Molecular phylogeny resolves a taxonomic misunderstanding and places *Geisleria* close to *Absconditella* s. str. (Ostropales: Stictidaceae)

André APTROOT, Sittiporn PARNMEN, Robert LÜCKING, Elisabeth BALOCH, Patricia JUNGBLUTH, Marcela E. S. CÁCERES and H. Thorsten LUMBSCH

Abstract: The phylogenetic position of the genus Geisleria and its type species G. sychnogonioides was reconstructed using sequence data of the mitochondrial small subunit (mtSSU), the nuclear large subunit rDNA (nuLSU) and the first subunit of the RNA polymerase (RPB1). The species, previously classified in Verucariaceae (Eurotiomycetes) and Strigulaceae (Dothideomycetes), is sister to the type of the genus Absconditella, A. sphagnorum, and nested within the genera Absconditella and Cryptodiscus combined (which also includes the lichenized Bryophagus). At first glance it appears to be a further example of parallel evolution of perithecioid ascomata within Stictidaceae (Lecanoromycetes: Ostropales), besides Ostropa and Robergea, adding to the growing list of perithecioid forms nested within apothecioid lineages in Ostropomycetidae, and specifically Ostropales, with other examples known from Graphidaceae (several genera), Gyalectaceae (Belonia), and Porinaceae. However, revision of type material collected by Nitschke revealed that the species actually develops typical apothecia with a narrowly exposed disc. We conclude that Geisleria sychnogonoides was erroneously considered a pyrenocarpous taxon, because in dry conditions the apothecia are closed and not recognizable as such. The species usually grows on unstable soil and therefore often only develops young, more or less closed ascomata (yet with mature ascospores), and has also been confused with the superficially similar Belonia incarnata, in which the ascomata remain closed even when mature. Geisleria sychnogonioides has so far only been known as a rarely reported pioneer species from loamy soils in Europe and North America. Here it is reported to occur abundantly on lateritic soils in subtropical Brazil, suggesting that it is cosmopolitan and possibly common, but much overlooked.

Key words: crustose, lichen, perithecia, systematics, taxonomy, tropical

Accepted for publication 29 August 2013

Introduction

One of the most fundamental and phylogenetically constant characters in Ascomycota is the nature of the ascospore-producing fruiting bodies, which in most cases are either discocarpous (apothecioid) or pyrenocarpous (perithecioid). Apothecioid ascomata are typical of Pezizomycetes, Leotiomycetes, and subclass Lecanoromycetidae (Lecanoromycetes), whereas perithecioid ascomata are found throughout Sordariomycetes, Eurotiomycetes, and Dothideomycetes (Lumbsch & Huhndorf 2007; Schoch et al. 2009). Eurotiomvcetes also includes lineages with completely closed ascomata (cleistothecia) (Geiser et al. 2006). For centuries, ascoma-types were the main division in the phylum Ascomycota, characterizing the Discomycetes (and Discolichenes) and the Pyrenomycetes (and Pyrenolichenes), respectively (Eschweiler 1824; Zahlbruckner 1907; see Lumbsch 2000), before it was replaced by a classification based on ascoma ontogeny and ascus type, distinguishing ascohymenial from ascolocular

A. Aptroot: ABL Herbarium, Gerrit van der Veenstraat 107, NL-3762 XK Soest, The Netherlands.

Email: andreaptroot@gmail.com

S. Parnmen, R. Lücking and H.T. Lumbsch: Department of Botany, The Field Museum, 1400 S. Lake Shore Drive, Chicago, Illinois 60605, USA.

E. Baloch: Department of Cryptogamic Botany, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05 Stockholm, Sweden; and Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK.

P. Jungbluth: Departamento de Botânica, IBB, UNESP. Caixa Postal 510, CEP 18618-970, Distrito de Rubião Jr., Botucatu - SP, Brazil.

M. E. S. Cáceres: Departamento de Biociências, Universidade Federal de Sergipe, CEP: 49.500-000, Itabaiana, Sergipe, Brazil.

forms (Nannfeldt 1932; Luttrell 1951; Santesson 1952; Henssen & Jahns 1974). Yet the subgroups within this classification still relied heavily on whether the ascomata were apothecioid or perithecioid. The only group that was accepted rather early as having variable fruiting body morphology is the Arthoniomycetes (*Arthoniales*), ranging from typical apothecioid to lirelliform and stromatoidperithecioid ascomata (Grube 1998; Ertz *et al.* 2009). This group was also considered intermediate between ascohymenial and ascolocular groups (Henssen & Thor 1994).

While perithecioid forms are occasionally nested within apothecioid lineages in other classes, such as Pezizomycetes (O'Donnell et al. 1997; Hansen & Pfister 2006; Lücking et al. 2009), phylogenetic studies have established Ostropomycetidae, and particularly Ostropales, as a prime example of repeated switches between apothecioid and perithecioid fruiting body types (Lumbsch et al. 2001, 2006, 2007; Kauff & Lutzoni 2002; Grube et al. 2004; Schmitt et al. 2005, 2006, 2009; Grube & Hawksworth 2007; Hawksworth & LaGreca 2007; Baloch et al. 2010; Rivas Plata et al. 2012, 2013). Currently, more than ten transitions from apothecioid to perithecioid forms are known in this subclass, including Protothelenellaceae and Thelenellaceae, several lineages within Pertusariales (Coccotrema, Pertusaria s. lat.), and a large number of lineages within Ostropales: Ostropa and Robergea in Stictidaceae, all taxa in Porinaceae, species of the former genus Belonia nested within Gyalecta, and in Graphidaceae species in the genera Graphis (G. mexicana), Leucodecton (L. compunctum, L. compunctellum), Pseudoramonia, Ocellularia, and Thelotrema (T. porinoides). In a number of cases, these species were originally described in, or temporarily referred to, typically perithecioid taxa, such as Arthopyrenia, Porina, and Verrucaria.

The genus *Geisleria* was described in the 19th century by Nitschke (Rabenhorst 1861) with a single species, *G. sychnogonioides* Nitschke, from northern Germany. It is usually characterized by immersed, seemingly perithecioid, non-carbonized ascomata, unitunicate asci, and hyaline 3-septate asco-

spores. The species was considered a typical pyrenocarpous fungus, lichenized with chlorococcoid algae, occurring on a rather unusual substratum for lichens, unstable loamy soils (Ernst 1993); it was once even recorded growing on a discarded army shirt covered with soil (Roux & Sérusiaux 2004). Such habitats are infrequently visited on lichen forays, and the species is relatively rarely reported. It is a pioneer species and often vanishes within a year or two from most of its known localities. It occurs in nature reserves, but more frequently along artificial ditches, in loam quarries or even in industrial areas. Geisleria sychnogonioides has so far been reported from Europe (France, Belgium, the Netherlands, Germany, Switzerland, Czech Republic) and North America (Roux & Sérusiaux 2004).

Four additional species have since been described in Geisleria, viz. Geisleria alpina Servit, which is a Polyblastia with a parasite (Swinscow 1967), G. jamesii Swinscow, which is now accepted as Strigula jamesii (Swinscow) R. C. Harris, and G. sbarbaronis Servit and G. xylophila Vězda, both known only from their types and not recently studied. Geisleria sychnogonioides was classified in the Verrucariaceae and even placed in Verrucaria (Stizenberger 1882), although it differs from the majority of the genera in this family by the persistent hamathecial filaments. More recently, the genus was synonymized with Strigula and the species recombined as S. sychnogonioides (Nitschke) R. C. Harris (Egan 1987), although the same author later stated that this generic placement is probably not correct (Harris 1995). Placement in Strigula was accepted by some authors (e.g. Roux & Sérusiaux 2004), but disputed by de Bruyn et al. (2008), who pointed out that the conidia lack the unique synapomorphy of Strigulaceae, the gelatinous appendices, a fact already noticed by Harris (1995). Thus, the systematic position of Geisleria sychnogonioides was considered uncertain, as it apparently showed no distinct synapomorphies with any known group of Ascomycota. Among pyrenocarpous lineages, lichenization with chlorococcoid green algae is only known from Verrucariaceae, Protothelenellaceae and Thelenellaceae.

Confusion is possible with the name *Thelenella sychnogonioides* (Zahlbr.) R. C. Harris, based on *Microglaena sychnogonioides* Zahlbr., which is a different pyrenocarpous lichen but also with chlorococcoid algae, in *Thelenellaceae*. The identical epithet in both taxa is independently based on a supposed similarity with the genus *Sychnogonia* Körb. [non *Sychnogonia* Trevis.], currently regarded as a synonym of *Muellerella* Hepp ex Müll. Arg. in the *Verrucariaceae*.

During recent years, the first author collected specimens of *Geisleria sychnogonioides* on various occasions, and attempts were made to sequence it, but without success. At the 6th EGBL (Encontro do Grupo Brasileiro de Liquenólogos) congress in Botucatu (São Paulo State, Brazil), the first author's attention was drawn to a degraded reddish laterite landscape covered by pale, roughly circular patches of several centimeters to decimeters in diameter. While it was unlikely that this unstable, urban substratum would support lichen growth, all patches examined contained pale, immersed perithecioid ascomata of minute size. Morphologically, these were indistinguishable from European material of G. sychnogonioides, and microscopical examination also failed to yield differentiating characters. We herewith report the species new to the Southern Hemisphere. Given its abundance at this locality, and the fact that this particular habitat is very common (and regrettably increasingly so) all over the tropics, we surmise that the species is thus cosmopolitan and common, but usually overlooked. DNA of the fresh material of the Brazilian specimen was successfully extracted and sequenced by the second author. After these results were obtained, the first author made collections of fresh material in the type region (northern Germany), and these were also successfully sequenced by the second author, confirming the identity of the Brazilian material and the phylogenetic position of the genus Geisleria.

Here we report on the phylogenetic placement of the genus *Geisleria* in the family *Stictidaceae* (*Ostropales*), a lineage to which it had never before been related and thus a highly unexpected result.

Materials and Methods

Material

The following material was used for the molecular phylogenetic study:

Geisleria sychnogonioides Nitschke: **Brazil:** São Paulo: Botucatu, near Pousada Mandala on SP-254, 850 m, 22°52′45″S, 48°29′16″W, on soil in cerrado area, 2012, M. E. S. Cáceres & A. Aptroot 13560 (ABL, F, SP): Geisleria sychnogonoides3 in Table 1.—Germany: Niedersachsen: Moorbek N of Wildeshausen, W of Amelshausen, 52°94′73·35″N, 8°31′14·14″E, on soil of nature compensation area, 2013, A. Aptroot 70626: Geisleria sychnogonoides1 in Table 1; Moorbek N of Wildeshausen, S of Glane, 52°91′62·88″N, 8°35′54·62″E, on sand in sand pit, A. Aptroot 70627: Geisleria sychnogonoides2 in Table 1.

Taxa included in the analyses, along with GenBank accession numbers and collection information for newly sequenced samples, are listed in Table 1.

DNA extraction, amplification and sequencing

The Sigma-Aldrich REDExtract-N-Amp Plant PCR Kit (St. Louis, Missouri, USA) was used to isolate DNA, following the manufacturer's instructions, except only 10–30 μ l of extraction buffer and 10–30 μ l dilution buffer were used; a 20 × DNA dilution was then used in subsequent PCR reactions. We assembled a three-locus data set consisting of mtSSU rDNA, nuLSU rDNA, and the protein-coding genes RPB1. Primers used to amplify fungal DNA are: 1) AL2R (Mangold *et al.* 2008) and LR6 (Vilgalys & Hester 1990); 2) mt SSU rDNA – mrSSU1, mrSSU3R (Zoller *et al.* 1999); 3) RPB1: gRPB1-A (Stiller & Hall 1997) and fRPB1-C rev (Matheny *et al.* 2002). PCR amplifications and cycle sequencing conditions were as described previously (Schmitt *et al.* 2010; Rivas Plata *et al.* 2013).

Phylogenetic analyses

Sequence alignments were carried out separately for each data set using Geneious Pro 5.4.3 (Drummond et al. 2011). The jModelTest Version 0.1.1 (Posada 2008) selected the following models as best fits for our data: GTR+G+I for nuLSU, RPB1, and GTR+G for mtSSU. The B/MCMC analysis was conducted on the concatenated data set using MrBayes 3.1.2 (Huelsenbeck & Ronquist 2001). A run with 20 000 000 generations, starting with a random tree and employing 4 simultaneous chains, was executed. Every 100th tree was saved into a file. The first 500 000 generations (i.e. the first 5000 trees) were deleted as the 'burn in' of the chain. We used AWTY (Nylander et al. 2007) to compare splits frequencies in the different runs and to plot cumulative split frequencies to ensure that equilibrium was reached. Of the remaining 390 000 trees (195 000 from each of the parallel runs) a majority-rule consensus tree with average branch lengths was calculated using the sumt option of MrBayes. Posterior probabilities were obtained for each clade. Only clades that received bootstrap support equal or above 70% under ML and posterior probabilities ≥ 0.95 were considered as strongly

Species name	Family	Order	nuLSU	mtSSU	RPB1
Absconditella lignicola	Stictidaceae	Ostropales	FJ904669	FJ904691	KC191646
A. sphagnorum	Stictidaceae	Ostropales	AY300824	AY300872	KC191647
Acarosporina microspora	Stictidaceae	Ostropales	AY584643	AY584612	DQ782818
Agyrium rufum	Agyriaceae	Agyriales	EF581826	EF581823	EF581822
Ainoa mooreana	Trapeliaceae	Ostropomycetidae incertae sedis	AY212829	AY212851	DQ870928
Anisomeridium sp.	Monoblastiaceae	Dothideomycetes incertae sedis	JN887398	JN887410	_
Anzina carneonivea	Trapeliaceae	Ostropomycetidae incertae sedis	AY212829	AY212851	KC191648
Arctomia delicatula	Arctomiaceae	Ostropomycetidae incertae sedis	AY853355	AY853307	DQ870929
A. teretiuscula	Arctomiaceae	Ostropomycetidae incertae sedis	DQ007346	DQ007349	DQ870930
Arthopyrenia salicis	Arthopyreniaceae	Dothideomycetes	AY607730	AY607742	FJ941893
Aspicilia cf. cinerea	Megasporaceae	Agyriales	DQ780304	DQ780272	DQ870932
A. desertorum	Megasporaceae	Agyriales	KC020258	KC020252	KC020289
A. izcoana	Megasporaceae	Agyriales	AY853311	AY853359	DQ870934
Astrothelium cinnamomeum	Trypetheliaceae	Dothideomycetes incertae sedis	AY584652	AY584632	DQ782824
Baeomyces placophyllus	Baeomycetaceae	Ostropomycetidae incertae sedis	AF356658	AY300878	DQ870936
B. rufus	Baeomycetaceae	Ostropomycetidae incertae sedis	DQ871008	DQ871016	DQ870937
Carestiella socia	Stictidaceae	Ostropales	AY661687	AY661677	KC191649
Chapsa pulchra	Graphidaceae	Ostropales	KC020261	KC020255	KC020292
Chroodiscus parvisporus	Graphidaceae	Ostropales	KC020262	KC020256	KC020293
Circinaria caesiocinerea	Megasporaceae	Agyriales	DQ780303	DQ780271	DQ870931
C. contorta	Megasporaceae	Agyriales	DQ986782	DQ986876	DQ986852
C. fruticulosa	Megasporaceae	Agyriales	KC020259	KC020253	KC020290
C. hispida	Megasporaceae	Agyriales	DQ780305	DQ780273	DQ870933
Coccomycetella richardsonii	Odontotremataceae	Agyriales	HM244761	HM244737	KC191650
Coccotrema cucurbitula	Coccotremataceae	Agyriales	AF274092	AF329161	DQ870939
C. pocillarium	Coccotremataceae	Agyriales	AF274093	AF329166	DQ870940
Coenogonium leprieurii	Coenogoniaceae	Ostropales	AF465442	AY584698	-
C. luteum	Coenogoniaceae	Ostropales	AF279387	AY584699	-
C. pineti	Coenogoniaceae	Ostropales	AY300834	AY300884	-
Cryptodiscus gloeocapsa	Stictidaceae	Ostropales	AF465440	AY300880	KC191651
C. pini	Stictidaceae	Ostropales	HM244762	HM244738	KC191653
Dibaeis baeomyces	Icmadophilaceae	Agyriales	AF107555	AY300883	DQ842011
Diploschistes cinereocaesius	Graphidaceae	Ostropales	AY300835	AY300885	DQ870941
D. scruposus	Graphidaceae	Ostropales	AF279389	AY584692	DQ870943
Dyplolabia afzelii	Graphidaceae	Ostropales	HQ639628	HQ639594	KC020294
Geisleria sychnogonioides3			KC689752	KC689751	KC689753
G. sychnogonioides2			KF220304	KF220306	KF220303
G. sychnogonioides1			-	KF220305	KF220302
Glyphis cicatricosa	Graphidaceae	Ostropales	HQ639630	HQ639610	KC020296

Vol. 46

THE LICHENOLOGIST

118

Species name	Family	Order	nuLSU	mtSSU	RPB1	014
Graphis scripta	Graphidaceae	Ostropales	DQ431937	DQ384870	DQ870947	
Gregorella humida	Arctomiaceae	Ostropomycetidae incertae sedis	AY853378	AY853329	DQ870946	
Gyalecta herculana	Gyalectaceae	Ostropales	FJ941886	-	FJ941896	
G. russula	Gyalectaceae	Ostropales	HM244759	HM244735	FJ941897	
G. flotowii	Gyalectaceae	Ostropales	HM244764	HM244740	KC191655	
G. hypoleuca	Gyalectaceae	Ostropales	AF465453	HM244742	KC191656	
G. truncigena	Gyalectaceae	Ostropales	HM244766	HM244743	KC191657	
G. ulmi	Gyalectaceae	Ostropales	AF465463	AY300888	KC191658	
Icmadophila ericetorum	Icmadophilaceae	Agyriales	DQ883694	DQ986897	DQ883723	
Kirschsteiniothelia aethiops	Kirschsteiniotheliaceae	Dothideomycetes incertae sedis	AY016361	FJ190604	DQ471157	H.
Laurera megasperma	Trypetheliaceae	Dothideomycetes incertae sedis	FJ267702	GU561847	-	Ľ,
Lobothallia radiosa	Megasporaceae	Agyriales	DQ780306	DQ780274	DQ870954	ylc
Myriotrema olivaceum	Graphidaceae	Ostropales	EU075627	EU075579	KC020298	ğ
Nadvornikia hawaiiensis	Graphidaceae	Ostropales	AY605080	EU075581	KC020300	ň
Ocellularia chiriquiensis	Graphidaceae	Ostropales	EU075629	EU075582	KC020301	y c
O. endoxantha	Graphidaceae	Ostropales	KC020263	KC020257	KC020302	Ĭ
Ochrolechia androgyna	Ochrolechiaceae	Agyriales	AY300846	AY300897	DQ870957	ଦୁ
O. balcanica	Ochrolechiaceae	Agyriales	AF329171	AF329170	KC222183	eisi
O. frigida	Ochrolechiaceae	Agyriales	AY300847	AY300898	KC222184	ler
O. oregonensis	Ochrolechiaceae	Agyriales	DQ780308	DQ780276	DQ870958	ia
O. pallescens	Ochrolechiaceae	Agyriales	DQ780310	DQ780277	DQ870960	
O. parella	Ochrolechiaceae	Agyriales	AF274097	AF329173	DQ870959	A
O. peruensis	Ochrolechiaceae	Agyriales	DQ780311	DQ780279	KC222185	pti
O. sp.	Ochrolechiaceae	Agyriales	DQ986777	DQ986886	DQ986849	20,
O. subpallescens	Ochrolechiaceae	Agyriales	GU980985	GU980978	GU981008	Ť
O. turneri	Ochrolechiaceae	Agyriales	AY568002	AY567982	DQ870961	Ĥ
O. upsaliensis	Ochrolechiaceae	Agyriales	GU980986	GU980979	GU981009	al.
O. yasudae	Ochrolechiaceae	Agyriales	DQ986776	DQ986902	DQ986848	
Odontotrema phacidiellum	Odontotremataceae	Agyriales	HM244769	HM244748	KC191661	
O. phacidioides	Odontotremataceae	Agyriales	HM244770	HM244749	KC191662	
Orceolina antarctica	Trapeliaceae	Ostropomycetidae incertae sedis	AF274115	AY212852	DQ870962	
Orceolina kerguelensis	Trapeliaceae	Ostropomycetidae incertae sedis	AY212830	AF381561	DQ870963	
Pertusaria albescens	Ochrolechiaceae, Variolaria	Agyriales	AF329176	AF329175	DQ870964	
P. amara	Ochrolechiaceae, Variolaria	Agyriales	AF274101	AY300900	DQ973048	
P. coccodes	Pertusariaceae	Agyriales	AF2792095	AY567984	DQ870966	
P. corallina	Ochrolechiaceae, Variolaria	Agyriales	AY300850	AY300901	DQ870967	
P. corallophora	Ochrolechiaceae, Variolaria	Agyriales	DQ780316	DQ780285	DQ870969	
P. coronata	Pertusariaceae	Agyriales	AY300851	AY300902	DQ870968	
P. gibberosa	Pertusariaceae	Agyriales	DQ780322	DQ780289	DQ870970	-

TABLE 1.	Continued
1	001111111000

Species name	Family	Order	nuLSU	mtSSU	RPB1
P. hermaka	Pertusariaceae	Agyriales	DQ780334	DQ780299	XXX NEW IS
P. lecanina	Pertusariaceae	Agyriales	AF279296	AY567991	DQ870972
P. leioplaca	Pertusariaceae	Agyriales	AY300852	AY300903	DQ870973
P. mammosa	Ochrolechiaceae, Variolaria	Agyriales	AY212831	AY212854	DQ870974
P. mesotropa	Pertusariaceae	Agyriales	DQ780325	DQ780292	DQ870975
P. ophthalmiza	Ochrolechiaceae, Variolaria	Agyriales	AY568006	AY567993	DQ870976
P. panyrga	Ochrolechiaceae, Variolaria	Agyriales	DQ780327	AY567994	DQ870977
P. paramerae	Pertusariaceae	Agyriales	DQ780326	DQ780293	GU981012
P. pertusa	Pertusariaceae	Agyriales	AF279300	AF381565	DQ870978
P. plittiana	Pertusariaceae	Agyriales	DQ780328	DQ780294	DQ870979
P. pustulata	Pertusariaceae	Agyriales	DQ780332	DQ780297	GU981013
P. scaberula	Ochrolechiaceae, Variolaria	Agyriales	AF274099	AF431959	DQ870980
P. subventosa	Ochrolechiaceae, Variolaria	Agyriales	AY300854	AY300905	DQ870981
Phlyctis agelaea	Phlyctidaceae	Ostropales	AY853381	AY853332	-
P. argena	Phlyctidaceae	Ostropales	DQ986771	DQ986880	KC191664
Phyllobathelium anomalum	Strigulaceae	Dothideomycetes incertae sedis	GU327722	GU327698	-
P. firmum	Strigulaceae	Dothideomycetes incertae sedis	GU327723	JN887413	-
Placopsis cribellans	Trapeliaceae	Ostropomycetidae incertae sedis	DQ871010	DQ871018	DQ870983
P. gelida	Trapeliaceae	Ostropomycetidae incertae sedis	AY212836	AY212859	DQ870984
P. santessonii	Trapeliaceae	Ostropomycetidae incertae sedis	AY212845	AY212867	DQ870986
Placynthiella icmalea	Trapeliaceae	Ostropomycetidae incertae sedis	AY212846	AY212870	DQ870985
P. uliginosa	Trapeliaceae	Ostropomycetidae incertae sedis	DQ986774	DQ986877	DQ986845
Porina aenea	Porinaceae	Ostropales	-	DQ168410	KC191665
P. byssophila	Porinaceae	Ostropales	-	HM244755	KC191666
Protothelenella sphinctrinoidella	Protothelenellaceae	Ostropomycetidae incertae sedis	AY607735	AY607747	DQ870989
P. corrosa	Protothelenellaceae	Ostropomycetidae incertae sedis	AY607734	AY607746	DQ870988
Pseudochapsa phlyctidioides	Graphidaceae	Ostropales	KC020260	KC020254	KC020291
Pycnotrema pycnoporellum	Graphidaceae	Ostropales	HQ639658	HQ639584	KC020299
Pyrenula aspistea	Pyrenulaceae	Chaetothyriomycetidae	JQ927470	JQ927462	-
P. nitida	Pyrenulaceae	Chaetothyriomycetidae	DQ329023	DQ328998	-
P. pseudobufonia	Pyrenulaceae	Chaetothyriomycetidae	-	AY584720	DQ840558
Racodium rupestre	?	Dothideomycetes	EU048582	EU048589	-
Rhabdodiscus subcavatus	Graphidaceae	Ostropales	EU075641	EU075595	KC020304
Rhexophiale rhexoblephara	Gomphillaceae	Ostropales	AY853391	AY853341	-
Rimularia insularis	Trapeliaceae	Ostropomycetidae incertae sedis	KC222205	KC222182	KC222188
R. psephota	Trapeliaceae	Ostropomycetidae incertae sedis	DQ871012	DQ871019	DQ870992
Schaereria corticola	Agyriaceae	Ostropomycetidae	AY300859	AY300909	DQ870993
Schizoxylon albescens	Stictidaceae	Ostropales	DQ401144	DQ401142	KC191667
Siphula ceratites	Icmadophilaceae	Agyriales	AY853394	AY853344	DQ986847

Vol. 46

TABLE 1. Continued

Species name	Family	Order	nuLSU	mtSSU	RPB1	_
Stictis populorum	Stictidaceae	Ostropales	AY527327	AY300882	KC191668	
S. radiata	Stictidaceae	Ostropales	AY300864	AY584727	-	ب ا
Strigula jamesii	Strigulaceae	Dothideomycetes incertae sedis	JN887404	JN887416	-	Ĕ
S. nemathora	Strigulaceae	Dothideomycetes incertae sedis	JN887405	GU327701	-	ylc
Thamnolia vermicularis	Icmadophilaceae	Agyriales	AY961599	AY853345	DQ915599	ğ
Thecaria quassiicola	Graphidaceae	Ostropales	HQ639667	HQ639617	-	en
Thelotrema lepadinum	Graphidaceae	Ostropales	AY300866	AY300916	DQ973067	y
T. subtile	Graphidaceae	Ostropales	DQ871013	EU075607	DQ870998	Οf
T. suecicum	Graphidaceae	Ostropales	AY300867	AY300917	DQ870997	S
Topeliopsis decorticans	Graphidaceae	Ostropales	EU075654	EU075609	KC020288	eis
Trapelia chiodectonoides	Trapeliaceae	Ostropomycetidae incertae sedis	AY212847	AY212873	DQ870999	ler
T. placodioides	Trapeliaceae	Ostropomycetidae incertae sedis	AF274103	AF431962	DQ366259	ia
Trapeliopsis flexuosa	Trapeliaceae	Ostropomycetidae incertae sedis	AF274118	AY212875	DQ871000	
T. granulosa	Trapeliaceae	Ostropomycetidae incertae sedis	AF274119	AF381567	DQ871001	Ā
T. percrenata	Trapeliaceae	Ostropomycetidae incertae sedis	AF279302	AY212876	EF158853	<i>рt</i> ı
Trypethelium nitidiusculum	Trypetheliaceae	Dothideomycetes	FJ267701	GU561848	_	ос
Tubeufia cerea	Tubeufiaceae	Dothideomycetes incertae sedis	DQ470982	FJ190634	DQ471180	, te
Varicellaria hemisphaerica	?	Agyriales	AF381556	DQ973000	DQ902341	Ę
V. lactea	?	Agyriales	AF381557	AF381564	DQ870971	al.
V. velata	2	Agyriales	AY300855	AY300906	DQ870982	
Verrucaria canella	Verrucariaceae	Chaetothyriomycetidae	EF643784	-	EF689787	
V. funckii	Verrucariaceae	Chaetothyriomycetidae	EF105133	EF105155	-	
Wawea fruticulosa	Arctomiaceae	Ostropomycetidae incertae sedis	DQ007347	DQ871023	DQ871005	

122

Vol. 46

supported. Phylogenetic trees were visualized using the program Treeview (Page 1996).

A maximum likelihood (ML) analysis was performed for each locus and the combined data set in RAxML 7.2.6 (Stamatakis 2006), using the GTRGAMMA model with 25 rate parameter categories. Support was then estimated by performing 1000 bootstrap pseudoreplicates (Felsenstein 1985). Only clades with bootstrap support equal or above 70% under ML and posterior probabilities ≥ 0.95 in the Bayesian analysis were considered as strongly supported.

Results and Discussion

Geisleria sychnogonioides clustered with high support within Stictidaceae in Ostropales (Fig. 1), close to Cryptodiscus Corda (Baloch et al. 2009) and Absconditella Vězda (Fig. 2A), with the type species of the latter sister to Geisleria sychnogonioides. Within Stictidaceae, this is the third apparently perithecioid lineage, besides Ostropa and Robergea, and the first outside the Stictidaceae core group (Lücking et al. 2011). This suggests yet another transition from apothecial to perithecioid ascomata within Ostropales. The relationship of Geisleria and Absconditella is comparable to what has been found for Belonia and Gyalecta, with the former producing perithecioid ascomata but being nested within the latter with apothecioid fruiting bodies. In the latter case, Belonia has been formally synonymized with Gyalecta (Baloch et al. 2013). Here we do not propose that Absconditella be synonymized with Geisleria, nor do we combine the two genera and propose to conserve the name Absconditella. The reasoning behind this is that the two (out of 11) species of Absconditella sequenced so far do not cluster together, rendering the genus paraphyletic, and that a larger sampling seems advisable (just as discussed by Baloch et al. 2009) before a decision can be made about the monophyletic groups in the clade now consisting of the genera Absconditella, Cryptodiscus (including Bryophagus) and Geisleria. Figure 1 also shows the phylogenetic position of the families in which Geisleria was previously classified, viz. Verrucariaceae (Eurotiomycetes) and Strigulaceae (Dothideomycetes), as well as representative groups from the Ostropomycetidae and some other groups with a phylogenetic

position in between, in order to show how distant *Geisleria* is after all from the groups in which it was previously classified.

The phylogenetic position of Geisleria at first is entirely unexpected, given its previous classification as a pyrenocarpous lichenized fungus. However, anatomical study of the sequenced material revealed that its ascus type is ostropalean, with a ring-shaped structure projecting from the tholus down into the lumen (Fig. 2B). The same applies to the hamathecium and ascospores. In addition, the photobiont is morphologically similar to the one found in Absconditella. A subsequent study of the isotypes of Geisleria sychnogonioides in W, and additional material of the species collected in various parts of Europe, revealed that the species actually produces typical gyalectoid apothecia, identical to those of Absconditella (Fig. 3A & C), and its anatomical features support placement within that lineage. In the original exsiccate (Rabenhorst, Lichenes Europaei 574; Fig. 3: upper left), Nitschke described the ascomata as subglobose apothecia and noted that fully grown apothecia only appear after a while, according to his interpretation after fertilization ("nach der Befruchtung"). There are potentially three reasons why subsequent authors classified this taxon as having perithecia: 1) in dry conditions, the apothecia shrink and resemble young, more or less closed apothecia with narrow pores (Fig. 3B); 2) even young, closed apothecia (Fig. 3D) produce mature ascospores, a fact we interpret as an adaptation of the species growing on unstable soil, ensuring successful reproduction and propagation in early developmental stages; 3) several specimens in material identified as Geisleria sychnogonioides actually belong to Belonia incarnata Th. Fr. & Graewe ex Th. Fr. (Fig. 2C & D), a perithecioid species nested within Gyalecta (Baloch et al. 2010, 2013). It appears that these two species have been confused repeatedly. However, they can be readily separated by their substratum (debris instead of soil in the latter), thallus morphology (cartilaginous in the latter), and ascoma ontogeny (remaining closed in the latter), as well as other features.

FIG. 2. A, Absconditella delutula, thallus and apothecia (Netherlands, Aptroot 70517, ABL); B, Geisleria sychnogonioides, ascus (Brazil, Cáceres & A. Aptroot 13560, F); C & D, Belonia incarnata, thallus and (closed) apothecia (D a specimen identified as G. sychnogonioides in W); E, Belonia herculana (W), thallus and perithecioid ascomata; F, B. russula (W), thallus and perithecioid ascomata. Scales: A, C-F = 1 mm; B = 10 µm. In colour online.

Geisleria sychnogonioides could thus be interpreted as Absconditella, with its fruiting bodies already producing mature ascospores in young, still closed stages, whereas open apothecia, which the species is capable of developing, are only seen in specimens of a certain age, including the rather well-developed type material. This situation is thus slightly

FIG. 3. Geisleria sychnogonioides (isotypes in W). Upper left, original label of Rabenhorst's exsiccata no. 574. Middle left, isotype specimen distributed separately from exsiccata. A, non-exsiccate isotype, thallus and closed and fully open apothecia (hydrated); B & C, exsiccate isotype, in dried and hydrated condition showing difference in size and appearance of mature apothecia; D, non-type specimen with young, closed apothecia only (producing mature ascospores). Scales: A-D = 1 mm. In colour online.

different from the distantly related, perithecioid forms of *Gyalecta* previously classified in *Belonia* (Baloch *et al.* 2010, 2013), in which even mature ascomata remain closed (Fig. 2E & F), and it could be interpreted as an intermediate evolutionary step between hemiangiocarpy (apothecia closed when young and mature ascospores only seen in open apothecia) and angiocarpy (apothecia remaining closed throughout their development). We are grateful to CAPES for providing funding to PJ to enable AA, RL and MESC to attend the EGBL6 meeting in Botucatu where the material was collected. Funding provided by the National Science Foundation (NSF), DEB-1025861 to The Field Museum (PI HTL, CoPI RL, "ATM – Assembling a taxonomic monograph: the lichen family *Graphidaceae*") covered the laboratory costs. The sequences of *Geisleria* were generated in the Pritzker Laboratory for Molecular Systematics at The Field Museum (Chicago); the authors thank I. Schmitt for allowing them to use these unpublished sequences. EB thanks the Swedish Research Council (grants VR 621-2006-3760 and VR 621-2009-537, PI: Mats Wedin). AA thanks the Stichting Hugo de Vries-Fonds for a travel fund.

References

- Baloch, E., Gilenstam, G. & Wedin, M. (2009) Phylogeny and classification of *Cryptodiscus*, with taxonomic synopsis of the Swedish species. *Fungal Diversity* 38: 51–68.
- Baloch, E., Lücking, R., Lumbsch, H. T. & Wedin, M. (2010) Major clades and phylogenetic relationships between lichenized and non-lichenized lineages in *Ostrapales* (Ascomycota: Lecanoromycetes). *Taxon* 59: 1483–1494.
- Baloch, E., Lücking, R., Lumbsch, H. T. & Wedin, M. (2013) New combinations in *Gyalecta* for former *Belonia* and *Pachyphiale* species. *Lichenologist* 45: 723–727.
- de Bruyn, U., Aptroot, A., Homm, T. & Sipman, H. J. M. (2008) Ergebnisse eines Flechten-Kartierungstreffens im Elbe-Weser-Dreieck (Nordwest-Niedersachsen). Aktuelle Lichenologische Mitteilungen NF 15: 4–13.
- Drummond, A., Ashton, B., Buxton, S., Cheung, M., Cooper, A., Duran, C., Field, M., Heled, J., Kearse, M., Markowitz, S., et al. (2011) Geneious v5.4. Available from http://www.geneious.com
- Egan, R. S. (1987) A fifth checklist of the lichen-forming, lichenicolous and allied fungi of the continental United States and Canada. *Bryologist* **90**: 77–173.
- Ernst, G. (1993) Zur Ökologie und Verbreitung von Geisleria sychnogonioides, einer bislang kaum bekannten terricolen Flechte. Herzogia 9: 321–337.
- Ertz, D., Miądlikowska, J., Lutzoni, F., Dessein, S., Raspe, O., Vigneron, N., Hofstetter, V. & Diederich, P. (2009) Towards a new classification of the *Arthoniales* (Ascomycota) based on a three-gene phylogeny focusing on the genus *Opegrapha*. *Mycological Research* **113**: 141–152.
- Eschweiler, F. G. (1824) Systema Lichenum, Genera Exhibens Rite Distincta, Pluribus Novis Adaucta. Nürnberg: J. L. Schrag.
- Felsenstein, J. (1985) Confidence-limits on phylogenies – an approach using the bootstrap. *Evolution* 39: 783–791.
- Geiser, D. M., Gueidan, C., Miądlikowska, J., Lutzoni, F., Kauff, F., Hofstetter, V., Fraker, E., Schoch, C. L., Tibell, L., Untereiner, W. A. et al. (2006) Euro-

tiomycetes: Eurotiomycetidae and Chaetothyriomycetidae. *Mycologia* **98:** 1053–1064.

- Grube, M. (1998) Classification and phylogeny in the Arthoniales (lichenized ascomycetes). Bryologist 101: 377–391.
- Grube, M. & Hawksworth, D. L. (2007) Trouble with lichen: the re-evaluation and re-interpretation of thallus form and fruit body types in the molecular era. *Mycological Research* 111: 1116–1132.
- Grube, M., Baloch, E. & Lumbsch, H. T. (2004) The phylogeny of *Porinaceae* (Ostropomycetidae) suggests a neotenic origin of perithecia in Lecanoromycetes. *Mycological Research* 108: 1111–1118.
- Hansen, K. & Pfister, D. H. (2006) Systematics of the Pezizomycetes – the operculate discomycetes. *Mycologia* 98: 1029–1040.
- Harris, R. C. (1995) *More Florida Lichens*. New York: Privately published.
- Hawksworth, D. L. & LaGreca, S. (2007) New bottles for old wine: fruit body types, phylogeny, and classification. *Mycological Research* 111: 999–1000.
- Henssen, A. & Jahns, H. M. (1974) Lichenes. Eine Einführung in die Flechtenkunde. Stuttgart: Georg Thieme Verlag.
- Henssen, A. & Thor, G. (1994) Developmental morphology of the "Zwischengruppe" between Ascohymemiales and Ascoloculares. In Ascomycete Systematics. Problems and Perspectives in the Nineties (D. L. Hawksworth, ed.): 43–56. NATO Advanced Science Institutes Series. New York: Plenum Press.
- Huelsenbeck, J. P. & Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. *Bioinformatics* 17: 754–755.
- Kauff, F. & Lutzoni, F. (2002) Phylogeny of the Gyalectales and Ostropales (Ascomycota, Fungi): among and within order relationships based on nuclear ribosomal RNA small and large subunits. Molecular Phylogenetics and Evolution 25: 138–156.
- Lücking, R., Huhndorf, S., Pfister, D. H., Plata, E. R. & Lumbsch, H. T. (2009) Fungi evolved right on track. *Mycologia* 101: 810–822.
- Lücking, R., Rivas Plata, E., Mangold, A., Sipman, H. J. M., Aptroot, A., González, R. M., Kalb, K., Chaves, J. L., Ventura, N. & Esquivel, R. E. (2011) Natural history of Nash's Pore Lichens, *Trinathotrema* (Ascomycota: *Ostropales: Stictidaceae*). *Bibliotheca Lichenologica* **106**: 187–210.
- Lumbsch, H. T. (2000) Phylogeny of filamentous ascomycetes. Naturwissenschaften 87: 335–342.
- Lumbsch, H. T. & Huhndorf, S. M. (2007) Whatever happened to the pyrenomycetes and loculoascomycetes? *Mycological Research* 111: 1064–1074.
- Lumbsch, H. T., Schmitt, I. & Messuti, M. I. (2001) Utility of nuclear SSU and LSU rDNA data sets to discover the ordinal placement of the *Coccotremataceae* (Ascomycota). *Organisms, Diversity & Evolution* 1: 99–112.
- Lumbsch, H. T., Schmitt, I., Barker, D. & Pagel, M. (2006) Evolution of micromorphological and chemical characters in the lichen-forming fungal family *Pertusariaceae. Biological Journal of the Linnean Society* 89: 615–626.

- Lumbsch, H. T., Schmitt, I., Lücking, R., Wiklund, E. & Wedin, M. (2007) The phylogenetic placement of Ostropales within Lecanoromycetes (Ascomycota) revisited. *Mycological Research* 111: 257–267.
- Luttrell, E. S. (1951) Taxonomy of the Pyrenomycetes. University of Missouri Studies 24: 1–120.
- Mangold, A., Martin, M. P., Lücking, R. & Lumbsch, H. T. (2008) Molecular phylogeny suggests synonymy of *Thelotremataceae* within *Graphidaceae* (Ascomycota: Ostropales). Taxon 57: 476–486.
- Matheny, P. B., Liu, Y. J., Ammirati, J. F. & Hall, B. D. (2002) Using RPB1 and RPB2 nucleotide sequences (*Inocybe*; Agaricales). American Journal of Botany 89: 688–698.
- Nannfeldt, J. A. (1932) Studien über die Morphologie und Systematik der nicht-lichenisierten inoperculaten Discomyceten. Nova Acta Regiae Societatis Upsaliensis 8: 1–368.
- Nylander, J. A. A., Wilgenbusch, J. C., Warren, D. L. & Swofford, D. L. (2007) AWTY (Are We There Yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. *Bioinformatics* 24: 581–583.
- O'Donnell, K., Cigelnik, E., Weber, N. S. & Trappe, J. M. (1997) Phylogenetic relationships among ascomycetous truffles and the true and false morels inferred from 18S and 28S ribosomal DNA sequence analysis. *Mycologia* 89: 48–65.
- Page, R. D. M. (1996) Treeview: an application to display phylogenetic trees on personal computers. *Computer Applied Biosciences* 12: 357–358.
- Posada, D. (2008) jModelTest: phylogenetic model averaging. *Molecular Biology and Evolution* 25: 1253– 1256.
- Rabenhorst, L. (1861) Fasciculus XXI. In Lichenes Europaei Exsiccati. Die Flechten Europa's unter Mitwirkung mehrerer nahmhafter Botaniker gesammelt und herausgeben von Dr. L. Rabenhorst. Neustadt-Dresden: Privately published.
- Rivas Plata, E., Lücking, R. & Lumbsch, H. T. (2012) A new classification for the family *Graphidaceae* (Ascomycota: Lecanoromycetes: Ostropales). Fungal Diversity 52: 107–121.
- Rivas Plata, E., Parnmen, S., Staiger, B., Mangold, A., Frisch, A., Weerakoon, G., Hernández, J. E., Cáceres, M. E. S., Kalb, K., Sipman, H. J. M., et al. (2013) A molecular phylogeny of *Graphidaceae* (Ascomycota: Lecanoromycetes: Ostropales) including 428 species. MycoKeys 6: 55–94.
- Roux, C. & Sérusiaux, E. (2004) Le genre Strigula (Lichens) en Europe et en Macaronésie. Bibliotheca Lichenologica 90: 1–96.
- Santesson, R. (1952) Foliicolous Lichens I. A revision of the taxonomy of the obligately foliicolous, lichenized fungi. Symbolae Botanicae Upsalienses 12(1): 1–590.

- Schmitt, I., Mueller, G. & Lumbsch, H. T. (2005) Ascoma morphology is homoplaseous and phylogenetically misleading in some pyrenocarpous lichens. *Mycologia* 97: 362–374.
- Schmitt, I., Yamamoto, Y. & Lumbsch, H. T. (2006) Phylogeny of *Pertusariales* (Ascomycotina): resurrection of *Ochrolechiaceae* and new circumscription of *Megasporaceae. Journal of the Hattori Botanical Laboratory* 75: 753–764.
- Schmitt, I., del Prado, R., Grube, M. & Lumbsch, H. T. (2009) Repeated evolution of closed fruiting bodies is linked to ascoma development in the largest group of lichenized fungi (Lecanoromycetes, Ascomycota). *Molecular Phylogenetics and Evolution* 52: 34–44.
- Schmitt, I., Fankhauser, J. D., Sweeney, K., Spribille, T., Kalb, K. & Lumbsch, H. T. (2010) Gyalectoid *Pertusaria* species form a sister-clade to *Coccotrema* (Ostropomycetidae, Ascomycota). *Mycology* 1: 75– 83.
- Schoch, C. L., Sung, G. H., Lopez-Giraldez, F., Townsend, J. P., Miądlikowska, J., Hofstetter, V., Robbertse, B., Matheny, P. B., Kauff, F., Wang, Z., et al. (2009) The Ascomycota Tree of Life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Systematic Biology 58: 224–239.
- Stamatakis, A. (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. *Bioinformatics* 22: 2688–2690.
- Stiller, J. W. & Hall, B. D. (1997) The origin of red algae: implications for plastid evolution. *Proceedings* of the National Academy of Sciences of the United States of America 94: 4520–4525.
- Stizenberger, E. (1882) Lichenes helvetici eorumque stationes et distributio. Addenda, Corrigenda, II, Introductio. Bericht über die Thätigkeit der St. Gallischen naturwissenschaftlichen Gesellschaft 1880–1881: 255–522.
- Swinscow, T. D. V. (1967) Pyrenocarpous lichens: 12. The genus Geisleria Nitschke. Lichenologist 3: 418– 422.
- Vilgalys, R. & Hester, M. (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several *Cryptococcus* species. *Journal of Bacteriology* 172: 4238–4246.
- Zahlbruckner, A. (1907) Lichenes (Flechten). Spezieller Teil. In *Die Natürlichen Pflanzenfamilien* (A. Engler & K. Prantl, eds): 61–263. Leipzig: Wilhelm Engelmann.
- Zoller, S., Scheidegger, C. & Sperisen, C. (1999) PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of lichen-forming ascomycetes. *Lichenologist* 31: 511–516.