), otherwise.
In order to rewrite expression (8), we define:

αj = aj, for j ∈ P;
αj = −aj, for j ∈N;
βj = β · bj, for j= 0, . . . , n;

where j ∈ P, if aj > 0, and j ∈N, if aj < 0, with P ∪N ⊂ {0, . . . , n}, and β is the least integer greater
than or equal to

max

⎧⎨
⎩
∑
j∈P

aj
bj
, −

∑
j∈N

aj
bj

⎫⎬
⎭ .

We have that αj ∈Z+ and βj ∈Z∗+, for j= 0, . . . , n. Let x0 = 1 and define functions pP : [0, 1]n →
R and pN : [0, 1]n →R, for x= 〈x1, . . . , xn〉 ∈ [0, 1]n, by

pP(x)=
∑
j∈P

αj

βj
xj; pN(x)=

∑
j∈N

αj

βj
xj. (10)

Let Zp
j , Z1/βj ∈ P; for a set of indexes J ∈ {P,N}, define:

ϕ̃J =
⊕
j∈J\{0}

αjZ
p
j ; �̃J =

⋃
j∈J\{0}

{
ϕ 1
βj
, βjZ

p
j ↔ Xj, Zp

j → Z 1
βj

}
.

And then, define:

ϕ̄J = ϕ̃J , �̄J = �̃J , if 0 /∈ J;
ϕ̄J = α0Z 1

β0
⊕ ϕ̃J , �̄J = �̃J ∪ {ϕ 1

β0
}, otherwise.

(11)

Lemma 8. Functions pP and pN in (10)may, respectively, be represented by 〈ϕ̄P, �̄P〉 and 〈ϕ̄N , �̄N〉
in (11).

Proof. See Preto and Finger (2020, Lemma 5.2).

For the final step toward a representation for p#, we define:

ϕ̄p = β[¬(ϕ̄P → ϕ̄N)], �̄p = �̄P ∪ �̄N . (12)

Theorem 9. Function p# in (9)may be represented by 〈ϕ̄p, �̄p〉 in (12).

Proof. See Preto and Finger (2020, Theorem 5.3).

In order to set up a polynomial algorithm for computing a representation 〈ϕp,�p〉 for p#, we
analyze more closely expressions nψ , which show up in ϕ̄p and in formulas in �̄p. These expres-
sions are exponential in the binary representation of n since they denote n-fold repetitions of
a formula ψ . We deviate from this situation by using �log n� + 1 new propositional variables
ξ 0ψ , ξ

1
ψ , . . . , ξ

�log n�
ψ and replacing every occurrence of nψ , where n ∈N \ {0, 1}, with the formula
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ξnψ =def

�log n�⊕
k=0
nk=1

ξ kψ , (13)

where nk ∈ {0, 1} comes from the binary representation
∑�log n�

k=0 2knk of n, and by adding the
following formulas to �̄p:

ξ 0ψ ↔ψ ;

ξ kψ ↔ ξ k−1
ψ ⊕ ξ k−1

ψ , for k= 1, . . . , �log n�.
(14)

These formulas define the propositional variables ξ kψ and we call �nψ the set that comprehends
them. In this way, we avoid exponential blow up as shown in Theorem 10.

Theorem 10. Let n ∈N \ {0, 1}, ψ be a formula and 〈ϕp,�p〉 be a pair defined from representation
〈ϕ̄p, �̄p〉 in (12) by replacing any occurrence of nψ in ϕ̄p and �̄p with ξnψ in (13) and by adding
formulas in set�nψ in (14) to �̄p. Then, 〈ϕp,�p〉 is also a representation for p# in (9). Furthermore,
〈ϕp,�p〉 is a representation for p# if it is defined by multiple suitable replacements of expressions
nlψl, for l= 1, . . . , L.

Proof. See Preto and Finger (2020, Theorem 5.5).

We set 〈ϕp,�p〉 from 〈ϕ̄p, �̄p〉 in (12) by properly replacing all occurrences of nlψl as stated in
the above theorem. By construction, 〈ϕp,�p〉 is given by

ϕp = β[¬(ϕP → ϕN)]; �p =�P ∪�N ; (15)

where ϕP, ϕN ,�P, and�N are properly defined from their barred correspondents in (11). Table 2
shows how functions in Example 4 can be represented as in Theorem 10.

Algorithms 2 and 3 compute the representation of nψ in Ł∞-MODSAT in time O( log n)
assuming that propositional variables are all represented with a constant size. Algorithm 2 returns
0 andψ in the limit cases n= 0 and n= 1 (lines 1–5); when n ∈N \ {0, 1}, it returns formula ξnψ in
(13) by building it in line 6 plus a �log n� + 1 iteration loop (lines 7–13) where the nk’s in the binary
representation of n are calculated by the routine in lines 8 and 9. Algorithm 3 returns ∅ in the limit
cases n= 0 and n= 1 (lines 1–3); when n ∈N \ {0, 1}, it returns set �nψ that comprehends for-
mulas (14) by building it in line 4 plus a �log n� iteration loop (lines 5–7). Algorithm 4 computes
a representation of p# in Ł∞-MODSAT. It returns 〈0, ∅〉 in the limit case a0 = · · · = an = 0 (lines
1–3); otherwise it returns representation 〈ϕp,�p〉 given in (15). From lines 4 to 15, the algorithm
sets all P, N, αj, βj and β , for j= 0, . . . , n, which are used to rewrite function p in terms of pP and
pN . From lines 16 to 26, it writes formulas ϕP and ϕN and adds formulas in�P and�N to�p. For
J ∈ {P,N}, it works throughout a |J| iteration loop where each iteration takes a coefficient aj

bj into
account, where it treats a0

b0 (lines 18–21) separately from the others (lines 22–25). In lines 27 and
28, it finally writes formula ϕp and completes set�p.

Theorem 11. Given a rational linear function p by its coefficients, a representation 〈ϕp,�p〉 for p#
may be computed in polynomial time by Algorithm 4.

Proof. See Preto and Finger (2020, Theorem 5.6).

We call REPRESENT-TL-F and REPRESENT-TL-S the routines that separately compute ϕp
and�p, respectively. Both may be easily derived from routine REPRESENT-TL in Algorithm 4.
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Table 2. Representations as in (15) for functions p#1, p#2 and p#3, where functions p1, p2, and p3 are from Example 4

ϕp1 : ξ1

¬
(
ξ2Z 1

18
⊕ξ1

Z
p1
2

→0

)

�p1 : Z 1
18

↔ ¬
(
ξ4Z 1

18
⊕ ξ0Z 1

18

)
ξ0
Zp12

↔ Zp12

ξ0Z 1
18

↔ Z 1
18

ξ1
Zp12

↔ ξ0
Zp12

⊕ ξ0
Zp12

ξ1Z 1
18

↔ ξ0Z 1
18

⊕ ξ0Z 1
18

ξ2
Zp12

↔ ξ1
Zp12

⊕ ξ1
Zp12

ξ2Z 1
18

↔ ξ1Z 1
18

⊕ ξ1Z 1
18

ξ0Z 1
6

↔ Z 1
6

ξ3Z 1
18

↔ ξ2Z 1
18

⊕ ξ2Z 1
18

ξ1Z 1
6

↔ ξ0Z 1
6

⊕ ξ0Z 1
6

ξ4Z 1
18

↔ ξ3Z 1
18

⊕ ξ3Z 1
18

ξ2Z 1
6

↔ ξ1Z 1
6

⊕ ξ1Z 1
6

Z 1
6

↔ ¬
(
ξ2Z 1

6
⊕ ξ0Z 1

6

)
ξ0

¬
(
ξ2Z 1

18
⊕ξ1

Z
p1
2

→0

)↔ ¬
(
ξ2Z 1

18
⊕ ξ1

Zp12
→ 0
)

ξ2
Zp12

⊕ ξ1
Zp12

↔ X2 ξ1

¬
(
ξ2Z 1

18
⊕ξ1

Z
p1
2

→0

)↔ ξ0

¬
(
ξ2Z 1

18
⊕ξ1

Z
p1
2

→0

) ⊕ ξ0

¬
(
ξ2Z 1

18
⊕ξ1

Z
p1
2

→0

)

Zp12 → Z 1
6

ϕp2 : ¬
(
ξ2Z 1

6
⊕ ξ0Z 1

6
→ Zp22

)

�p2 : Z 1
6

↔ ¬
(
ξ2Z 1

6
⊕ ξ0Z 1

6

)
ξ1Z 1

6
↔ ξ0Z 1

6
⊕ ξ0Z 1

6

Z 1
2

↔ ¬Z 1
2

ξ2Z 1
6

↔ ξ1Z 1
6

⊕ ξ1Z 1
6

ξ1
Zp22

↔ X2 ξ0
Zp22

↔ Zp22

Zp22 → Z 1
2

ξ1
Zp22

↔ ξ0
Zp22

⊕ ξ0
Zp22

ξ0Z 1
6

↔ Z 1
6

ϕp3 : ξ1

¬
(
ξ2Z 1

6
→Zp31

)

�p3 : Z 1
6

↔ ¬
(
ξ2Z 1

6
⊕ ξ0Z 1

6

)
Zp31 → Z 1

2

ξ0Z 1
6

↔ Z 1
6

ξ0
Zp31

↔ Zp31

ξ1Z 1
6

↔ ξ0Z 1
6

⊕ ξ0Z 1
6

ξ1
Zp31

↔ ξ0
Zp31

⊕ ξ0
Zp31

ξ2Z 1
6

↔ ξ1Z 1
6

⊕ ξ1Z 1
6

ξ0

¬
(
ξ2Z 1

6
→Zp31

)↔ ¬
(
ξ2Z 1

6
→ Zp31

)

Z 1
2

↔ ¬Z 1
2

ξ1

¬
(
ξ2Z 1

6
→Zp31

)↔ ξ0

¬
(
ξ2Z 1

6
→Zp31

) ⊕ ξ0

¬
(
ξ2Z 1

6
→Zp31

)

ξ1
Zp31

↔ X1

5.3 The general case
We can finally tackle the general case by means of a lattice representation. Let f : [0, 1]n → [0, 1]
be a rational McNaughton function in regional format with linear pieces:

pi(x)= ai0
bi0

+ ai1
bi1

x1 + · · · + ain
bin

xn, (16)
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Algorithm 2 BINARY-F: computes formula ξnψ in (13) or 0 or ψ
Input: A natural number n and a formula ψ .
Output: Formula ξnψ .
1: if n= 0 then
2: return 0;
3: else if n= 1 then
4: return ψ ;
5: end if
6: q := n, nk := 0, ξnψ := 0;
7: for k= 0, . . . , �log n� do
8: nk := remainder from division of q by 2;
9: q := quotient from division of q by 2;
10: if nk = 1 then
11: ξnψ := ξ kψ ⊕ ξnψ ;
12: end if
13: end for
14: return ξnψ ;

Algorithm 3 BINARY-S: computes set�nψ in (14) or ∅
Input: A natural number n and a formula ψ .
Output: Set�nψ .
1: if n= 0 or n= 1 then
2: return ∅;
3: end if
4: �nψ :=

{
ξ 0ψ ↔ψ

}
;

5: for k= 1, . . . , �log n� do
6: �nψ :=�nψ ∪

{
ξ kψ ↔ ξ k−1

ψ ⊕ ξ k−1
ψ

}
;

7: end for
8: return �nψ ;

for x= 〈x1, . . . , xn〉 ∈ [0, 1]n, aij ∈Z, bij ∈Z∗+ and i= 1, . . . ,m, with each piece identical to f in
region �i, for i= 1, . . . ,m. We call ABOVE(pk,pi) the polynomial time routine that decides if
linear piece pk is above a different linear piece pi over�i.

Let 〈ϕpi ,�pi〉 be the representation for p#i given by Theorem 10, for i= 1, . . . ,m. We define

ϕ =
m∨
i=1
ϕ�i , with ϕ�i =

∧
k∈K�i

ϕpk ; �=
m⋃
i=1
�pi ; (17)

where k ∈K�i iff pk is above pi over�i.

Lemma 12. Let f be a rational McNaughton function in regional format with linear pieces given
by (16) and let ϕ�j be a formula and � a set as in (17). Then, v(ϕ�j)≤ f (v(X1), . . . , v(Xn)), for
v ∈Val�.

Proof. Let v ∈Val� and x0 = 〈v(X1), . . . , v(Xn)〉. In particular, v ∈Val�pk
, for k ∈K�i and, by

Theorem 10, v(ϕ�j)=mink∈K�j p
#
k(x0). If x0 ∈�j, then v(ϕ�i)≤ p#j (x0)= pj(x0)= f (x0). On the
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Algorithm 4 REPRESENT-TL: computing representations for truncated linear functions
Input: A linear function p given by its rational coefficients a0

b0 ,
a1
b1 , . . . ,

an
bn .

Output: A representation 〈ϕp,�p〉 for the truncated function p#.
1: if a1 = · · · = an = 0 then
2: return 〈0, ∅〉;
3: end if
4: P := ∅, N := ∅;
5: for j := 0, . . . , n do
6: if aj > 0 then
7: P := P ∪ {j}, αj := aj;
8: else if aj < 0 then
9: N :=N ∪ {j}, αj := −aj;
10: end if
11: end for
12: β := least integer greater than or equal to max

{∑
j∈P

aj
bj , −∑j∈N

aj
bj

}
;

13: for j ∈ P ∪N do
14: βj := β · bj;
15: end for
16: ϕP := 0, ϕN := 0,�p := ∅;
17: for J = P,N do
18: if 0 ∈ J then
19: ϕJ := ϕJ ⊕ BINARY-F

(
α0, Z1/β0

)
;

20: �p :=�p ∪ {Z1/β0 ↔ ¬BINARY-F
(
β0 − 1, Z1/β0

)}∪ BINARY-S
(
α0, Z1/β0

)∪
BINARY-S

(
β0 − 1, Z1/β0

)
;

21: end if
22: for j ∈ J \ {0} do
23: ϕJ := ϕJ ⊕ BINARY-F

(
αj, Z

p
j

)
;

24: �p :=�p ∪
{
Z1/βj ↔ ¬BINARY-F

(
βj − 1, Z1/βj

)
, BINARY-F

(
βj, Z

p
j

)
↔ Xj,

Zp
j → Z1/βj

}
∪ BINARY-S

(
αj, Z

p
j

)
∪ BINARY-S

(
βj − 1, Z1/βj

)
∪ BINARY-S

(
βj, Z

p
j

)
;

25: end for
26: end for
27: ϕp := BINARY-F (β ,¬ (ϕP → ϕN));
28: �p :=�p ∪ BINARY-S (β ,¬(ϕP → ϕN));
29: return 〈ϕp,�p〉;

other hand, if x0 /∈�j, there is some i such that x0 ∈�i. By the lattice property of regional for-
mat, there is k0 such that pi is above pk0 over �i and pk0 is above pj in �j, then k0 ∈K�j and
v(ϕ�j)≤ p#k0 (x0)≤ p#i (x0)= pi(x0)= f (x0).

Theorem 13. Any rational McNaughton function may be represented by 〈ϕ,�〉 in (17).

Proof. First note that any rational McNaughton function may be put in regional format as
showed in Section 5.1. For 〈x1, . . . , xn〉 ∈ [0, 1]n, define a valuation v ∈Val� such that v(Xj)= xj
and v

(
Zpi
j

)
= xj

βij
, for i= 1, . . . ,m, j= 1, . . . , n, v

(
Z1/βij

)= 1
βij
, for i= 1, . . . ,m, j= 0, . . . , n,

v
(
ξ 0ψ

)
= v(ψ) and v

(
ξ kψ

)
=min

(
1, v
(
ξ k−1
ψ

)
+ v
(
ξ k−1
ψ

))
, for k= 1, . . . , �log n�, for any nψ that
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Table 3. Representation as in (17) for function f from Example 4

ϕ:
(
ϕp1 ∧ ϕp2 ∧ ϕp3

)∨ (ϕp1 ∧ ϕp2 ∧ ϕp3
)∨ (ϕp1 ∧ ϕp2 ∧ ϕp3

)
�: �p1 ∪�p2 ∪�p3

Algorithm 5 REPRESENT: computing representations for rational McNaughton functions
Input: A rational McNaughton function f in regional format given by its linear pieces coefficients
a10
b10 , . . . ,

a1n
b1n ,. . . ,

am0
bm0

, . . . , amn
bmn

and regions�1, . . . ,�m.
Output: A representation 〈ϕ,�〉 for the rational McNaughton function f .
1: � := ∅;
2: for i= 1, . . . ,m do
3: ϕpi := REPRESENT-TL-F

(
ai0
bi0 , . . . ,

ain
bin

)
;

4: ϕ�i := ϕpi ;
5: end for
6: for i= 1, . . . ,m do
7: for k= 1, . . . , i− 1, i+ 1, . . . ,m do
8: if ABOVE(pk, pi)= true then
9: ϕ�i = ϕ�i ∧ ϕpk ;
10: end if
11: end for
12: � :=�∪ REPRESENT-TL-S

(
ai0
bi0 , . . . ,

ain
bin

)
;

13: end for
14: ϕ := ϕ�1 ∨ · · · ∨ ϕ�m ;
15: return 〈ϕ,�〉;

occurs in ϕ and �. Now, let v, v′ ∈Val� such that v
(
Xj
)= v′ (Xj

)
, for j= 1, . . . , n. In particular,

v, v′ ∈Val�pi
, for i= 1, . . . ,m, and, by Theorem 10, v

(
ϕpi
)= v′ (ϕpi), for i= 1, . . . ,m. Therefore,

v(ϕ)= v′ (ϕ) andXn determines ϕ modulo�-satisfiable. Finally, suppose v ∈Val�. There is some
k0 ∈K such that 〈v(X1) , . . . , v(Xn)〉 ∈�k0 . Note that v

(
ϕ�k0

)= f (v(X1) , . . . , v(Xn)). Therefore,
f (v(X1) , . . . , v(Xn))=maxi=1,...,m v

(
ϕ�i

)= v
(
ϕ�k0

)
, by Lemma 12.

Table 3 shows how function f in Example 4 can be represented as in Theorem 13.
Algorithm 5 returns representation 〈ϕ,�〉 for function f with linear pieces given in (16). From

lines 1 to 13, the algorithm writes formulas ϕ�i and the set�: it first computes formulas ϕpi (lines
2–5) by means of routine REPRESENT-TL-F and then it writes ϕ�i (lines 7–11) by means of
routine ABOVE. It writes set� computing each�pi by means of routine REPRESENT-TL-S (line
12). In line 14, it writes formula ϕ.

Theorem 14. Given a rational McNaughton function f in regional format, a logical representation
for it may be computed in polynomial time on the size of f by Algorithm 5.

Proof. See Preto and Finger (2020, Theorem 6.3).

5.4 Pre-regional format and a literature review
The algorithm presented for building representations in Ł∞-MODSAT comprehends two distin-
guished steps, the representation of the truncated version of linear pieces and the representation
of the entire rational McNaughton function by means of a lattice representation. The second step
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Table 4. Regions�i for function f in Example 5

�1 �2 �3 �4 �5

1− x1 − x2 ≥ 0
x1 ≥ 0

− 1
2 + x2 ≥ 0

−1+ x1 + x2 ≥ 0
1
2 − x1 ≥ 0
1− x2 ≥ 0

−x1 + x2 ≥ 0

− 1
2 + x1 ≥ 0
1− x2 ≥ 0

x1 − x2 ≥ 0
1− x1 ≥ 0

− 1
2 + x2 ≥ 0

1− x1 ≥ 0
1
2 − x2 ≥ 0

x1 ≥ 0
x2 ≥ 0

(a) (b)

Figure 3. Graph and region configuration of function fCE in Example 5.

is based on Lemma 12 and Theorem 13, where the encoding of the input function in regional for-
mat is required to comply with the lattice property. In the following, we discuss the necessity of
such property for the correctness of the construction.

We say that a rational McNaughton function is in pre-regional format if it satisfies the first
three items of the definition of regional format in Section 5.1, but it does not necessarily satisfy
the lattice property; thus, functions in regional format are also in pre-regional format; however,
the converse is not necessarily true. The following example shows that the encoding of a rational
McNaughton function in pre-regional format is not enough to assure that an actual representation
in Ł∞-MODSAT is built by the algorithm proposed in the previous section.

Example 5. Rational McNaughton function fCE with graph in Figure 3a may be given in pre-
regional format by the linear pieces p1(x1, x2)= p4(x1, x2)= x2, p2(x1, x2)= 1− x1, p3(x1, x2)=
x1 and p5(x1, x2)= 1

4 + 1
2x2. Regions �i associated to each linear piece are depicted in Figure 3b

and described in Table 4. The intersection of hyperplane given by p5 with the hyperplanes given
by p2 and p3 are depicted by the dotted lines in Figure 3b.

Note that such encoding of fCE does not have the lattice property since there is no linear piece
pk such that p3 is above pk over �3 and pk is above p5 in �5. Let 〈ϕ,�〉 be a pair as in (17),
intending to represent fCE, and let x0 = 〈0.6, 0.9〉 ∈�◦

3; we have K�3 = {1, 3} and K�5 = {5} and,
then, for v ∈Val� such that x0 = 〈v(X1), v(X2)〉, we have fCE(x0)= p3(x0)= 0.6< 0.7= v(ϕ�5 )≤
v(ϕ). Therefore, 〈ϕ,�〉 cannot be a representation for function fCE and the lattice property cannot
be dropped from regional format in order to perform such representation.

Function fCE may be put in regional format by taking as regions the polyhedra Pρ ∈ C in (7);
in this case, we have a representation with |C | = 9 regions. On the other hand, it may be put
in regional format from the encoding above by only splitting region �5 in two regions �′

5 =
�5 ∩ {pi ≥ 0} and �′′

5 =�5 ∩ {pi ≤ 0}, for some i ∈ {2, 3}, adding only one more region to the
encoding.
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The results in Tarela et al. (1990, Theorem 7), Tarela and Martínez (1999, Theorem 4.2) and,
more recently, in Xu and Wang (2019, Theorem 1) propose a lattice representation of piecewise
linear functions analogous to the one we derived in Lemma 12 and Theorem 13, where ϕ is a
(
∨∧

)-combination of formulas ϕpk ; they are presented in a more general context of piecewise
linear functions over more general domains and codomains and do not refer to a specific formal
language. However, those results do not require that the configuration of regions and linear pieces
in the function description have the lattice property; thus, rational McNaughton functions only
in pre-regional format would be enough for applying such results in our context. Unfortunately,
despite being a less restrictive hypothesis, it is not actually suitable for our kind of representation,
as Example 5 demonstrates. Nevertheless, this less restrictive approach is suitable for one-variable
piecewise linear functions in pre-regional format due to the fact that functions in such encoding
already have the lattice property.

Theorem 15. One-variable rational McNaughton functions in pre-regional format have the lattice
property; i.e., they are also in regional format.

Proof. With no loss of generality, we may consider the regions of a one-variable rational
McNaughton function in pre-regional format f : [0, 1]→ [0, 1] to be nonempty closed intervals
[a, b]⊂ [0, 1]. Let �i = [ai, bi] and �j = [aj, bj] be regions such that bi ≤ aj. If neither pi is above
pj over �i nor pi is above pj over �j (then, bi < aj), let Pσ , Pς ∈ C be polyhedra as in (7) such
that there are α, β ∈ [0, 1] in a way that [α, bi]⊂ Pσ , [aj, β]⊂ Pς and (α, bi) �= ∅ �= (aj, β). For
α′ ∈ (α, bi) and β ′ ∈ (aj, β), let X= 〈α′, f (α′)〉, Y= 〈β ′, f (β ′)〉 and [X,Y]= {(1− λ)A+ λB | λ ∈
[0, 1]} be a line segment in [0, 1]2. By our assumptions about pi and pj, pi is strictly below [X,Y]
over (α′, bi) and pj is strictly above [X,Y] over (aj, β ′). Then, among all c ∈ (bi, aj) such that
〈c, f (c)〉 ∈ [A, B], there is some d nearest to α′ (which cannot be β ′); let pk be a linear piece such
that 〈d, f (d)〉 = 〈d, pk(d)〉 ∈ [X,Y] and f coincides with pk on some nonempty interval (d′, d). For
x< d, pk(x) is strictly below [X,Y] and, for x> d, pk(x) is strictly above [X,Y] and, then, pi is
above pk over�i and pk is above pj over�j. Therefore, f has the lattice property, and it is given in
regional format. The result is analogous for the case where bj ≤ ai.

6. Implementation and Results
We have developed a C++-implementation of Algorithms 4 and 5 for building representations of
functions; it consists of two main modules. One module builds a representation for the truncated
linear function p# as in (9) from a given linear function as in (8). The other module encompasses
the first one and builds a representation for a piecewise linear function f in closed regional format
given by linear pieces as in (8) which are identical to f in given polyhedral regions as in (5). The
routine for deciding whether linear piece pk is above linear piece pi over region �i is the one in
Algorithm 1 which was implemented using the C++ interface to the SoPlex linear programming
solver (Gamrath et al., 2020).

We ran the implementation through experiments in order to measure its execution time and
to give evidence for its correctness. The totality of a finite set of tests does not prove correctness;
however, in large amounts, it may provide some evidence in favor of it.

In each experiment, the implementation was fed with a piecewise linear function f of n vari-
ables. Its execution time was measured and, with output 〈ϕ,�〉, for random values x1, . . . , xn ∈
[0, 1], a valuation v ∈Val� was computed such that v(X1)= x1, . . . , v(Xn)= xn. Finally, it was
attested whether v(ϕ)= f (x1 . . . , xn) by separately evaluating ϕ and the original function f .
Valuations v were computed using a Ł∞-solver based on the one by Ansótegui et al. (2012); it was
written in the SMT-LIB language (Barrett et al., 2016) and ran in the Yices SMT solver (Dutertre,
2014).
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Table 5. Number of tests by class of rational McNaughton functions

Class of functions Tested functions Evaluations per function Evaluations

Truncated linear 5.000 100 500.000

Normalized linear 5.000 100 500.000

Simple-region piecewise linear 1.000 100 100.000

Cubic-region piecewise linear 990 100 99.000

Total 11.990 100 1.199.000

We ran four batteries of experiments, each one comprehending functions belonging to a class
of rational McNaughton functions which were randomly generated according to a specification;
in any case, each function was evaluated in 100 combinations of random values x1, . . . , xn ∈ [0, 1],
which were uniformly chosen over the interval [0, 1]. Table 5 summarizes the experiments.

All the experiments in this section were run in a UNIX machine with two E5645 CPUs @
2.40GHz with 12 processors. The source code for the implementation and the experiments are
publicly available.1

6.1 Classes of rational McNaughton functions and experiments
Following, we describe the classes of functions we used in each battery of experiments and the
specifications according to which random functions in these classes were generated. Before that,
we state a result on continuous piecewise linear functions which we assume in the constructions
in the latter classes.

Theorem 16. Let f :Rn →R be a continuous piecewise linear function identical to p1 :Rn →R

and p2 :Rn →R over R1 ⊂Rn and R2 ⊂Rn, respectively. If p1 and p2 have rational coefficients
and

R1 ∩ R2 =
{
〈x1, . . . , xn〉 ∈Rn

∣∣∣ xj0 = ξ , αj ≤ xj ≤ βj, for j= 1, . . . , j0 − 1, j0 + 1, . . . , n
}
,

for ξ , αj, βj ∈Q, with ξ �= 0 and αj <βj, for j= 1, . . . , j0 − 1, j0 + 1, . . . , n, then, there is q ∈Q,
such that p1(x)− p2(x)= q · (xj0 − ξ

)
, for x ∈Rn.

Proof. Let pi(x)= γi0 + γi1x1 + · · · + γinxn, for i= 1, 2 and x= 〈x1, . . . , xn〉 ∈Rn. Since p1(x0)=
p2(x0), for any x0 ∈ R1 ∩ R2, we must have that γ1j = γ2j, for j= 2, . . . , j0 − 1, j0 + 1, . . . , n, and
(γ10 − γ20)+ (γ1j0 − γ2j0 )ξ = 0. The result follows by letting q= γ20−γ10

ξ
.

Truncated linear functions. A function p# : [0, 1]n → [0, 1] in this class is a truncated linear
function in (9) defined from a linear function p in (8). Function p# has range in [0, 1] and is
continuous over [0, 1]n.

In the experiments, for each dimension n= 1, . . . , 50, one hundred functions p# were gener-
ated from functions p for which, for each coefficient aj

bj , aj was randomly chosen among integers
from −100 to 100 and bj was randomly chosen among integers from 1 to 100. The execution time
for building the representations in Ł∞-MODSAT was up to 0.03 second. In Figure 4a, we see the
results of the representation builder running on truncated linear functions.

Normalized linear functions. A function p′ : [0, 1]n → [0, 1] in this class is defined from a
linear function p in (8) by the following normalization process performed over D= [0, 1]n by

p′(x)= p(x)+ A
b0

B
, (18)

https://doi.org/10.1017/S096012952200010X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952200010X


Mathematical Structures in Computer Science 1139

(a) (b)

Figure 4. Representation builder performance, randomly gen. instances: n= 1 to n= 50.

(a) (b)

Figure 5. Simple-region and cubic-region configurations in dimension n= 3.

for x ∈ [0, 1]n, where A is the least positive integer such that A
b0 ≥ |minx∈D p(x)|, if minx∈D p(x)<

0, and A= 0, otherwise; and B is the least integer greater than or equal to maxx∈D p(x)+ A
b0 , if

maxx∈D p(x)+ A
b0 > 1, and B= 1, otherwise. Function p′ has range in [0, 1] and is continuous

over [0, 1]n.
In the experiments, for each dimension n= 1, . . . , 50, one hundred functions p′ were generated

from functions p for which, for each coefficient aj
bj , aj was randomly chosen among integers from

−100 to 100 and bj was randomly chosen among integers from 1 to 100. The execution time for
building the representations in Ł∞-MODSAT was up to 0.04 second. In Figure 4b, we see the
results of the representation builder running on normalized linear functions.

Simple-region piecewise linear functions.A function f : [0, 1]n → [0, 1] in this class is defined
to be identical to linear pieces pi over (simple-)regions

�i =
{
x= 〈x1, . . . , xn〉 ∈ [0, 1]n

∣∣∣ i− 1
r

≤ x1 ≤ i
r
, 0≤ xj ≤ 1, for j= 2, . . . , n

}
,

for i= 1, . . . , r. Figure 5a depicts a simple-region configuration with four regions for n= 3 and
r = 4.

Linear piece p1 is defined by p′ from a linear function p in (8) by the normalization process in
(18) performed over D=�1.
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(a) (b)

Figure 6. Representation builder performance running on simple-region piecewise linear functions, randomly gen.
instances: r= 1 to r= 20.

The other linear pieces pi, for i= 2, . . . , r, are defined by

pi(x)= pi−1(x)+ qi ·
(
x1 − i− 1

r

)
,

with qi ∈ [−mi · r, (1−Mi) · r], for
mi = min

x∈�i
s.t. x1= i

r

pi−1(x) and Mi = max
x∈�i

s.t. x1= i
r

pi−1(x).

These linear pieces and, therefore, function f have range in [0, 1]; also, function f is continuous
over [0, 1]n. Theorem 17 below states that such encoding of function f has the lattice property.

In the experiments, for each dimension n= 1, . . . , 50 and each number of regions r =
1, . . . , 20, one function f was generated with linear piece p1 defined from a function p for which,
for each coefficient aj

bj , aj was randomly chosen among integers from −100 to 100 and bj was ran-
domly chosen among integers from 1 to 100; and with linear pieces pi defined from linear pieces
pi−1 and values qi uniformly chosen over the intervals [−mi · r, (1−Mi) · r], for i= 2, . . . , r.
The execution time for building the representations in Ł∞-MODSAT was up to 1 second. In
Figure 6, we see the results of the representation builder running on simple-region piecewise linear
functions with dimensions n= 25 and n= 50.

Cubic-region piecewise linear functions.A function f ′ : [0, 1]n → [0, 1] in this class is defined
from a function f : [0, 1]n →R by the following normalization process performed by

f ′(x)= f (x)+ γ

�
,

for x ∈ [0, 1]n, where γ = |minx∈[0,1]n f (x)|, if minx∈[0,1]n f (x)< 0, and γ = 0, otherwise; and �
is the least integer greater than or equal to maxx∈[0,1]n f (x)+ γ , if maxx∈[0,1]n f (x)+ γ > 1, and
� = 1, otherwise. Function f ′ has range in [0, 1].

Function f : [0, 1]n →R is defined to be identical to linear pieces p〈i1,...,in〉 over (cubic-)regions

�〈i1,...,in〉 =
{
x= 〈x1, . . . , xn〉 ∈ [0, 1]n

∣∣∣ ij − 1
r

≤ xj ≤ ij
r
, for j= 1, . . . , n

}
,

for ij = 1, . . . , r, for j= 1, . . . , n. Figure 5b depicts a cubic-region configuration with eight regions
for n= 3 and r = 2.

Linear piece p〈1,...,1〉 is defined by p′ from a linear function p in (8) by the normalization process
in (18) performed over D=�〈1,...,1〉.
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The linear pieces p〈i1,...,in〉, for which i1 = · · · = ij−1 = ij+1 = · · · = in = 1 and ij �= 1, are
defined by

p〈i1,...,in〉(x)= p〈i1,...,ij−1,ij−1,ij+1,...,in〉(x)+ qijj ·
(
xj − ij − 1

r

)
, (19)

with qijj ∈ [−m〈i1,...,in〉 · r, (1−M〈i1,...,in〉) · r], for
m〈i1,...,in〉 =min

x∈� p〈i1,...,ij−1,ij−1,ij+1,...,in〉(x) and M〈i1,...,in〉 =max
x∈� p〈i1,...,ij−1,ij−1,ij+1,...,in〉(x),

where

�=
{
x= 〈x1, . . . , xn〉 ∈�〈i1,...,in〉

∣∣∣ xj = ij
r

}
.

These linear pieces already have range in [0, 1] and function f is continuous over �〈i1,...,in〉 ∩
�〈i1,...,ij−1,ij−1,ij+1,...,in〉.

The other linear pieces p〈i1,...,in〉, for which i1 = · · · = ij−1 = ij+1 = · · · = ik−1 = 1 and
ij �= 1 �= ik, are also defined by (19) with the same qijj . These linear pieces are not guaranteed to
have range in [0, 1]; however, function f is continuous over �〈i1,...,in〉 ∩�〈i1,...,ij−1,ij−1,ij+1,...,in〉. It
is also continuous over �〈i1,...,in〉 ∩�〈i1,...,il−1,il−1,il+1,...,in〉, for l≥ k; indeed, there is a value q such
that

p〈i1,...,in〉(x)= p〈i1,...,ij−1,ij−1,ij+1,...,il−1,il−1,il+1,...,in〉(x)+ q ·
(
xl − il − 1

r

)
+ qijj ·

(
xj − ij − 1

r

)
and we are able to write

p〈i1,...,in〉(x)= p〈i1,...,il−1,il−1,il+1,...,in〉(x)+ q ·
(
xl − il − 1

r

)
.

Thus, functions f and f ′ are continuous over [0, 1]n. Theorem 17 below states that such encoding
of function f ′ has the lattice property.

In the experiments, for each dimension n= 1, . . . , 9 and each regional parameter r =
1, . . . , 7− (n− 1), if n≤ 5, and r = 1, 2, otherwise, thirty functions f ′ were generated from func-
tions f with linear piece p〈1,...,1〉 defined from a function p for which, for each coefficient aj

bj , aj
was randomly chosen among integers from −30 to 30 and bj was randomly chosen among inte-
gers from 1 to 30; and with linear pieces p〈i1,...,in〉, for which i1 = · · · = ij−1 = ij+1 = · · · = in = 1
and only ij �= 1, defined from linear pieces p〈i1,...,ij−1,ij−1,ij+1,...,in〉 and values q〈i1,...,in〉 uniformly
chosen over the intervals [−m〈i1,...,in〉 · r, (1−M〈i1,...,in〉) · r]. In Table 6, we see the results of the
representation builder running on cubic-region piecewise linear functions.

Theorem 17. Simple-region and cubic-region piecewise linear functions in the presented encoding
have the lattice property.

Proof. Let�i and�j be simple regions of a simple-region piecewise linear function f . Fixing x2 =
ξ2 ∈ [0, 1], . . . , xn = ξn ∈ [0, 1], we define the restriction of f to g : [0, 1]→ [0, 1] given by g(x1)=
f (x1, ξ2, . . . , ξn), which is a piecewise liner function with the lattice property by Theorem 15.
Since, by Theorem 16, linear pieces of simple-region piecewise linear functions intercept each
other over domain points in some set {x ∈ [0, 1]n | x1 =K ∈R}, f also has the lattice property.
Now, let �〈i1,...,in〉 and �〈I1,...,In〉 be cubic-regions of a cubic-region piecewise linear function f ′;
since the normalization process from f to f ′ does not interfere with the lattice property, we only
need to show that f has the lattice property. Analogous to the previous argument for simple-
regions, for j= 1, . . . , n, there is kj, for which min{ij, Ij} ≤ kj ≤max{ij, Ij}, such that p〈i1,...,in〉(x)≥
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Table 6. Representation builder performance running on cubic-region piecewise linear functions

n r avgTime(s) minTime(s) maxTime(s) n r avgTime(s) minTime(s) maxTime(s)

1 1 0 0 0 3 5 3.2877 2.64 6.4

1 2 0 0 0 4 1 0 0 0

1 3 0 0 0 4 2 0.0607 0.04 0.08

1 4 0 0 0 4 3 1.4173 1.08 1.92

1 5 0.001 0 0.01 4 4 15.5163 13.17 25.38

1 6 0.0013 0 0.01 5 1 0 0 0

1 7 0.0043 0 0.01 5 2 0.2423 0.17 0.4

2 1 0 0 0 5 3 15.284 11.55 27.38

2 2 0 0 0 6 1 0 0 0

2 3 0.0103 0 0.02 6 2 1.004 0.74 2.09

2 4 0.0463 0.03 0.08 7 1 0 0 0

2 5 0.1213 0.08 0.15 7 2 4.47 3.4 7.93

2 6 0.2427 0.19 0.32 8 1 0 0 0

3 1 0 0 0 8 2 19.4273 15.01 46.63

3 2 0.01 0 0.02 9 1 0 0 0

3 3 0.1473 0.11 0.19 9 2 85.9193 67.39 169.99

3 4 0.8707 0.67 1.05

p〈i1,...,ij−1,kj,ij+1,...,in〉(x), for x ∈�〈i1,...,in〉, and p〈i1,...,ij−1,kj,ij+1,...,in〉(x)≥ p〈i1,...,ij−1,Ij,ij+1,...,in〉(x), for x ∈
�〈i1,...,ij−1,Ij,ij+1,...,in〉. Then, from the general formula for linear pieces

p〈i1...,in〉(x)= p〈1,...,1〉(x)+
n∑
j=1

ij∑
ι=2

qιj
(
xj − ι− 1

r

)
,

it follows that p〈i1,...,in〉(x)≥ p〈k1,...,kn〉(x), for x ∈�〈i1,...,in〉, and p〈k1,...,kn〉(x)≥ p〈I1,...,In〉(x), for x ∈
�〈I1,...,In〉. Therefore, f has the lattice property.

7. Conclusions and Future Work
We investigated implicit representations of rational McNaughton functions by logical formulas in
the Łukasiewicz Infinitely-valued Logic by means of semantics modulo satisfiability. We carried
out a comparative investigation on different approaches to define such a representation concept,
the formula-based approach, and the function-based approach, which was originally introduced
by Finger and Preto (2020).

Rational McNaughton functions were constructively shown to be representable in Ł∞-
MODSAT, which yielded a polynomial algorithm for building the representations. An implemen-
tation of the Algorithm 5 together with results of experimental tests were presented and, in order
to set up the tests, we established classes of rational McNaughton functions from where random
such functions may easily be chosen. In comparison with the existing literature, we were able
to conclude that our approach has the advantage of efficiently building a representations in the
Łukasiewicz Infinitely-valued Logicframework, whose associated problems remain within the NP
boundary and about which there is considerable literature.

For the future, both the algorithm for building representations in Ł∞-MODSAT and its imple-
mentation might be improved in order to achieve efficiency gains. Also, we hope to couple
this algorithm with algorithms that approximate (normalized) continuous functions by rational
McNaughton functions.
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Moreover, we might apply these approximations to the study of real systems such as neural
networks through automated reasoning techniques since, depending on its class of activation
functions, a neural network may be seen either as a piecewise linear function or as a continuous
function that can be approximated by one (Leshno et al., 1993). Also, Amato et al. (2002) pointed
that the representation of neural networks in a logical systemmay be useful in their interpretation,
which is still a challenging task for research; thus, approximate representations in Ł∞-MODSAT
might play a role in such endeavor.

Conflicts of interest. The authors declare none.

Note
1 http://github.com/spreto/pwl2limodsat.
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