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We consider the classical coupon collector’s problem in which each new coupon
collected is type i with probability pi;

P
i¼1
n pi¼1. We derive some formulas

concerning N, the number of coupons needed to have a complete set of at least
one of each type, that are computationally useful when n is not too large. We also
present efficient simulation procedures for determining P(N . k), as well as
analytic bounds for this probability.

1. INTRODUCTION

Consider the coupon collector’s problem in which there are n types of coupons and
each new one collected is, independently of the past, a type j coupon with probability
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pj;
P

j¼1
n pj¼1. Let N denote the minimum number of coupons one must collect to

obtain a complete set of at least one of each type. Also, let L denote the last type
to be collected. In Section 2 we derive some formulas, some of which are well
known, concerning the distribution of N. These formulas typically involve sums of
2n terms and so are only of practical use when n is moderately small. We then consider
simulation techniques for when n is large. In Section 3 we present some efficient
simulation techniques for estimating tail probabilities P(N . k). Analytic bounds
for P(N . k) are also given in Sections 2 and 3. In Section 4 we propose a Markov
chain Monte Carlo method for estimating the conditional tail distribution given the
value of L. Many authors have studied various aspects of the coupon collector’s
problem. See [1] and the references cited there for additional work in this area.

2. SOME DERIVATIONS

Let Bj denote the set of all n
j

� �
subsets of size j of f1, . . . , ng. Also, for a ,f1, . . . ,

ng, let

pa ¼
X
j[a

pj, qa ¼ 1� pa:

PROPOSITION 1: Let N be the number of coupons needed for a complete set, let L the
last type to be collected before a complete set is obtained, and let Xj be the number of
type j coupons among the N collected.

(a) P(N . k) ¼
Pn
j¼1

(� 1) j�1 P
a[Bj

qk
a;

(b) P(N ¼ k) ¼
Pn
j¼1

(� 1) j�1 P
a[Bj

qk�1
a pa;

(c) E[sN] ¼
Pn
j¼1

(� 1) j�1 P
a[Bj

pas

1� qas
; s , min (1=qi);

(d) E[N(N � 1) � � � (N � r þ 1)] ¼ r!
Pn
j¼1

(� 1) j�1 P
a[Bj

qr�1
a

pr
a

;

(e) P(L ¼ j) ¼
ð1

0
pje�pjx

Q
r=j

(1� e�prx) dx;

(f) P(N ¼ k; L ¼ j) ¼ pj
P

a,{1;...; j�1; jþ1;...;n}
(� 1)jaj�1[qk�1

j � (qj � pa)k�1];

(g) P(Xi ¼ k) ¼
P
j=i

ð1

0
pje�pjxe�pix (pix)k

k!

Q
r=i; j

(1� e�prx) dx, k . 1;

(h) P(Xi ¼ 1) ¼ P(L ¼ i)þ
P
j=i

ð1

0
pje�pjxe�pixpix

Q
r=i; j

(1� e�prx) dx.

PROOF: Part (a) follows from the inclusion–exclusion theorem upon setting Ai equal
to the event that there are no type i coupons among the first k collected and using
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P(N . k)¼P(<iAi). Part (b) follows from (a) upon using that P(N ¼ k) ¼ P(N .

k21)2P(N . k). Part (c) follows from

E[sN] ¼
X1
k¼1

skP(N ¼ k)

¼
Xn

j¼1

(� 1) j�1
X
a[Bj

X1
k¼1

skqk�1
a pa

¼
Xn

j¼1

(� 1) j�1
X
a[Bj

pas

1� qas
, s , min (1=qi):

To prove (d), use (c) along with the identity

E[N(N � 1) � � � (N � r þ 1)] ¼ dr

dsr
E[sN]js¼1:

To prove (e), we make use of the standard Poissonization trick that supposes that
coupons are collected at times distributed according to a Poisson process with rate
1, which results in the collection times of type i coupons being independent
Poisson processes with respective rates pi, i ¼ 1,. . .n. Thus, if Ti denotes the first
time a type i is collected, then Ti, i ¼ 1, . . . n, are independent exponentials with
rates pi, yielding

P(L ¼ j) ¼ P(Tj ¼ max
i

Ti)

¼
ð1

0
pje
�pjx

Y
r=j

(1� e�prx) dx:

For (f), use that

P(N ¼ k; L ¼ j) ¼ qk�1
j pjP(N�j � k � 1),

where N2j is the number needed to collect a full set when each new one is one of the
types i, i=j, with probability pj/qi. Now, use part (b).

For (g) and (h), use that for i = j,

P(Xi ¼ k; L ¼ j) ¼
X
j=i

ð1

0
pje
�pjxe�pix (pix)k

k!

Y
r=i, j

(1� e�prx) dx:
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Then use

P(Xi ¼ k) ¼
X
j=i

P(Xi ¼ k:L ¼ j), k . 1,

P(Xi ¼ 1) ¼ P(L ¼ i)þ
X
j=i

P(Xi ¼ 1, L ¼ j):

B

PROPOSITION 2: With l¼
P

i qi
k,

max max
i

qk
i , l�

X
i<j

qk
{i; j},

l2

lþ
P

j

P
i=j qk

{i, j}

 !
� P(N . k) � l

PROOF: The first term on the left-hand side inequality follows because the probability
of a union is at least as large as the probability of any event of the union, the second is
from the inclusion–exclusion inequalities, and the third is the conditional expectation
inequality (see [3]). The right-hand side is the first inclusion–exclusion inequality
(e.g., Boole’s inequality).

Remark 3: Because the events Ai and Aj, j=i, are negatively correlated, and so
qfi,jg�qi qj, it is easy to see, when l¼

P
i qi

k,1, that

l�
X
i,j

qk
{i,j} �

l2

lþ
P

j

P
i=j qk

{i,j}

:

Additional bounds on P(N.k) are given in the next section. B

3. SIMULATION ESTIMATION OF P (N > k)

To efficiently use simulation to estimate P(N . k), imagine that coupons are collected
at times distributed according to a Poisson process with rate 1. Start by simulating
Ti, i¼1, . . . ,n, where Ti is exponential with rate pi and represents the time when
coupon i is first collected. Now, order them so that

TI1 , TI2 , � � � , TIn :

We next present our first estimator.
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PROPOSITION 4: The estimator

EST1 ¼ P(N . kjI1, . . . , In) ¼
Xn�1

i¼1

(1� ai)
k�1
Y
j=i

aj

aj � ai
,

where aj ¼ qfI1,. . .Ijg, j ¼ 1, . . . , n21, is unbiased for P(N . k).

PROOF: To evaluate this conditional probability, note first that conditional on I1, . . . ,
In, N is distributed as the sum of 1 plus n21 independent geometric random variables
with respective parameters qfI1,. . . , Ijg, j ¼ 1, . . . , n21. Now use the following prop-
osition, which can be found in Diaconis and Fill [2]. (For a simple proof of this result,
Ross and Peköz [3].)

Proposition 5: If X1, . . . , Xr are independent geometric random variables with par-
ameters a1, . . . , ar, where ai=aj if i=j, then, for k�r21,

P(X1 þ � � � þ Xr . k) ¼
Xr

i¼1

(1� ai)
k
Y
j=i

aj

aj � ai
:

The preceding also yield additional analytic bounds on P(N . k).

COROLLARY 6: Suppose p1�p2�. . . �pn. Then

Xn�1

i¼1

(1� ci)
k�1
Y
j=i

cj

cj � ci
� P(N . k) �

Xn�1

i¼1

(1� di)
k�1
Y
j=i

dj

dj � di
,

where cj ¼ q1,2,. . ., j, dj ¼ qn, n21,. . . , n2jþ1, and j ¼ 1, . . . , n21.

PROOF: Using the assumed monotonicity of the pj, it follows from the proof of
Proposition 4 that N is stochastically larger than 1 plus the sum of n21 independent
geometrics with parameters q1,. . . , j, j ¼ 1, . . . , n21, and is stochastically smaller
than 1 plus the sum of n21 independent geometrics with parameters qn,. . .,n2jþ1,
j ¼ 1,. . . , n21.

Next is our second estimator. B

PROPOSITION 7: The estimator

EST2 ¼ P(N . kjT1, . . . ,Tn) ¼ 1�
Xk�n

i¼0

e�lli=i!,
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where

l ¼
Xn

j¼1

pIj (TIn � TIj )

is unbiased for P(N . k).

PROOF: Note that N, conditional on T1, . . . , Tn, is distributed as n plus a Poisson
random variable with mean

P
j¼1
n pIj

(TIn
2TIj

). The idea being that the first type Ij

coupon was collected at time TIj
and so the additional number collected until time

TIn
is Poisson with mean pIj

(TIn
2TIj

). B

Remark 8: Although the conditional variance formula implies that our second
estimator has a larger variance than does our first estimator its computation—
requiring only a Poisson tail probability—is simpler than the computation of
the tail probability of the convolution of geometrics that is required by the first
estimator.

REMARK 9: The preceding gives a very efficient way of simulating Ni. i Ti, order them,
then generate a Poisson random variable P with mean

P
j¼1
n pIj

(TIn
2TIj

), and set
N ¼ n þ P.

EXAMPLE 10: Suppose pi¼i/55, i¼1, . . . ,10, and that we want to estimate P(N .

200). Then based on 105 simulation runs for both, the first estimator produced a
sample mean of 0.0260 with a sample variance of 0.0006, whereas the second esti-
mator produced a sample mean of 0.0262 with a sample variance of 0.022. In
addition, the running time of the first method was not significantly greater than
that of the second. Thus, for these input, the second estimator is only marginally
better than the raw simulation estimator whose variance is approximately
0.026(0.974) � 0.025.

Both of the preceding simulation approaches yield estimates of P(N . k) for
every value of k. However, if we only want to evaluate P(N . k) for a specified
value of k, then we have another competitive approach when k is such that P(N .

k) is small. It is based on the following identity. (For a proof, see [3].)

PROPOSITION 11: For events A1, . . . , An, let W¼
P

i¼1
n I fAig and set l¼E [W ]. Then

P(W . 0) ¼ lE
1
W
jAI

� �
,

where I is independent of the events A1, . . . , An and is equally likely to be any of the
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values 1, . . . , n.
Next is the estimator.

PROPOSITION 12: Let the random variable X have mass function

PðX ¼ jÞ ¼
qk

jPn
j¼1 qk

j

, j ¼ 1, . . . , n,

and let (N1, . . . , Nn)jX¼j be multinomial with k trials and n type outcomes with type
probability 0 for Nj and pi/qj, i=j for Ni. Then the estimator

EST3 ¼
Xn

i¼1

qk
i =
Xn

i¼1

I{Ni ¼ 0}

is unbiased for P(N . k).

PROOF: Let Ni represent the number of type i coupons among the first k selected, and
let Ai¼fNi¼0g. Thus, P(N . k) ¼ P(W . 0), where W¼

P
i¼1
n IfAig. Then note that

if I is equally likely to be any of the values 1, . . ., n, we have

P(I ¼ jjAI ) ¼
P(Aj)P
i P(Ai)

¼
qk

jP
i qk

i

:

Then apply the preceding proposition. B

Remarks

† Because EST3 is largest when W ¼
P

i¼1
n IfNi ¼ 0g ¼ 1, it is always between

zero and l ¼
P

i¼1
n qi

k and so should have small variance when l is small (see
Example 13).

† To generate Ni, i=j, conditional on Nj ¼ 0, generate a multinomial with k
trials and n21 type outcomes, with type probabilities pi/qj, i=j. (One way
is to generate them sequentially, using that the conditional distribution at
each step is binomial.) Then set W equal to 1 plus the number of components
of the generated multinomial that are equal to zero.

† EST3 can be improved by adding a stratified sampling component; that is, if
you plan to do m simulation runs, rather than generate X for each run, just arbi-
trarily set X¼j in mP (X ¼ j) of the runs. This will always result in an estimator
with smaller variance.

† The conditional expectation inequality used in Proposition 2 is obtained by
applying Jensen’s inequality to the result of Proposition 11. This yields

P(W . 0) � l

E[W jAI]
:
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Using that W jAi�st 1 þ W, the preceding—along with Boole’s inequality—
implies that

l

1þ l
� P(N . k) � l:

Example 13: Suppose pi¼i/55, i¼1, . . . , 10, and that we want to estimate P(N . k),
k ¼ 50, 100, 150, 200. Below are the data showing the mean, the variance of the raw
estimator, and the variance of estimator 3.

k 50 100 150 200

P(N . k) 0.54 0.18 0.07 0.03
Var raw 0.25 0.15 0.06 0.03
Var EST3 0.026 0.00033 0.000009 0.00000016

Thus, for these inputs, the third estimator is much better than the raw simulation esti-
mator and the other two estimators.

4. USING SIMULATION TO ESTIMATE P(N > kjL 5 j)

Suppose now that we want to estimate P(N . kjL ¼ j). Again, let Ti, i ¼ 1, . . . , n, be
independent exponentials with rates pi and again define In so that

TI1 , TI2 , � � � , TIn :

Given the ordering of the Ti, we can utilize either of the first two methods of the
preceding section to get unbiased estimates. This is summarized by the following
proposition.

PROPOSITION 14:

P(N . kjL ¼ j) ¼ E[EST1jTj ¼ max
i

Ti] ¼ E[EST2jTj ¼ max
i

Ti]:

Thus, we need to be able to generate the Ti conditional on the event that Tj ¼ maxi Ti.
To do this, we recommend a Gibb’s sampler approach, leading to the following
procedure.

1. Start with arbitrary positive values of T1, . . . , Tn, subject to the condition that
the value assigned to Tj is the largest.

2. Let J be equally likely to be any of the values 1, . . . , n.
3. If J ¼ k = j, generate an exponential random variable with rate pk con-

ditioned to be less than tj and let it be the new value of Tk.
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4. If J ¼ j, generate an exponential with rate pj, add it to maxi=j Ti, and take that
as the new value of Tj.

5. Use these values of Ti to obtain an estimate of EST1 or EST2.
6. Return to Step 2.
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