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INTEGRAL FUNCTIONALS UNDER
THE EXCURSION MEASURE
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Abstract

A new approach to the problem of finding the distribution of integral functionals under
the excursion measure is presented. It is based on the technique of excursion straddling a
time, stochastic analysis, and calculus on local time, and it is done for Brownian motion
with drift reflecting at 0, and under some additional assumptions for some class of It6
diffusions. The new method is an alternative to the classical potential-theoretic approach
and gives new specific formulas for distributions under the excursion measure.
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1. Introduction

Excursion theory of Markov processes, started originally from ideas of Itd [10], has pro-
vided a clever distributional description of paths for some regular Markov processes through
dividing the trajectories into independent random fragments (excursions), considered then to
be the values of the associated (possibly Poisson) point process. So the process is fragmented,
moved to the path space, and considered under some specific measure called the excursion
measure. Such a presentation can be realized by parametrization in terms of the local time, and
this concept is well known and developed in the books of Itd and McKean [11], Rogers and
Williams [21], or Revuz and Yor [20]. For a comprehensive lecture on this topic we recommend
Blumenthal’s book [2].

A study on excursion theory for linear diffusions and a case study of the Ornstein—
Uhlenbeck process were presented in [22]. Excursion theory can be successfully applied to
studies on functionals of Brownian motion and Bessel processes, and it was the subject of
extensive work by Pitman and Yor [16, 17, 18, 19]. In particular, excursion theory for a
Brownian motion is used in [5] for pricing Parisian barrier options.

The goal of this work is to present a new approach to the problem of finding the distribution
of integral functionals under the excursion measure. Originally, [16, Section 3] considered the
excursion measure for O-diffusions (regular diffusions with state space [0, co) and 0 being an
absorbing boundary). They assumed that O is attained from any point of the state space with
positive probability and that it is an exit point. They showed that the coordinate process under
the excursion measure P is Markov with transition probabilities p; of the original process and
entrance law given by
pi(x, 2m(dz)

P(X; € dz) =lim
x|0 s(x)
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where m is a speed measure and s is a scale function. Following [16, (3a)], for A measurable
with respect to the element of filtration generated by a coordinate process and away from
neighborhoods of the trajectory identically equal zero, we may write

P(A) =1lim X(A) (1)

x}0 s( )’

where the limit is in the sense of weak convergence, and on the right-hand side P, denotes
the distribution on the canonical space of 0-diffusion started at x and killed at the first hitting
time of 0. To describe the measure P , Pitman and Yor used the auxiliary process arising as a
0-diffusion conditioned never to hit 0. Their approach is based on the theory of semi-groups
and inspired by ideas of Doob [6] for Brownian motion and the results of [t6—-McKean [11,
Section 6.2].

Since [16] did not discuss the choice of scale function s, we think that some comment on
this is needed. Following the description in [22], for each x € E the measure P, is given and
associated with X starting from x. By (1), the measure P depends on the choice of s. The last
in turn is usually defined up to a multiplicative constant (see [20, Chapter VII, Proposition
3.2]). In our approach we use local time normalized by the occupation time formula and local
time normalized by the Tanaka formula. It is well known that both local times differ by a
multiplicative constant ¢* (see [2, Chapter III, 3(c)]). Both local times meet in the master
formula, so the multiplicative constant ¢* determines P and thus, by (1), it determines s. The
circle closes. For this reason P is determined either by the choice of s or by the choice of
normalizing constant of local time (see also the discussion at the end of Section 2).

We divide our presentation into two parts. The first concerns a Brownian motion with drift,
reflecting at 0; the second, under some additional assumptions, concerns two classes of Ité
diffusions. The first class corresponds (at least to some extent) to the O-diffusion studied by
Pitman and Yor, while considering the second class we relax the assumption on X to be non-
negative, and thus go beyond the setup of Pitman and Yor. However, for the second class we
need some additional assumptions on the diffusion’s coefficients.

Our new approach is based on the technique of excursion straddling a time, the distributional
Lévy’s theorem, and calculus on local time. The technique of local time is inspired by Peskir’s
brilliant method of solution of the Stroock—Williams equation [14]. We obtain new formulas
describing the distribution of specific integral functionals under the excursion measure. We
present the absolute-continuity relationship between excursion measures for processes which
are local martingales. It turns out that for two different excursion measures P and Q associated
with two reflected at 0 Markov processes on [0, o0) which are local martingales, if m, mh
denote the densities with respect to the Lebesgue measure of their speed measures, respectively,
then for any b > 0 and X denoting the coordinate process killed at R we have

. op AR . . . op AR . .
C; P( /0 fXma(Xy) dS> = CT Q(/O f(Xy)m(Xy) ds) )

where c7, ¢3 are constants, o}, denotes the first hitting time of b, and f is a given non-negative,
measurable function.

2. Preliminaries

Let X be a diffusion on C(E, £), the canonical space of all continuous functions on E with
an associated o-field of Borel subsets of E. Xo=x almost surely (a.s.) under P,, and we
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denote by P:=Pg the measure under which Xy =0 a.s. The filtration (.th )i=0 generated by
X is augmented to satisfy the usual conditions. By 6 we denote the shift operator. We assume
that the state space E of the process X is a subset of the real line, and that O € E in the sense
that X attains O during the lifetime with a positive probability. If the diffusion is recurrent we
may follow the description of Revuz and Yor [20, Chapter XII] for excursions of recurrent
processes. Otherwise we may follow the more general approach of [2].

Let U be the subspace of the canonical space consisting of functions u : E — R such that
u(0) =0, R(u) = inf{r > 0 : u(r) = 0}, and u(¢) = O for all # > R(u). If the process is transient, R
may be infinite. Set ¢/ to be the o-algebra generated by the coordinate mappings. Let § = 0. By
U® we denote the space U U {8}, and U° = o (U, {8}). If the process is recurrent, an associated
point process is a Poisson point process (PPP) (e5)s~0. The excursion measure on the path
space (a subspace of the canonical space) will be denoted P after [2, Chapter III, Theorem
3.24]. It is well known [20, Chapter XII, Theorem 4.1] that the coordinate process restricted
to (0, R) is, under P , a homogeneous strong Markov process with a transition semi-group of a
process killed at 0 and an entrance law given by

n:(dy) = gyo(Hm(dy), 1>0,

where g, denotes the density of the first hitting time of O under Py, and m is the speed mea-
sure of the original Markov process (see [22, Theorem 2]). For example, the entrance law of
Brownian motion with non-negative drift s (with speed measure given by m(dy) = 2e**'dy) is
given on (0, co) by

y o _owm? 5 2 _o-u?
dy) = e 2 2eMdy=y,/—e 2 dy,
n:(dy) N Y=/ 3 y

(see [3, pp. 127, 295]). It is also well known that the distribution of R under P is given on R4
by /ls(R >1)= fooo gyo(H)m(dy). Define o = inf {t: X; = 0} and assume that 0 is regular in the
sense that P(cg =0) = 1. By L@ (X) we denote the local time of X at a € E, normalized in line
with the setup of excursion theory, that is,

t
/ h(Xy) ds = / ha)L® Om(da),
0 E

for any non-negative measurable function % (see [22, Section 1(v)]). We denote L(X):=
LO(X). In all considerations below, p;(-, -) denotes a transition density with respect to the
speed measure m. In particular, it is well known that

t

E(L(X)) = /O Pu(0, 0) du (@)

[3, Chapter II, Section 2(d)]. Since we will use the Tanaka formula we need to adjust a
normalizing constant. Namely, if

d|X;| = sgn(X,)dX; + dLj (X), 3)

then it is well known that there exists a strictly positive constant ¢* such that L*(X) = ¢*L(X).
The notation ¢* will be reserved explicitly for this constant. Below, it will be called a local
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time constant. If X is a standard Brownian motion, then ¢* = % In particular, the formula for
¢* follows from (2) and (3):

t t -1
= (E(IXzI —/ sgn(Xs) dXs>>(/ pu(0, 0) du) ,
0 0

where ¢ > 0, and it follows that the right-hand side of the last formula does not depend on .

Let us sum up the problem of normalization of local time. If s is given then the speed
measure is affected by this choice to preserve %% = A (and A denotes the generator of a
diffusion). Since for any Borel A we have P,(X; € A) = f 4 Pr(x, 2m(dz), it is clear that the last
choice affects p, and, by the identity E.(L;) = fot pu(x, 0) du, it determines the normalizing
constant of local time L. So, if we set L to satisfy (2), then we define a local time constant ¢*
by L*(X) = c¢*L(X).

3. Brownian motion with drift reflecting at 0

Let (B;) be a Brownian motion considered on C([0, 0o), B3), the canonical space of all con-
tinuous functions on [0, 00). Let X; = B; 4+ ut, u > 0. If © = 0 the process is recurrent. If & > 0
it is well known that under P, the process X is a transient diffusion, and for any x > 0 we have
P.(op <00) = e~ 21X This implies that the total local time at O of the process X, i.e. Loo(X), is
finite a.s., and the associated point process of excursions cannot be Poisson (see [2, Chapter
I, Section (g)]). However, the setup for the excursion path space (U, If) for the non-recurrent
case is, except for the fact that R can now be infinite, the same as in the recurrent one. It
turns out that the effective substitute of the PPP is obtained in this case by considering the
conditional probability given {t; < oo}, where (7;) denotes the inverse of the local time L(X),
ie. iy =inf{s > 0: Ly(X) >t} (obviously t,— =inf{s > 0: Ly(X) > ¢}). Thus, the fundamental
excursion formula [2, Chapter III, (3.27)] and the Markov property under the excursion mea-
sure remain valid (see [2, Chapter III, Section (g)]). In case the process is transient, the natural
decomposition of the excursion measure is

PiA)=PAN{R=00}), Pr(A)=PAN{R<o0}), AeBR,).

If > 0 and Py(z, x, A) denotes the transition function of the Brownian motion with drift p
killed at O, then it is well known that for the entrance law {n;, t > 0} and A(x) = P,(0p = 00),
the coordinate process (X;, r > 0) under the measure P isa homogeneous Markov process
with transition function Q,1 (x, dz) = Py(t, x, A(z)dz)/ A(x) and entrance law A(z)n,(dz) (see [2,
Chapter III, Theorem 3.29]). Relative to P, the coordinate process is a time-homogeneous
Markov process with transition function Q%(x, dz) = Po(t, x, (1 — A(z))dz)/(1 — A(x)) and
entrance law (1 — A(z))n:(dz).

Consider now functionals of Brownian motion with drift reflecting at 0. Since we consider
excursions from 0 we will assume that the process starts from 0. It is well known that such a
process is realized by |X|, where X is a strong solution of the stochastic differential equation

dXI = dB[ + 123 Sgn(Xt)dtv XO = 0’ (4)

and B is a standard Brownian motion (see [13]). We will consider functionals of |X| under the
excursion measure of X denoted by P. We will see in Remark 3.2 that there is a simple relation
between the excursion measures for X and |X|. If u = 0 then X = B. Recall the distributional
Lévy’s theorem

law

(S =B, S)=0 = (IBl, L*(B))r=0,
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(see [20, Chapter VI, Theorem 2.3]). We will use the distributional Lévy’s theorem given by
Graversen and Shiryaev [9, Theorem 1] and extended by Peskir [13]. We have

law

(S0 — B0 S0y oY (X)L (X))o, )

where B is a standard Brownian motion, Bg_”) By — pt, S( "= = sup, By, and L* is a
local time compatible with the Tanaka formula. We will further assume that ;o > 0

We will now present a description of the integral functionals of reflecting Brownian motion
with non-negative drift under the excursion measure /I;, and for u > 0 under the restricted
measures ’131 and 152. Let o, = inf{r > 0: X; =z}, z > 0. For a non-negative, Borel function f on
[0, 00), A > 0, and x > 0, define

W0 = Eww<%/mﬂww®) ©)

Notice that the generator of |X| is Af = ;jxf; + ,u ,x>0,and Af(0)= 2f”(O) + 1 f'(0).

The domain of A is {f: f, Af € Cp[0, 00), f(0 + ) =0}, where Cy(E) is a set of continuous
and bounded functions on E (see [3, p. 129]). Thus, by considering the classical Dirichlet
problem on a finite interval we find that whenever h;“ ; € C%(0, 00) and f is locally integrable

then h(klf; solves

1 d2u(x) du(x)
2 da?

= M ()u(x), x € (0, 00),

u(0) = 1.

Definition. [Hypothesis A] We say that a non-negative Borel function f on [0, co) satisfies
hypothesis A if

1. fis locally integrable,

2. the function hE\M f) is C2(0, 0o) and has the first right-hand side derivative in 0,
3. (h(“ )y )’ is locally bounded.

By the above arguments h(”) is C2(0, 00), so to have hypothesis A we need to verify that

- } has the first right-hand side derlvatlve in 0 and (h(” ))’ is locally bounded. Recall that |X] is
reﬂectmg (at 0) Brownian motion with drift x, and A is ﬁxed We have the following result.

Proposition 3.1. Let f be a non-negative Borel function on [0, co). If
o0
/ e f(y)m(dy) < oo
0
then hgf‘ ) given by (6) has the first right-hand side derivative in 0 and (h(“ ))’ is locally bounded
on [0, oo)

Proof. Clearly x — h( (x) is bounded, so the assertion is true on [§, co) for any fixed § > 0.
Thus it is enough to prove the proposition in (0, §). For x small and positive we have

h(ﬂ)(x) -1

X

Ao [
~——&/‘ﬂ&mx )
X 0
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Observe that, by monotone convergence,
o)) OONT;
Ex/ f(Xy)ds= lim Ex/ J(Xs) ds.
0 oo 0

Since s(y) = (1 —e~2*)/y is a scale function of |X| (see [3, p- 129]), we have, from [20,
Chapter VII, Corollary 3.8],

oL 1 YaYes [ee]
lim E, f U ) ds = 20 s0) / e~ f(y)m(dy).
oo Jo 0

We finish the proof by taking x — 0 in (7). O
We define the integral functional
R(u)

Alu) = | S ds.

where f is some given non-negative, Borel function on [0, co). Obviously, in the above setup
U A";(u) is measurable. The integral functional of f(|X]) will be denoted in the same manner
by A, that is, for any 7> 0,

t
A,f:/ FUXs]) ds, AL, = lim AL
0 t—00
For t > 0 we denote by g; the last 0 of X before the moment ¢, that is, g, =sup{s <t¢: X; =

0}. Since +> g; is non-decreasing, there exists a limit g = lim,_, o, g;, and since X may be
transient, g may be finite a.s.

Theorem 3.1. Under hypothesis A,

~ ol

P(1—e k) = —c*(h"))(0), )
where ¢* is a local time constant. Moreover, for i > 0,

[ — e ]

—~ : Ele

Pi(1— ef)LAjl; — _C*(h(ﬂ))/(o) . (9)
i ) rf E[l—e*“‘fm]

~ E[1 - e M

Py(1 - e—M’;) = _c*(hyf;)/(O)E[ e ] (10)

[1—e %]

Proof. Fix t > 0. Let d; = inf{s > ¢ : X; = 0}. Note that we have d; =t + o o 0;. For fixed
t> 0 and A > 0, we write the integral E fod’ et fgf(|XV‘)de(|Xs|) ds in terms of excursions of
X. Recall that L(X) is the process of the local time of X at 0, and 7, = inf{s : Ly(X) > ¢} is its
inverse. Both processes are used to parametrize excursions of X from the point 0. We have

v d
E(1 —e ™) =AE/ e*“{‘f(|xu|)du (11)
0
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s -
=E > / e M Jo FIXDIE(|x, ) dr

T <t Ts—

= (7
=iE ) e M e Muf(1X, ) du ) o 0,
0

T, <t

=E Z e_mér— (1 — efM{’O) 00y, .

T <t
The excursion formula [2, Chapter 11, (3.27)] applied to the last expression yields
o ! 7 —~
E(l —e Ma) = (E / e M dLS(X)>P(1 — e M), (12)
0
Recall that regardless of whether the process is recurrent or transient, there exists a o -finite

measure P on the excursion path space U such that (12) holds (see [2, Chapter III, Section
A
(2)]).- We now compute E fol e s dLy(X). Using equality in law (5) we write

EEEVY . ARSI BT du (o)
E Oe sdL;(X)=E Oe 0/ Ou u ds; .
It follows from (4) and Tanaka’s formula that (|X|); =1, so for g € CZ([O, 00)),
Be(S! ) — BU1)e M s (S -8 an

! U (=1 p(—10)
=g0)+E /O g(SCH — BUeh o 8B hd g (g _ g

t " _ _
+ [T L0 — ) — (57— 8 )
0

which can be rewritten in the form
_ _ ot 1 (i)
g _ e u ! u !
Eg(s«* — B w o f (S —B ) du (13)
4 U oo o(—1) _ p(—p)
=g(0)+E / (S — BT het fo fS =By g
0
' (—1) (—mya—h J A BT d
—E/ g’(Su“—Bu“)e Jo J(Sy v " dB,
0

T (g _gl-m 1 _ _
+E/0 e (s, )dv[zg”(si W —B")

+ g (S§H — B — A(fo) (SSH — B;—W)] du.

Since f >0, to eliminate (on the right-hand side of the last equality) the expectation of the
stochastic integral, it is enough to assume that g’ is locally bounded and use some standard
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localization arguments. Since it is assumed that (h&” ;)’ is locally bounded, we can set g = h&” f)

to obtain, from (13) and from the fact that hgf‘ ; solves the underlying Dirichlet problem,
Ehglf; (ngu) _ Bﬁf“)) el FSTH BTy du
=1 [ S — B I g,
The measure dS5 " is non-zero on the set {u: S{ ™ — B{™™ =0}, so the last equality can be

written in the form

_ _ 1o o(—1) _ p(—1)
Ehg\’? (Sg I B; M))e—k jof(Su B du
! U () _p(—11)
=1+ (h(k’ff).)’(O)E/0 e o f =By v de,_“).
Hence, using (5) and L* = ¢*L, we have
1 t u
ERS)(1X e~ ol 1Xabd — 1 4 e ()Y (0)B / o T AL, 00, o
' ’ 0
We compute the left-hand side of (12). Since |X| is Markov,
Yy —aaf —aal Y08 Y
E(l—e "d)=E(l —e """ K ’):E(l—e 'hkf(|X,|)).
Inserting the last expression and (14) in (12) yields
ol ol -~ _ '
—c (W) OE(1 — e n)(1X,D) = (1 — e KX 1) B(1 — e M4r(0),
which finishes the proof of (8). To prove (9), for # > 0 and > 0 we consider the sum
v f
I=E > ligyot,,_—ocje o-[1—e ] 00, . (15)
Ty <t
which by the master excursion formula yields
t
I= (E / e MY dLS(X))Pl (1 —e D),
0

On the other side, following [2, Chapter III, Theorem 3.29], we observe that under the sum
in (15) there can be at most one excursion starting at some 7, € {r: 7, > t,—} such that og o
0, = o0o. Moreover, if this t;_ appears after the moment 7, then d; < co and the sum under

expectation in [ is zero. If 7, <¢, then d; = 00, 73— = g;, and {0p 0 6, = 00} = {d; = 00}. As
a result, we can rewrite / as
_ —)»Af *)LAJ; oflg 1 _)"Af _}‘Af
I =Eljj,—ccje™ " [1 —e 0 ] = El{d,:oo}[e s —e dt],

since d; = g; + 0¢ o 0g;. So, what we actually obtained from the two different forms of 7 is

7 oAl ! ~
El(j—o0)[e e — e *a] = (E / e MY dLS(X))Pl(l — e M), (16)
0
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By (8), we have
! f
—H () (O / e 4L, (X) = E[1 — e ],
0
so we can rewrite (16) as

R (X ())<3 T [e_)‘Agt - e—“@] =E[1- &Ml Pi (1 — e 40,

Since both # — g; and r — d; are monotone and d; > ¢, we obtain from the last equality, by
letting ¢ tend to oo,

Al f VPN
_C*(hg"ﬂ;)/(o)E[e )LA§ _ e—)»AOO] — E[l _ e—)»Aoo]Pl (1 _ e—)LAR(f))’
that is, (9). The equality (10) follows easily from (8) and (9), since
/I;(l _ e*)»AR(f)) =’151 (1 _ e*?»AR(f)) +’l:§2(1 _ e*)\AR(f))'

This completes the proof. (|
Remarks 3.1. The local time constant ¢* in Theorem 3.1 may be computed as follows: for any
t>0,
) — ut 00 00 00
= ,‘p()—“ o (1) =/ yie(t, y) dy — M/ / «(1, v) dv dy, (17)
Jo Pu(0, 0) du 0 o Jy
1 (v+;u)2 1 MZ 122 o0 2
k(t,y)= e x 0,0)= e 2l — e ¥ dz
Y V2rt pr V2rt N 0]

Indeed, from the definition of the local time constant

t —1
c* :EL;"(X)(/ pu(0,0) du> ,
0

where from the Tanaka formula EL} (X) = E|X;| — ut. Directly from the form of the transition
density of |X;| (see [3, p. 130]) we have the formula for p;(0, 0) and E|X;| = ¢(¢), where ¢ is
given by (17). Notice that ¢* does not depend on z.

Remarks 3.2. Since L(]X|) = 2L(X) it follows from the proof of Theorem 3.1 that the excur-
sion measure of |X| is equal to {ﬁ The formula in (8) corresponds to the fact that for a standard
Brownian motion B, the solution of the corresponding Sturm-Liouville equation determines
the Lévy measure of a subordinator associated with the functional fot f(By) ds (unlike in our

considerations where the functional is fot f(|Xs|) ds), and hence determines the distribution of

A"; under the excursion measure (see [1, Proposition 9.3])

= Al 1
P(1—e™%) = 2 (81,0 =) = (2,0 +)),
where g, s is the unique bounded solution of the associated Sturm-Liouville equation.

Corollary 3.1. The density of R under the excursion measure Pis given on (0, c0) by

c* 2

P(Redz) = 3e*“71dz. (18)

Tz
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Moreover,

o0 l uzz
(1—e ) —=e 7 dz=p+/ 2+ 21, 1>0.
fo V2773

Proof. It follows from (1), and we will also prove it independently in Corollary 4.2, that

*

~ e
P(R € dz) =lim —g0(2) dz.
xl0 X

We fix A > 0 and set f(x) = 1(0,00)(x), x > 0. To simplify the notation set 4 := h;" ; It follows
that, for x > 0, '

— — X — 2
hy(x) = Exe 40 = e TV TR

The formula in (18) follows since we may conclude by inverting the Laplace transform that

[§)

Z X

I
e TR,

gx0(2) = 3
Tz

The second assertion follows from Theorem 3.1, since we have —/5(0) = i + /2 +2A1. O

Theorem 3.1 enables us to describe the distribution of the occupation time of excursions
under P. Assume that =0, so |X]| is a recurrent process. For a given « > 0 we define the
occupation time for excursions on the path space U as T,:U — [0, 00) given by

R(u)
Tau) = f .00 ((5)) ds,
0
and Ta:U — [0, c0) by
- R(u)
Tol) = /O L0.0(u(s)) ds.

Clearly, both T, andj"o, are measurable. Moreover, Ty (1) = Ag(fo)(u) for u € U and fy(x) =
14,00)(%), x > 0, and T (u) = Ar(ge)(u) for u € U and gy (x) = 1(0,¢1(x), x > 0. Recall that

o0
I'(a,x)= / et a>0, x>0.
X
Proposition 3.2. For o > 0, x > 0 we have, on (0, 00),

-~ 1 2 1y o y
B(T, e dy) = e\ p( 2 2 ) 2% p (1, 2 ) | ay. 19
Tacdy)=7a® 222) "y U2a2) Y (19)

Moreover, if a > x then

PT, > 1= (— 1) [e 20/t — g 2= s, (20)

1 o0
Vi
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Proof. Recall that ¢* = % for u =0. We first prove (19). We have, from [3, Section 2.4.1,

p- 200],
0 e~ xV2 14+ (o — x)V21
R (x) = Ere ™o Moo BOds — g o) — 419, () ————
g * e ravar Y e
Thus, 13 (0) = — 1+% , and it follows from Theorem 3.1 that
~ 1 A
P(1 — e_)\AR(foz)) - L 1)
V2 14+ av2a

On the other side,

\/x _ 1 /OO (1 _ e—aml)e—f dt
l+av2h  V2a Jo

1 e (1 —azktz/(2v)) 1 V=t 4y dt
=— —e —€ v
\/Ea 0 0 Ty

o a [[* e
=‘/(; (l—e )ﬁ[\/o te Y dt:|dy=l,

where in the last equality we used Fubini’s theorem. We compute the inner integral in the last
expression:

00 y/(2e?)
I:/ (1 — e_ky) ¢ © 3
0 2Vmy? Ha?/2y)?

1
. [r (5, y/<2a2>) SN y/(zoﬂ))} dy. 22)

Equation (19) follows now from inserting (22) into (21). To prove (20), we use the formula [3,
Section 2.5.1, p. 201]

=E e_)” f(?0 1j0,a1(Bs)ds _ cosh ( 2)\(0( - x)) >
=E, _ v ’ .
cosh (v/21a)

Since 4 (0) = — tanh (+/21)+/2, we have, from Theorem 3.1,

hy (%)

Pl —e o) = % tanh (v/22)v/2A. (23)

Observe that T, < R(u). It is well known that /15(R >1) = # for any 7 > 0 (see [2, p. 112]).

As a result, ’P;(ix > t) < 00, and from Fubini’s theorem,

- 00 -
P(1—e*a) =1 / e MP(T, > 1) dt. (24)
0
On the other side, it is well known that for any p > 0
tanh o
anh(@p) _ / e P Y (1)t (25)
)4 0
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where V(1) = Zf’i 1 (—1)"_11[20[(,1_1)’2“,1](0, (see [24, table of inverse Laplace transforms —

2
hyperbolic functions, p. 11]. Using E exp (—4”?) =e P (y 1 being the gamma random variable
2

with parameter %), we obtain that

[e¢) _ o0 _Pj 1 o0 _ﬁ
/(; e P () dt = /0 e 2 ’W[/(; e 7Yy (w)w dw] dr. (26)
Joining (23), (24), (25), and (26) yields

1/00 M DT 1 * At 1 *© w2
= e "P(Ty >1) dt:—/ e —|:/ e 2y, (w)wdwi| dr.
2 Jo “ 2 Jo V2ae Lo “

Since Yo (1) < >0 | 1a(m—1).24n)(1) = 1, we have, from Fubini’s theorem,

2an )
P, >r>—\/1/<2m3>2 / P e dw

20(n— 1)

=./1/Q2n) Z (—1)” —20%n%Jt _ e_2a2(n—1)2/t]’

n=1

which completes the proof. (]

4. Ito diffusions

Under some additional assumptions we are able to extend the result of Theorem 3.1 on
the two subclasses of It6 diffusions. Precisely, consider one-dimensional Itd diffusion X with
values in E C R satisfying the stochastic differential equation

dX; = o (Xp)dB; + u(X;)dr, 27

where B is a Brownian motion, Xo = x € E under P, a.s., and ¢ and u are locally bounded
measurable functions on E such that (27) has a solution unique in probability For this we may
assume the Engelbert—Schmidt conditions, i.e. that 0 #0 and —5, 2 are locally integrable
(see [12, Proposition 5.15]). We assume that O € E, and if m denotes the speed measure of
X we demand that m({0}) = 0. We assume that X does not explode during lifetime. It is well
known [3, Chapter II, pp. 4] that in the above setup X has a jointly continuous transition density
p:(x, y) with respect to the speed measure m, i.e.

P(X;€A)= /A pr(x, y)m(dy)

for every Borel subset A of E. Recall that o, =inf{r > 0: X; =z} for z € E, and notice that it
is a terminal stopping time, so on {o, > t} it is equal to o, =t + o, 0 6;. Since the excursion
path space is a subspace of the canonical space, the same stopping time o, may be defined on
the space of excursions (see the discussion in [20, p. 491]). Notice that R and o are terminal
stopping times. P denotes the excursion measure on the path space, associated to excursions
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of X, and by X we denote the coordinate process killed under P at R, so ft(u) =u(t) fort <R
(see [20, p. 482]). For a positive Borel function f and z € E define

ogN\O;
8oy () =Erexp <—A fo FUXi1) ds>, (28)

00
g\}(x) = Ey exp (—A / FUX4) ds).
0
Let A denote the generator of X. Consider the Dirichlet problem

Ag(x) = A (x)g(x), xe(0,2), (29)
g0)=¢gx)=1,

where z> 0 and f is a given Borel and non-negative function on E. It is well known that
under some mild conditions ggf) solves the Dirichlet problem (29). It is enough to assume that
f is non-negative and continuous (see [12, Proposition 7.2, Chapter 5] and [20, Proposition
3.1, Chapter VII]), but the assumptions on f can be relaxed. For instance, f may be chosen
locally L4 for some natural d (see the discussion on sufficient assumptions in [4, 8, 23]). For
a non-negative Borel function f on E, recall the definition of the integral functional A];(u) =

fOR (@) f(lu(s)|) ds. The assumptions which enable us to formulate the version of Theorem 3.1
for E = [0, co) are gathered in the following hypothesis:

Definition. [Hypothesis B] We say that hypothesis B is satisfied for a non-negative Borel
function f on E if

1. O is regular and instantaneously reflecting,

2. forevery z € E the function g(f} is CZ(O, 00), solves (29), and has the first right derivative
in 0,

3. the function (g(f)f)’ is locally bounded.

An example of a process satisfying the above conditions is a squared Bessel process with
index u > —1 (see [20, Chapter XI]). Another example is a radial Ornstein—Uhlenbeck pro-
cess [3, Appendix I, 26] or a Pearson diffusion ([7]). Alternatively, we may define a diffusion
reflecting at O as a solution of

dX; = o (X))dB; + pu(X)dt + dLi(X),

where o and p are some well measurable coefficients and L(X) denotes the local time of X at 0.
One may check that the last approach is analogous to what we will present in the following. If
E =R we have the following set of assumptions:

Definition. [Hypothesis B’] We say that hypothesis B’ is satisfied for a non-negative Borel
function f on E if

1. Ois regular,

2. |X]|is a Markov process, u(x) = —u(—x), and ol(x)= 02(|x|) for every x € E,
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3. forevery z € E the function ggf)f is C2(0, 00), solves (29), and has the first right derivative
in 0,
4. the function (gf\z})’ is locally bounded.

An example of a process satisfying hypothesis B’ is an Ornstein—Uhlenbeck process [3,
Appendix I, 24]. That |X| is a Markov process may be verified with using the semi-group of
the process and the conditions of [15, Theorem 2].

Theorem 4.1. Let f be Borel and non-negative, A > 0, and z € E. Under either hypothesis B or
B’ we have

~ Al
P(1— e M) = —c*(g7))(0), (30)
where ¢* is a local time constant. In particular,
~ Al 0
P(1 — e M%) = —c*(g;})’(O). 31)

Proof. Let z € E (E = [0, co) under B and E = R under B"). We follow the same idea as the
proof of Theorem 3.1. Beside stopping at o7, the difference is the use of the Tanaka formula
instead of extended Levy’s theorem. The terminal property of o, enables the use of summation
trick (11):

L dr I,
E(1 — e iro) = 1E / Lucoye ™ f(1X, ) du
0

/ o0 J
=AE Z eiAAZS* < / 1{u<az}eimuf(|Xu|) du> © 91’# .
0

Ts— <INO;

The master formula of excursions yields
-4, SNy 3 Y
E(1—e "dro)=E / e M dLy(X) |P(1—e RM:). (32)
0

Let g be a C2(E) function with both derivatives locally bounded. Let A > 0. By the It6 and
Tanaka formulas,

(X, e oS 1XsDds — o)

t i X
+/° ) ”Of(lxul)du<gl(|xd)d|XS' + 58”(IXs|)az(xs)> ds
t S
—K/ FOXsDg(1Xs])e ™ Jo f1Xubdu g g
0

t S
=g(0) + / e * o SWXubdu g/ (1) (sgn(Xy)(o (Xs) dBy
0
+ w(Xs) ds) + dLE (X))

1! s
+5 / e~ oS UXubdugrr (X o (X,) ds
0

' S
- )\'/ f(|XS|)g(|XS|)67Af()f(lxu‘)du dS,
0
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where clearly L*(X) denotes the process of local time of X at 0 compatible with the Tanaka
formula. A standard localization argument shows that under hypothesis B we have

Eg(|Xing, e Jo 7 fXsl)ds .
Ao N

0

1 tNo; s
+3 / eI FXDdn g (X ) (X, ) ds
0

tAG;

—A A FOXDg(1Xs e Jo f1Xubdu g
so that
oz N §
Eg(1X;n0. e o 1IXDds — g(0) 4 ¢/(0)E / e~ Iy FXA g x)
0
Ao . s i 1 .
+E/° e u<5g”('xf')" ('XsD+g/(|Xs|>u<|Xs|>—Af(|xs|)g(|xs|>) ds
[7Nere s
+E/ ef)‘fof(‘xul)du /(|X |)M(|X |)(sgn(X ) _ 1)dS
0

and the last term of the above equality is easily seen to be 0. We choose g = g(Z) defined by
(28), and since it is a solution of the associated Dirichlet problem, we obtain

Eg) (1 Xino, e 0 “FBDI — 1 4 (69 y(O)E / e RN g x). 34y

Under hypothesis B’ we rewrite (33) with o, A o_¢, k > 0, in place of o, and observe that the
(2)

identities sgn(x)u(x) = u(x), 2(x) = o2(|x|) and the choice of g = <) sield
(Z) (|Xt/\a NG k|)e o TR XD ds

IANTAT :
=1+ (g(Z) ) (0)E / et JoSUXubdu gr ¥ (x).
Letting k — oo we obtain that the equality (34) holds under B'. Since L* = ¢*L, we finally have

oAt s
O (Xonie f<‘XY'>dS—1+c<g<Z>)<0>E / e oS Xbdu gr (x).  (35)

Using the Markov property (|X| is a Markov process under B and B) and the terminal property
of o, we write

W oA
E(1 — e Mano:) =E(1 — ¢ M"W’Z)(l{azzt} + Lo, <1))
A
=E( — HGOOH’)I{U >1) 1{0 of; >0 00}

=y
+E(l —e H”ZO@’)l{azzt}1{0209,<0009,}
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+E(1 — ~g(f}(z))1{az<t}
=E(l - fg(f}(Ith))l{ozzﬂ +E(l—e” g(kz}(z))l{"z<’}
— B(1 — e Mg (X ),
so that
Ee Miino; — Ee—iro 026 (Xinor -

Inserting the last equality into (35) and comparing it with (32) finally yield
—~ i
P(1 — e Mieor) = —c* (7)) (0),

where we used E fé e~ Jo S(1Xuldu dLs(X) > 0, which is true by (32). Formula (31) follows from
(30) by the monotone convergence and Lebesgue theorems. (|

Theorem 4.2. Let z € E. Assume hypothesis B or B' holds for f. Then

X

~ * [ofYAXez
P(Af . € dv) =lim C—Px< f FOXD) du € dv),
© 10 x 0

where the limit is in the sense of weak convergence.

Proof. Under either B or B/, for any A > 0 we have, by (30),

00 o0 * op/N\O;
[ -, ca)=iim [ (1—e—”)%Px( [ f<|xu|)duedv),

so the proof will be done if we show that we may apply the monotone convergence theorem.
Recall that ¢* > 0. It is enough to conclude that the function x 1P ( 00T f(X,)du e dv)

(TO oz
is monotone on some interval (0, €). We will prove that x — E ( e Mo (X |)d“)

monotone. Due to the assumptlons on g J we may write, for x > 0,

80 =14x(g7)'(0) + ~ / (x = (&) () dv,
so that
SEe(1—e Joo L f ' (1 _ X) @)/ dv.
0

If we show that ggf)f is convex on some (0, €) then we will have there

%(/O‘X < _>( (2) )//(v) dV) / 2( (2) )//(v) dv>0.

For this, let 0 < a < b and I = (a, b), and define o7 = 0, A 0p. Let x € I and define g; @ ”(x)
E.e ™ Jo" Vo f(XuDdu 1 ot o € (0, 1). We choose J = (c, d) such that a <c <x <d < b, and
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such that o« = Py(o, < 0y4) (and define o; and g(f}’]) analogously). We have, by the terminal
property of o, and the strong Markov property,

aj or
877 (x) =Eyexp (—x( /0 1{S<gz}f(|xs|)ds+< [0 1{s<az}f(|xs|)ds>oeg,))

oy T
=Ex| exp | =4 | L f(1XsD ds g5 1 (Xoy)

< 87D (OPx(or < 0a) + &7 (dPr(oa < 00) = g () + (1 — ) g} ().
So, we conclude that ggf’;) is convex on every such /. So is g(;}, since it is an extension of
gi’ffora¢0andb1‘oo. O

Corollary 4.1. Let z € E and assume that hypothesis B or B’ holds for both functions f and
h(x) = l(o,m)(x)()»f x) + %) where f is non-negative and Borel, and . > 0, y > 0. Then

k

- op/N\O7
(A, €dv, RA0, €dv) = lim C—Px</ F(1Xu]) du € dv, 09 Ao, € dv).
N X X 0

Proof. 1t follows that for any non-negative Borel fy we have, from Theorem 4.2,
~ f c* 00 N\Oz
PfO(AR/\m) =lim _EXfO(/ f(|Xu|)du)
< xJ0 X 0

We set fo(x) = exp{—Ax} and consider Aﬁ’r By a standard Laplace transform argument we con-
clude that (A];e A R A o) has, under P , the same distribution as ( foa()/\a: f(XsD) ds, oo A o)
under limy o %Px. O
Remark 1. Recall that the limit describing P in [17] was taken with respect to the
scale function. Observe that for Ité diffusion defined by (27) we can choose s(x)=

fg exp {—2 foy w(z)o ~2(z) dz} dy, so s(0)=0 and s'(0) = 1. As a result, identity (1) may be
rewritten as

_ P.(A P.(A 1 P.(A
BA) = lim 2y B A © / Jim 224
0 s(x) o x s(x) §(0)xj0 x
i P.(A)
= l1im .
xJ0 X

Notice that P depends on the choice of s.
Corollary 4.1 gives the explicit form of the distribution of R.

Corollary 4.2. Under the assumptions of Corollary 4.1, we have, from Theorem 4.2,

*

o~ C
P(R € dz) =lim —g,0(z2) dz,
xl0 X

so the distribution of R under the excursion measure is retrieved from the density of the first
hitting time of 0.
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Last, but not least, we present the absolute-continuity relationship between functionals on
excursion spaces associated with local martingales. If X is a local martingale and satisfies (27),
then p(x) =0 for all x € E.

Theorem 4.3. Let E = [0, 00). Assume that we are given two different excursion measures P
and Q associated with two reflected at 0 Markov processes denoted by XV and X® respec-
tively. Assume that hypothesis B holds for both processes. If X" and X® are local martingales,
and m', mh denote the densities with respect to the Lebesgue measure of their speed measures
respectively, then for any b > 0 and X denoting the coordinate process killed at R we have

e op AR - - e op AR . -
& P( /0 JXma(X;) dS> =c] Q( /0 JXmh (X) dS),

where c}, ¢5 are associated local time constants and f is a non-negative Borel measurable
function.

Proof. Tt is clear that if X" and X® are local martingales, then they are in natural scale, i.e.
their scale functions are up to multiplicative constants the identity functions. Consider the first
process and the excursion measure P . By Theorem 4.2,

opN\O(

. op AR N c*
P / f(X;)ds =lim —LE, / FxDyds.
0 xl0 Xx 0
We use [20, Corollary 3.8, Chapter VII] to write, for 0 <a <x < band T =0, A 0p,

T
E. fo FOXD) ds = /( , G SO by

where G(x, y) = w. Simple algebra shows that

T ) b—x [* , x—a [b ,
Ex/ J&X; )dS=—b f v —a) fmi(y) dy~|——/ (b —y) f(ymi(y)dy.
0 —al, b—a ),

Letting a | 0 we obtain

1 apAoQ " ) b—x X ) 1 b .
lim _Ex/ f(Xg7)ds =lim —/ yf(y)ml(y)dy+—/ (b —y) f(y)mi(y)dy
0 x0| xb Jy b J,

x}0 X
1 b
-2 / (b— ) fOImi ) dy.
0

Repeating the same procedure for Q yields Q Iy R eXy) ds = % fob (b — ) f()m5(y) dy, so
taking h| =f mh and hy =f m we obtain

~

op AR R c* b e [O AR -
P/ h(X;)ds = - / (b =y fmi(yma(y) dy = —iQ/ ha(Xy) ds,
0 b Jo & Jo
completing the proof. O
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