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We identify the asymptotic probability of a configuration model CMn(d) producing a

connected graph within its critical window for connectivity that is identified by the number

of vertices of degree 1 and 2, as well as the expected degree. In this window, the probability

that the graph is connected converges to a non-trivial value, and the size of the complement

of the giant component weakly converges to a finite random variable. Under a finite second

moment condition we also derive the asymptotics of the connectivity probability conditioned

on simplicity, from which follows the asymptotic number of simple connected graphs with

a prescribed degree sequence.
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1. Introduction

In this paper we consider the configuration model CMn(d) on n vertices with a prescribed

degree sequence d = (d1, d2, . . . , dn). We identify the probability that CMn(d) is connected

in terms of d in the limit as n → ∞. We further analyse the behaviour of the model in

the critical window for connectivity (i.e. when the asymptotic probability of producing a

connected graph is in the interval (0, 1)). Given a vertex v ∈ [n] := {1, 2, . . . , n}, we let dv
denote its degree. The configuration model is constructed by assigning dv half-edges to

each vertex v, after which the half-edges are paired randomly: first we pick two half-edges

at random and create an edge out of them, then we pick two half-edges at random from

the set of remaining half-edges and pair them into an edge, etc. We assume the total

degree
∑

v∈[n] dv is even. The construction can give rise to self-loops and multiple edges

between vertices, but these imperfections are relatively rare when n is large; see [3, 5, 6].

We define the random variable Dn as the degree of a vertex chosen uniformly at random

from the vertex set [n]. We let Ni denote the set of all vertices of degree i, and ni its

cardinality. The configuration model is known to have a phase transition for the existence
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of a giant component with critical point at

νn =
E[Dn(Dn − 1)]

E[Dn]
= 1

(see e.g. [10] or [7]). When νn → ν > 1, there is a (unique) giant component Cmax containing

a positive proportion of the vertices, while when νn → ν � 1, the maximal connected

component contains a vanishing proportion of the vertices. Assuming that the second

moment of Dn remains uniformly bounded, the subcritical behaviour was analysed by

Janson in [4].

In this paper, we focus on the connectivity transition of the configuration model. Let us

first describe the history of this problem. Wormald [12] showed that for k � 3 a random

k-regular graph on n vertices is with high probability k-connected as n → ∞ (see also

[2]). Tomasz �Luczak [9] proved that also if the graph is not regular, but dv � k for every

v ∈ [n], then CMn(d) in with high probability k-connected, and found the asymptotic

probability of having a connected graph when dv � 2 and the graph is simple. Actually

�Luczak’s model was defined in a different way from the configuration model and does not

allow for vertices of degree 1, but the results could easily be adapted to the configuration

model.

In this paper we extend �Luczak’s results to all possible kinds of weakly converging

degree distributions, allowing vertices of degree 1 and removing any condition on

maximum degree or finiteness of moments of the degree distribution. This implies that

our results include heavy-tailed degree distribution that has recently received considerable

attention in research on the configuration model. Moreover, using the multivariate method

of moments, we identify the limiting distribution of the size of the complement of the

maximal connected component [n] \ Cmax as a mixture of Poisson variables.

We start by introducing some notation.

Notation. All limits in this paper are taken as n tends to infinity unless stated otherwise.

A sequence of events (An)n�1 happens with high probability (w.h.p.) if P(An) → 1. For

random variables (Xn)n�1, X, we write Xn
d→ X and Xn

P→ X to denote convergence in

distribution and in probability, respectively. For real-valued sequences (an)n�1, (bn)n�1, we

write an = O(bn) if the sequence (an/bn)n�1 is bounded, an = o(bn) if an/bn → 0, an = Θ(bn)

if the sequences (an/bn)n�1 and (bn/an)n�1 are both bounded. Similarly, for sequences

(Xn)n�1, (Yn)n�1 of random variables, we write Xn = OP(Yn) if the sequence (Xn/Yn)n�1

is tight, and Xn = oP(Yn) if Xn/Yn
P→ 0. Moreover, Poi(λ) always denotes a Poisson-

distributed random variable with mean λ and Bin(n, p) denotes a random variable with

binomial distribution with parameters n and p.

2. Main results

We start by defining the conditions for CMn(d) to be in the connectivity critical window.

We define the random variable Dn as the degree of a vertex chosen uniformly at random

in [n]. We state the conditions we assume to hold throughout this paper.

https://doi.org/10.1017/S0963548317000177 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548317000177


662 L. Federico and R. van der Hofstad

Condition 2.1 (critical window for connectivity). We define a sequence CMn(d) to be in the

critical window for connectivity when the following conditions are satisfied.

(1) There exists a limiting degree variable D such that Dn
d→ D.

(2) n0 = 0.

(3) limn→∞ n1/
√
n = ρ1 ∈ [0,∞).

(4) limn→∞ n2/n = p2 ∈ [0, 1).

(5) limn→∞ E[Dn] = d < ∞.

Notice that we use different symbols for ρ1 and p2 to stress the fact that p2 is actually the

limit probability that a uniformly chosen vertex has degree 2 while ρ1 is obtained through

a rescaling (in the critical window for connectivity p1 = lim n→∞ n1/n = 0). Under these

conditions, we prove our main theorem. In its statement, we write Cmax for the maximal

connected component in CMn(d).

Theorem 2.2 (connectivity threshold for the configuration model). Consider CMn(d) in the

critical window for connectivity as described in Condition 2.1. Then

lim
n→∞

P(CMn(d) is connected) =

(
d − 2p2

d

)1/2

exp

{
− ρ2

1

2(d − 2p2)

}
. (2.1)

Moreover,

n − |Cmax| d→ X, (2.2)

where X =
∑

k k(Ck + Lk), and (Ck, Lk)k�1 are independent random variables such that

Lk
d
= Poi

(
ρ2

1(2p2)k−2

2dk−1

)
, Ck

d
= Poi

(
(2p2)k

2kdk

)
.

Finally,

lim
n→∞

E[n − |Cmax|] =
ρ2

1(2d − p2)

2(d − p2)2
+

p2

d − 2p2
. (2.3)

The convergence in distribution of n − |Cmax| to a proper random variable with finite

mean is a stronger result than proved by �Luczak [9], who instead proved that

|Cmax|
n

P→ 1. (2.4)

Our improvement is achieved by an application of the multivariate method of moments,

as well as a careful estimate of the probability that there exists v ∈ [n] that is not part of

|Cmax|. We next investigate the boundary cases.

Remark 1 (boundary cases). Our proof also applies to the boundary cases where ρ1 =

∞, p2 = 0 or d = ∞. When d < ∞, we obtain

P(CMn(d) is connected ) →
{

0 when ρ1 = ∞,

1 when ρ1, p2 = 0.
(2.5)
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When d = ∞, instead

lim
n→∞

P(CMn(d) is connected) = lim
n→∞

exp

{
− n2

1

2�n

}
, (2.6)

where �n =
∑

i∈[n] di denotes the total degree.

Assuming also that D has finite second moment, the configuration model is simple

with non-vanishing probability. Under this extra assumption, the next theorem states how

many connected graphs there are with prescribed degrees in the connectivity window

defined in Condition 2.1.

Theorem 2.3 (connectivity conditioned on simplicity and connected simple graphs). Con-

sider CMn(d) in the connectivity critical window defined in Condition 2.1. If

lim
n→∞

E[Dn(Dn − 1)]

E[Dn]
= ν < ∞,

then

lim
n→∞

P(CMn(d) is connected | CMn(d) is simple)

=

(
d − 2p2

d

)1/2

exp

(
− ρ2

1

2(d − 2p2)
+

p2
2 + dp2

d2

)
. (2.7)

Let N C
n (d) be the number of connected simple graphs with degree distribution d . Then

N C
n (d) =

(�n − 1)!!∏
i∈[n] di!

(
d − 2p2

d

)1/2

× exp

{
−ν

2
− ν2

4
− ρ2

1

2(d − 2p2)
+

p2
2 + dp2

d2

}
(1 + o(1)). (2.8)

It is instructive to compare the asymptotics of the number of connected simple graphs

with degree distribution d to the number Nn(d) of simple graphs with a given degree

sequence d , as identified by Janson [5]:

Nn(d) =
(�n − 1)!!∏

i∈[n] di!
exp

{
−ν

2
− ν2

4

}
(1 + o(1)). (2.9)

With these results, the connectivity critical window is fully explored. Indeed, we

have determined the asymptotic probability that the configuration model will produce

a connected graph for all possible choices of the limiting degree distribution. What

remains is to find the asymptotic of the number of connected simple graphs with degree

distribution d when it is below the connectivity critical window (i.e. when n1 � n1/2). In

this case we should analyse how fast the probability of producing a connected graph

vanishes, which is a hard problem.

To address the last boundary case, not considered in Remark 1, it is also worth noticing

that the size of the largest component is very sensitive to the precise way in which

n2/n → 1 (recall that we assume that p2 < 1 in Condition 2.1), as we describe now. We
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define C (v) to be the connected component of a uniformly chosen vertex. When n2 = n,

it is not hard to see that

|Cmax|
n

d→ S,
|C (v)|
n

d→ T , (2.10)

where S, T are proper random variables that satisfy the relation S
d
= T ∨ [(1 − T )S].

Instead, |Cmax|/n P→ 0 when n2 = n − n1, with n1 → ∞, while |Cmax|/n P→ 1 when n2 =

n − n4, with n4 → ∞. The latter two statements can be proved by relating it to the case

where n2 = n. Indeed, for the case where n1 > 0, we take n′
2 = n2 + n1/2, and produce

CMn(d) from the configuration model with n2 vertices of degree 2 by ‘splitting’ n1/2

vertices of degree 2 into two vertices of degree 1. For the case where n4 > 0, we take

n′
2 = n2 + 2n4, and produce CMn(d) from the configuration model with n2 vertices of

degree 2 by ‘merging’ 2n4 vertices of degree 2 into a vertex of degree 4. This explains why

it is important to us to assume that p2 < 1 in Condition 2.1.

2.1. Outline of the proof

We first notice that in the connectivity critical window our configuration model is

supercritical, that is, w.h.p. it has a unique component of linear size with respect to

the whole graph. In more detail, for finite ρ1 < ∞ and p2 < 1,

lim
n→∞

νn = lim
n→∞

E[Dn(Dn − 1)]

E[Dn]
� 2p2 + 6(1 − p2)

2p2 + 3(1 − p2)
> 1. (2.11)

Thus the results from [7, 11] imply that |Cmax| = ΘP(n), while the second largest connected

component C(2) satisfies |C(2)| = oP(n) and |E(C(2))| = oP(n), where |E(G)| indicates the

number of edges of the graph G. The proof of our main theorem is now divided into two

parts:

(1) to identify the limit distribution of the number of lines and cycles that form [n] \ Cmax,

which we do in Section 3,

(2) to prove that w.h.p. all vertices v ∈ [n] with dv � 3 are in the giant component Cmax,

which we do in Section 4.

The proofs of our main theorems are then completed in Section 5.

3. Poisson convergence of the number of lines and cycles

In this section we prove that the number of cycles (components made by k vertices of

degree 2) and lines (components made by two vertices of degree 1 and k − 2 vertices

of degree 2) jointly converge to independent Poisson random variables. In Section 4, we

will show that [n] \ Cmax w.h.p. only contains vertices of degree 1 and 2, so that all the

other components are either cycles or lines. We define the sequences of random variables

(Cn,Ln) = (Ck(n), Lk(n))k�1 as

� Ck(n)= # {cycles of length k in CMn(d)},

� Lk(n)= # {lines of length k in CMn(d)}.

We consider a vertex of degree 2 with a self-loop as a cycle of length 1. By convention,

L1(n) = 0 for all n since a vertex of degree 1 cannot have a self-loop.
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We define Ck = {{v1, v2, . . . , vk} ⊆ N2} to be the set of all collections of k vertices that

could form a cycle, and denote

Ck(n) =
∑
c∈Ck

1{c forms a cycle}, (3.1)

where 1A denotes the indicator of the event A. In a similar way we define

Lk = {{v1, v2, . . . , vk} : v1, vk ∈ N1; v2, . . . , vk−1 ∈ N2}

to be the set of all collections of k vertices that could form a line, and denote

Lk(n) =
∑
l∈Lk

1{l forms a line}. (3.2)

We will use the multivariate method of moments to show that ((Cn(k), Lk(n)))k�1

converges to a vector of independent Poisson random variables. For a random variable

X, we define (X)r = X(X − 1) · · · (X − r + 1). For the multivariate method of moments,

we recall two useful lemmas, whose proofs are given in [3, Section 2.1].

Lemma 3.1 (multivariate moment method with Poisson limit). A sequence of vectors of

non-negative integer-valued random variables (X (n)

1 , X (n)

2 , . . . , X (n)

k )n�1 converges in distribution

to a vector of independent Poisson random variables with parameters (λ1, λ2, . . . , λk) when,

for all possible choices of (r1, r2, . . . , rk) ∈ N
k ,

lim
n→∞

E[(X (n)

1 )r1
(X (n)

2 )r2
· · · (X (n)

k )rk ] = λr1

1 λ
r2

2 · · · λrkk . (3.3)

Lemma 3.2 (factorial moments of sums of indicators). When Xj =
∑

i∈Ij
Ii(j) for all j =

1, . . . , k,

E[(X (n)

1 )r1
(X (n)

2 )r2
· · · (X (n)

k )rk ] =
∑∗

i
(1)
1 ,...,i

(1)
r1

∈I1

· · ·
∑∗

i
(k)
1 ,...,i

(k)
rk

∈Ik

E

[ k∏
j=1

rk∏
s=1

I
i
(j)
s

]
, (3.4)

where
∑∗ denotes a sum over distinct indices.

See also [8, Chapter 6] for more general versions of the method of moments. We can

now state the main result of this section.

Theorem 3.3 (Poisson convergence of number of lines and cycles). Consider CMn(d) in

the critical window for connectivity defined in Condition 2.1. Then

(Cn,Ln)
d−→ (C,L), (3.5)

where (C,L) = (Ck, Lk)k�1 is a sequence of independent random variables with

Lk
d
= Poi

(
ρ2

1(2p2)k−2

2dk−1

)
, Ck

d
= Poi

(
(2p2)k

2kdk

)
, (3.6)

and the convergence in (3.5) is in the product topology on N
∞.
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Proof. We want to find the combined factorial moments of (Lj(n), Cj(n))j�k and show

that

E[(C1(n))r1
(L2(n))s2

· · · (Ck(n))rk (Lk(n))sk ]

→
k∏

j=2

(
ρ2

1(2p2)j−2

dj−1

)sj k∏
j=1

(
(2p2)j

2kdj

)rj

. (3.7)

We argue by induction on k. When k = 0, both sides in (3.7) are equal to 1, which

initializes the induction hypothesis.

We next argue how to advance the induction hypothesis. We define

wk,j(r, s) = {ci(1), . . . , ci(ri) ∈ Ci, 1 � i � k; li(1), . . . , li(si) ∈ Li, 2 � i � j},

where all ci(1), . . . , ci(ri) and li(1), . . . , li(si) are ordered lists without repetitions. Further, we

let E (wk,j(r, s)) denote the event that all ci(h) ∈ wk,j(r, s) form a cycle and all li(h) ∈ wk,j(r, s)

form a line. By Lemma 3.2,

E[(C1(n))r1
(L2(n))s2

· · · (Ck(n))rk (Lk(n))sk ] =
∑

wk,k(r,s)

P(E (wk,k(r, s))). (3.8)

We rewrite this as∑
wk,k−1(r,s)

P(E (wk,k−1(r, s)))
∑∗

l1 ,...,lsk ∈Lk

E[Ii1Ii2 · · · Iisk | E (wk,k−1(r, s))], (3.9)

where Iis is the indicator that the vertices in cis form a line.

We let a1 and a2 denote the number of vertices of degree 1 and 2 necessary to create

the cycles and lines prescribed by wk,k−1(r, s), and let ae = a1 + 2a2 denote the number

of half-edges they have. The values of a1, a2 are completely independent from the exact

choice of wk,k−1(r, s) as long as all sets are disjoint (otherwise the event E (wk,k−1(r, s)) is

impossible). The number of possible choices of sk different disjoint l ∈ Lk without using

the vertices allocated for wk,k−1(r, s) are

(n1 − a1)!

2sk (n1 − a1 − 2sk)!

(n2 − a2)!

(k − 2)!sk (n2 − a2 − (k − 2)sk)!
(1 + o(1))

=
n2sk

1

2sk
n

(k−2)sk
2

(k − 2)!sk
(1 + o(1)), (3.10)

provided that n1, n2 → ∞. The probability that the first forms a line is

2k − 4

�n − ae − 1

2k − 6

�n − ae − 3
· · · 2

�n − ae − 2k + 5

1

�n − ae − 2k + 3

=
(2k − 4)!!

�k−1
n

(1 + o(1)). (3.11)

For all the other lines we just have to subtract from �n − ae the 2k − 2 half-edges that we

have used for each of the previous ones, so that

E[Ii1Ii2 · · · Iisk |E (wk,k−1(r, s))] =
(2k − 4)!!sk

�
sk(k−1)
n

(1 + o(1)). (3.12)
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Finally we obtain ∑∗

l1 ,...,lsk ∈Lk

E[Ii1Ii2 · · · Iisk |E (wk,k−1(r, s))]

=
(ρ2

1n)sk

2sk
(p2n)(k−2)sk

(k − 2)!sk
(2k − 4)!!sk

�
sk(k−1)
n

(1 + o(1))

=

(
ρ2

1(2n2)k−2

2dk−1

)sk

(1 + o(1)). (3.13)

We do the same for the cycles Ck(n), writing∑
wk−1,k−1(r,s)

P(E (wk−1,k−1(r, s)))
∑∗

c1 ,...,crk ∈Ck

E[Ii1 · · · Iirk |E (wk−1,k−1(r, s))]. (3.14)

The number of possible choices of rk different disjoint c ∈ Ck without using the vertices

allocated for wk−1,k−1(r, s) are

(n2 − a2)!

k!rk (n2 − a2 − krk)!
(1 + o(1)) =

(n2)krk

k!rk
(1 + o(1)), (3.15)

provided that n2 → ∞.

The probability that the first forms a cycle is

2k − 2

�n − ae − 3

2k − 4

�n − ae − 5
· · · 2

�n − ae − 2k + 3

1

�n − ae − 2k + 1
(1 + o(1)). (3.16)

Again, for all the other cycles we just have to subtract the 2k half-edges that we have

used for the previous ones so that

E[Ii1Ii2 · · · Iirk |E (wk−1,k−1(r, s))] =
(2k − 2)!!rk

�rkkn

(1 + o(1)). (3.17)

Thus, we obtain ∑∗

c1 ,...,crk ∈Ck

E[Ii1Ii2 · · · Iisk |E (wk−1,k−1(r, s))]

=
nkrk2

k!rk
(2k − 2)!!rk

(�n)rkk
(1 + o(1)) =

(
(2p2)k

2kdk

)rk

(1 + o(1)). (3.18)

This advances the induction hypothesis. We now use induction to show that (3.7) holds

for every k � 0, and consequently prove the claim through the method of moments in

Lemma 3.1.

In (3.10) and (3.15), we have assumed that n1, n2 → ∞. When this is not satisfied we

can just use a first moment method to show that Lk(n)
P→ 0 for all k if n1 = O(1), and

Ck(n)
P→ 0 for all k and Lk(n)

P→ 0 for k � 3 if n2 = O(1).

We next show that, for a finite second moment and under the condition

lim
n→∞

E[Dn(Dn − 1)]

E[Dn]
→ ν < ∞,
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the asymptotic distribution of the number of self-loops and multiple edges is independent

of (Ck)k�3 and (Lk)k�2.

We first notice that connectivity and simplicity are not independent, since self-loops and

multiple edges among vertices of degree 2 make the graph simultaneously disconnected

and not simple, so for CMn(d) to be simple, we have to require C1(n) = C2(n) = 0.

We define the number of self-loops and multiple edges in CMn(d) by S(n),M(n) and

show the following joint convergence.

Theorem 3.4 (Poisson convergence of number self-loops and multiple edges). Consider

CMn(d) in the critical window for connectivity defined in Condition 2.1, and let

νn = E[Dn(Dn − 1)]/E[Dn] → ν � ∞.

Then

((Lk(n))k�2, (Ck(n))k�3, S(n),M(n))
d−→ ((Lk)k�2, (Ck)k�3, S ,M), (3.19)

with ((Lk)k�2, (Ck)k�3, S ,M) independent Poisson random variables with

Lk
d
= Poi

(
ρ2

1(2p2)k−2

2dk−1

)
, Ck

d
= Poi

(
(2p2)k

2kdk

)
,

S
d
= Poi

(
ν

2

)
, M

d
= Poi

(
ν2

4

)
.

(3.20)

Proof. We again use the multivariate method of moments in Lemma 3.1. We aim to find

the combined factorial moments of

((Lj(n))2�j�k, (Cj(n))3�j�k, S(n),M(n)),

and show that

E[(L2(n))s2
(C3(n))r3

· · · (Ck(n))rk (Lk(n))sk (S(n))t(M(n))u]

→
(
ν

2

)t+2u k∏
j=2

(
ρ2

1(2p2)j−2

2dj−1

)sj k∏
j=1

(
(2p2)j

2kdj

)rj

. (3.21)

We now define

w′
k,j(r, s) = {ci(1), . . . , ci(ri) ∈ Ci, 3 � i � k; li(1), . . . , li(si) ∈ Li, 2 � i � j}

as the choice of subsets that can form such lines and cycles, and by Lemma 3.1,∑
w′
k,k

(r,s)

P(E (w′
k,k(r, s)))E[(S(n))t(M(n))u | E (w′

k,k(r, s))]. (3.22)

Conditionally on E (w′
k,k(r, s)), the random vector (S(n),M(n)) has the same law as the

number of self-loops and multiple edges in a configuration model with degree sequence d ′,

which is obtained from d by removing the vertices appearing in w′
k,k(r, s). We notice that

d ′ is independent from the exact choice of w′
k,k(r, s). Thus, when D′

n denotes the degree of
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a uniform random vertex selected from d ′ and

ν ′ = lim
n→∞

E[D′
n(D

′
n − 1)]

E[D′
n]

,

we obtain

E[(S(n))t(M(n))u] →
(
ν ′

2

)t+2u

(see e.g. [5, 6]). Since we are removing only a finite number of vertices from d , we have

that ν ′ = ν, and we thus obtain(
ν

2

)t+2u ∑
w′
k,k

(r,s)

P(E (w′
k,k(r, s))). (3.23)

We finally obtain (3.21) using the same induction argument used to prove (3.7), which

completes the proof.

4. Connectivity among vertices of degree at least three

In this section we show that in the connectivity critical window w.h.p. all vertices v with

dv � 3 are in the giant component. This result is already known when mini∈[n] di � 2; we

show that it still holds even in the presence of a sufficiently small amount of vertices of

degree 1, and state it in the following theorem.

Theorem 4.1 (connectivity among vertices with dv � 3). Consider CMn(d) in the connectiv-

ity critical window defined in Condition 2.1. Then

E[#{v ∈ [n] : dv � 3, |C (v)| < n/2}] → 0. (4.1)

Consequently,

E[#{v ∈ [n] \ Cmax : dv � 3}] → 0. (4.2)

We will use the usual exploration process of the configuration model, as we describe

now. At each time t, we define the sets of half-edges {At,Dt,Nt} (the active, dead and

neutral sets), and explore them in the following way.

Initalize We pick a vertex v ∈ [n] uniformly at random with dv � 3 and we set all its

half-edges as active. All other half-edges are set as neutral.

Step At each step t, we pick a half-edge e1(t) in At uniformly at random, and we pair it

with another half-edge e2(t) chosen uniformly at random in At ∪ Nt. We set e1(t), e2(t)

as dead.

If e2(t) ∈ Nt, then we find the vertex v(e2(t)) incident to e2(t) and activate all its other

half-edges.

As usual, the above exploration forms the graph at the same time as it explores the

neighbourhood of the vertex v. A convenient way to encode the randomness in the

exploration algorithm is to first choose a permutation ξ of the half-edges, chosen uniformly
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at random from the set of all permutations of the half-edges. Then we run the exploration

choosing as e1(t) and e2(t) always the first feasible half-edges in the permutation according

to the exploration rules. This means that we take the first available active half-edge as

e1(t), pair it to the first available active or neutral half-edge as e2(t) to create an edge

consisting of e1(t) and e2(t), and then to update the status of all the half-edges as above.

The above description, which we will rely on for the remainder of this document, offers

the possibility to analyse some properties of the exploration before running it, and it will

be useful in proving that w.h.p. we will not run out of high-degree vertices too early in

the exploration.

We define the process S (v)

t = |At|. The update rules of S (v)

t are

S (v)

0 = dv, S (v)

t+1 − S (v)

t =

{
dv(e2(t)) − 2 if e2(t) ∈ Nt,

−2 if e2(t) ∈ At.
(4.3)

We define T0 as the smallest t such that Xt = 0 and

T1/2 = max{t : |Nt| > n/2}. (4.4)

By definition of the exploration process, if T0 � T1/2 then |C (v)| � n/2 (and, in particular,

v ∈ Cmax), so that proving the following proposition is sufficient to prove Theorem 4.1.

Proposition 4.2 (no hit of zero of exploration). Consider CMn(d) in the critical window

for connectivity defined in Condition 2.1. Let v be such that dv � 3. Then

P(∃t � T1/2 : S (v)

t = 0) = o(n−1). (4.5)

Since there are n vertices in the graph, Proposition 4.2 indeed proves (4.1) in Theorem 4.1.

We start the proof with a bound on the depletion of high-degree vertices.

Lemma 4.3 (bound on the depletion of high-degree vertices). Consider CMn(d) in the

connectivity critical window defined in Condition 2.1, and perform the exploration up to time

T1/2 = max{t : |Nt| > n/2}.

Then there exists ε > 0 such that

P(#{v ∈ NT1/2
: dv � 3} < εn) = o(n−1). (4.6)

Proof. Let us consider the exploration from a permutation ξ of the set of the half-edges

chosen uniformly at random, as described above (4.3). We let Tn/2(ξ) denote the set of

vertices such that all their half-edges are among the last n/2 of the permutation ξ. The

previous definitions imply that Tn/2(ξ) ⊆ NT1/2
.

We now pick a k > 2 such that pk = lim nk/n > 0; from the definition of the connectivity

critical window we know that such a k exists. We want to find a lower bound on

NT1/2
(k) = #{v ∈ NT1/2

: dv = k} � #{v ∈ Tn/2(ξ) : dv = k}.
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Before running the exploration, we sequentially locate the half-edges of the vertices of

degree k in ξ. We stop this process once we have examined n/(4k) vertices, or when we

run out of vertices of degree k. We define the σ-algebra F k
i generated by the positions

of the half-edges of the first i vertices that we have examined. We then find that, at each

step j, thanks to the stopping conditions, there are still at least n/4 available spots among

the last n/2 half-edges in ξ, so that

P(vj ∈ Tn/2(ξ) | F k
j−1) �

(
n

4�n

)k

. (4.7)

We know that

lim
n→∞

(
n

4�n

)k

=

(
1

4d

)k

≡ qk,

so that

NT1/2
(k)

st

� Bin

((
pk ∧ 1

4k

)
n, qk

)
, (4.8)

where
st

� indicates stochastic domination. By concentration of the binomial distribution

(see e.g. [1]), there exists a c = c(a, qk) such that, uniformly in n,

P

(
Bin(an, qk) � an

2
qk

)
� e−cn = o(n−1). (4.9)

The claim follows by picking

ε <
1

2

(
pk ∧ 1

4k

)
qk.

We notice that S (v)

t+1 − S (v)

t < 0 only when one of the following events occurs.

� A(t) = {dv(e2(t)) = 1}, where e2(t) is the half-edge to which the tth paired half-edge is

paired. In this case S (v)

t+1 − S (v)

t = −1. Thanks to Lemma 4.3, if we define Fk as the

σ-algebra generated by the first k steps of the exploration, then, uniformly for t � T1/2,

P(A(t) | Ft−1) � 2ρ1√
n
. (4.10)

� B(t) = {e2(t) ∈ At}, where e2(t) is the half-edge to which the tth paired half-edge is

paired. In this case S (v)

t+1 − S (v)

t = −2. From the description of the exploration, we obtain

that, uniformly for t � T1/2,

P(B(t)|Ft−1) � S (v)

t − 1

�n − t − 1
� 2S (v)

t

n
. (4.11)

Now we prove three lemmas that together will yield Proposition 4.2.

The first lemma contains a lower bound on the survival time of the process. Indeed, we

show that w.h.p. the component of v is at least of polynomial size with respect to n.
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Lemma 4.4 (no early hit of zero). Let CMn(d) be in the connectivity critical window

defined in Condition 2.1. Then,

P(∃t � n1/8 : S (v)

t = 0) = o(n−1). (4.12)

Proof. For the process to die out before time n1/8, it has to make at least 3 steps down

while it is very low. We can characterize the ways in which this can happen in terms of

occurrences of the events A(t) (finding a degree 1 vertex) and B(t) (finding an already

active half-edge).

We thus need one of the following three events to occur:

F1 =
⋃

s1 ,s2 ,s3�n1/8

A(s1) ∩ A(s2) ∩ A(s3) ∩ {S (v)

s1
, S (v)

s2
, S (v)

s3
� 3},

F2 =
⋃

s1 ,s2�n1/8

A(s1) ∩ B(s2) ∩ {S (v)

s1
, S (v)

s2
� 3},

F3 =
⋃

s1 ,s2�n1/8

B(s1) ∩ B(s2) ∩ {S (v)

s1
, S (v)

s2
� 4}.

We estimate using (4.10) and (4.11) to obtain

P(F1) �
(
n1/8

3

)(
2ρ1√
n

)3

� 4ρ3
1

3

n3/8

n3/2
= o(n−1), (4.13)

P(F2) �
(
n1/8

2

)
2ρ1√
n

6

n
� 3ρ1

2

n1/4

n3/2
= o(n−1), (4.14)

P(F3) �
(
n1/8

2

)(
8

n

)2

� 32
n1/4

n2
= o(n−1). (4.15)

Applying the union bound proves the claim.

The next lemma proves instead that when the process is sufficiently low, it is very

unlikely to decrease further, since we have few active half-edges with which to create

loops.

Lemma 4.5 (unlikely to dip even lower). Let CMn(d) be in the connectivity critical window

defined in Condition 2.1. Fix v such that dv � 3. Then, for every t � T1/2 and γ > 0,

P

( ∑
i�γn1/8

(S (v)

t+i+1 − S (v)

t+1)1{S (v)
t+i+1<S

(v)
t+i<3γn1/8} � 6

)
= o(n−2). (4.16)

Proof. As in the proof of Lemma 4.4, we find some events that must occur in order for

the event in the left-hand side of (4.16) to occur. Again we express the possible ways in

which the required 6 steps down can occur in terms of the events A(t) and B(t). We start

by introducing some notation. For 1 � i < j and si � 0, we write

A[i,j](t) = A(t + si) ∩ · · · ∩ A(t + sj), B[i,j](t) = B(t + si) ∩ · · · ∩ B(t + sj).
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Then, for the event on the left-hand side of (4.16) to occur, we need one of the following

events to occur:

G1 =
⋃

s1 ,...,s6�γn1/8

A[1,6](t) ∩
⋂
i�6

{S (v)

t+si
� 3γn1/8},

G2 =
⋃

s1 ,...,s5�γn1/8

A[1,4](t) ∩ B(t + s5) ∩
⋂
i�5

{S (v)

t+si
� 3γn1/8},

G3 =
⋃

s1 ,...,s4�γn1/8

A[1,2](t) ∩ B[3,4] ∩
⋂
i�4

{S (v)

t+si
� 3γn1/8},

G4 =
⋃

s1 ,...,s3�γn1/8

B[1,3](t) ∩
⋂
i�3

{S (v)

t+si
� 3γn1/8}.

Again we estimate using (4.10) and (4.11) to obtain

P(G1) �
(
γn1/8

6

)(
2ρ1√
n

)6

� 26γ6ρ6
1

6!

n6/8

n3
= o(n−2), (4.17)

P(G2) �
(
γn1/8

5

)(
2ρ1√
n

)4
6γn1/8

n
� 253γρ4

1γ
6

5!

n6/8

n3
= o(n−2), (4.18)

P(G3) �
(
γn1/8

4

)(
2ρ1√
n

)2(
6γn1/8

n

)2

� 2432γ6ρ2
1

4!

n6/8

n3
= o(n−2), (4.19)

P(G4) �
(
γn1/8

3

)(
6γn1/8

n

)3

� 63γ6

3!

n6/8

n3
= o(n−2). (4.20)

Applying the union bound proves the claim.

We now show that not only does the exploration survive up to time n1/8 but also that

we have quite a large number of active half-edges.

Lemma 4.6 (law of large numbers lower bound on exploration). Fix v such that dv � 3.

The exploration on CMn(d) in the connectivity critical window defined in Condition 2.1

satisfies that there exists a γ > 0 such that

P(S (v)

n1/8 < 2γn1/8) = o(n−1). (4.21)

Proof. We divide the proof into two cases.

(1) There exists t < n1/8 such that S (v)

t � 3γn1/8. In this case, fix n so large that 3γn1/8 − 6 �
2γn1/8. Then, note that in order for S (v)

n1/8 < 2γn1/8 to occur and since S (v)

t+1 − S (v)

t � −2,

we must have that ∑
i�γn1/8

(S (v)

t+i+1 − S (v)

t+1)1{S (v)
t+i+1<S

(v)
t+i<3γn1/8} � 6,

which by Lemma 4.5 implies that S (v)

n1/8 � 3γn1/8 − 6 � 2γn1/8 has probability o(n−2).
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(2) S (v)

t < 3γn1/8 for all t � n1/8. In this case, we know from Lemma 4.5 that with

probability o(n−2) the sum of the down steps

(S (v)

t+i − S (v)

t+i+1)1{S (v)
t+i+1<S

(v)
t+i<3γn1/8}

is at most 6. Under this condition, we recall Lemma 4.3 and note that dvt � 3 with

probability at least ε, for some ε > 0, since n1/8 � T1/2. Thus,

S (v)

n1/8

st

� Bin(n1/8, ε) − 6. (4.22)

By concentration of the binomial distribution (see e.g. [1])

P

(
Bin(n1/8, ε) � 1

2
εn1/8

)
� e−cn1/8

= o(n−2), (4.23)

for sufficiently large n. The claim now follows by choosing γ < ε/4.

Now we know that at time t = n1/8, with probability 1 − o(n−1), S (v)

t � 2γn1/8. This

means that from that point onwards, we need at least γn1/8 steps for the process to die.

Thus, the following lemma is needed to prove Proposition 4.2.

Lemma 4.7 (process does not go down too much). Let CMn(d) be in the connectivity

critical window defined in Condition 2.1. Fix v such that dv � 3. Then, for every γ > 0,

P(∃t ∈ (n1/8, T1/2) : S (v)

t+γn1/8 < S (v)

t < 3γn1/8 − 6) = o(n−1). (4.24)

Proof. First fix t ∈ (n1/8, T1/2). Again we split the proof into two parts.

(1) There exists i < γn1/8 such that S (v)

t+i � 3γn1/8. In this case, we again know from

Lemma 4.5 that

S (v)

t+γn1/8 � 3γn1/8 − 6 � 2γn1/8

with probability 1 − o(n−2).

(2) S (v)

t+i < 3γn1/8 for all t � γn1/8. In this case we know from Lemma 4.5 that with

probability o(n−2) the sum of the down steps

(S (v)

t+i − S (v)

t+i+1)1{S (v)
t+i+1<S

(v)
t+i<3γn1/8}

is at most 6. Under this condition we can again write

S (v)

t+γn1/8 − S (v)

t

st

� Bin(n1/8, ε) − 6. (4.25)

Formula (4.23) proves that the probability that S (v)

t+γn1/8 < S (v)

t is at most o(n−2).

The union bound implies that

P(∃t ∈ (n1/8, T1/2) : S (v)

t+γn1/8 < S (v)

t < 3γn1/8 − 6) � �n o(n−2) = o(n−1). (4.26)

Now we are ready to complete the proof of Proposition 4.2.
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Proof of Proposition 4.2. Lemmas 4.4 and 4.6 show that up to time n1/8 the process is

very unlikely to die and very likely to grow at least until polynomial size:

P(T0 > n1/8, S (v)

n1/8 > 2γn1/8) = 1 − o(n−1). (4.27)

Now we define the sequence of random variables Qi = S (v)

(1+γi)n1/8 , so that

P(Q0 < 2γn1/8) = o(n−1).

By Lemma 4.7,

P

(
∀i �

T1/2

γn1/8
: Qi+1 � Qi

)
= 1 − o(n−1), (4.28)

and consequently

P

(
∀i �

T1/2

γn1/8
: Qi � 2γn1/8

)
= 1 − o(n−1). (4.29)

Since S (v)

t+1 − S (v)

t � −2, we know that S (v)

t+s � S (v)

t − 2s, so we conclude that

P(S (v)

t > 0 ∀t � T1/2) = 1 − o(n−1). (4.30)

This completes the proof of Proposition 4.2.

We can now conclude the proof of Theorem 4.1.

Proof of Theorem 4.1. Proposition 4.2 proves (4.1) in Theorem 4.1. To prove (4.2) in

Theorem 4.1, we use that if |C (v)| > n/2, then v ∈ Cmax, to bound

E[#{v ∈ [n] \ Cmax : dv � 3}] � E[#{v ∈ [n] : dv � 3, |C (v)| < n/2}] = o(1) (4.31)

by Proposition 4.2.

To show that the size of the graph without the giant component does indeed have

bounded expectation, we need a slightly stronger result.

Proposition 4.8 (clusters of vertices of degree at least three outside Cmax). Let CMn(d) be

in the connectivity critical window defined in Condition 2.1. Then

E[#{v /∈ Cmax : v ↔ [n] \ (N1 ∪ N2)}] → 0, (4.32)

where, for a set of vertices A ⊆ [n], v ↔ A denotes that there exists a ∈ A such that v and

a are in the same connected component.

Proof. We have already proved that E[#{v ∈ [n] \ Cmax : dv � 3}] → 0. We now initialize

the exploration starting from a vertex v with dv ∈ {2, 1}. Notice that the probability of the

process surviving for n1/8 steps without finding vertices of degree 3 is smaller than e−cn1/8

for some c > 0, since at every step the probability of finding a vertex w with dw � 3 is

bounded away from 0.
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� If dv = 2 and our exploration finds a vertex w with dw � 3 before time n1/8, then for

the process to die out before time n1/8, we again need one of the events F1, F2, F3 to

occur. Then we can apply Lemmas 4.4, 4.6 and 4.7 to complete the proof that

E[#{v ∈ N2 \ Cmax : v ↔ [n] \ (N1 ∪ N2)}] → 0,

in the same way as the proof of Proposition 4.2.

� In the connectivity critical window, we have that n1 = O(
√
n). If dv = 1 and our

exploration at a certain point finds a vertex w with dw � 3, then for the process to die

out before time n1/8 we need one of the following two events to occur:

F ′
1 =

⋃
s1 ,s2�n1/8

A(s1) ∩ A(s2) ∩ {S (v)

s1
, S (v)

s2
� 2},

F ′
2 =

⋃
s�n1/8

B(s) ∩ {S (v)

s = 2}. (4.33)

We estimate using (4.10) and (4.11) to obtain

P(F ′
1) �

(
n1/8

2

)(
2ρ1√
n

)2

� 2ρ2
1 · n

1/4

n
= o(n−1/2), (4.34)

P(F ′
2) � n1/8 · 4

n
= o(n−1/2). (4.35)

Now we can apply Lemmas 4.6 and 4.7 to complete the proof that

E[#{v ∈ N1 \ Cmax : v ↔ w; dw � 3}] → 0

in a similar way to the proof of Proposition 4.2.

Since

E[#{v /∈ Cmax : v ↔ [n] \ (N1 ∪ N2)}] (4.36)

= E[#{v ∈ [n] \ Cmax : dv � 3}] + E[#{v ∈ (N1 ∪ N2) \ Cmax : v ↔ [n] \ (N1 ∪ N2)}],

we obtain the claim.

5. Proof of the main theorems

We can now finally prove the main theorems, putting together results from the previous

two sections.

Proof of Theorem 2.2. We know that

{CMn(d) is connected} = {Ck(n) = Lk(n) = 0 ∀k} ∩ {[n] \ (N1 ∪ N2) ⊆ Cmax}. (5.1)

We have proved in Theorem 4.1 that w.h.p. [n] \ Cmax ⊆ N1 ∪ N2. Thus,

P(CMn(d) is connected) = P(Ck(n) = Lk(n) = 0 ∀k) + o(1). (5.2)

By Theorem 3.3 and the independence of Ck, Lk , for each j < ∞,

lim
n→∞

P(Ck(n) = Lk(n) = 0 ∀k � j) =

j∏
k=1

P(Ck = 0)

j∏
k=2

P(Lk = 0). (5.3)

https://doi.org/10.1017/S0963548317000177 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548317000177


Critical Window for Connectivity in the Configuration Model 677

To pass to the limit we use dominated convergence. We compute that

E[Lk(n)] = n1
2n2

�n − 1

2n2 − 2

�n − 3
· · · 2n2 − 2k + 4

�n − 2k + 3

n1 − 1

�n − 2k + 1
� n2

1(2n2)k−2

(�n − 2k)k−1
. (5.4)

Now

n1√
n

→ ρ1,
n2

n
→ p2 and

�n

n
→ d,

for each ε and n sufficiently large that

E[Lk(n)] � n2
1(2n2)k−2

2(�n − 2k)k−1
� (ρ2

1 + ε)2

2(d − ε)

(
2(p2 + ε)

d − ε

)k−2

. (5.5)

For ε small enough, 2(p2 + ε) < d − ε, so the series on the right-hand side of (5.5) is

exponentially small in k. Similarly for Ck(n),

E[Ck(n)] =
1

2k
n2

2n2 − 2

�n − 2
· · · 2n2 − 2k + 4

�n − 2k + 4

1

�n − 2k + 2
� (2n2)k

k(�n − 2k)k
. (5.6)

As before, we have for every ε > 0

E[Ck(n)] � 1

k

(2n2)k

(�n − 2k)k
� (2n2)k

k(�n − 2k)k
� (2p2 + 2ε)k

k(d − ε)k
. (5.7)

Again, for ε > 0 small enough, 2(p2 + ε) < d − ε, so the series on the right-hand side of

(5.7) is exponentially small in k.

Since

{Ck(n) = Lk(n) = 0 ∀k} =
⋂
j

{Ck(n) = Lk(n) = 0 ∀k � j},

we obtain

lim
n→∞

P(Ck(n) = Lk(n) = 0 ∀k) � lim
j→∞

lim
n→∞

P(Ck(n) = Lk(n) = 0 ∀k � j)

=

∞∏
k=1

P(Ck = 0)

∞∏
k=2

P(Lk = 0)

= exp

(
−

∞∑
k=1

(2p2)k

2kdk
−

∞∑
k=2

ρ2
1(2p2)k−2

2dk−1

)

=

(
d − 2p2

d

)1/2

exp

(
− ρ2

1

2(d − 2p2)

)
, (5.8)

where we use that −
∑

k�1 x
k/k = log(1 − x) for x � 0.

For the lower bound, we use

lim
n→∞

P(Ck(n) = Lk(n) = 0 ∀k) � lim
j→∞

lim
n→∞

P(Ck(n) = Lk(n) = 0 ∀k � j)

− lim sup
j→∞

lim sup
n→∞

P(∃k > j : Ck(n) + Lk(n) � 1). (5.9)
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Using Markov’s inequality, we find that

lim sup
j→∞

lim sup
n→∞

P(∃k > j : Ck(n) + Lk(n) � 1)

= lim sup
j→∞

lim sup
n→∞

P

⎛
⎝∑

k>j

(Ck(n) + Lk(n)) � 1

⎞
⎠

� lim sup
j→∞

lim sup
n→∞

∑
k>j

E[Ck(n) + Lk(n)] = 0, (5.10)

by (5.5) and (5.7). As a result,

lim
n→∞

P(Ck(n) = Lk(n) = 0 ∀k) =

(
d − 2p2

d

)1/2

exp

(
− ρ2

1

2(d − 2p2)

)
. (5.11)

From (5.11), we obtain (2.1) using Theorem 4.1.
We next investigate the boundary cases in Remark 1. The result in (2.5) follows in an

identical way to the proof of Theorem 2.2. For the result for d = ∞ in (2.6), we notice

that if E[Dn] → ∞ then, for all k � 1,

lim
n→∞

2n2

�n − 2k
= 0, (5.12)

so that ∑
k�3

Lk(n) +
∑
k�1

Ck(n)
P→ 0

by (5.5) and (5.7) and Markov’s inequality. Moreover,

P(L2(n) = 0) =

n1∏
i=1

�n − n1 − i + 1

�n − 2i + 1
= e−n2

1/(2�n)(1+o(1)), (5.13)

so that

lim
n→∞

P(CMn(d) is connected) = lim
n→∞

P(L2(n) = 0) = lim
n→∞

e−n2
1/(2�n). (5.14)

Further, we notice that

n − |Cmax| =

∞∑
k=1

k(Ck(n) + Lk(n)) + #{v /∈ Cmax : v ↔ [n] \ (N1 ∪ N2)}. (5.15)

From Proposition 4.8 we know that

E[#{v /∈ Cmax : v ↔ [n] \ (N1 ∪ N2)}] → 0,

so that

n − |Cmax| =
∑
k�1

k(Ck(n) + Lk(n)) + oP(1). (5.16)

By (5.5) and (5.7) and dominated convergence, we obtain

n − |Cmax| d→
∞∑
k=1

k(Ck + Lk), (5.17)

which completes the proof of (2.2).
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Since we have shown convergence of all moments, we also obtain

lim
n→∞

E[n − |Cmax|] = lim
n→∞

∞∑
k=1

kE[Ck(n) + Lk(n)]

= lim
j→∞

j∑
k=1

k
(2p2)k

2kdk
+

j∑
k=2

k
ρ2

1(2p2)k−1

2dk−1
=

ρ2
1(2d − p2)

2(d − p2)2
+

p2

d − 2p2
, (5.18)

as required.

Proof of Theorem 2.3. If we condition on simplicity, then we already have that C1(n) =

C2(n) = 0. Therefore, we find using the same method as in the previous proof that

lim
n→∞

P(Ck(n) = Lk(n) = 0 ∀k | CMn(d) is simple)

=

∞∏
k=3

P(Ck = 0)

∞∏
k=2

P(Lk = 0) = exp

(
−

∞∑
k=3

(2p2)k

2kdk
−

∞∑
k=2

ρ2
1(2p2)k−2

2dk−1

)

=

(
d − 2p2

d

)1/2

exp

(
− ρ2

1

2(d − 2p2)
+

p2
2 + dp2

d2

)
, (5.19)

from which we obtain (2.7) thanks to Theorem 4.1.

We recall that Nn(d) denotes the number of simple graphs with degree distribution d .

We know that

Nn(d) = exp

{
−ν

2
− ν2

4

}
(�n − 1)!!∏

i∈[n] di!
(1 + o(1)). (5.20)

Since CMn(d) conditioned on being simple has the uniform distribution over all possible

simple graphs with degree sequence d ,

N C
n (d) = Nn(d)P(CMn(d) is connected | CMn(d) is simple), (5.21)

which yields the claim.
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